JP4025094B2 - Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode - Google Patents

Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode Download PDF

Info

Publication number
JP4025094B2
JP4025094B2 JP2002057076A JP2002057076A JP4025094B2 JP 4025094 B2 JP4025094 B2 JP 4025094B2 JP 2002057076 A JP2002057076 A JP 2002057076A JP 2002057076 A JP2002057076 A JP 2002057076A JP 4025094 B2 JP4025094 B2 JP 4025094B2
Authority
JP
Japan
Prior art keywords
positive electrode
average particle
active material
particle size
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002057076A
Other languages
Japanese (ja)
Other versions
JP2003257416A (en
Inventor
健 森内
敏博 厨子
聖司 岡田
賢一 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002057076A priority Critical patent/JP4025094B2/en
Publication of JP2003257416A publication Critical patent/JP2003257416A/en
Application granted granted Critical
Publication of JP4025094B2 publication Critical patent/JP4025094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオン二次電池用の正極およびリチウムイオン二次電池に関する。
【0002】
【従来の技術】
リチウムイオン二次電池は、ニッカド電池などに比べ高エネルギー密度、高電圧を達成することができ、近年、携帯電話やノート型パソコンといった携帯機器の駆動源として急速に採用が進んでいる。
【0003】
リチウムイオン二次電池の正極は、一般に、Al箔等の金属箔からなる集電体上に、活物質、導電材および結着剤を含む合材の層を形成して構成される。かかる合材の層は、通常、集電体上に活物質、導電材および結着剤を含むスラリーを塗工、乾燥し、得られた塗膜に圧延処理を施すことで形成されている。ここで、活物質としては、LiCoO2等のLi−Co系複合酸化物(粒状物)が使用され、導電材としては、黒鉛、カーボンブラック等の炭素材料が使用されている。
【0004】
活物質であるLi−Co系複合酸化物はその粒径が大きいほど、異常反応を起こしにくく、電池の安全性の点からは粒径が大きい方が好ましいことが知られている。しかし、その反面、粒径が大きくなると、正極の電気抵抗が高くなって電池特性(特に放電負荷特性)が低下する傾向にある。本発明者等は、活物質として粒径が大きいLi−Co系複合酸化物(平均粒径が17μm以上)を使用し、導電材に、該Li−Co系複合酸化物(粒子)の表面を被覆して該表面の導電性を高める微小粒径(平均粒径が1μmの以下)の炭素材料(第1の導電材)と、該Li−Co系複合酸化物(粒子)の粒子間の隙間に存在して、該粒子間の導電性を高める、平均粒径が約5μm以上の炭素材料(第2の導電材)を使用することで、正極の導電性を高めるようにしてきた。
【0005】
一方、電池の容量を高めるには、正極内の活物質の量を増やすこととなるが、規定サイズの電池とするためには正極の厚みは所定厚み以下に制限されるので、活物質、導電材および結着剤を含む合材の層(以下、「合材層」または「正極合材層」ともいう)を圧延(圧縮)して正極を所定厚み以下に調整することが必要になる。
【0006】
近時の電池の高容量化への要求は止まるところがなく、従来よりも活物質の量を更に増量して、その分、合材層をより強く圧縮(圧延)しているが、このようにして作製された正極を使用した電池において、内部ショート(正極がセパレータを突き破って負極に接触する)の発生率が高くなり、また、低温特性が低下するという問題が生じている。
