JP5482977B2 - Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5482977B2
JP5482977B2 JP2007158942A JP2007158942A JP5482977B2 JP 5482977 B2 JP5482977 B2 JP 5482977B2 JP 2007158942 A JP2007158942 A JP 2007158942A JP 2007158942 A JP2007158942 A JP 2007158942A JP 5482977 B2 JP5482977 B2 JP 5482977B2
Authority
JP
Japan
Prior art keywords
compound
raw material
lithium
lithium cobaltate
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158942A
Other languages
Japanese (ja)
Other versions
JP2008311132A (en
Inventor
昌市 藤野
亮尚 梶山
祐司 三島
晋吾 本田
英昭 貞村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2007158942A priority Critical patent/JP5482977B2/en
Publication of JP2008311132A publication Critical patent/JP2008311132A/en
Application granted granted Critical
Publication of JP5482977B2 publication Critical patent/JP5482977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負荷特性、サイクル特性及び熱安定性に優れたコバルト酸リチウム粒子粉末を提供する。   The present invention provides a lithium cobalt oxide particle powder excellent in load characteristics, cycle characteristics, and thermal stability.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiCo1−XNi、LiNiO等が一般的に知られており、なかでもLiCoOを用いたリチウムイオン二次電池は高い充放電電圧と充放電容量を有する点で優れているが、更なる特性改善が求められている。 Conventionally, as positive electrode active substances useful for high energy-type lithium ion secondary batteries having 4V-grade voltage, LiMn 2 O 4 of spinel structure, LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known, and among them, a lithium ion secondary battery using LiCoO 2 is excellent in that it has a high charge / discharge voltage and charge / discharge capacity. There is a need for further improvement in characteristics.

即ち、LiCoOはリチウムを引き抜いた際に、Co3+がCo4+となりヤーンテラー歪を生じ、Liを0.45引き抜いた領域で六方晶から単斜晶へ、さらに引き抜くと単斜晶から六方晶と結晶構造が変化する。そのため、充放電反応を繰り返すことによって、結晶構造が不安定となり、酸素放出や電解液との反応などが起こる。 That is, when LiCoO 2 pulls out lithium, Co 3+ becomes Co 4+ and yarn teller distortion occurs, and in the region where Li is pulled 0.45, from hexagonal to monoclinic, when further drawn, it changes from monoclinic to hexagonal. The crystal structure changes. Therefore, by repeating the charge / discharge reaction, the crystal structure becomes unstable, and oxygen release, reaction with the electrolytic solution, and the like occur.

更に、高温になると電解液との反応が活性になるため、二次電池としての安全性を確保するためには、高温下でも正極活物質の構造が安定であって熱安定性向上が必要とされている。   Furthermore, since the reaction with the electrolytic solution becomes active at high temperatures, the structure of the positive electrode active material is stable even at high temperatures and thermal stability needs to be improved to ensure safety as a secondary battery. Has been.

そこで、負荷特性やサイクル特性、高温高電圧で安定なコバルト酸リチウム(LiCoO)が要求されている。 Therefore, lithium cobalt oxide (LiCoO 2 ) that is stable at load characteristics, cycle characteristics, and high temperature and high voltage is required.

従来、コバルト酸リチウムの安定化に対してZr化合物による置換や被覆する技術が提案されており、あらかじめコバルト原料にZrを含有させる方法(特許文献1〜5)、コバルト原料、ジルコニウム原料、リチウム原料を同時に混合し、焼成する方法(特許文献6〜11)、コバルト酸リチウム粒子粉末にZr化合物を被覆する方法(特許文献12)が知られている。   Conventionally, a technique for replacing or coating with a Zr compound for stabilizing lithium cobaltate has been proposed. A method of previously containing Zr in a cobalt raw material (Patent Documents 1 to 5), a cobalt raw material, a zirconium raw material, and a lithium raw material Are simultaneously mixed and fired (Patent Documents 6 to 11), and a lithium cobaltate particle powder is coated with a Zr compound (Patent Document 12).

特開2004−200101号公報JP 2004-200101 A 特開2004−299975号公報JP 2004-299975 A 特開2004−311408号公報JP 2004-311408 A 特開2005−129489号公報Japanese Patent Laid-Open No. 2005-129489 特開2005−190900号公報JP 2005-190900 A 特開平4−319260号公報JP-A-4-319260 特開2001−68167号公報JP 2001-68167 A 特開2002−356330号公報JP 2002-356330 A 特開2002−358963号公報JP 2002-358963 A 特開2005−50779号公報Japanese Patent Laid-Open No. 2005-50779 特開2005−85635号公報JP 2005-85635 A 特開2003−221234号公報JP 2003-221234 A

前記諸特性を満たす正極活物質及びコバルト酸化物粒子粉末は現在最も要求されているところであるが、未だ得られていない。   A positive electrode active material and cobalt oxide particle powder satisfying the above-mentioned properties are currently most demanded, but have not yet been obtained.

前出特許文献1〜5に記載されたようなコバルト原料にZr元素を含有させた場合、コバルト酸リチウム粒子内にZr化合物が存在しやすくなり、表面改質効果が十分とは言い難い。   When a Zr element is contained in a cobalt raw material as described in the aforementioned Patent Documents 1 to 5, a Zr compound is likely to be present in lithium cobaltate particles, and it is difficult to say that the surface modification effect is sufficient.

