JP6749884B2 - Positive electrode material for lithium secondary batteries - Google Patents

Positive electrode material for lithium secondary batteries Download PDF

Info

Publication number
JP6749884B2
JP6749884B2 JP2017233463A JP2017233463A JP6749884B2 JP 6749884 B2 JP6749884 B2 JP 6749884B2 JP 2017233463 A JP2017233463 A JP 2017233463A JP 2017233463 A JP2017233463 A JP 2017233463A JP 6749884 B2 JP6749884 B2 JP 6749884B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium secondary
electrode material
secondary battery
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233463A
Other languages
Japanese (ja)
Other versions
JP2018041746A (en
Inventor
洋介 岩▲崎▼
洋介 岩▲崎▼
嘉昭 浜野
嘉昭 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2017233463A priority Critical patent/JP6749884B2/en
Publication of JP2018041746A publication Critical patent/JP2018041746A/en
Application granted granted Critical
Publication of JP6749884B2 publication Critical patent/JP6749884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム含有複合酸化物からなる新規なリチウム二次電池用正極材料およびその製造方法に関する。 The present invention relates to a novel positive electrode material for lithium secondary batteries comprising a lithium-containing composite oxide and a method for producing the same.

近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池、特にリチウム二次電池に対する期待が高まっている。リチウム二次電池用の正極活物質には、LiCoO2、LiNiO2、LiNi0.8Co0.22、LiMn24、LiMnO2などのリチウムと遷移金属の複合酸化物が知られている。LiNi0.8Co0.22のようにコバルトやニッケルを固溶させた岩塩層状複合酸化物を正極活物質に用いたリチウム二次電池は、180〜200mAh/gと比較的高い容量密度を達成できる。また、2.5〜4.5Vといった高い電圧域で良好な可逆性を示す。 In recent years, with the progress of portable devices and cordless devices, expectations for non-aqueous electrolyte secondary batteries, especially lithium secondary batteries, which are small, lightweight and have high energy density have been increased. Known positive electrode active materials for lithium secondary batteries are lithium-transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 , and LiMnO 2 . A lithium secondary battery using a rock salt layered composite oxide in which cobalt or nickel is solid-dissolved like LiNi 0.8 Co 0.2 O 2 as a positive electrode active material can achieve a relatively high capacity density of 180 to 200 mAh/g. Further, it exhibits good reversibility in a high voltage range of 2.5 to 4.5V.

特に最近では、高容量を発現できる材料として、LiNi0.8Co0.22に代表されるリチウム−ニッケル−コバルト複合酸化物の採用が始まっている。これらを正極材料に用い、リチウムを吸蔵、放出することができる炭素材料等を負極材料として使用することによる、高電圧、高エネルギー密度のリチウム二次電池の商品化が進められている。 In particular, recently, the adoption of a lithium-nickel-cobalt composite oxide typified by LiNi 0.8 Co 0.2 O 2 has begun as a material capable of exhibiting a high capacity. Commercialization of a high voltage, high energy density lithium secondary battery is being promoted by using these as a positive electrode material and using a carbon material or the like capable of inserting and extracting lithium as a negative electrode material.

正極材料は、リチウム二次電池の電池特性および安全性に最も重要な役割を果たす物質である。近年 LiCoO2、LiMn24、LiNiO2、LiNi1−xCo、LiMnO2等の複合金属酸化物が研究されている。 The positive electrode material is a substance that plays the most important role in the battery characteristics and safety of the lithium secondary battery. In recent years, complex metal oxides such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1-x Co x O 2 , and LiMnO 2 have been studied.

これらの正極材料のうちLiMn24、LiMnO2等のMn系正極材料は合成が容易であり、比較的安価であるが、放電容量が小さいという欠点を持っている。LiCoO2、等のCo系正極材料は、良好な電気伝導度と高い電池電圧、さらに優れた電極特性を持つが、主原料であるCo金属が希少であり、高価であるという問題がある。LiNiO2、等のNi系正極材料は、上述した正極材料のうちでは比較的安価なNi金属を主原料として使用し、理論放電量においてはLiCoO2と大差がないが、電池を構成した場合に実際に取り出すことのできる容量である実効容量において優れる。しかし合成が困難であるという欠点がある。 Of these positive electrode materials, Mn-based positive electrode materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize and relatively inexpensive, but have a drawback that the discharge capacity is small. Co-based positive electrode materials such as LiCoO 2 have good electric conductivity, high battery voltage, and excellent electrode characteristics, but there is a problem that Co metal as a main raw material is rare and expensive. Ni-based positive electrode materials such as LiNiO 2 use relatively inexpensive Ni metal as a main raw material among the above-mentioned positive electrode materials, and have a theoretical discharge amount that is not much different from that of LiCoO 2 , but when a battery is constructed. It is excellent in the effective capacity that can be actually taken out. However, it has the drawback of being difficult to synthesize.

特許文献1には、Liよりなる電極活物質で、M =AzA’z’M’1- z - z’であり、M’は、Mn,Ni,Coであり、Aは、Al、Mg、Ti、Crから選ばれた金属であり、A’ は、F、Cl、S、Zr、Ba、Y、Ca、B、Be、Sn、Sb、Na、Znから選ばれたマイナードーパントである電極活物質が記載されている(請求項3)。この電極活物質は粒度分布を有する粉体であり、粒度に応じて組成Mを変化させる(請求項5)技術である。 Patent Document 1 discloses an electrode active material made of Li a M b O 2 , where M =A z A'z'M'1 -z -z' , and M'is Mn, Ni, Co, A is a metal selected from Al, Mg, Ti and Cr, and A′ is selected from F, Cl, S, Zr, Ba, Y, Ca, B, Be, Sn, Sb, Na and Zn. An electrode active material which is a minor dopant is described (Claim 3). This electrode active material is a powder having a particle size distribution, and is a technique of changing the composition M according to the particle size (claim 5).

従来技術では、成分の異なる種々の正極材料が検討されている、しかし、従来技術の正極材料で得られるリチウム二次電池では、放電容量、充放電効率、レート特性および安全性について、さらなる改良が求められている。特に正極材料が大気雰囲気下で経時の質量変化が大きい組成物であるとそれを使用したリチウム二次電池の品質に影響するという問題がある。 In the prior art, various positive electrode materials having different components have been studied, but in the lithium secondary battery obtained with the conventional positive electrode material, further improvement is made in discharge capacity, charge/discharge efficiency, rate characteristics and safety. It has been demanded. In particular, if the positive electrode material is a composition having a large change in mass over time in the air, there is a problem that the quality of a lithium secondary battery using the composition is affected.

特表2007−517368号公報Japanese Patent Publication No. 2007-517368

本発明は、安全性が高く容量が大きく、レート特性に優れ、劣化しない、Li−Ni−Co−O系、Li−Ni−Mn−O系、またはLi−Ni−Mn−Co−O系の組成を有する新規なリチウム二次電池の正極活物質に用いられる材料(以下、正極材料という)を提供する。 INDUSTRIAL APPLICABILITY The present invention is of a Li-Ni-Co-O system, a Li-Ni-Mn-O system, or a Li-Ni-Mn-Co-O system, which is highly safe, has a large capacity, is excellent in rate characteristics and does not deteriorate. Provided is a material (hereinafter, referred to as a positive electrode material) used as a positive electrode active material of a novel lithium secondary battery having a composition.

上記課題を解決するために、本発明は、Li−Ni−Co(またはMn)−O材料に、さらに2種以上の他元素成分を有する複合酸化物組成よりなるリチウム二次電池用正極材料、その製造方法、及びこの新規な材料を用いたリチウム二次電池を提供する。 In order to solve the above problems, the present invention provides a Li-Ni-Co (or Mn)-O material, a positive electrode material for a lithium secondary battery, which comprises a composite oxide composition further containing two or more other element components. A method for producing the same and a lithium secondary battery using the novel material are provided.