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑み、高容量で、良好な低温特性を示し、しかも、内部ショートおよび異常反応を起こしにくい、リチウムイオン二次電池を達成し得るリチウムイオン二次電池用の正極および該正極を用いたリチウムイオン二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等の研究の結果、上記の内部ショートの問題は、合材層を高圧縮(圧延)することによって現れる合材層表面の凹凸が原因で、特定粒径範囲(平均粒径が1〜6μm)の鱗片状黒鉛化炭素を導電材に使用することで、合材層表面の凹凸差が減少する(合材の充填密度が向上する)ことを知見した。そこで、かかる特定粒径範囲の鱗片状黒鉛化炭素を導電材に使用し、電池の高容量化のために活物質(Li−Co系複合酸化物)を小粒径化することを検討したが、合材層表面の平坦化は未だ十分とはいえず、このために、更に研究をすすめた結果、活物質として比較的粒径が大きいLi−Co系複合酸化物の粒子群(平均粒径が7〜13μm)と、比較的粒径が小さいLi−Co系複合酸化物の粒子群(平均粒径が1〜6μm)とを特定の割合で使用し、さらに前記特定粒径範囲(平均粒径が1〜6μm)の鱗片状黒鉛化炭素とともに微小粒径(平均粒径が0.5μm以下の)のカーボンブラックを導電材として使用することにより、合材層表面の十分な平坦化(内部ショートの防止)と電池の高容量化を両立でき、しかも、電池は異常反応を起こさず、低温特性が大きく向上することを見出し、本発明を完成させたものである。
すなわち、本発明は以下の構成を特徴としている。
【0009】
(1) 集電体上に、活物質、導電材およびバインダーを含む合材の層を形成してなる、リチウムイオン二次電池用の正極であって、
活物質が、平均粒径が7〜13μmのLi−Co系複合酸化物と平均粒径が1〜6μmのLi−Co系複合酸化物とを1:0.1〜1.5の割合(重量比)で含む混合物であり、
導電材が、平均粒径が1〜6μmの鱗片状黒鉛化炭素と平均粒径が0.5μm以下のカーボンブラックとを1:0.01〜1の割合(重量比)で含む混合物であり、
活物質と導電材の割合(重量比)が1:0.01〜0.1であることを特徴とするリチウム二次電池用正極。
(2)正極、負極、当該正極と負極の間に介在するセパレータ、および、電解液を含むリチウムイオン二次電池であって、正極が、上記(1)記載の正極からなることを特徴とするリチウムイオン二次電池。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明のリチウムイオン二次電池用正極(以下、単に正極ともいう)は、集電体上に、活物質、導電材およびバインダーを含む合材の層を形成してなるものであって、
活物質に、平均粒径が7〜13μmのLi−Co系複合酸化物(第1の活物質)と、平均粒径が1〜6μmのLi−Co系複合酸化物(第2の活物質)とを1:0.1〜1.5(第1の活物質:第2の活物質)の割合(重量比)で含む混合物を使用し、
導電材として、平均粒径が1〜6μmの鱗片状黒鉛化炭素と平均粒径が0.5μm以下カーボンブラックとを1:0.01〜1(鱗片状黒鉛化炭素:カーボンブラック)の重量比で含む混合物を使用し、
活物質と導電材の割合(重量比)を1:0.01〜0.1にしたことが特徴である。
【0011】
すなわち、本発明の正極では、導電材に平均粒径が1〜6μmの鱗片状黒鉛化炭素を使用することが重要であり、平均粒径が1μmに満たない鱗片状黒鉛化炭素では、合材層表面は十分に平坦化されず、また、活物質粒子間の導電性が得られにくくなってしまう。また、平均粒径が6μmを超えるような鱗片状黒鉛化炭素では、小粒径の活物質の充填阻害が生じる。本発明において、鱗片状黒鉛化炭素の平均粒径は好ましくは2〜4μmであり、特に好ましくは2〜3μmである。
【0012】
また、活物質は、比較的粒径が大きいLi−Co系複合酸化物の粒子群(第1の活物質、平均粒径:7〜13μm)と比較的粒径が小さいLi−Co系複合酸化物の粒子群(第2の活物質、平均粒径:1〜6μm)との混合物で構成し、その混合比(第1の活物質:第2の活物質)を1:0.1〜1.5(重量比)とすることが重要である。当該混合比を離れて第1の活物質の割合が多くなると、合材層の表面の平坦化が十分でなく、また、低温特性が低下する傾向となる。一方、第2の活物質の割合が多くなると、活物質の反応面積が大きくなりすぎることから、電池の安全性が低下する傾向となってしまう。
【0013】
本発明において、第1の活物質の平均粒径は好ましくは8〜11μm、特に好ましくは8〜10μmであり、第2の活物質の平均粒径は好ましくは2〜5μm、特に好ましくは3〜5μmである。また、第1の活物質と第2の活物質の混合比は1:0.2〜1.0が好ましく、特に好ましくは1:0.2〜0.6である。
【0014】
また、本発明の正極では、導電材に、前記平均粒径が1〜6μmの鱗片状黒鉛化炭素とともに、平均粒径が0.5μm以下のカーボンブラックを使用することが重要であり、当該平均粒径が0.5μm以下のカーボンブラックを使用することによって正極合材層の表面の平坦性が一層向上するとともに、優れた低温特性が得られるようになる。
【0015】
本発明において、当該平均粒径が0.5μm以下のカーボンブラックは、平均粒径が80nm(0.08μm)以下のものが好ましく、また、平均粒径の下限は5nm(0.005μm)以上である。これは平均粒径5nm(0.005μm)未満のものは、合材層形成のためのスラリーの調製作業において凝集が激しく、均質なスラリーを調製できないためである。
【0016】
本発明の正極において、活物質と導電材の割合(活物質:導電材)は、通常、1:0.01〜0.1(重量比)であり、好ましくは1:0.02〜0.07である。この範囲を離れて導電材の割合が少ない場合、合材層の平坦化が十分になされず、また、正極の電気抵抗上昇による電池の放電負荷特性の低下等の問題を生じ、一方、当該範囲を離れて導電材の割合が多くなると、合材層中の活物質の占有率が少なくなり過ぎ、電池の高容量化を実現できない。
【0017】