また、前出特許文献6〜11に記載されたようなリチウム原料と混合する際にZr化合物を添加する場合、酸化コバルト原料の粒径が大きすぎると、Zr化合物が単独で生成し、コバルト酸リチウムの表面改質効果が不十分となる。また、Zr化合物を微粒子化した場合には前記特許文献1〜5の先行技術が示すようにZr化合物が粒子内部に残りやすくなる。
粒子内部に均一に分布させた場合、Zrはコバルト酸リチウム結晶構造の中に置換されることがないためコバルト酸リチウムの結晶性が低くなり、熱的な安定性が低下するばかりでなく、表面の活性も抑制されることがないためにサイクル特性や高電圧での耐久性が改善されない。
Moreover, when adding a Zr compound when mixing with a lithium raw material as described in the aforementioned Patent Documents 6 to 11, if the particle size of the cobalt oxide raw material is too large, the Zr compound is produced alone, and cobalt acid The surface modification effect of lithium becomes insufficient. Further, when the Zr compound is made into fine particles, the Zr compound tends to remain inside the particles as shown in the prior arts of Patent Documents 1 to 5.
When uniformly distributed inside the particles, Zr is not substituted into the lithium cobaltate crystal structure, so the crystallinity of lithium cobaltate is reduced and the thermal stability is not only reduced, but also the surface Therefore, the cycle characteristics and durability at a high voltage are not improved.

また、前出特許文献12に記載されたようなコバルト酸リチウム粒子粉末にZr化合物を混合して200〜700℃で焼成する方法では、コバルト酸リチウム粒子の界面とZr化合物の結合が弱く、十分な表面改質効果を得ることが困難である。   Further, in the method of mixing Zr compound with lithium cobalt oxide particle powder as described in Patent Document 12 and firing at 200 to 700 ° C., the bond between the lithium cobalt oxide particle interface and the Zr compound is weak and sufficient. It is difficult to obtain an excellent surface modification effect.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、非水電解液二次電池の正極活物質として用いるコバルト酸リチウム粒子粉末であり、該コバルト酸リチウム粒子粉末は、Zr化合物で被覆されたコバルト酸リチウム粒子粉末であって、Zr化合物が粒子内部に存在せず表面に局在しており、且つ、前記Zr化合物の化学式がLi ZrO で表され、Zr含有率が粒子全体に対して0.05〜1.0wt%であり、当該Zr化合物の一次粒子の平均粒径が1.0μm以下であることを特徴とするZr化合物で被覆されたコバルト酸リチウム粒子粉末である(本発明1)。 That is, the present invention is a lithium cobaltate particle powder used as a positive electrode active material of a nonaqueous electrolyte secondary battery, the lithium cobaltate particle powder is a lithium cobaltate particle powder coated with a Zr compound, The Zr compound does not exist inside the particle but is localized on the surface, the chemical formula of the Zr compound is represented by Li 2 ZrO 3 , and the Zr content is 0.05 to 1.0 wt% with respect to the whole particle. The lithium cobalt oxide particle powder coated with the Zr compound is characterized in that the average particle size of the primary particles of the Zr compound is 1.0 μm or less (Invention 1).

また、本発明は、コバルト原料、ジルコニウム原料、リチウム原料を混合、焼成するZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法において、前記コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化コバルトであることを特徴とする本発明1記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法である(本発明)。 The present invention also relates to a method for producing a lithium cobaltate particle powder coated with a Zr compound in which a cobalt raw material, a zirconium raw material, and a lithium raw material are mixed and fired. it is a manufacturing method of the present invention 1 Symbol placement lithium cobaltate particles coated with Zr compound of wherein the average particle size of is less cobalt oxide 1.0 .mu.m (the present invention 2).

また、本発明は、コバルト原料、ジルコニウム原料、リチウム原料を混合、焼成するZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法において、前記コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化コバルトであり、且つ、前記ジルコニウム原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化ジルコニウムであることを特徴とする本発明記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法である(本発明)。 The present invention also relates to a method for producing a lithium cobaltate particle powder coated with a Zr compound in which a cobalt raw material, a zirconium raw material, and a lithium raw material are mixed and fired. The average particle size of cobalt oxide is 1.0 μm or less, and the average particle size of the behavior particles measured by the laser particle size distribution measuring apparatus of the zirconium raw material is 1.0 μm or less. This is a method for producing lithium cobaltate particle powder coated with the Zr compound according to the present invention 2 (present invention 3 ).

また、本発明は、コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が0.5μm以下の酸化コバルトであり、且つ、ジルコニウム原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が0.8μm以下の酸化ジルコニウムであることを特徴とする本発明記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法である(本発明)。 Further, the present invention is a cobalt oxide whose average particle size is 0.5 μm or less as measured by a laser-based particle size distribution measuring apparatus for cobalt raw material, and behavior measured by a laser-based particle size distribution measuring apparatus for zirconium raw material. The method for producing a lithium cobaltate particle powder coated with a Zr compound according to the present invention 3 , wherein the average particle diameter of the particles is zirconium oxide having a particle diameter of 0.8 μm or less (the present invention 4 ).

また、本発明は、コバルト原料が、Ni、Mn、Si、Sn、Ti、Mg、Alから選ばれる少なくとも1つの元素を含有する酸化コバルトであることを特徴とする本発明2〜4のいずれかに記載されたZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法である(本発明)。 Moreover, the present invention provides any one of the present inventions 2 to 4 , wherein the cobalt raw material is cobalt oxide containing at least one element selected from Ni, Mn, Si, Sn, Ti, Mg, and Al. 3 is a method for producing a lithium cobaltate particle powder coated with a Zr compound described in ( 5 ).

また、本発明は、本発明1記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末を正極活物質またはその一部として用いた非水電解液二次電池である(本発明)。 Further, the present invention is a nonaqueous electrolyte secondary battery using lithium cobaltate particles coated with Zr compound of the present invention 1 Symbol placement as a cathode active material or a portion thereof (invention 6).

本発明に係るコバルト酸リチウム粒子粉末は、負荷特性、サイクル特性及び熱安定性に優れているので、非水電解質二次電池用の正極活物質として好適である。   Since the lithium cobalt oxide particle powder according to the present invention is excellent in load characteristics, cycle characteristics and thermal stability, it is suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

Zr化合物による安定化について検討した結果、コバルト酸リチウムの生成から成長段階において、コバルト酸リチウム表面にZr化合物が析出することにより、コバルト酸リチウムの電気化学特性を損なうことなく、表面活性を抑制できる。   As a result of examining the stabilization by the Zr compound, the surface activity can be suppressed without deteriorating the electrochemical properties of the lithium cobaltate by depositing the Zr compound on the surface of the lithium cobaltate in the growth stage from the production of the lithium cobaltate. .