(1)全体組成がLiNiで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料:
但し、
M:MnおよびCoから選ばれる1種又は2種の元素、
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、
a/(b+c+d) : 0.80〜1.30
b/(b+c+d) : 0.30〜0.95
c/(b+c+d) : 0.05〜0.60
d/(b+c+d) : 0.005〜0.10
e/(b+c+d) : 0.0005〜0.010
b+c+d=1、
x : 1.5〜2.5
である。
(2)大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が0.60質量%以下である、(1)に記載のリチウム二次電池用正極材料。
(3)荷重を95.5MPa与えた時の成型体の密度が3.20g/cc以上である、(1)または(2)に記載のリチウム二次電池用正極材料。
(4)平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している、(1)〜(3)のいずれか1つに記載のリチウム二次電池用正極材料。
(5)前記複合酸化物の二次粒子の粒度分布において、個数基準のD90とD10との差が5.0μm以上である(4)に記載のリチウム二次電池用正極材料。
(6)上記(1)に記載のリチウム二次電池用正極材料の製造方法であって、原料元素または原料元素を含む化合物を混合し、700〜950℃で焼成する焼成工程の後に水洗工程を含むリチウム二次電池用正極材料の製造方法。
(7)上記(1)〜(5)のいずれか1つに記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。
(8)前記複合酸化物が、Li化合物と、Ni元素と共に、MnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である(1)〜(5)のいずれか1つに記載のリチウム二次電池用正極材料。
(1) A positive electrode material for a lithium secondary battery, which is a composite oxide whose entire composition is represented by Li a Ni b M c N d L e O x :
However,
M: one or two elements selected from Mn and Co,
N: one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe,
L: one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba,
a/(b+c+d): 0.80 to 1.30
b/(b+c+d): 0.30 to 0.95
c/(b+c+d): 0.05-0.60
d/(b+c+d): 0.005-0.10
e/(b+c+d): 0.0005 to 0.010
b+c+d=1,
x: 1.5 to 2.5
Is.
(2) The positive electrode material for a lithium secondary battery according to (1), which has a mass change of 0.60 mass% or less after 240 hours in an atmosphere of 25° C. and a humidity of 60%.
(3) The positive electrode material for a lithium secondary battery according to (1) or (2), wherein the molded body has a density of 3.20 g/cc or more when a load of 95.5 MPa is applied.
(4) The positive electrode material for a lithium secondary battery according to any one of (1) to (3), in which primary particles having an average particle diameter of 0.1 μm or more are aggregated to form secondary particles.
(5) The positive electrode material for a lithium secondary battery according to (4), wherein in the particle size distribution of the secondary particles of the complex oxide, the number-based difference between D 90 and D 10 is 5.0 μm or more.
(6) The method for producing a positive electrode material for a lithium secondary battery according to (1) above, which comprises mixing a raw material element or a compound containing the raw material element and firing at 700 to 950° C., followed by a water washing step. A method for producing a positive electrode material for a lithium secondary battery containing the same.
(7) A positive electrode having a positive electrode active material containing the positive electrode material for a lithium secondary battery according to any one of (1) to (5), a negative electrode having a negative electrode active material, the positive electrode and the negative electrode. A lithium secondary battery having an ion conductive medium interposed between and for conducting lithium ions.
(8) The complex oxide is a Li compound, a hydroxide obtained by coprecipitating one or more elements selected from Mn and Co together with a Ni element, and an oxide of an element other than the above, Any of (1) to (5), which is a composite oxide produced by mixing and firing one or more compounds selected from nitrates, sulfates, carbonates, acetates, and phosphates. The positive electrode material for a lithium secondary battery according to any one of the above.

本発明のリチウム二次電池用正極材料は、安全性が高く、容量が大きく、レート特性に優れ、劣化しないバランスの良い優れた正極材料である。 INDUSTRIAL APPLICABILITY The positive electrode material for a lithium secondary battery of the present invention is a positive electrode material having high safety, large capacity, excellent rate characteristics, and good balance with no deterioration.

以下に本発明を説明する。
〔リチウム二次電池用正極材料〕
本発明の正極材料は、全体組成がLiNiで表される複合酸化物である。ここで、
M:MnおよびCoから選ばれた1種又は2種の元素
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素であり、
a/(b+c+d) : 0.80〜1.30
b/(b+c+d) : 0.30〜0.95
c/(b+c+d) : 0.05〜0.60
d/(b+c+d) : 0.005〜0.10
e/(b+c+d) : 0.0005〜0.010
b+c+d=1、および x : 1.5〜2.5である。
ここで、Li(リチウム)、Ni(ニッケル)、Mn(マンガン)、Co(コバルト)、Mg(マグネシウム)、Al(アルミニウム)、Ti(チタン)、Cr(クロム)、Fe(鉄)、B(ホウ素)、C(炭素)、Na(ナトリウム)、Si(ケイ素)、P(リン)、S(硫黄)、K(カリウム)、Ca(カルシウム)、Ba(バリウム)、O(酸素)である。
The present invention will be described below.
[Cathode material for lithium secondary batteries]
The positive electrode material of the present invention is a composite oxide whose overall composition is represented by Li a Ni b M c N d Le O x . here,
M: one or two elements selected from Mn and Co N: one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe L: B, C, Na, One or more elements selected from the group consisting of Si, P, S, K, Ca and Ba,
a/(b+c+d): 0.80 to 1.30
b/(b+c+d): 0.30 to 0.95
c/(b+c+d): 0.05-0.60
d/(b+c+d): 0.005-0.10
e/(b+c+d): 0.0005 to 0.010
b+c+d=1, and x: 1.5 to 2.5.
Here, Li (lithium), Ni (nickel), Mn (manganese), Co (cobalt), Mg (magnesium), Al (aluminum), Ti (titanium), Cr (chromium), Fe (iron), B( Boron), C (carbon), Na (sodium), Si (silicon), P (phosphorus), S (sulfur), K (potassium), Ca (calcium), Ba (barium), and O (oxygen).

上記成分は、NiとMとNの合計が1モル(すなわちb+c+d=1)とした時の成分のモル数を表す。
Li成分は、0.80〜1.30モルとする。Liが少ないとリチウム欠損が多い結晶構造となり、リチウム二次電池用正極に用いたときに電池の容量が低下する。多すぎると水酸化リチウムや炭酸リチウム等の水和物や炭酸化物を生成し、電極製造時にゲル化状態となるため、0.80〜1.30モルの範囲とする。好ましくは0.85〜1.20モルの範囲とする。
Ni成分は、0.30〜0.95モルとする。少なすぎると電池の容量が低下し、多すぎると安定性が劣る。好ましくは0.50〜0.95モルの範囲、より好ましくは0.60〜0.95モルの範囲とする。
M成分のMnおよびCoは、熱安定性を高めるが、多すぎると放電容量を低下させるため、0.05〜0.60モルの範囲とする。好ましくは0.05〜0.40モルである。M成分とN成分とは、予めNiと共沈水和物を生成し、正極材料用原料とすることもできる。
N成分のMg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の成分は、0.005〜0.10モルの範囲とする。好ましくは0.005〜0.07モルである。この範囲であると結晶性が適度に低下しLiイオン拡散を良好にできる効果がある。0.10モルを超えて配分すると電池の容量低下を招く。
The above component represents the number of moles of the component when the total of Ni, M and N is 1 mol (that is, b+c+d=1).
The Li component is 0.80 to 1.30 mol. When the amount of Li is small, the crystal structure has a large amount of lithium deficiency, and the capacity of the battery decreases when it is used as a positive electrode for a lithium secondary battery. If the amount is too large, hydrates and carbonates such as lithium hydroxide and lithium carbonate are generated, and a gelled state is formed at the time of manufacturing the electrode. The preferred range is 0.85 to 1.20 mol.
The Ni component is 0.30 to 0.95 mol. If it is too small, the battery capacity will decrease, and if it is too large, the stability will be poor. The range is preferably 0.50 to 0.95 mol, more preferably 0.60 to 0.95 mol.
Mn and Co, which are M components, increase the thermal stability, but if they are too much, they reduce the discharge capacity, so the amount is made 0.05 to 0.60 mol. It is preferably 0.05 to 0.40 mol. The M component and the N component can be used as a raw material for the positive electrode material by previously forming a coprecipitated hydrate with Ni.
One or more components selected from the group consisting of N component Mg, Al, Ti, Cr and Fe are in the range of 0.005 to 0.10 mol. It is preferably 0.005 to 0.07 mol. Within this range, the crystallinity is appropriately reduced, and there is an effect that Li ion diffusion can be improved. If it is distributed over 0.10 mol, the capacity of the battery is lowered.

L成分のB、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素を含むと、得られる正極材料が、大気雰囲気、常温環境下において、経時の質量変化が少ない。L成分としてC、S、Baが好ましい。L成分は熱安定性を向上させるために、0.0005〜0.010モルの範囲で含有させる。少な過ぎると、製造される二次電池の正極が適正な熱安定性を得ることが困難であり、大気雰囲気、常温環境下において、経時の質量変化が大きくなる。また、0.010モルを超えて配分すると容量が極度に低下する。好ましくは0.001〜0.008モルの範囲とする。 When one or more elements selected from the group consisting of L, B, C, Na, Si, P, S, K, Ca, and Ba are contained, the obtained positive electrode material has an atmospheric atmosphere and a normal temperature environment. Below, there is little change in mass over time. C, S and Ba are preferable as the L component. The L component is contained in an amount of 0.0005 to 0.010 mol in order to improve thermal stability. If the amount is too small, it is difficult for the positive electrode of the secondary battery to be manufactured to obtain proper thermal stability, and the mass change over time becomes large in the air atmosphere and the normal temperature environment. Further, when the amount is distributed over 0.010 mol, the capacity is extremely reduced. The range is preferably 0.001 to 0.008 mol.