また、導電材における鱗片状黒鉛化炭素とカーボンブラックの割合(重量比)は、1:0.01〜1(鱗片状黒鉛化炭素:カーボンブラック)の範囲内に設定することが重要であり、好ましくは1:0.2〜0.5である。この範囲を離れて鱗片状黒鉛化炭素の割合が少なくなると、合材層表面が十分に平坦化されず(内部ショートを発生しやすくなり)、また、カーボンブラックの割合が少ないと、良好な低温特性を得ることができなくなり、また、合材層表面の平坦性も低下してしまう。
【0018】
本発明において、活物質(第1の活物質および第2の活物質)に使用するLi−Co系複合酸化物の具体例としては、LiCoO2やLiACo1-XMeX2で示されるものが挙げられる。後者のLiACo1-XMeX2において、Aは0.05〜1.5が好ましく、0.1〜1.1が特に好ましい。Xは0.01〜0.5が好ましく、0.02〜0.2が特に好ましい。元素Meとしては、Zr、V、Cr、Mo、Mn、Fe、Niなどの周期律表の3〜10族元素や、B、Al、Ge、Pb、Sn、Sbなどの13〜15族元素が挙げられる。
【0019】
本発明において、第1の活物質(平均粒径が7〜13μmのLi−Co系複合酸化物)と第2の活物質(平均粒径が1〜6μmのLi−Co系複合酸化物)とは同一組成(同一構成元素で、構成元素の量比が同一)でも、異なる組成(▲1▼同一構成元素で、構成元素の量比が異なるもの、▲2▼構成元素が異なるもの)でもよいが、同一組成が好ましく、共にLiCoO2であるのが特に好ましい。
【0020】
本発明で使用するLi−Co系複合酸化物は、例えば、出発原料となるリチウム化合物とコバルト化合物とを、コバルトとリチウムとの原子比が1:1〜0.8:1となるように混合し、その混合物を温度700℃〜1200℃の大気雰囲気下で、3時間〜50時間加熱するなどして反応させ、さらに反応して出来たものを粉砕して粒状物にする、または、当該粒状物を更に分級して用いる。また、かかる粉砕後の粒状物に400℃〜750℃(好ましくは450℃〜700℃)程度の温度下で0.5時間〜50時間(好ましくは1時間〜20時間)程度の熱処理を加えてもよい。かかる熱処理により、粒状物の平均粒径を殆ど変化させずに比表面積を減少させることができ、電池の低温特性および充放電サイクル特性において好ましい結果を与える。当該熱処理は、たとえば、大気雰囲気下や、窒素またはアルゴンといった不活性ガス雰囲気下で行うことができる。但し、雰囲気中に炭酸ガスが存在すると、炭酸リチウムが生じて不純物の含有量が増大するおそれがあるので、炭酸ガスの分圧が10mmHg程度以下の雰囲気下で行うのが好ましい。
【0021】
上記の出発原料となるリチウム化合物としては、酸化リチウム、水酸化リチウム、ハロゲン化リチウム、硝酸リチウム、シュウ酸リチウム、炭酸リチウムなどや、これらの混合物が挙げられる。コバルト化合物としては、酸化コバルト、水酸化コバルト、ハロゲン化コバルト、硝酸コバルト、シュウ酸コバルト、炭酸コバルトなどや、これらの混合物が挙げられる。なお、LiACo1-XMeX2で示されるLi−Co系複合酸化物を製造するのであれば、リチウム化合物とコバルト化合物との混合物に、置換元素の化合物を必要量添加すれば良い。
【0022】
本発明において、第1の活物質(平均粒径が7〜13μmのLi−Co系複合酸化物)および第2の活物質(平均粒径が1〜6μmのLi−Co系複合酸化物)における平均粒径の値は、個数基準分布での体積平均径であり、以下の測定方法で測定した値である。
【0023】
最初に、測定対象となる粒状物を、水やエタノールなどの有機液体に投入し、35kHz〜40kHz程度の超音波を付与して約2分間分散処理を行う。ここで、測定対象となる粒状物の量は、分散処理後の分散液のレーザ透過率(入射光量に対する出力光量の比)が70%〜95%となる量とする。次に、この分散液をマイクロトラック粒度分析計にかけ、レーザー光の散乱により個々の粒状物の粒径(D1、D2、D3・・)、および各粒径毎の存在個数(N1、N2、N3・・・)を計測する。この粒径分布の計測は、観測された散乱強度分布に最も近い理論強度になる球形粒子群の粒径分布として算出される(粒子は、レーザー光の照射によって得られる投影像と同面積の断面円を持つ球体と想定され、この断面円の直径(球相当径)が粒径として計測される)。
平均粒径(μm)は、個々の粒子の粒径(D)と各粒径毎の存在個数(N)とから、下記式により算出される。
【0024】
平均粒径(μm)=(ΣND3 /ΣN) 1/ 3
【0025】
本発明において、活物質全体、すなわち、第1のLi−Co系複合酸化物と第2のLi−Co系複合酸化物の混合物は、通常、前記の式で定義される平均粒径が5〜13μm(好ましくは7〜11μm)の範囲で、10%体積径(D10)(測定全粒子の体積割合の合計値に対して、ある粒径以下の体積割合の合計が10%になる粒径値)が2〜6μm、90%体積径(D90)(測定全粒子の体積割合の合計値に対して、ある粒径以下の体積割合の合計が90%になる粒径値)が15〜25μmの粒度分布を形成する。
【0026】
本発明において、平均粒径が1〜6μmの鱗片状黒鉛化炭素は、人造物あるいは天然物のいずれも使用できるが、不純物が少なくより好ましい結果が得られる点から人造物が好ましい。
【0027】
また、鱗片状黒鉛化炭素の粒径とは、鱗片状黒鉛化炭素を球体と想定したときの断面円の直径(球相当径)を意味し、平均粒径は上述のLi−Co系複合酸化物の場合と同様の方法(マイクロトラック粒度分析計を用いた方法)で測定した、個数基準分布での体積平均径である。