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末について述べる。   First, the lithium cobalt oxide particle powder coated with the Zr compound according to the present invention will be described.

本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末は、コバルト酸リチウム粒子の粒子内部にZr化合物が存在せず、粒子表面にZr化合物が存在する。
粒子内部にZr化合物が存在する場合には、Zrはコバルト酸リチウム粒子の結晶構造の中に置換されることがないためコバルト酸リチウムの結晶性が低くなり、熱的な安定性が低下するばかりでなく、表面の活性も抑制されることがないためにサイクル特性や高電圧での耐久性が改善されない。
In the lithium cobalt oxide particle powder coated with the Zr compound according to the present invention, the Zr compound does not exist inside the lithium cobalt oxide particle and the Zr compound exists on the particle surface.
When a Zr compound is present inside the particle, Zr is not substituted into the crystal structure of the lithium cobaltate particle, so the crystallinity of the lithium cobaltate is lowered and the thermal stability is reduced. In addition, since the activity of the surface is not suppressed, the cycle characteristics and durability at a high voltage are not improved.

なお、コバルト酸リチウム粒子粉末の粒子内部には、Ni、Mn、Si、Sn、Ti、Mg又はAlから選ばれる1種以上の元素をCoに対して0.05〜5.0mol%含有してもよい。   In addition, 0.05 to 5.0 mol% of one or more elements selected from Ni, Mn, Si, Sn, Ti, Mg, or Al are contained inside the lithium cobalt oxide particle powder. Also good.

粒子表面に存在させるZr化合物は、化学式がLix(Zr1−yAy)Oz(x、y及びzは、2.0≦x≦8.0、0≦y≦1.0、2.0≦z≦6.0)で表される。
x、y、zが前記範囲外の場合には、表面改質効果が十分とは言い難い。Zr化合物は好ましくは化学式:LiZrO(空間群:C2/c)、LiZr、LiZrO、LiZrOである。より好ましくはxが2のLiZrOである。
The Zr compound to be present on the particle surface has a chemical formula of Lix (Zr1-yAy) Oz (x, y and z are 2.0 ≦ x ≦ 8.0, 0 ≦ y ≦ 1.0, 2.0 ≦ z ≦ 6.0).
When x, y and z are out of the above ranges, it is difficult to say that the surface modification effect is sufficient. The Zr compound preferably has the chemical formula: Li 2 ZrO 3 (space group: C2 / c), Li 6 Zr 2 O 7 , Li 4 ZrO 4 , Li 8 ZrO 6 . More preferably, it is Li 2 ZrO 3 in which x is 2.

粒子表面に存在するZr化合物は、A元素が、Mg、Al、Ca、Y、Ce、Sn、Tiから選ばれる少なくとも1種である元素を含有してもよい。前記A元素を含有することによって、よりサイクル特性が向上する。   The Zr compound present on the particle surface may contain an element in which the A element is at least one selected from Mg, Al, Ca, Y, Ce, Sn, and Ti. By containing the element A, the cycle characteristics are further improved.

本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末における前記Zr化合物のZr含有率が粒子全体に対して0.05〜1.0wt%である。Zr含有量が0.05wt%未満の場合、サイクル特性が改善されない。Zr含有量が1.0wt%を超える場合、初期放電容量が減少する。より好ましくは0.05〜0.8wt%である。   The Zr content of the Zr compound in the lithium cobaltate particle powder coated with the Zr compound according to the present invention is 0.05 to 1.0 wt% with respect to the entire particle. When the Zr content is less than 0.05 wt%, the cycle characteristics are not improved. When the Zr content exceeds 1.0 wt%, the initial discharge capacity decreases. More preferably, it is 0.05-0.8 wt%.

粒子表面に存在するZr化合物の一次粒子の平均粒径は1.0μm以下であることが好ましい。Zr化合物の平均粒径が1.0μmを超える場合には、表面改質効果が十分とは言い難い。より好ましくは0.1〜0.8μmである。   The average particle size of the primary particles of the Zr compound present on the particle surface is preferably 1.0 μm or less. When the average particle size of the Zr compound exceeds 1.0 μm, it is difficult to say that the surface modification effect is sufficient. More preferably, it is 0.1-0.8 micrometer.

本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末の挙動粒子の平均粒径は1.0〜30μmが好ましい。平均粒径が1μm未満の場合には、充填密度の低下と安全性が低下する。30μmを超える場合には、工業的に生産することが困難となる。より好ましい挙動粒子の平均粒径は2.0〜25μm、更により好ましくは10〜20μmである。 The average particle diameter of the behavior particles of the lithium cobaltate particles coated with the Zr compound according to the present invention is preferably 1.0 to 30 μm . When the average particle size is less than 1 μm, the packing density is lowered and the safety is lowered. When it exceeds 30 μm, it is difficult to produce industrially. More preferably, the average particle size of the behavior particles is 2.0 to 25 μm, and even more preferably 10 to 20 μm.

なお、本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末のBET比表面積は、1.0m/g以下が好ましい。1.0m/gを超える場合には充填密度の低下や電解液との反応性が増加するため好ましくない。 In addition, the BET specific surface area of the lithium cobalt oxide particle powder coated with the Zr compound according to the present invention is preferably 1.0 m 2 / g or less. When exceeding 1.0 m < 2 > / g, since the fall with a packing density and the reactivity with electrolyte solution increase, it is unpreferable.

次に、本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造法について述べる。   Next, the manufacturing method of the lithium cobaltate particle powder coat | covered with the Zr compound based on this invention is described.

本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末は、コバルト原料、ジルコニウム原料、リチウム原料を混合、焼成して得られるものであり、前記コバルト原料は、挙動粒子の平均粒径が1.0μm以下の酸化コバルトである(本発明5)。   The lithium cobalt oxide particle powder coated with the Zr compound according to the present invention is obtained by mixing and firing a cobalt raw material, a zirconium raw material, and a lithium raw material, and the cobalt raw material has an average particle size of behavior particles of 1 Cobalt oxide having a thickness of 0.0 μm or less (Invention 5).