本発明のリチウム二次電池用正極材料は、Li、Ni、Mnおよび・またはCoを基本とする酸化物組成に、N成分として、Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素と、L成分としてのB、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種または2種以上の元素を加えることが特徴である。N成分とL成分とを加えることによる作用効果については必ずしも明らかではないが、N成分の添加によって高率放電性能に特に顕著な効果が得られるため、好ましい。しかし、成分の組合せとそれらの量比によっては電池の性能のバランスや安全性を損なう場合があり、そのような場合はN成分の添加によっても放電性能が上がらない場合がある。このためN成分とL成分とを組み合わせることが有効である。
N成分元素を添加することで、正極材料の結晶性が適度に低下して、Liイオンの移動経路へ影響し、Liイオン伝導性が向上するのではないかと考えられる。L成分元素は、余剰に存在するLiを固定化する効果と正極材料結晶系における各主要元素の結合状態に影響を及ぼし、正極材料結晶中のLiの脱落を防ぐ効果があると考えられ、その結果、大気雰囲気、常温環境下において経時の質量変化を少なくして大気中における正極材料の劣化を防止するものと推定している。
The positive electrode material for a lithium secondary battery of the present invention has an oxide composition based on Li, Ni, Mn and/or Co, and is selected from the group consisting of Mg, Al, Ti, Cr and Fe as the N component. One or two or more elements and one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba as the L component are characterized by being added. is there. Although the effect of adding the N component and the L component is not always clear, the addition of the N component is preferable because a particularly remarkable effect can be obtained in the high rate discharge performance. However, depending on the combination of components and the amount ratio thereof, the balance of the performance of the battery and the safety may be impaired, and in such a case, the addition of the N component may not improve the discharge performance. Therefore, it is effective to combine the N component and the L component.
It is considered that the addition of the N component element may appropriately reduce the crystallinity of the positive electrode material, affect the migration path of Li ions, and improve the Li ion conductivity. It is considered that the L component element has an effect of fixing excess Li and influences the bonding state of each main element in the positive electrode material crystal system, and an effect of preventing Li from falling out in the positive electrode material crystal. As a result, it is presumed that the deterioration of the positive electrode material in the air is prevented by reducing the change in mass over time in the air atmosphere and the room temperature environment.

本発明のリチウム二次電池用正極材料は、Niの一部をCoおよび・またはMnで置換する際に、少量のN成分を含有させ、さらにN成分より少量のL成分を組み合わせて含有させて得られる複合酸化物とするのが特徴である。本発明では、Co,Mn,Baは、リチウム二次電池として高い安全性に寄与している。Al,Mgは、本発明の系に添加するとサイクル特性を向上させる効果があり、Al、Ti,Cr,Feは、レート特性を上げる効果があると考えられる。 The positive electrode material for a lithium secondary battery of the present invention contains a small amount of N component when substituting a part of Ni with Co and/or Mn, and further contains a smaller amount of L component than N component in combination. The feature is that the obtained composite oxide is used. In the present invention, Co, Mn, and Ba contribute to high safety as a lithium secondary battery. It is considered that Al and Mg have an effect of improving cycle characteristics when added to the system of the present invention, and Al, Ti, Cr and Fe have an effect of improving rate characteristics.

本発明のリチウム二次電池用正極材料は、大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が、好ましくは0.60質量%以下である。より好ましくは0.50質量%以下、さらに好ましくは0.45質量%以下である。測定は、大気雰囲気、温度25±3℃、湿度60±5%に制御した環境下に、240時間経過前後の質量変化を測定する。
一般にニッケルを含むリチウム二次電池用正極材料は、水と二酸化炭素を吸収し易いと言われる。大気中の水分を吸収すると、リチウム水和物が生成し、生成したリチウム水和物が炭酸ガスを吸収した後、炭酸水素リチウムや炭酸リチウムが生成する。
ニッケルを含むリチウム二次電池用正極材料を使用した二次電池において、正極材料が水分を吸収すると一般に用いられる電解質塩であるLiPFの加水分解が発生し、加水分解によりフッ酸やリン酸などの酸が生成する。生成した酸は、電池の構成材料の一部を分解し種々のガスを放出する。そのため、発生したガスの影響で二次電池に膨れが発生し、安全性の低下を招くことがある。
大気雰囲気、25℃、湿度60%の一定の環境下において、240時間後の質量変化が0.60質量%以下であれば、上記の現象が起因となる正極合剤ペースト(塗料)のゲル化および電池の膨れが低減する。本発明の系では、L成分元素である、Ba、Ca、K、Na、S、C、Si、P、Bの少なくとも1つの添加によって、質量変化率を抑えることができる。
The positive electrode material for a lithium secondary battery of the present invention has a mass change of preferably 0.60 mass% or less after 240 hours in an atmosphere of 25° C. and a humidity of 60%. It is more preferably 0.50% by mass or less, still more preferably 0.45% by mass or less. In the measurement, the mass change before and after the lapse of 240 hours is measured in an air atmosphere, an environment controlled at a temperature of 25±3° C. and a humidity of 60±5%.
Generally, a positive electrode material for a lithium secondary battery containing nickel is said to easily absorb water and carbon dioxide. When water in the atmosphere is absorbed, lithium hydrate is generated, and the generated lithium hydrate absorbs carbon dioxide gas, and then lithium hydrogen carbonate or lithium carbonate is generated.
In a secondary battery using a positive electrode material for a lithium secondary battery containing nickel, when the positive electrode material absorbs water, LiPF 6 , which is a commonly used electrolyte salt, is hydrolyzed, and the hydrolysis causes hydrofluoric acid, phosphoric acid, or the like. Acid is produced. The generated acid decomposes a part of the constituent material of the battery and releases various gases. Therefore, the secondary battery may swell due to the generated gas, resulting in a decrease in safety.
If the mass change after 240 hours is 0.60 mass% or less in a constant environment of air atmosphere, 25° C., and humidity of 60%, gelation of the positive electrode mixture paste (paint) that causes the above phenomenon occurs And the swelling of the battery is reduced. In the system of the present invention, the mass change rate can be suppressed by adding at least one of the L component elements Ba, Ca, K, Na, S, C, Si, P, and B.

本発明のリチウム二次電池用正極材料は、平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成しているのが好ましい。0.1μm未満の粒子の存在により、熱安定性が低下することから、平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している正極材料が好ましい。本発明の正極材料では、電子顕微鏡で3000倍で観察して多面体の1次粒子が略球状に凝集している2次粒子が観察される。 In the positive electrode material for a lithium secondary battery of the present invention, it is preferable that primary particles having an average particle diameter of 0.1 μm or more aggregate to form secondary particles. The presence of particles having a particle size of less than 0.1 μm lowers thermal stability. Therefore, a positive electrode material in which primary particles having an average particle size of 0.1 μm or more are aggregated to form secondary particles is preferable. In the positive electrode material of the present invention, secondary particles in which polyhedral primary particles are aggregated in a substantially spherical shape are observed when observed with an electron microscope at 3000 times.

本発明は正極に用いる合剤全体の密度を増加させて正極電極の体積当たりの容量を高め、電池特性を最大限に満足できるリチウム二次電池用正極材料を提供する。
このためには正極材料の粒子間の充填率を増大させることが有効であり、粒子間に適切な粒度分布があることが好ましい。
本発明では、全体組成がLiNiで表される複合酸化物で、
M:MnおよびCoから選ばれた1種又は2種の元素
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素であり、
a/(b+c+d) : 0.80〜1.30
b/(b+c+d) : 0.30〜0.95
c/(b+c+d) : 0.05〜0.60
d/(b+c+d) : 0.005〜0.10
e/(b+c+d) : 0.0005〜0.010
b+c+d=1、および x : 1.5〜2.5
である正極材料の1次粒子の平均粒径を0.1μm以上として、1次粒子が凝集した2次粒子を形成させ、その2次粒子が比較的広い粒度分布を持つと粒子の充填率が高い。粒子の充填率は粉末をプレスしてペレットに製造した後、ペレットの密度を測定したプレス密度として測定することができる。1次粒子の平均粒径の上限は特に限定されないが、5μm以下とするのが実際的である。
The present invention provides a positive electrode material for a lithium secondary battery, which is capable of increasing the density of the whole mixture used for the positive electrode to increase the capacity per volume of the positive electrode and maximizing the battery characteristics.
For this purpose, it is effective to increase the packing ratio between the particles of the positive electrode material, and it is preferable that the particles have an appropriate particle size distribution.
In the present invention, a composite oxide having an overall composition represented by Li a Ni b M c N d L e O x ,
M: one or two elements selected from Mn and Co N: one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe,
L: one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba,
a/(b+c+d): 0.80 to 1.30
b/(b+c+d): 0.30 to 0.95
c/(b+c+d): 0.05-0.60
d/(b+c+d): 0.005-0.10
e/(b+c+d): 0.0005 to 0.010
b+c+d=1, and x: 1.5 to 2.5
When the average particle size of the primary particles of the positive electrode material is 0.1 μm or more and secondary particles in which the primary particles are aggregated are formed and the secondary particles have a relatively wide particle size distribution, the packing factor of the particles is high. The packing factor of particles can be measured as a press density obtained by measuring the density of pellets after pressing the powder to produce pellets. The upper limit of the average particle size of the primary particles is not particularly limited, but it is practically set to 5 μm or less.