【0028】
また、鱗片状黒鉛化炭素とともに使用する平粒粒径が0.5μm以下のカーボンブラックの粒径は、カーボンブラックの粒子を球体と想定したときの断面円の直径(球相当径)であり、平均粒径は電子顕微鏡を用いて測定したものである。すなわち、最初に視野に粒子が20個以上入るよう倍率を設定して電子顕微鏡写真を撮影し、次に、写真に写った各粒子の像の面積を算出し、さらにこの算出された面積から同面積を持つ円の直径を算出して、この直径を粒子の粒径とし(この直径の断面円をもつ球体からなる粒子を想定し、該球体の直径を粒径とし)、測定個数(20個)による平均値を計算して平均粒径とする。
【0029】
平均粒径が0.5μm以下のカーボンブラックは、市販品をそのまま使用できるが、平均粒径が0.5μmを超えるようなもの(市販品)であっても、公知の粉砕機(例えば、湿式超微粒分散粉砕機等)で粉砕して(さらに必要に応じて分級し)、平均粒径を0.5μm以下の微粉体にして使用することもできる。好ましい例として、アセチレンブラック、オイルファーネスブラック、イクストラコンダクティブファーネスブラック等が挙げられるが、オイルファーネスブラックが特に好ましい。
【0030】
本発明の正極は、上記特定の活物質および特定の導電材と、高分子バインダーと、溶媒とを混合してスラリーを調製し、該スラリーを集電体(片面または両面)上に塗工し、次いで乾燥して合材層を形成し、さらに該合材層に圧延処理を施すことにより作製される。
【0031】
上記高分子バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、エチレン−プロピレン−ジエン系ポリマーなどが好適であり、これらの中でもポリフッ化ビニリデンが好ましい。
【0032】
合材層(スラリー)中の高分子バインダーの量は、活物質100重量部に対して、一般に、1〜10重量部、好ましくは2〜5重量部である。高分子バインダーが1重量部未満である場合、合材層を構成する材料間の結合が不十分となり、合材層が集電体から欠落し、充放電特性が低下してしまう。また、高分子バインダーが10重量部を超えると、合材層(正極)の電気抵抗値が上昇して、低温特性の低下する傾向となり、好ましくない。
【0033】
スラリーの調製は、通常、活物質、導電材および高分子バインダーを適当な溶媒とともに混練することで行われる。溶媒は特に限定されないが、N−メチルピロリドンが好ましい。また、混練は、例えば、プラネタリディスパ混練装置(浅田鉄工所製)などの従来公知の混練装置で行われる。
【0034】
スラリーの集電体上への塗工は、コンマロールタイプやダイコートタイプの従来公知の塗工機により行われ、スラリーの乾燥は、集電体上に塗工されたスラリーを、集電体とともに温風乾燥炉などの乾燥装置を使用して、80〜200℃、好ましくは、100〜180℃の温度範囲で、2〜5分間乾燥させる。
【0035】
なお、スラリーの塗工量は、目的とする電池の容量によって異なるが、集電体の単位面積当たりの乾燥後の付着量(合材の付着量)で示すとして、一般に、30〜100mg/cm2程度である。
【0036】
乾燥後の合材層の圧延(圧縮)処理は、圧延プレス機などを用いて、正極(集電体+合材層)全体を圧延することで行われる。圧延条件は、一般に、圧延温度を20〜100℃とし、圧延率が10〜60%(好ましくは20〜50%)となるように行う。ここで、圧延温度は合材層の温度であり、圧延率とは、圧下率などとも呼ばれる圧延の加工度を表す尺度であり、圧延前の正極板(集電体+合材層)の厚みをh1、圧延後の正極板(集電体+合材層)の厚みをh2、集電体の厚みをh3とするとき、下記式(II)で算出される。
圧延率(%)=(h1−h2)×100/(h1−h3) (II)
【0037】
なお、圧延処理における温度が上記の範囲よりも低い場合、圧延により合材層に割れ(ひび割れ)が生じやすく、好ましくない。また、高い場合は、電解液の含浸が十分に進行せず、抵抗増大をもたらし、好ましくない。また、圧延処理における圧延率が、上記の範囲よりも小さい場合、正極(電極)厚みを十分に小さくできないので、所定サイズの電池缶への収納が困難になる。
【0038】
このようにして得られる本発明の正極は、合材層は、最大厚み部分と最小厚み部分の厚みの差が10μm以下の平坦性の優れたものとなる。なお、ここでの最大厚み部分と最小厚み部分の厚みの差とは、正極(電極)の断面をSEM観察して写真を撮り、その写真に写った合材層の最大厚み部分と最小厚み部分の厚みをノギスで測り、その差を求めたものである。なお、写真は正極(電極)の任意の5点の断面について撮影し、かかる5点における最大厚み部分と最小厚み部分の厚みの差の平均値を計算する。
【0039】
本発明の正極に使用する集電体としては、たとえばアルミニウム、アルミニウム合金、チタンなどで形成された箔やエキスパンドメタルなど従来と同様のものが利用できる。なお、集電体が箔や穴あき箔の場合は、その厚みは通常5〜100μm程度であり、好ましくは10〜50μm程度である。集電体がエキスパンドメタルの場合は、その厚みは通常25〜300μm程度であり、好ましくは30〜150μm程度である。
【0040】
本発明のリチウムイオン二次電池は、前記説明した本発明の正極を用いて構成される。負極、電解液、セパレータ等の正極以外の電池の構成要素は特に限定されず、公知のものを常法に従って使用することができる。