酸化コバルトの挙動粒子の平均粒径が1.0μmを超える場合、Zr化合物が単独で生成し、コバルト酸リチウムの表面改質効果が不十分となる。より好ましい平均粒径は0.1〜0.5μmである。   When the average particle diameter of the behavior particles of cobalt oxide exceeds 1.0 μm, the Zr compound is generated alone, and the surface modification effect of lithium cobaltate becomes insufficient. A more preferable average particle diameter is 0.1 to 0.5 μm.

なお、コバルト原料である酸化コバルトには、Ni、Mn、Si、Sn、Ti、Mg、Alから選ばれる少なくとも1つの元素を含有していてもよい。   Note that cobalt oxide, which is a cobalt raw material, may contain at least one element selected from Ni, Mn, Si, Sn, Ti, Mg, and Al.

また、ジルコニウム原料は、挙動粒子の平均粒径が1.0μm以下の酸化ジルコニウムであることが好ましい(本発明6)。   Moreover, it is preferable that a zirconium raw material is a zirconium oxide whose average particle diameter of a behavior particle is 1.0 micrometer or less (this invention 6).

酸化ジルコニウムの挙動粒子の平均粒径が1.0μmを超える場合、Zr化合物が単独で生成し、コバルト酸リチウムの表面改質効果が不十分となる。より好ましい平均粒径は0.1〜0.8μmである。   When the average particle diameter of the behavior particles of zirconium oxide exceeds 1.0 μm, the Zr compound is generated alone, and the surface modification effect of lithium cobaltate becomes insufficient. A more preferable average particle diameter is 0.1 to 0.8 μm.

コバルト酸リチウム粒子粉末の粒子表面に、Mg、Al、Ca、Y、Ce、Sn、Tiから選ばれる少なくとも1種であるA元素を含有するLix(Zr1−yAy)Ozを存在させる場合には、ジルコニウム原料とともに、前記A元素の化合物を添加・混合すればよい。   When Lix (Zr1-yAy) Oz containing at least one element selected from Mg, Al, Ca, Y, Ce, Sn, Ti is present on the particle surface of the lithium cobalt oxide particle powder, What is necessary is just to add and mix the compound of said A element with a zirconium raw material.

リチウムの混合比は、コバルト酸化物中の金属元素(Co、Mg、異種金属)の総モル数に対して0.95〜1.05であることが好ましい。   The mixing ratio of lithium is preferably 0.95 to 1.05 with respect to the total number of moles of metal elements (Co, Mg, different metals) in the cobalt oxide.

焼成温度は、高温規則相であるLiCoOが生成する600℃〜1100℃であることが好ましい。600℃以下の場合には擬スピネル構造を有する低温相であるLiCoOが生成し、1100℃以上の場合にはリチウムとコバルトの位置がランダムである高温不規則相のLiCoOが生成する。焼成時の雰囲気は酸化性ガス雰囲気が好ましい。反応時間は5〜20時間が好ましい。 The firing temperature is preferably 600 ° C. to 1100 ° C. at which LiCoO 2 that is a high-temperature ordered phase is generated. In the case of 600 ° C. The following LiCoO 2 is produced a low-temperature phase having a pseudo-spinel structure, in the case of more than 1100 ° C. the location of the lithium and cobalt to produce the LiCoO 2 hot disordered phase is random. The atmosphere during firing is preferably an oxidizing gas atmosphere. The reaction time is preferably 5 to 20 hours.

次に、本発明に係る非水電解質二次電池用Zr化合物で被覆されたコバルト酸リチウム粒子粉末からなる正極活物質を用いた正極について述べる。   Next, the positive electrode using the positive electrode active material which consists of lithium cobaltate particle powder coat | covered with the Zr compound for nonaqueous electrolyte secondary batteries which concerns on this invention is described.

本発明に係る正極活物質を用いて正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When a positive electrode is produced using the positive electrode active material according to the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明に係る正極活物質を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode active material according to the present invention includes the positive electrode, the negative electrode, and an electrolyte.

負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   As the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite, or the like can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

本発明に係る正極活物質を用いて製造した二次電池は、初期放電容量が150〜170mAh/gであり、後述する評価法で測定した高負荷容量維持率が95%以上、熱安定性(発熱開始温度)は180℃以上、サイクル容量維持率85%以上の優れた特性を示す。   The secondary battery manufactured using the positive electrode active material according to the present invention has an initial discharge capacity of 150 to 170 mAh / g, a high load capacity maintenance rate measured by an evaluation method described later of 95% or more, and thermal stability ( The exothermic starting temperature) exhibits excellent characteristics of 180 ° C. or higher and a cycle capacity retention rate of 85% or higher.

<作用>
本発明において重要な点は、コバルト酸リチウム粒子の粒子表面にLix(Zr1−yAy)OzからなるZr化合物を存在させることによって、該コバルト酸リチウム粒子粉末を二次電池の正極活物質として用いた場合には、負荷特性、サイクル特性及び熱安定性に優れた二次電池が得られるという事実である。
<Action>
The important point in the present invention is that the lithium cobaltate particle powder was used as the positive electrode active material of the secondary battery by making the Zr compound composed of Lix (Zr1-yAy) Oz present on the particle surface of the lithium cobaltate particle. In some cases, this is the fact that a secondary battery having excellent load characteristics, cycle characteristics and thermal stability can be obtained.