本発明のリチウム二次電池用正極材料は、荷重を95.5MPa与えた時の成型体の密度が好ましくは3.20g/cc以上である。上限は高いほどよいが4.50g/ccを越えるのは実際的ではない。プレス密度がこの範囲であると、電極の容積当たりの容量が増加する。より好ましくは、プレス密度は3.40g/cc以上である。
加圧成形体の密度は、プレス密度、加圧密度、またはペレット密度(錠剤形としたとき)とも呼ばれるもので、リチウム二次電池正極用材料ではタップ密度より製品に近い特性を示す。本発明の正極材料では、タップ密度と比較するとタップ密度大、小の2つの製品がプレス密度小、大と逆転する場合がある。これは表面状態と粒度分布との総合的な特性をプレス密度が示しているからであると考えられる。本発明の系ではMg、Ba,Ca,K,Naの添加がプレス密度を向上させ、Ba、Ca、K,Na,S,C,Si,P,Bの添加で質量増加率を抑えられると考えられる。
The positive electrode material for a lithium secondary battery of the present invention preferably has a density of a molded body of 3.20 g/cc or more when a load of 95.5 MPa is applied. The higher the upper limit, the better, but it is not practical to exceed 4.50 g/cc. When the press density is in this range, the capacity per volume of the electrode increases. More preferably, the press density is 3.40 g/cc or more.
The density of the pressure-molded body is also called press density, pressure density, or pellet density (when made into a tablet shape), and a lithium secondary battery positive electrode material exhibits characteristics closer to a product than a tap density. In the positive electrode material of the present invention, two products having a high tap density and a low tap density may be reversed to have a low press density and a high tap density as compared with the tap density. It is considered that this is because the press density shows the overall characteristics of the surface state and the particle size distribution. In the system of the present invention, the addition of Mg, Ba, Ca, K, Na improves the press density, and the addition of Ba, Ca, K, Na, S, C, Si, P, B suppresses the mass increase rate. Conceivable.

本発明のリチウム二次電池用正極材料は、プレス密度が高くなるように二次粒子の粒度分布を調製することができる。プレス密度が高い正極材料を用いると、正極の電極密度が高くなり、体積当たりの放電容量が高くなる。3μm未満の二次粒子の割合が多くなると、電極の塗工性が悪くなるので、二次粒子の平均粒子径が3μm以上である方が電極の塗工性に優れているため望ましい。
粒度分布の測定は、レーザー回折散乱式測定方法によって全粒度範囲の分布を求める。「D10,D90」は、個数基準の粒度分布における積算値10%および90%での粒径を意味し、レーザー回折散乱式測定方法によって求める。本発明の正極材料では、D90−D10が5.0μm以上であるのがより好ましい。この範囲であるとプレス密度が高くなり、正極材料の体積当たりの容量が増加し、得られる電池容量が高くなる。D90−D10が7.0μm以上20.0μm以下であるのがさらに好ましい。
粒径分布を適切な範囲に調製する方法は、焼成前の粒径範囲を適切に調整したり、焼結後に必要な場合は解砕し、フィルター等で分級して粒径分布の調整を行ってもよい。
In the positive electrode material for a lithium secondary battery of the present invention, the particle size distribution of secondary particles can be adjusted so that the press density becomes high. When a positive electrode material having a high press density is used, the electrode density of the positive electrode increases, and the discharge capacity per volume increases. If the proportion of secondary particles having a particle size of less than 3 μm increases, the coatability of the electrode deteriorates. Therefore, it is desirable that the average particle size of the secondary particles is 3 μm or more because the coatability of the electrode is excellent.
To measure the particle size distribution, the distribution in the entire particle size range is determined by the laser diffraction/scattering measurement method. “D 10 , D 90 ”means the particle size at integrated values 10% and 90% in the number-based particle size distribution, and is determined by a laser diffraction scattering measurement method. In the positive electrode material of the present invention, it is more preferable that D 90 -D 10 is 5.0 μm or more. Within this range, the press density increases, the capacity per volume of the positive electrode material increases, and the obtained battery capacity increases. More preferably, D 90 -D 10 is 7.0 μm or more and 20.0 μm or less.
The method for adjusting the particle size distribution to an appropriate range is to adjust the particle size range before firing appropriately, or crush it if necessary after sintering and classify with a filter etc. to adjust the particle size distribution. May be.

正極材料のプレス密度が高いと、正極の体積当たりの容量が増加して電池容量の増大に寄与できる。しかし圧延工程時に正極材料の粒径および種類によっては、破壊、剥離脱落などが起こり密度を上げられないことがある。必要な場合は製造条件を変えて異なった平均粒径を有する2種以上の粉体を製造し、それを適性範囲で混合してもよい。製造条件における焼成温度、粉砕条件を調製してプレス密度の高い正極材料を得ることができる。 When the press density of the positive electrode material is high, the capacity per volume of the positive electrode increases, which can contribute to an increase in battery capacity. However, depending on the particle size and type of the positive electrode material during the rolling process, the density may not be increased due to breakage, peeling and falling. If necessary, the production conditions may be changed to produce two or more kinds of powders having different average particle sizes, and the powders may be mixed in an appropriate range. It is possible to obtain a positive electrode material having a high press density by adjusting the firing temperature and the crushing conditions in the manufacturing conditions.

〔リチウム二次電池用正極材料の製造方法〕
本発明の正極材料の製造方法を以下に説明するが、以下の説明に限定されるものではない。
本発明の正極材料である複合酸化物を製造するのに用いる原料としては、酸化物又は製造工程における合成時の焼成反応により酸化物となるものを用いることができる。
本発明の正極材料である複合酸化物を製造するのに用いる原料に、Liおよび、MnおよびCoから選ばれた1種又は2種の元素および、Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素および、B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素からなる成分を混合し、これを焼成する。これにより、リチウム二次電池用正極材料を製造することができる。
[Method for producing positive electrode material for lithium secondary battery]
The method for producing the positive electrode material of the present invention will be described below, but the present invention is not limited to the following description.
As a raw material used for producing the composite oxide that is the positive electrode material of the present invention, an oxide or a material that becomes an oxide by a firing reaction during synthesis in the production process can be used.
The raw material used for producing the composite oxide that is the positive electrode material of the present invention includes Li and one or two elements selected from Mn and Co and a group consisting of Mg, Al, Ti, Cr and Fe. A mixture of one or two or more elements selected from the following and one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba are mixed. Then, it is baked. Thereby, the positive electrode material for lithium secondary batteries can be manufactured.

本発明の複合酸化物の合成方法は、特に限定されるものでなく、固相反応法、溶液からの析出を経てそれを焼成する方法、噴霧燃焼法、溶融塩法等種々の方法によって合成することができる。
その一例を示せば、リチウム源、ニッケル源等を、目的とするリチウムニッケル複合酸化物の組成に応じた割合でそれぞれ混合し、形成させる複合酸化物の種類により、焼成温度は適宜選択するが、酸素、窒素、アルゴンおよびヘリウムからなる群から選ばれた1種または2種以上の気体の雰囲気下で700〜950℃程度の温度で焼成することによって合成することができる。上記焼成は酸素雰囲気において300〜500℃で2〜6時間の保持を行う予備焼成と、予備焼成後5〜30℃/minで昇温する昇温段階と、該昇温段階に引き続き700〜950℃で2〜30時間の保持を行う最終焼成段階を順次行う焼成工程であって、焼成した複合酸化物と水とを混合し攪拌する水洗工程と脱水工程および乾燥工程を含む製造方法で複合酸化物を製造することも好ましい。
Ni系正極材料は水分を吸収しやすいので、通常水で洗浄しない。しかし、本工程では水洗工程で未反応のLiを除去すると、この正極材料を用いて得られるリチウム二次電池の合剤ペースト(塗料)のゲル化および電池の膨れが低減する。
The method for synthesizing the composite oxide of the present invention is not particularly limited, and it can be synthesized by various methods such as a solid phase reaction method, a method of firing it after precipitation from a solution, a spray combustion method, and a molten salt method. be able to.
If one example is shown, a lithium source, a nickel source, and the like are mixed at a ratio according to the composition of the target lithium-nickel composite oxide, and the firing temperature is appropriately selected depending on the type of the composite oxide to be formed. It can be synthesized by firing at a temperature of about 700 to 950° C. in an atmosphere of one or more gases selected from the group consisting of oxygen, nitrogen, argon and helium. The firing is pre-baking in which the temperature is kept at 300 to 500° C. for 2 to 6 hours in an oxygen atmosphere, a temperature raising step of raising the temperature at 5 to 30° C./min after the pre firing, and 700 to 950 subsequent to the temperature raising step It is a calcination process in which a final calcination step of holding at 2° C. for 2 to 30 hours is performed sequentially, and a composite oxidization is performed by a manufacturing method including a washing process of mixing and stirring the calcinated composite oxide and water, a dehydration process and a drying process. It is also preferable to produce a product.
Since the Ni-based positive electrode material easily absorbs water, it is usually not washed with water. However, in this step, when unreacted Li is removed in the water washing step, gelation of the mixture paste (paint) of the lithium secondary battery obtained by using this positive electrode material and swelling of the battery are reduced.