【0041】
負極は集電体上に、活物質および結着剤を含む合材の層が形成されて構成されるが、活物質としては、黒鉛類(天然、人造)、カーボンブラック、非晶質炭素材(ハードカーボン、ソフトカーボン)、活性炭等の公知のリチウム二次電池の負極用活物質として使用されている粒状の炭素材を使用できる。これらのうちでも、黒鉛類が好ましく、人造黒鉛(黒鉛化炭素)が特に好ましい。また、黒鉛類においては、粒状物以外に繊維状のものを用いることができ、該繊維状黒鉛炭素は直線状でもカール状でもよく、その大きは特に限定されないが平均繊維長が1〜100μmのものが好ましく、平均繊維長が3〜50μmのものが特に好ましい。また、繊維状黒鉛化炭素のアスペクト比(平均繊維長/平均繊維径)は1〜5が好ましく、特に好ましくは3〜5である。
【0042】
かかる繊維状黒鉛化炭素の大きさ(繊維径、繊維長)は、電子顕微鏡を用いて測定できる。すなわち、視野に繊維が20本以上入るよう倍率を設定して電子顕微鏡写真を撮影し、写真に写った各繊維の繊維径および繊維長をノギス等で測定することで行うことができる。なお、繊維長の測定は、繊維が直線状の場合であれば、一端と他端との最短距離を測定することにより行えば良い。但し、繊維がカール等している場合であれば、繊維上の最も互いに離れる任意の二点を取り、この二点間の距離を測定し、これを繊維長とすれば良い。なお、平均繊維径、平均繊維長さは測定個数の個数平均値である。
【0043】
結着剤には、従来からリチウム二次電池の負極の活物質層に使用されている結着剤、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の高分子材料が使用される。
【0044】
負極の合材層中の活物質の量(集電体の単位面積当りの活物質の存在量)は、通常、3〜30mg/cm2程度、好ましくは5〜20mg/cm2程度である。また、合材層における活物質と結着剤の割合は重量比(活物質:結着剤)で一般に80:20〜98:2である。
【0045】
電解液は粘度を3cps以下に調製したものが好ましく、当該粘度が3cps以下の電解液は、ジエチルカーボネート(DEC)およびエチルメチルカーボネート(EMC)から選ばれる少なくとも一種と、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)と、ジメチルカーボネート(DMC)との混合溶媒によって達成するのが好ましい。
【0046】
このとき、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)の合計量を全体の25体積%以下にするのが好ましく、具体的組成としては、例えば、ジエチルカーボネートおよびエチルメチルカーボネートから選ばれる少なくとも一種を25体積%〜50体積%(好ましくは30体積%〜35体積%)、エチレンカーボネートを4体積%〜20体積%(好ましくは6体積%〜18体積%)、プロピレンカーボネートを3体積%〜17体積%(好ましくは5体積%〜15体積%)、ジメチルカーボネートを40体積〜60体積%(好ましくは45体積%〜55体積%)が挙げられる。
【0047】
ジエチルカーボネートおよびエチルメチルカーボネートから選ばれる少なくとも一種においては、上記混合比が25体積%未満であると、電解液の凝固点が上昇して、特に−20℃以下の低温下において、電池の内部抵抗を増大させ、充放電サイクル特性および低温特性を低下させることがあり好ましくない。一方、上記混合比が50体積%を超えると電解液の粘度が上昇して電池の内部抵抗を増大させ、充放電サイクル特性を低下させることがあり好ましくない。
【0048】
エチレンカーボネートにおいては、上記混合比が4体積%未満であると、負極板表面で安定な皮膜が形成されにくく、サイクル特性を低下させる恐れがあり好ましくない。また上記混合比が20体積%を超えると、電解液の粘度が上昇して電池の内部抵抗を増大させ、充放電サイクル特性が低下させることがあり好ましくない。
【0049】
プロピレンカーボネートにおいては、上記混合比が3体積%未満であると充放電サイクルに伴うインピーダンスの増加の抑制効果が小さくなり、サイクル特性を低下させる恐れがあり好ましくない。上記混合比が17体積%を超えると、電解液の粘度が上昇して電池の内部抵抗を増大させ、充放電サイクル特性を低下させることがあり好ましくない。
【0050】
ジメチルカーボネートにおいては、上記混合比が40体積%未満であると電解液の粘度が上昇して電池の内部抵抗を増大させ、充放電サイクル特性を低下させることがあり好ましくない。上記混合比が60体積%を超えると、電解液の揮発が容易に進行し、高温特性が低下する傾向にあるため好ましくない。
【0051】
電解液に溶解させるリチウム塩としては、例えば、LiClO4 、LiBF4、LiPF6 、LiAsF6、LiAlCl4 、Li(CF3 SO2 2 Nなどが挙げられる。これらのうち一種のみを用いても良いし、二種以上を用いても良い。解離定数が大きく、熱安定性が高く、又毒性が少ない点から、これらのうちLiPF6が好ましく用いられる。
【0052】