本発明に係るZr化合物で被覆されたコバルト酸リチウム粒子粉末が二次電池の正極活物質として優れた特性を有する理由として、コバルト酸リチウム粒子粉末の粒子表面に前記Zr化合物が存在することによって、コバルト酸リチウムの電気化学特性を損なうことなく、表面活性を抑制できるためであると本発明者は推定している。   The reason why the lithium cobaltate particle powder coated with the Zr compound according to the present invention has excellent characteristics as the positive electrode active material of the secondary battery is that the Zr compound is present on the particle surface of the lithium cobaltate particle powder. The present inventor presumes that the surface activity can be suppressed without impairing the electrochemical properties of lithium cobalt oxide.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

挙動粒子の平均粒径はレーザー式粒度分布測定装置マイクロトラックHRA[日揮装(株)製]を用いて湿式レーザー法で測定した体積基準の平均粒径(D50)で示した
尚、試料にはヘキサメタリン酸ソーダーを添加し、超音波分散した後に測定を行った。
The average particle size of the behavior particles was shown as a volume-based average particle size (D50) measured by a wet laser method using a laser type particle size distribution measuring device Microtrac HRA [manufactured by JGC Co., Ltd.].
In addition, it measured after adding sodium hexametaphosphate to a sample and carrying out ultrasonic dispersion | distribution.

一次粒子径は、SEM像から平均値を読み取った。   The average primary particle size was read from the SEM image.

被覆又は存在させる粒子の存在状態はエネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察した。   The presence state of the particles to be coated or present was observed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

被覆又は存在させる粒子の平均一次粒子径はエネルギー分散型X線分析装置付き走査電子顕微鏡SEM−EDX[(株)日立ハイテクノロジーズ製]を用いて観察し、確認した。   The average primary particle diameter of the particles to be coated or present was observed and confirmed using a scanning electron microscope SEM-EDX with an energy dispersive X-ray analyzer [manufactured by Hitachi High-Technologies Corporation].

試料の同定は、粉末X線回折(RIGAKU Cu-Kα 40kV 40mA)を用いた。   For identification of the sample, powder X-ray diffraction (RIGAKU Cu-Kα 40 kV 40 mA) was used.

比表面積はMacsorb HM model−1208(マウンテック社製)を用いて、BET法にて測定した。   The specific surface area was measured by BET method using Macsorb HM model-1208 (manufactured by Mountec).

正極活物質の電池特性は、下記製造法によって正極、負極及び電解液を調整しコイン型の電池セルを作製して評価した。   The battery characteristics of the positive electrode active material were evaluated by preparing a coin-type battery cell by adjusting the positive electrode, the negative electrode, and the electrolytic solution by the following production method.

<正極の作製>
正極活物質としてLi−Co複合酸化物を93重量%、導電材としてアセチレンブラックを2重量%及びグラファイトKS−16を2重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン3重量%とを混合した後、Al金属箔に塗布し150℃にて乾燥した。このシートをφ16mmに打ち抜いた後、1t/cmで圧着し、電極厚みを50μmとした物を正極板とした。
<Preparation of positive electrode>
93% by weight of Li—Co composite oxide as a positive electrode active material, 2% by weight of acetylene black as a conductive material and 2% by weight of graphite KS-16, 3% by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder, Were mixed, then applied to an Al metal foil and dried at 150 ° C. This sheet was punched out to 16 mm and then pressed at 1 t / cm 2 to obtain a positive electrode plate having an electrode thickness of 50 μm.

<負極の作製>
金属リチウム箔をφ16mmの円板状に打ち抜いて負極を作製した。
<Production of negative electrode>
A metal lithium foil was punched into a disk shape of φ16 mm to produce a negative electrode.

<電解液の調整>
電解液は1mol/lのLiPFを溶解したECとDECを体積比で3:7に混合した溶液を用いた。
<Adjustment of electrolyte>
As the electrolytic solution, a solution in which EC and DEC in which 1 mol / l LiPF 6 was dissolved was mixed at a volume ratio of 3: 7 was used.

<コイン型電池セルの組み立て>
アルゴン雰囲気のグローブボックス中でSUS316製のケースを用い、上記正極と負極の間にポリプロピレン製のセパレータを介し、さらに電解液を注入してCR2032型のコイン電池を作製した。
<Assembly of coin-type battery cells>
Using a case made of SUS316 in a glove box in an argon atmosphere, a CR2032-type coin battery was manufactured by injecting an electrolyte solution through a polypropylene separator between the positive electrode and the negative electrode.

<電池評価>
初期充放電特性は、室温で充電は4.3Vまで0.1Cの電流密度にて行った後、90分間低電圧充電を行い、放電を3.0Vまで0.1Cの電流密度にて行い、その時の初期充電容量、初期放電容量及び初期効率を測定した。
<Battery evaluation>
The initial charge / discharge characteristics are as follows: at room temperature, charging is performed at a current density of 0.1 C up to 4.3 V, then low voltage charging is performed for 90 minutes, and discharging is performed at a current density of 0.1 C up to 3.0 V; The initial charge capacity, initial discharge capacity, and initial efficiency at that time were measured.

高負荷特性は0.1Cでの放電容量測定(a)を行なった後に再度0.1Cで充電を行ない、その後に1.0Cで放電容量を測定(b)して、b/a×100(%)として決定した。   For high load characteristics, after measuring discharge capacity (a) at 0.1 C, charge again at 0.1 C, then measure discharge capacity at 1.0 C (b), and b / a × 100 ( %).

また、サイクル容量維持率については、カットオフ電圧が3.0Vから4.3Vの間で1.0Cのレートで充放電を繰り返し、初回放電容量に対する30サイクル目の放電容量の割合とした。   Regarding the cycle capacity retention rate, charge / discharge was repeated at a rate of 1.0 C when the cut-off voltage was between 3.0 V and 4.3 V, and the ratio of the discharge capacity at the 30th cycle to the initial discharge capacity was used.