Ni源、Co源、Mn源としては酸化物、水酸化物、硝酸塩等を利用することができ、Ni、Co、Mnを含む場合は、均一な混合が重要となるため、例えば、湿式合成法によるNi−Co−(OH)2、Ni−Mn−(OH)2、Ni−Co−Mn−(OH)2、が原料として特に好ましい。Ni−Co−(OH)2、Ni−Mn−(OH)2、Ni−Co−Mn−(OH)2 は、Ni、CoおよびMnの合計量に対するCoおよびMnの割合がモル比で0.05〜0.60に調製する。その製造に当っては、例えば湿式合成法によって緻密なNi−Co−(OH)2、Ni−Mn−(OH)2、Ni−Co−Mn−(OH)2 の二次粒子状の粉状物を製造し、その際平均粒径が5〜20μm、かつタップ密度が1.8g/cc以上となるように調整することが望ましい。 As the Ni source, Co source, and Mn source, oxides, hydroxides, nitrates, and the like can be used. When Ni, Co, and Mn are contained, uniform mixing is important. Ni-Co-(OH) 2 , Ni-Mn-(OH) 2 , and Ni-Co-Mn-(OH) 2 are particularly preferable as the raw material. Ni-Co-(OH) 2 , Ni-Mn-(OH) 2 , and Ni-Co-Mn-(OH) 2 have a molar ratio of Co and Mn to the total amount of Ni, Co and Mn of 0. It is adjusted to 05 to 0.60. In its production, for example, by a wet synthesis method, dense Ni-Co-(OH) 2 , Ni-Mn-(OH) 2 , and Ni-Co-Mn-(OH) 2 secondary particles in powder form are used. It is desirable to manufacture the product and adjust the average particle size to be 5 to 20 μm and the tap density to be 1.8 g/cc or more.

Li源としては、水酸化物、硝酸塩、炭酸塩等が好ましい。N成分のMg、Al、Ti、CrおよびFe、およびL成分のB、C、Na、Si、P、S、K、CaおよびBaから選択される一つ以上の元素の化合物としては、それぞれの元素の酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩などが用いられる。 As the Li source, hydroxides, nitrates, carbonates and the like are preferable. As the compound of one or more elements selected from Mg, Al, Ti, Cr and Fe as the N component and B, C, Na, Si, P, S, K, Ca and Ba as the L component, Elemental oxides, hydroxides, carbonates, nitrates and organic acid salts are used.

好ましい製造方法は、Li化合物と、Niと共にM元素(MnおよびCoから選ばれた1種又は2種の元素)を共沈させた水酸化物と、その他の元素の原料の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩から選ばれた1種又は2種以上の各成分の化合物を混合、焼成して複合酸化物を製造することができる。
更に、N元素(Mg、Al、Ti、CrおよびFeからなる群から選ばれた1種又は2種以上の元素)あるいは、L元素(B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれた1種又は2種以上の元素)を共沈させた水酸化物と、その他の元素の原料の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、リン酸塩から選ばれた1種又は2種以上の各成分の化合物を混合し、焼成して複合酸化物を製造してもよい。
A preferred production method is a Li compound, a hydroxide obtained by coprecipitating an M element (one or two elements selected from Mn and Co) with Ni, an oxide of a raw material of other elements, a nitrate, A compound oxide can be produced by mixing and firing one or more compounds of each component selected from sulfates, carbonates, acetates and phosphates.
Further, N element (one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe) or L element (B, C, Na, Si, P, S, K, Ca) And a hydroxide obtained by co-precipitating one or more elements selected from the group consisting of Ba and Ba, and oxides, nitrates, sulfates, carbonates, acetates, phosphates of the raw materials of other elements. You may manufacture the compound oxide by mixing the compound of 1 type(s) or 2 or more types of each component selected from a salt, and baking.

〔リチウム二次電池〕
本発明の正極材料を用いて、リチウム二次電池用の正極を得る方法は、常法に従って実施できる。例えば、本発明の正極活物質の粉末に、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材と、結合材とを混合することにより正極合剤が形成される。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。
[Lithium secondary battery]
The method for obtaining a positive electrode for a lithium secondary battery using the positive electrode material of the present invention can be carried out according to a conventional method. For example, the positive electrode mixture is formed by mixing the powder of the positive electrode active material of the present invention with a carbon-based conductive material such as acetylene black, graphite, Ketjen black, and a binder. Polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin or the like is used as the binder.

上記の正極合剤を、N−メチルピロリドンなどの分散媒に分散させたスラリーをアルミニウム箔等の正極集電体に塗工・乾燥及びプレス圧延して正極活物質層を正極集電体上に形成する。 A slurry prepared by dispersing the above positive electrode mixture in a dispersion medium such as N-methylpyrrolidone is applied to a positive electrode current collector such as an aluminum foil, dried and press-rolled to form a positive electrode active material layer on the positive electrode current collector. Form.

本発明の正極活物質を正極に使用するリチウム二次電池において、電解質溶液の溶質としては、ClO4−、CF3SO3−、BF4−、PF6−、AsF6−、SbF6−、CF3CO2−、(CF3SO22N−等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。炭酸エステルは環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(EC)等が例示される。鎖状炭酸エステルとしては、ジメチルカーボネート、ジエチルカーボネート(DEC)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルムなどが使用される。
In a lithium secondary battery using the positive electrode active material of the present invention as a positive electrode, as a solute of an electrolyte solution, ClO 4 −, CF 3 SO 3 −, BF 4 −, PF 6 −, AsF 6 −, SbF 6 −, It is preferable to use at least one of lithium salts having CF 3 CO 2 —, (CF 3 SO 2 ) 2 N— or the like as an anion. The carbonic acid ester may be cyclic or linear. Examples of the cyclic carbonic acid ester include propylene carbonate and ethylene carbonate (EC). Examples of the chain carbonic acid ester include dimethyl carbonate, diethyl carbonate (DEC), ethylmethyl carbonate, methylpropyl carbonate, methylisopropyl carbonate and the like.
Porous polyethylene, porous polypropylene film or the like is used for the separator.

本発明の正極材料を正極に使用するリチウム電池の負極活物質は、リチウムイオンを吸蔵、放出可能な材料である。負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物、周期表14、15族の金属を主体とした酸化物等が挙げられる。
本発明における正極材料を使用するリチウム二次電池の形状には、特に制約はない。筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、ラミネートフィルムを外装体としたソフトパッケージ電池等が用途に応じて選択される。
The negative electrode active material of a lithium battery using the positive electrode material of the present invention as a positive electrode is a material capable of inserting and extracting lithium ions. The material forming the negative electrode active material is not particularly limited, and examples thereof include lithium metal, lithium alloys, carbon materials, carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and metals of Groups 14 and 15 of the periodic table. Examples include oxides mainly composed of these.
The shape of the lithium secondary battery using the positive electrode material in the present invention is not particularly limited. A cylindrical battery that uses a tubular (cylindrical or prismatic) outer can, a flat battery that uses a flat (circular or rectangular flat in plan view) outer can, and a laminate film as the outer body The soft package battery or the like is selected according to the application.

(実施例1)
原料のNi源とCo源としてNiおよびCoのモル比を調整して得たNi−Co−(OH)を湿式溶液合成法によって作製した。その他の出発原料には市販の試薬を使用した。Li源にはリチウム水和物、Al源にはAl、Ba源にはBa(NOを用いた。
これらの出発原料を目的の配合組成になるように秤量後、十分に混合し、焼成用の原料とした。焼成は酸素雰囲気で行い、まず400℃で4時間保持し、主に原料中の水分を除去した後、5℃/分の昇温速度で昇温し、800℃の焼成温度および保持時間4時間で保持し、冷却後炉内から焼成物を取り出した。取り出した焼成物を解砕して正極材料粉末を得た。得られた粉末と水とを混合し攪拌後、脱水、乾燥した。後に記載する条件で、粒度分布測定、化学組成分析、およびその他の評価測定を行った。評価結果を表1に示す。表における「―」は、その項目が未実施であり、測定されていないことを示している。
(Example 1)
Ni-Co-(OH) 2 obtained by adjusting the molar ratio of Ni and Co as the raw material Ni source and Co source was prepared by the wet solution synthesis method. Commercially available reagents were used for the other starting materials. Lithium hydrate was used as the Li source, Al 2 O 3 was used as the Al source, and Ba(NO 3 ) 2 was used as the Ba source.
These starting raw materials were weighed so as to have a desired composition and then sufficiently mixed to obtain raw materials for firing. Firing is carried out in an oxygen atmosphere, and is first held at 400° C. for 4 hours to mainly remove water in the raw materials, then heated at a heating rate of 5° C./min, and baked at 800° C. and held for 4 hours. The temperature was maintained and the fired product was taken out from the furnace after cooling. The fired product taken out was crushed to obtain a positive electrode material powder. The obtained powder and water were mixed, stirred, dehydrated and dried. Particle size distribution measurement, chemical composition analysis, and other evaluation measurements were performed under the conditions described later. The evaluation results are shown in Table 1. "-" in the table indicates that the item has not been implemented and has not been measured.