電解液に溶解させるリチウム塩を増加させることは、常温以上においては、限界電流密度を増加させる点から有効といえる。しかし、低温下では、塩の解離に限界がある。そのため、リチウム塩を増量しても電荷を運ぶのに有効なリチウム塩の増加は望めず、逆に、電解液の粘度を増加させ、リチウムイオンの拡散速度を遅くしてしまい、結果、低温特性を低下させてしまう。従って、リチウム塩の濃度は0.5モル/L〜1.5モル/L、好ましくは0.7モル/L〜1.2モル/Lとなるように電解液を調製するのがよい。
【0053】
セパレータには、ポリオレフィンセパレータ等の従来からリチウム二次電池で使用されている公知のセパレータが使用される。ここで、セパレータは多孔質状のものでも、実質的に孔形成を行っていないセパレータ(中実のセパレー)でもよい。また、ポリオレフィンセパレータはポリエチレン(PE)層単体やポリプロピレン(PP)層単体のものでもよいが、ポリエチレン層とポリプロピレン層とを積層したタイプが好ましい。積層タイプの場合、その積層数や積層パターンは特に限定されないが、内部ショートをより高いレベルで防止する観点からは、PP/PE/PP等の3層タイプが好適である。セパレータの厚みは、電池の形態によっても異なるが、一般に10〜50μm程度である。本発明では、電池を小型化(薄型化)するために、15〜30μm程度の比較的薄い厚みのセパレータを使用しても、内部ショートの発生を十分に防止することができる。
【0054】
電池の形態は特に限定されない。従来からリチウム二次電池で使用されている公知のものを使用でき、例えば、Fe、Fe(Niメッキ)、SUS、アルミ、アルミ合金等の金属からなる円筒缶、角筒缶、ボタン状缶等や、ラミネートフィルム等のシート状の外装材が使用される。ラミネートフィルムとしては、銅、アルミニウム等の金属箔の少なくとも片面にポリエステル、ポリプロピレン等の熱可塑性樹脂ラミネート層が形成されたものが好ましい。
【0055】
【実施例】
以下、実施例を挙げて本発明をより具体的に示す。
実施例1
〔正極〕
平均粒径10μmのLiCoO2(第1の活物質)65重量部、平均粒径が5μmのLiCoO2(第2の活物質)28重量部、平均粒径2μmの鱗片状黒鉛化炭素(第1の導電材)3重量部、平均粒径40nm(0.04μm)のオイルファーネスブラック(第2の導電材)1重量部およびポリフッ化ビニリデン(結着剤)3重量部を、分散溶媒としてのN−メチル−2−ピロリドンとともに混練(混合)してスラリーを調製し、該スラリーを集電体であるアルミニウム箔(幅55mm、長さ600mm)の両面上に塗布し、乾燥して合材層を形成し、さらに圧延処理(圧延温度:30℃、圧延率:40%)を施して、全体厚みが150μmの正極を完成させた。
【0056】
〔負極〕
活物質としての黒鉛化炭素繊維(平均繊維径8μm)100重量部と、結着剤としてのポリフッ化ビニリデン5重量部を、分散溶媒としてのN−メチル−2−ピロリドンとともに混合してスラリー化し、このスラリーを集電体となる幅57mm、長さ600mmの銅箔の両面に塗布し、乾燥して合材層を形成し、さらに圧延処理を施して、全体厚みが150μmの負極を完成させた。
【0057】
〔リチウム二次電池の組立〕
ジエチルカーボネート4体積%と、エチルメチルカーボネート29体積%と、プロピレンカーボネート9体積%と、エチレンカーボネート11体積%と、ジメチルカーボネート47体積%とからなる混合溶媒に、LiPF6を1モル/L溶解して電解液を調製した。そして、上記作成した正極と負極とを、ポリプロピレン−ポリエチレン複合セパレータ(全体厚み20μm、積層構成PP/PE/PP)を介して捲回し、これを円筒型の電池缶(外径18mm、内径17.5mm、高さ65mm)に収容し、この後、正極と負極との間に電解液を含浸させて、リチウム二次電池を完成させた。
【0058】
実施例2
第1の活物質を平均粒径8μmのLiCoO265重量部に、第2の活物質を平均粒径3μmのLiCoO228重量部にそれぞれ変更した以外は実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0059】
実施例3
第1の活物質(平均粒径10μmのLiCoO2)の量を79重量部に変更し、第2の活物質(平均粒径5μmのLiCoO2)の量を14重量部にそれぞれ変更した以外は実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0060】
実施例4
第1の活物質(平均粒径10μmのLiCoO2)の量を43重量部に変更し、第2の活物質(平均粒径5μmのLiCoO2)の量を50重量部にそれぞれ変更した以外は実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0061】
比較例1
活物質に平均粒径20μmのLiCoO291重量部を使用し、導電材に平均粒径6μmの球状黒鉛化炭素(第1の導電材)5重量部と平均粒径40nm(0.04μm)のオイルファーネスブラック(第2の導電材)1重量部を使用し、その他は実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0062】
比較例2
第1の導電材を平均粒径6μmの球状黒鉛化炭素3重量部に変更した以外は、実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0063】
比較例3
第1の導電材に平均粒径5μmの塊状黒鉛化炭素3重量部に変更した以外は、実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。ここで塊状黒鉛化炭素の「塊状」とは、岩石のような規則性のない凹凸を表面に有する塊を意味している。