<熱安定性評価>
前記コイン型電池を用いて、4.5Vの電圧まで充電し、電池内の正極活物質を取り出し熱分析用の容器に詰め封をし、昇温速度10℃/minで、示差熱分析装置(DSC、セイコーインスツルメンツ社製 DSC6200)を用いてDSC測定を行った。測定結果から発熱開始温度を熱安定性とした。操作温度は300〜400℃の間で行い、また、上記した容器に詰めるまでの作業は全て露点−60℃以下のグローブボックス中で行った。
<Thermal stability evaluation>
Using the coin-type battery, the battery is charged to a voltage of 4.5 V, the positive electrode active material in the battery is taken out and sealed in a thermal analysis container, and a differential thermal analyzer (at a heating rate of 10 ° C./min) DSC measurement was performed using DSC, DSC6200 manufactured by Seiko Instruments Inc. From the measurement results, the heat generation start temperature was regarded as thermal stability. The operation temperature was 300 to 400 ° C., and all the operations up to filling the above-described container were performed in a glove box having a dew point of −60 ° C. or less.

実施例1
Mg含有量が1.0mol%、Al含有量が0.3mol%及びZr含有量が0.2mol%のコバルト酸リチウムを用意した。該コバルト酸リチウムは、下記製造法によって製造した。
即ち、0.5mol/lのコバルトを含有する溶液に、硫酸マグネシウムを添加し、コバルト及びマグネシウムの中和分に対して1.05当量の水酸化ナトリウム水溶液を添加し中和反応させた。次いで、空気を吹き込みながら90℃で20時間酸化反応を行ってマグネシウム含有コバルト酸化物粒子粉末を得た。
得られたコバルト酸化物粒子粉末は、挙動粒子の平均粒径が0.2μmであった。
得られたコバルト酸化物粒子粉末、酸化ジルコニウムと炭酸リチウムとを、混合した後、大気雰囲気1000℃で10時間焼成を行った。
Example 1
A lithium cobalt oxide having an Mg content of 1.0 mol%, an Al content of 0.3 mol%, and a Zr content of 0.2 mol% was prepared. The lithium cobaltate was produced by the following production method.
That is, magnesium sulfate was added to a solution containing 0.5 mol / l of cobalt, and 1.05 equivalent of an aqueous sodium hydroxide solution was added to the neutralized component of cobalt and magnesium for neutralization reaction. Next, an oxidation reaction was performed at 90 ° C. for 20 hours while blowing air to obtain magnesium-containing cobalt oxide particle powder.
In the obtained cobalt oxide particle powder, the average particle size of the behavior particles was 0.2 μm.
The resulting cobalt oxide particles, the oxide zirconium arm and lithium carbonate were mixed and subjected to 10 hours calcined in an air atmosphere 1000 ° C..

得られたコバルト酸リチウム粒子粉末は、組成がLiCo0.987Mg0.01Al0.003であり、平均粒径が15.0μm、BET比表面積は0.22m/gであった。X線回折の結果、異相は存在せず、コバルト酸リチウム単相であることが確認された。
得られたコバルト酸リチウム粒子粉末のSEM像(a)とZrマッピングした写真(b)を図1に、また、コバルト酸リチウム粒子粉末の粒子破断面のSEM像(a)とZrマッピングした写真(b)を図2に示す。Zrマッピングした写真(b)は、SEM像(a)に対してZrが存在する部分をEDXで検出して色分け(緑色)したものである。図1の(b)は、Zrが検出され、Zrが存在する部分(緑色の部分)を○で囲んでいる。図2の(b)では、Zrが検出されなかった。
図1及び図2から、実施例1で得られたコバルト酸化物粒子粉末は、粒子内部にはZrが存在せず、粒子表面にZr化合物が存在することが確認された。
The obtained lithium cobaltate particles had a composition of LiCo 0.987 Mg 0.01 Al 0.003 O 2 , an average particle size of 15.0 μm, and a BET specific surface area of 0.22 m 2 / g. . As a result of X-ray diffraction, it was confirmed that there was no heterogeneous phase and it was a lithium cobaltate single phase.
The SEM image (a) of the obtained lithium cobaltate particle powder and the Zr-mapped photograph (b) are shown in FIG. 1, and the SEM image (a) of the fracture surface of the lithium cobaltate particle powder and the Zr-mapped photograph ( b) is shown in FIG. The Zr-mapped photograph (b) is a color-coded (green) portion of the SEM image (a) in which Zr is detected by EDX. In FIG. 1B, a portion where Zr is detected and Zr is present (green portion) is circled. In FIG. 2B, Zr was not detected.
From FIG. 1 and FIG. 2, it was confirmed that the cobalt oxide particle powder obtained in Example 1 did not contain Zr inside the particle and Zr compound existed on the particle surface.

実施例1で得られたコバルト酸リチウム粒子粉末のZr部の電子線回折像を図3に示す。電子線回折パターン解析プログラム(EDA)の計算結果より、Zr化合物がLiZrOであることを確認した。 FIG. 3 shows an electron diffraction image of the Zr part of the lithium cobalt oxide particle powder obtained in Example 1. From the calculation result of the electron diffraction pattern analysis program (EDA), it was confirmed that the Zr compound was Li 2 ZrO 3 .

前記正極活物質を用いて作製したコイン型電池は、初期放電容量が158mAh/g、熱安定性は183℃であった。また、高負荷容量維持率は97%、サイクル容量維持率は92%であった。   The coin-type battery produced using the positive electrode active material had an initial discharge capacity of 158 mAh / g and a thermal stability of 183 ° C. Further, the high load capacity retention rate was 97%, and the cycle capacity retention rate was 92%.

実施例2〜6、比較例1〜4
酸化コバルトと酸化ジルコニウムの挙動粒子の平均粒径及びZrの含有量、異種金属の種類及び添加量を種々変化させた以外は、前記実施例1と同様にして、コバルト酸リチウムからなる正極活物質を得た。
Examples 2-6, Comparative Examples 1-4
Cathode active material comprising lithium cobalt oxide in the same manner as in Example 1 except that the average particle diameter of the behavior particles of cobalt oxide and zirconium oxide, the content of Zr, the kind of different metal, and the addition amount were variously changed. Got.

このときの製造条件、及び得られた正極活物質の諸特性を表1に示す。   Table 1 shows the production conditions at this time and various characteristics of the obtained positive electrode active material.