(実施例2〜22、比較例1〜9)
原料のNi源、Co源、Li源、Al源、Ba源については、実施例1と同様の原料を用いた。なお、実施例11、12、13、22および比較例7のMn源には、Ni、CoおよびMnのモル比を調整して得たNi−Co−Mn−(OH)を湿式溶液合成法によって作製した原料を用いた。また、比較例5のNi源にはNi−(OH)、比較例6のNi源、Mn源にはNiおよびMnのモル比を調整して得たNi−Mn−(OH)を湿式溶液合成法によって作製した原料を用いた。その他の出発原料は市販の試薬を使用した。S源には硫黄粉末、C源にはカーボンブラック、Si源にはSiO、K源にはKNO、Mn源にはMn、Mg源にはMgO、Ti源にはTiO、Fe源にはFe、P源にはP、Ca源にはCa(NO・4HO、Cr源にはCr、Na源にはNaNO、B源にはHBOを用いた。配合組成の変更以外は、焼成工程、水洗工程は実施例1と同様に行って正極材料粉末を製造した。また、実施例1と同様の条件で評価し、結果を表1に示す。なお、実施例13、実施例22および比較例9は水洗工程を行わなかった。
(Examples 2 to 22, Comparative Examples 1 to 9)
For the Ni source, Co source, Li source, Al source, and Ba source of the raw materials, the same raw materials as in Example 1 were used. For the Mn sources of Examples 11, 12, 13, 22 and Comparative Example 7, Ni-Co-Mn-(OH) 2 obtained by adjusting the molar ratio of Ni, Co and Mn was used in the wet solution synthesis method. The raw material produced by Further, Ni-(OH) 2 was used as the Ni source of Comparative Example 5, Ni source of Comparative Example 6 was used, and Ni—Mn—(OH) 2 obtained by adjusting the molar ratio of Ni and Mn was used as the Mn source. The raw material produced by the solution synthesis method was used. Commercially available reagents were used as other starting materials. S source is sulfur powder, C source is carbon black, Si source is SiO 2 , K source is KNO 3 , Mn source is Mn 3 O 4 , Mg source is MgO, Ti source is TiO 2 . the Fe source Fe 2 O 3, the P source P 2 O 5, Ca in source Ca (NO 3) 2 · 4H 2 O, the Cr source Cr 2 O 3, the Na source NaNO 3, B H 3 BO 3 was used as the source. The firing step and the water washing step were performed in the same manner as in Example 1 except that the composition was changed to produce a positive electrode material powder. Further, the evaluation was performed under the same conditions as in Example 1, and the results are shown in Table 1. In addition, Example 13, Example 22, and Comparative Example 9 did not perform a water washing process.

次に、これらからリチウム二次電池用正極を製作し、後述のように電池特性を評価し、表1に示す。 Next, a positive electrode for a lithium secondary battery was produced from these, and the battery characteristics were evaluated as described below, and shown in Table 1.

実施例、比較例のリチウム二次電池用正極材料粉末90質量%、アセチレンブラック5質量%及びポリ弗化ビニリデン5質量%にN−メチル−2−ピロリドンを添加し、十分混練した後、アルミニウム集電体に約150μmの厚さに塗布し、200kg/cm程度で加圧後、直径14mmの円板に打ち抜いたものを150℃ にて15時間の真空乾燥し正極とした。負極にはリチウム金属シートを用い、セパレーターにはポリプロピレン製多孔質膜(商品名セルガード#2400)を用いた。また、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)を体積比で1:1の混合溶液1LにLiClOを1モル溶解させ非水電解液とした。 N-methyl-2-pyrrolidone was added to 90% by mass of the positive electrode material powder for lithium secondary batteries of Examples and Comparative Examples, 5% by mass of acetylene black and 5% by mass of polyvinylidene fluoride, and sufficiently kneaded, and thereafter, aluminum was collected. A positive electrode was prepared by applying a thickness of about 150 μm to an electric body, applying a pressure of about 200 kg/cm 2 , punching out a disc having a diameter of 14 mm, and vacuum drying at 150° C. for 15 hours. A lithium metal sheet was used for the negative electrode, and a polypropylene porous membrane (trade name Celgard #2400) was used for the separator. Further, 1 mol of LiClO 4 was dissolved in 1 L of a mixed solution of ethylene carbonate (EC)/dimethyl carbonate (DMC) at a volume ratio of 1:1 to obtain a non-aqueous electrolytic solution.

これらを用いてアルゴンで置換したグローブボックス内で試験セルに組み立て、電流密度を0.5mA/cmの一定値とし、かつ電圧を2.75〜4.25Vの範囲で充放電を行い、初回放電容量を測定した。さらに次式により初回充放電効率を算出した。 These were assembled into a test cell in a glove box substituted with argon, the current density was set to a constant value of 0.5 mA/cm 2 , and the voltage was charged/discharged in the range of 2.75 to 4.25 V. The discharge capacity was measured. Further, the initial charge/discharge efficiency was calculated by the following formula.

初回充放電効率=[(初回の放電容量)/(初回の充電容量)]×100
レート特性の測定では、さらに2.0mA/cm2の定電流密度にて2.75〜4.25Vで充放電測定を行い次式により算出した。
First charge/discharge efficiency=[(first discharge capacity)/(first charge capacity)]×100
In the measurement of rate characteristics, charge/discharge measurement was further performed at 2.75 to 4.25 V at a constant current density of 2.0 mA/cm 2 , and the rate was calculated by the following formula.

レート特性(%)=[(2.0mA/cm2での放電容量値)
/(0.5mA/cm2での放電容量値)]×100
Rate characteristic (%)=[(discharge capacity value at 2.0 mA/cm 2 )
/(Discharge capacity value at 0.5 mA/cm 2 )]×100

<評価方法>
(1)粉体特性
1)一次粒子の平均粒子径:得られた正極用材料を、電子顕微鏡で観察し、粒子径を測定する。
2)二次粒子の粒度分布
レーザー回折散乱式測定装置によって全粒度範囲の分布を求める。「D10,D90」は、個数基準の粒度分布における積算値10%および90%での粒径を意味する。
3)プレス密度
直径20mm の金型に一定量の試料を入れて、95.5MPaの圧力を加えた時、試料の高さの測定値と試料質量から密度を算出した。
タップ密度は、特に加圧することなく自然に粗粒と微粒が混合している粉体が充填する特性を示す。プレス密度は、加圧下で粗粒と微粒がどのように充填するかの特性を示す。
<Evaluation method>
(1) Powder characteristics 1) Average particle diameter of primary particles: The obtained positive electrode material is observed with an electron microscope to measure the particle diameter.
2) Particle size distribution of secondary particles The distribution in the entire particle size range is determined by a laser diffraction/scattering type measuring device. “D 10 , D 90 ”means the particle size at the integrated value of 10% and 90% in the particle size distribution based on the number.
3) Press Density When a certain amount of the sample was put into a mold having a diameter of 20 mm and a pressure of 95.5 MPa was applied, the density was calculated from the measured value of the sample height and the sample mass.
The tap density has a characteristic of being filled with powder in which coarse particles and fine particles are naturally mixed without applying a pressure. Press density is a characteristic of how coarse and fine particles fill under pressure.

(2)化学組成
得られた粉末を定量組成分析し、Ni+M成分+N成分=1モルに対する各元素のモル比を求め表1に全体組成を示した。
(3)質量増加
得られた正極材料をサンプル瓶に所定量秤量し、大気雰囲気、25±3℃、湿度60±5%で一定とした環境に保持した恒温恒湿槽に保管し、240時間後の質量の増加率を測定する。複数の試料の測定値の平均値からの計算値を質量増加率とする。
(2) Chemical composition The obtained powder was subjected to quantitative composition analysis, and the molar ratio of each element to Ni+M component+N component=1 mol was determined, and the overall composition is shown in Table 1.
(3) Increase in mass The obtained positive electrode material was weighed in a predetermined amount in a sample bottle and stored in a constant temperature and humidity chamber kept in an atmosphere of 25 ± 3°C and a humidity of 60 ± 5% for 240 hours. The rate of increase in mass afterwards is measured. The calculated value from the average value of the measured values of a plurality of samples is the mass increase rate.