【0064】
比較例4
平均粒径40nm(0.04μm)のオイルファーネスブラック(第2の導電材)を使用しない代わりに、平均粒径2μmの鱗片状黒鉛化炭素(第1の導電材)の配合量を4重量部に変更した以外は、実施例1に準拠して、全体厚みが150μmの正極を作製した。そして、この正極以外の構成は実施例1と同様にして電池を作製した。
【0065】
以上の各実施例および各比較例で作製したリチウムイオン二次電池につき、以評価試験を行った。その結果を表1に示す。なお、表1中の圧延負荷(t/cm)は、圧延時の電極(正極)にかかる荷重(T)を電極幅(W)で割った値であり、圧延荷重は圧延装置に付設されている圧延荷重計より得たものである。また、電極幅(W)は電極の進行方向と直交する方向(圧延ロールの軸心方向)における幅である。この圧延負荷が小さいほど、圧延時に正極(電極)にかかる負荷が小さく、作業性が良いことを意味する。
【0066】
〔電池の初期容量〕
20℃の環境下で、定電流−定電圧充電(2000mA、4.2V)後、定電流放電(400mA、カットオフ電圧:3V)を行い、放電時間×電流より容量〔mA・H〕を求める。
【0067】
〔低温特性試験〕
室温で充電を行なった後、これを−20℃の大気雰囲気中に6時間放置する。なお、ここでの充電は上記の初期容量の測定の際のそれと同じである。次に、この−20℃の大気雰囲気中で1C(2000mAh)/3Vカットオフで放電を行い、その時の放電時間×電流より放電容量〔mA・H〕を求める。
【0068】
〔内部ショート試験〕
電池100個を4.2Vに満充電して2週間放置し、放置後の電圧を測定する。足切り基準(放置後の電圧が4V以下)として、そのような電池の個数をn1とする。そして、(100−n1)個の電池の平均電圧をVnとしたとき、Vnよりも10mV電圧が低い電池の個数n2とし、下記式により不良率(=内部ショート発生率)を計算する。
不良率(%)=[(n1+n2)/100]×100
【0069】
〔釘刺し試験(安全性試験)〕
1.5Aで電圧が4.3Vとなるまで充電し、充電後直ちに外径3mmの釘を、各リチウムイオン二次電池の正極端子と負極端子との間の略中央辺りにおいて4cm/秒の速度で刺し込んで電池を貫通させ、10本中での発火本数を調べる安全性の試験を行った。10本中、1本でも発火したものは不合格(×)とし、10本とも発火しなかったものを合格(○)とした。
【0070】
以上の試験結果が下記表1である。
【0071】
【表1】

Figure 0004025094
【0072】
表中、比較例1、2の圧延負荷における(箔切れ)とは、圧延過程で箔の切断や破損が生じたことを意味する。
【0073】
【発明の効果】
以上の説明により明らかなように、本発明のリチウムイオン二次電池用の正極を使用することにより、高容量で優れた低温特性を示し、しかも、内部ショートおよび異常反応が起こりにくい、高性能かつ高信頼性のリチウム二次電池を実現することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.
[0002]
[Prior art]
Lithium ion secondary batteries can achieve higher energy density and higher voltage than nickel-cadmium batteries and the like, and in recent years, they have been rapidly adopted as driving sources for portable devices such as mobile phones and notebook computers.
[0003]
A positive electrode of a lithium ion secondary battery is generally configured by forming a layer of a mixture containing an active material, a conductive material, and a binder on a current collector made of a metal foil such as an Al foil. Such a composite layer is usually formed by applying and drying a slurry containing an active material, a conductive material and a binder on a current collector, and subjecting the resulting coating film to a rolling treatment. Here, as the active material, LiCoO2Li-Co based composite oxides (granular materials) such as graphite are used, and carbon materials such as graphite and carbon black are used as the conductive material.