実施例2〜6で得られたコバルト酸リチウム粒子粉末について、実施例1と同様にしてZr化合物の存在状態及び結晶構造を確認したところ、粒子内部にはZrが存在せず、粒子表面にLiZrOで存在することを確認した。 Regarding the lithium cobaltate particles obtained in Examples 2 to 6, the presence state and crystal structure of the Zr compound were confirmed in the same manner as in Example 1. As a result, Zr was not present inside the particles, and Li on the particle surface. 2 ZrO 3 was confirmed to be present.

比較例2で得られたコバルト酸リチウム粒子粉末のSEM像(a)とZrマッピングした写真(b)を図4に、比較例3で得られたコバルト酸リチウム粒子粉末のSEM像(a)とZrマッピングした写真(b)を図5に示す。図4及び図5の(b)の写真において、○で囲まれた部分がZrが存在する部分である。図4、図5から、比較例2、3で得られたコバルト酸リチウム粒子粉末は、粒子表面の一部にZr化合物が存在することが確認された。
比較例4で得られたコバルト酸リチウム粒子粉末の破断面のSEM像(a)とZrマッピングした写真(b)を図6に、比較例で得られたコバルト酸リチウム粒子粉末のSEM像(a)とZrマッピングした写真(b)を図7に示す。図6の二つの直線が交差する点がZrが存在する部分である。図7の(b)の写真において、○で囲まれた部分がZrが存在する部分である。図6、7から比較例4で得られたコバルト酸化物粒子粉末は、粒子内部にZrが存在するとともに、粒子表面の一部にZr化合物が存在することが確認された。

The SEM image (a) of the lithium cobaltate particles obtained in Comparative Example 2 and the Zr-mapped photograph (b) are shown in FIG. 4, and the SEM image (a) of the lithium cobaltate particles obtained in Comparative Example 3 and A Zr-mapped photograph (b) is shown in FIG. In the photographs of FIGS. 4 and 5B, the portion surrounded by ◯ is the portion where Zr exists. 4 and 5, it was confirmed that the lithium cobalt oxide particle powder obtained in Comparative Examples 2 and 3 had a Zr compound on a part of the particle surface.
The SEM image (a) of the fracture surface of the lithium cobalt oxide particle powder obtained in Comparative Example 4 and the Zr-mapped photograph (b) are shown in FIG. 6, and the SEM image of the lithium cobalt oxide particle powder obtained in Comparative Example 4 ( FIG. 7 shows a) and a Zr-mapped photograph (b). A point where two straight lines in FIG. 6 intersect is a portion where Zr exists. In the photograph of FIG. 7B, the portion surrounded by ○ is the portion where Zr exists. 6 and 7, the cobalt oxide particle powder obtained in Comparative Example 4 was confirmed to contain Zr inside the particle and a Zr compound on a part of the particle surface.

本発明に係るコバルト酸化物粒子粉末は、負荷特性、サイクル特性及び熱安定性に優れるので、二次電池用の正極活物質として好適である。
Since the cobalt oxide particle powder according to the present invention is excellent in load characteristics, cycle characteristics and thermal stability, it is suitable as a positive electrode active material for a secondary battery.

実施例1で得られたコバルト酸リチウム粒子粉末の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the lithium cobalt oxide particle powder obtained in Example 1. 実施例1で得られたコバルト酸リチウム粒子粉末の粒子破断面の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the particle fracture surface of the lithium cobalt oxide particle powder obtained in Example 1. 実施例1で得られたコバルト酸リチウム粒子粉末のZr部の電子線回折図形である。2 is an electron diffraction pattern of a Zr part of the lithium cobalt oxide particle powder obtained in Example 1. FIG. 比較例2で得られたコバルト酸リチウム粒子粉末の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the lithium cobaltate particle powder obtained in the comparative example 2. 比較例3で得られたコバルト酸リチウム粒子粉末の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the lithium cobaltate particle powder obtained by the comparative example 3. 比較例4で得られたコバルト酸リチウム粒子粉末の破断面の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the fracture surface of the lithium cobalt oxide particle powder obtained by the comparative example 4. 比較例4で得られたコバルト酸リチウム粒子粉末の(a)SEM像と(b)Zrマッピングした図である。It is the (a) SEM image and (b) Zr mapping figure of the lithium cobaltate particle powder obtained by the comparative example 4. Zr量と負荷特性の関係を示すグラフである。It is a graph which shows the relationship between Zr amount and a load characteristic. Zr量と熱安定性の関係を示すグラフである。It is a graph which shows the relationship between Zr amount and thermal stability. Zr量とサイクル特性の関係を示すグラフである。It is a graph which shows the relationship between Zr amount and cycle characteristics. 実施例1と比較例4の30サイクル後の放電曲線を示すグラフである。It is a graph which shows the discharge curve after 30 cycles of Example 1 and Comparative Example 4.

Claims (6)