(4)釘さし試験
釘さし試験用電池は、以下のように試作を行った。合成したリチウム二次電池用正極材料粉末89質量%とアセチレンブラック6質量%およびポリフッ化ビニリデン5質量%の割合で混合し、N−メチル−2−ピロリドンを添加し十分混練した後、20μm厚みのアルミニウム集電体に塗布・乾燥・加圧して正極を作製した。負極はカーボンブラック92質量%、アセチレンブラック3質量%およびポリフッ化ビニリデン5質量%にN−メチル−2−ピロリドンを添加し十分混練した後、14μm厚みの銅集電体に塗布・乾燥・加圧して作製した。正極および負極のそれぞれの電極厚みは75μmおよび100μmであった。電解液はエチレンカーボネート(EC)/メチルエチルカーボネート(MEC)との体積比1:1の混合溶液1リットルにLiPFを1mol溶解したもので、セパレータはポリプロピレン製多孔質膜、アルミニウムラミネートを用いて60mm×35mm×厚み4mm寸法の角型電池を試作した。160mAの電流値で4.2Vまで充電し、同じ電流値にて3.0Vまで放電容量を測定した結果、800mAであった。
電池を定電圧にて8時間充電した後、電池の中央部に直径2.5mmの釘を貫通させ、この時の電池の状態を観察した。発火がない場合は合格とし、発火が認められたときは不合格とした。
(4) Nailing test The battery for nailing test was manufactured as follows. 89% by mass of the synthesized positive electrode material powder for a lithium secondary battery, 6% by mass of acetylene black and 5% by mass of polyvinylidene fluoride were mixed, and N-methyl-2-pyrrolidone was added thereto and sufficiently kneaded, and then the mixture having a thickness of 20 μm was mixed. A positive electrode was produced by coating, drying and pressing on an aluminum current collector. For the negative electrode, N-methyl-2-pyrrolidone was added to 92% by mass of carbon black, 3% by mass of acetylene black and 5% by mass of polyvinylidene fluoride and sufficiently kneaded, and then coated, dried and pressed onto a 14 μm-thick copper current collector. It was made. The electrode thickness of each of the positive electrode and the negative electrode was 75 μm and 100 μm. The electrolytic solution was prepared by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solution of ethylene carbonate (EC)/methyl ethyl carbonate (MEC) at a volume ratio of 1:1 and using a polypropylene porous membrane and an aluminum laminate as a separator. A square battery having a size of 60 mm×35 mm×thickness of 4 mm was experimentally manufactured. It was 800 mA as a result of charging to 4.2 V at a current value of 160 mA and measuring the discharge capacity to 3.0 V at the same current value.
After charging the battery at a constant voltage for 8 hours, a nail having a diameter of 2.5 mm was penetrated through the center of the battery and the state of the battery at this time was observed. If there was no ignition, it was judged to be acceptable, and if ignition was recognized, it was judged to be unacceptable.

Figure 0006749884
Figure 0006749884

<実施例・比較例の説明>
比較例2のLi−Ni−Co−O系に対してN成分としてAl、L成分としてBaを添加した本発明の実施例1は、初回放電容量および初回充放電効率は若干低下したものの、レート特性、プレス密度が向上し、質量増加率が低く、釘刺し試験でも合格した特性バランスの優れた正極材料が得られた。さらにM成分としてMn、N成分としてMgを追加添加した実施例5は、各々の特性がさらに向上している。
質量増加率の低減に効果のあるL成分を添加している実施例に対してL成分の添加のない比較例1、2、8および水洗工程を省略している比較例9は、質量増加率が非常に大きな値を示しており、比較例1、2、8および9を正極材料に使用した場合に、正極電極の製造工程におけるゲル化発生や電池における膨れなどの懸念がある。
個数基準の粒度分布であるD90−D10が5.0μm以上である実施例1、3、4、5、17と5.0μm未満である比較例3、4、9でプレス密度の測定結果を比較するとその差は顕著であり、例え、質量当りの放電容量が高くても容積当りの容量の向上は困難であり、実施例1、3、4、5、17は優れた容量特性であると言える。
比較例1、2、8の複合酸化物は、L成分元素を含まない正極材料であり、熱安定性が低く釘刺し試験が不合格で得られる電池の安全性に問題がある。
<Explanation of Examples and Comparative Examples>
In Example 1 of the present invention in which Al as the N component and Ba as the L component were added to the Li—Ni—Co—O system of Comparative Example 2, the initial discharge capacity and the initial charge/discharge efficiency were slightly reduced, but the rate A positive electrode material having improved characteristics and press density, a low mass increase rate, and an excellent property balance that passed the nail penetration test was obtained. Furthermore, in Example 5 in which Mn as the M component and Mg as the N component were additionally added, the respective characteristics were further improved.
In comparison with the example in which the L component effective for reducing the mass increase rate is added, the comparative examples 1, 2, and 8 in which the L component is not added and the comparative example 9 in which the washing step is omitted are Shows a very large value, and when Comparative Examples 1, 2, 8 and 9 are used as the positive electrode material, there is a concern that gelation may occur in the manufacturing process of the positive electrode or swelling in the battery.
Measurement results of press density in Examples 1, 3, 4, 5, 17 in which the number-based particle size distribution D 90 -D 10 is 5.0 μm or more and in Comparative Examples 3, 4, 9 in which it is less than 5.0 μm. Compared with each other, the difference is remarkable, and even if the discharge capacity per mass is high, it is difficult to improve the capacity per volume, and Examples 1, 3, 4, 5, and 17 have excellent capacity characteristics. Can be said.
The composite oxides of Comparative Examples 1, 2, and 8 are positive electrode materials that do not contain an L component element, have low thermal stability, and have a problem in battery safety obtained when the nail penetration test fails.

実施例1、3、11,20,22は、二次粒子の分布が十分広い。実施例3,4,8,9,18はプレス密度が高い。実施例6,7,11,12,13は、質量増加率が低い。実施例5,7〜10は初回放電容量が高い。実施例1,5〜11、16,22は初回充放電効率が高い。実施例8,11,13,15〜17,20はレート特性が高い。 In Examples 1, 3, 11, 20, and 22, the distribution of secondary particles is sufficiently wide. Examples 3, 4, 8, 9, and 18 have high press densities. Examples 6, 7, 11, 12, and 13 have low mass increase rates. Examples 5, 7 to 10 have high initial discharge capacity. Examples 1, 5 to 11, 16, and 22 have high initial charge/discharge efficiency. The rate characteristics are high in Examples 8, 11, 13, 15 to 17, and 20.

本発明のリチウム二次電池用正極材料を用いる正極は、安全性が高く容量が大きく、レート特性に優れ、特定雰囲気下での質量増加率が小さい。かかる正極を使用したリチウム二次電池は、情報関連機器、通信機器、車輌などにおける小型、軽量でかつ高エネルギー密度の電源として広く使用される。本発明のリチウム二次電池用正極材料を用いて製造される二次電池は、筒形(円筒形や角筒形)の外装缶を使用した筒形電池や、扁平形(平面視で円形や角形の扁平形)の外装缶を使用した扁平形電池、ラミネートフィルムを外装体としたソフトパッケージ電池についても同様に適用することができる。 A positive electrode using the positive electrode material for a lithium secondary battery of the present invention has high safety, a large capacity, excellent rate characteristics, and a small mass increase rate in a specific atmosphere. A lithium secondary battery using such a positive electrode is widely used as a small and lightweight power source with high energy density in information-related devices, communication devices, vehicles and the like. The secondary battery manufactured using the positive electrode material for a lithium secondary battery of the present invention includes a tubular battery using a tubular (cylindrical or rectangular tubular) outer can, a flat battery (circular in plan view, or The same can be applied to a flat battery using an outer can of a rectangular flat shape and a soft package battery using a laminate film as an outer package.

Claims (9)

全体組成がLiNiで表される複合酸化物であることを特徴とするリチウム二次電池用正極材料:
但し、
M:MnおよびCoから選ばれる1種又は2種の元素、
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、
a/(b+c+d) : 0.80〜1.30
b/(b+c+d) : 0.30〜0.95
c/(b+c+d) : 0.05〜0.60
d/(b+c+d) : 0.005〜0.10
e/(b+c+d) : 0.0005〜0.010
b+c+d=1、
x : 1.5〜2.5
であり、前記複合酸化物の二次粒子において、レーザー回折散乱式測定方法によって求めた、個数基準の積算値90%での粒径D90と個数基準の積算値10%での粒径D10との差が5.0μm以上であり、大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が0.60質量%以下である。
A positive electrode material for a lithium secondary battery, which is a composite oxide having an overall composition represented by Li a Ni b M c N d L e O x :
However,
M: one or two elements selected from Mn and Co,
N: one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe,
L: one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba,
a/(b+c+d): 0.80 to 1.30
b/(b+c+d): 0.30 to 0.95
c/(b+c+d): 0.05-0.60
d/(b+c+d): 0.005-0.10
e/(b+c+d): 0.0005 to 0.010
b+c+d=1,
x: 1.5 to 2.5
, And the said at secondary particles of composite oxide was determined by a laser diffraction scattering measuring method, the particle diameter D 10 of an integration value of 10% of the particle diameter D 90 and the number-based on the integrated value 90% based on the number Is 5.0 μm or more, and the change in mass after 240 hours is 0.60% by mass or less under an atmosphere of air, 25° C., and a humidity of 60%.
前記Lが、B、C、Na、Si、P、S、K、およびBaからなる群から選ばれる1種又は2種以上の元素である、請求項1に記載のリチウム二次電池用正極材料。 The positive electrode material for a lithium secondary battery according to claim 1, wherein L is one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, and Ba. .. 荷重を95.5MPa与えた時の成型体の密度が3.20g/cc以上である、請求項1または2に記載のリチウム二次電池用正極材料。 Density of the molded body when given 95.5MPa load is 3.20 g / cc or more, the positive electrode material for lithium secondary battery mounting serial to claim 1 or 2. 前記複合酸化物の平均粒径が0.1μm以上の一次粒子が凝集して二次粒子を形成している、請求項1〜3のいずれか1項に記載のリチウム二次電池用正極材料。 The positive electrode material for a lithium secondary battery according to claim 1, wherein primary particles having an average particle diameter of 0.1 μm or more of the composite oxide are aggregated to form secondary particles. 全体組成がLiNiで表される複合酸化物であるリチウム二次電池用正極材料:
但し、
M:MnおよびCoから選ばれる1種又は2種の元素、
N:Mg、Al、Ti、CrおよびFeからなる群から選ばれる1種又は2種以上の元素、
L:B、C、Na、Si、P、S、K、CaおよびBaからなる群から選ばれる1種又は2種以上の元素であり、
a/(b+c+d) : 0.80〜1.30
b/(b+c+d) : 0.30〜0.95
c/(b+c+d) : 0.05〜0.60
d/(b+c+d) : 0.005〜0.10
e/(b+c+d) : 0.0005〜0.010
b+c+d=1、
x : 1.5〜2.5
であり、
原料元素または原料元素を含む化合物を混合し、700〜950℃で焼成した後、水洗、脱水および乾燥して、大気雰囲気、25℃、湿度60%の環境下において、240時間後の質量変化が0.60質量%以下である。
A positive electrode material for a lithium secondary battery, which is a composite oxide whose overall composition is represented by Li a Ni b M c N d L e O x :
However,
M: one or two elements selected from Mn and Co,
N: one or more elements selected from the group consisting of Mg, Al, Ti, Cr and Fe,
L: one or more elements selected from the group consisting of B, C, Na, Si, P, S, K, Ca and Ba,
a/(b+c+d): 0.80 to 1.30
b/(b+c+d): 0.30 to 0.95
c/(b+c+d): 0.05-0.60
d/(b+c+d): 0.005-0.10
e/(b+c+d): 0.0005 to 0.010
b+c+d=1,
x: 1.5 to 2.5
And
After mixing the raw material elements or the compounds containing the raw material elements and baking at 700 to 950° C., washing with water, dehydration and drying, the mass change after 240 hours under the atmosphere of air atmosphere, 25° C., and humidity of 60% changes. It is 0.60 mass% or less.
原料元素または原料元素を含む化合物を混合し、700〜950℃で焼成する焼成工程の後に水洗工程、脱水工程および乾燥工程を含む、請求項1〜4のいずれか1項に記載のリチウム二次電池用正極材料の製造方法。 The lithium secondary according to any one of claims 1 to 4, comprising a water washing step, a dehydration step and a drying step after the firing step of mixing the raw material elements or the compounds containing the raw material elements and firing at 700 to 950°C. Manufacturing method of positive electrode material for battery. 前記複合酸化物が、Li化合物と、Ni元素と共にMnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成して製造される複合酸化物である請求項6に記載のリチウム二次電池用正極材料の製造方法。 The composite oxide is a Li compound, a hydroxide obtained by coprecipitating one or more elements selected from Mn and Co together with a Ni element, and oxides, nitrates, and sulfates of elements other than the above. The positive electrode material for a lithium secondary battery according to claim 6, which is a composite oxide produced by mixing and firing one or more compounds selected from the group consisting of, carbonates, acetates, and phosphates. Manufacturing method. 請求項1〜5のいずれか1項に記載のリチウム二次電池用正極材料を含む正極活物質を有する正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在しリチウムイオンを伝導するイオン伝導媒体とを備えたリチウム二次電池。 A positive electrode having a positive electrode active material containing the positive electrode material for a lithium secondary battery according to claim 1, a negative electrode having a negative electrode active material, and lithium interposed between the positive electrode and the negative electrode. A lithium secondary battery comprising an ion conductive medium that conducts ions. Li化合物と、Ni元素と共にMnおよびCoから選ばれた1種又は2種以上の元素を共沈させた水酸化物と、前記以外の元素の酸化物、硝酸塩、硫酸塩、炭酸塩、酢酸塩、およびリン酸塩から選ばれた1種又は2種以上の化合物を混合、焼成する請求項1ないし4のいずれか1項に記載の複合酸化物の製造方法。 A Li compound, a hydroxide obtained by coprecipitating one or more elements selected from Mn and Co with Ni element, and oxides, nitrates, sulfates, carbonates, acetates of elements other than the above 5. The method for producing a composite oxide according to claim 1, wherein one or more compounds selected from the group consisting of, and phosphates are mixed and fired.
JP2017233463A 2017-12-05 2017-12-05 Positive electrode material for lithium secondary batteries Active JP6749884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233463A JP6749884B2 (en) 2017-12-05 2017-12-05 Positive electrode material for lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233463A JP6749884B2 (en) 2017-12-05 2017-12-05 Positive electrode material for lithium secondary batteries

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012280170A Division JP2014123529A (en) 2012-12-21 2012-12-21 Positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2018041746A JP2018041746A (en) 2018-03-15
JP6749884B2 true JP6749884B2 (en) 2020-09-02

Family

ID=61626341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233463A Active JP6749884B2 (en) 2017-12-05 2017-12-05 Positive electrode material for lithium secondary batteries

Country Status (1)

Country Link
JP (1) JP6749884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7316903B2 (en) * 2018-12-27 2023-07-28 エルジー エナジー ソリューション リミテッド Positive electrode active material for secondary battery and method for producing the same
CN116143200B (en) * 2023-04-23 2023-08-01 宜宾锂宝新材料有限公司 High-compaction micron monocrystal lithium-rich manganese-based positive electrode material, preparation method and lithium battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109592A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method of the same
JP4025094B2 (en) * 2002-03-04 2007-12-19 三菱電線工業株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
JP4292064B2 (en) * 2002-12-06 2009-07-08 Jfeミネラル株式会社 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2006054159A (en) * 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd Anode active material for non-aqueous secondary battery, and its manufacturing method
JP4781004B2 (en) * 2005-04-28 2011-09-28 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP5260821B2 (en) * 2005-07-11 2013-08-14 パナソニック株式会社 Lithium ion secondary battery
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP5419093B2 (en) * 2010-04-27 2014-02-19 日立マクセル株式会社 Non-aqueous secondary battery
JP2012174569A (en) * 2011-02-23 2012-09-10 Hitachi Maxell Energy Ltd Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2012221855A (en) * 2011-04-12 2012-11-12 Sony Corp Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery, and battery pack, electronic device, electric vehicle, power storage device, and electric power system comprising nonaqueous electrolyte battery
WO2012164752A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material

Also Published As

Publication number Publication date
JP2018041746A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
KR101678332B1 (en) Positive electrode material for lithium secondary battery
JP4998753B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR101970909B1 (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
JP4973825B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5618116B2 (en) Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material
KR101475922B1 (en) Positive active material coated with manganese phosphate for rechargeable lithium battery and process for preparing the same
JP6003157B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5482977B2 (en) Non-aqueous electrolyte secondary battery lithium cobalt oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
KR20180024004A (en) Li-containing silicon oxide powder and manufacturing method thereof
JP2010064944A5 (en)
JP2010086922A (en) Lithium complex compound particle powder and method of manufacturing the same, and nonaqueous electrolyte secondary battery
US20220109139A1 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
JP3943168B2 (en) Lithium composite oxide, method for producing the same, and positive electrode active material for lithium secondary battery
JP2013087040A (en) Lithium compound oxide and production method of the same, and lithium ion secondary battery
JP6749884B2 (en) Positive electrode material for lithium secondary batteries
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7439748B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2004335152A (en) Cathode active substance for nonaqueous system electrolyte secondary battery and nonaqueous system electrolyte secondary battery
JP2019175697A (en) Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, and manufacturing method for non-aqueous electrolyte secondary battery
JP7194891B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP4305613B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004002066A (en) Cobalt oxide particle powder, its preparation process, nonaqueous electrolyte secondary battery, cathode active material for this and its manufacturing process
JP2013232438A (en) Lithium composite compound particle powder and production method therefor, nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200812

R150 Certificate of patent or registration of utility model

Ref document number: 6749884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250