非水電解液二次電池の正極活物質として用いるコバルト酸リチウム粒子粉末であり、該コバルト酸リチウム粒子粉末は、Zr化合物で被覆されたコバルト酸リチウム粒子粉末であって、Zr化合物が粒子内部に存在せず表面に局在しており、且つ、前記Zr化合物の化学式がLi ZrO で表され、Zr含有率が粒子全体に対して0.05〜1.0wt%であり、当該Zr化合物の一次粒子の平均粒径が1.0μm以下であることを特徴とするZr化合物で被覆されたコバルト酸リチウム粒子粉末。 A lithium cobaltate particle powder used as a positive electrode active material of a non-aqueous electrolyte secondary battery, wherein the lithium cobaltate particle powder is a lithium cobaltate particle powder coated with a Zr compound, and the Zr compound is contained inside the particle. The Zr compound is localized on the surface without being present, the chemical formula of the Zr compound is represented by Li 2 ZrO 3 , and the Zr content is 0.05 to 1.0 wt% with respect to the entire particle , Lithium cobaltate particles coated with a Zr compound, wherein the primary particles have an average particle size of 1.0 μm or less. コバルト原料、ジルコニウム原料、リチウム原料を混合、焼成するZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法において、前記コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化コバルトであることを特徴とする請求項1記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法。 In the method for producing lithium cobaltate particles coated with a Zr compound in which a cobalt raw material, a zirconium raw material, and a lithium raw material are mixed and fired, the average particle size of the behavior particles measured by the laser particle size distribution measuring device of the cobalt raw material is 1 claim 1 Symbol mounting method of manufacturing a coated lithium cobaltate particles in Zr compound of wherein the .0μm is less cobalt oxide. コバルト原料、ジルコニウム原料、リチウム原料を混合、焼成するZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法において、前記コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化コバルトであり、且つ、前記ジルコニウム原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が1.0μm以下の酸化ジルコニウムであることを特徴とする請求項記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法。 In the method for producing lithium cobaltate particles coated with a Zr compound in which a cobalt raw material, a zirconium raw material, and a lithium raw material are mixed and fired, the average particle size of the behavior particles measured by the laser particle size distribution measuring device of the cobalt raw material is 1 .0μm a less cobalt oxide, and, according to claim 2, wherein the average particle size of the zirconium starting material for a laser particle size distribution analyzer measured behavior particles is less zirconium oxide 1.0μm A method for producing lithium cobalt oxide particle powder coated with a Zr compound. コバルト原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が0.5μm以下の酸化コバルトであり、且つ、ジルコニウム原料のレーザー式粒度分布測定装置で測定した挙動粒子の平均粒径が0.8μm以下の酸化ジルコニウムであることを特徴とする請求項記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法。 The average particle diameter of the behavior particles measured by the laser particle size distribution measuring apparatus of the zirconium raw material is cobalt oxide whose average particle diameter of the behavior particles measured by the laser particle size distribution measuring apparatus of the cobalt raw material is 0.5 μm or less. The method for producing lithium cobaltate particle powder coated with a Zr compound according to claim 3 , wherein the zirconium oxide is 0.8 µm or less. コバルト原料が、Ni、Mn、Si、Sn、Ti、Mg、Alから選ばれる少なくとも1つの元素を含有する酸化コバルトであることを特徴とする請求項のいずれかに記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末の製造方法。 The Zr compound according to any one of claims 2 to 4 , wherein the cobalt raw material is cobalt oxide containing at least one element selected from Ni, Mn, Si, Sn, Ti, Mg, and Al. A method for producing a coated lithium cobalt oxide particle powder. 請求項1記載のZr化合物で被覆されたコバルト酸リチウム粒子粉末を正極活物質またはその一部として用いた非水電解液二次電池。 Non-aqueous electrolyte secondary battery using the claim 1 Symbol placement lithium cobaltate particles coated with Zr compound as a positive electrode active material or a portion thereof.
JP2007158942A 2007-06-15 2007-06-15 Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery Active JP5482977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158942A JP5482977B2 (en) 2007-06-15 2007-06-15 Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158942A JP5482977B2 (en) 2007-06-15 2007-06-15 Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008311132A JP2008311132A (en) 2008-12-25
JP5482977B2 true JP5482977B2 (en) 2014-05-07

Family

ID=40238555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158942A Active JP5482977B2 (en) 2007-06-15 2007-06-15 Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5482977B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255515A (en) 2008-01-18 2009-11-05 Plus Stationery Corp Stamping device
CN103635431B (en) 2011-06-17 2016-06-01 尤米科尔公司 The lithium metal oxide particle being coated with the mixture of the element of core material with one or more metal-oxides
US10044035B2 (en) 2011-06-17 2018-08-07 Umicore Lithium cobalt oxide based compounds with a cubic secondary phase
KR101488696B1 (en) 2011-07-07 2015-02-04 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Containing the Same
JP5807747B2 (en) 2011-11-25 2015-11-10 ソニー株式会社 Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5903956B2 (en) * 2012-03-15 2016-04-13 戸田工業株式会社 Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5987401B2 (en) * 2012-03-28 2016-09-07 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
US9859550B2 (en) 2012-12-14 2018-01-02 Umicore Lithium metal oxide particles coated with a mixture of the elements of the core material and one or more metal oxides
JP6237306B2 (en) * 2014-02-12 2017-11-29 日本ゼオン株式会社 Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR102375011B1 (en) 2014-04-02 2022-03-15 니폰 제온 가부시키가이샤 Slurry for positive electrode of lithium ion secondary cell, production method for slurry for positive electrode of lithium ion secondary cell, production method for positive electrode of lithium ion secondary cell, and lithium ion secondary cell
CN111225879B (en) 2017-11-13 2022-07-12 株式会社Lg新能源 Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery comprising same
CN114220960B (en) * 2021-12-15 2024-01-30 中南大学 Li-containing alloy 6 Zr 2 O 7 Phase layered lithium ion battery positive electrode material and preparation method thereof
CN114613963B (en) * 2022-03-21 2023-07-04 惠州锂威新能源科技有限公司 Negative electrode material, preparation method thereof, negative electrode sheet and secondary battery
WO2023224453A1 (en) * 2022-05-20 2023-11-23 주식회사 엘지화학 Positive electrode active material and method for preparing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399642B1 (en) * 2001-10-24 2003-09-29 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing same
JP2005011588A (en) * 2003-06-17 2005-01-13 Sumitomo Metal Mining Co Ltd Positive electrode activator for nonaqueous electrolyte secondary battery and its manufacturing method
JP4424949B2 (en) * 2003-09-09 2010-03-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2006156032A (en) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Also Published As

Publication number Publication date
JP2008311132A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5903956B2 (en) Lithium composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP6107832B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5382343B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP5137414B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP6112118B2 (en) Li-Ni composite oxide particle powder and non-aqueous electrolyte secondary battery
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
WO2011108659A1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery.
WO2009119104A1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP2008152923A (en) Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
KR20130052500A (en) Composite, manufacturing method the composite, negative electrode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6749884B2 (en) Positive electrode material for lithium secondary batteries
JP5152456B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN115207298A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5482977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250