[0004]
It is known that the larger the particle size of the Li—Co-based composite oxide that is the active material, the less likely to cause an abnormal reaction, and a larger particle size is preferable from the viewpoint of battery safety. However, as the particle size increases, the electrical resistance of the positive electrode increases and the battery characteristics (particularly the discharge load characteristics) tend to decrease. The inventors use a Li—Co based composite oxide (average particle size of 17 μm or more) having a large particle size as an active material, and the surface of the Li—Co based composite oxide (particle) is used as a conductive material. A gap between particles of the carbon material (first conductive material) having a fine particle size (average particle size of 1 μm or less) that increases the conductivity of the surface by coating and the Li—Co-based composite oxide (particles) The conductivity of the positive electrode has been increased by using a carbon material (second conductive material) having an average particle size of about 5 μm or more, which increases the conductivity between the particles.
[0005]
On the other hand, in order to increase the capacity of the battery, the amount of the active material in the positive electrode is increased. However, in order to obtain a battery of a prescribed size, the thickness of the positive electrode is limited to a predetermined thickness or less, so It is necessary to adjust the positive electrode to a predetermined thickness or less by rolling (compressing) a layer of the composite material containing the material and the binder (hereinafter also referred to as “composite material layer” or “positive electrode composite material layer”).
[0006]
The recent demand for higher battery capacity has not stopped, and the amount of active material has been increased more than before, and the composite layer has been compressed (rolled) more strongly. In the battery using the positive electrode manufactured in this way, there is a problem that the incidence of internal shorts (the positive electrode breaks through the separator and comes into contact with the negative electrode) increases, and the low temperature characteristics deteriorate.
[0007]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention provides a positive electrode for a lithium ion secondary battery capable of achieving a lithium ion secondary battery that exhibits high capacity, good low-temperature characteristics, and is less susceptible to internal short-circuits and abnormal reactions, and the An object is to provide a lithium ion secondary battery using a positive electrode.
[0008]
[Means for Solving the Problems]
As a result of the study by the present inventors, the problem of the above internal short circuit is caused by irregularities on the surface of the composite material layer that appears when the composite material layer is highly compressed (rolled). It was found that the difference in unevenness on the surface of the composite material layer was reduced (the packing density of the composite material was improved) by using the scale-like graphitized carbon of ˜6 μm as the conductive material. Therefore, the use of scaly graphitized carbon having such a specific particle size range as a conductive material was investigated to reduce the particle size of the active material (Li-Co composite oxide) in order to increase the capacity of the battery. However, planarization of the surface of the composite layer is not yet sufficient, and as a result of further research, a group of particles of Li—Co based composite oxide having a relatively large particle size (average particle size as an active material) 7 to 13 μm) and a group of particles of Li—Co based composite oxide having a relatively small particle size (average particle size of 1 to 6 μm) are used at a specific ratio, and the specific particle size range (average particle size) By using carbon black with a small particle diameter (average particle diameter of 0.5 μm or less) as a conductive material together with flaky graphitized carbon having a diameter of 1 to 6 μm, the surface of the composite layer can be sufficiently flattened (internal Both short-circuit prevention and battery capacity increase, and the battery reacts abnormally. Without causing, it found that low temperature characteristics are significantly improved, in which the present invention has been completed.
That is, the present invention is characterized by the following configuration.
[0009]
(1) A positive electrode for a lithium ion secondary battery, which is formed by forming a mixture layer containing an active material, a conductive material and a binder on a current collector,
The active material is composed of a Li-Co composite oxide having an average particle diameter of 7 to 13 µm and a Li-Co composite oxide having an average particle diameter of 1 to 6 µm in a ratio of 1: 0.1 to 1.5 (weight). Ratio)
The conductive material is a mixture containing scaly graphitized carbon having an average particle diameter of 1 to 6 μm and carbon black having an average particle diameter of 0.5 μm or less in a ratio (weight ratio) of 1: 0.01 to 1,
A positive electrode for a lithium secondary battery, wherein a ratio (weight ratio) between an active material and a conductive material is 1: 0.01 to 0.1.
(2) A lithium ion secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution, wherein the positive electrode is composed of the positive electrode described in (1) above. Lithium ion secondary battery.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The positive electrode for a lithium ion secondary battery of the present invention (hereinafter also simply referred to as a positive electrode) is formed by forming a layer of a mixture containing an active material, a conductive material and a binder on a current collector,
An active material includes an Li—Co based composite oxide (first active material) having an average particle size of 7 to 13 μm and an Li—Co based composite oxide (second active material) having an average particle size of 1 to 6 μm. In a ratio (weight ratio) of 1: 0.1 to 1.5 (first active material: second active material),
As a conductive material, a weight ratio of 1: 0.01 to 1 (scalar graphitized carbon: carbon black) between flaky graphitized carbon having an average particle size of 1 to 6 μm and carbon black having an average particle size of 0.5 μm or less. Use the mixture containing in
The ratio (weight ratio) between the active material and the conductive material is 1: 0.01 to 0.1.
[0011]
That is, in the positive electrode of the present invention, it is important to use scale-like graphitized carbon having an average particle size of 1 to 6 μm as the conductive material. In scale-like graphitized carbon having an average particle size of less than 1 μm, The surface of the layer is not sufficiently flattened, and it becomes difficult to obtain conductivity between the active material particles. In addition, in the scale-like graphitized carbon having an average particle size exceeding 6 μm, filling inhibition of the active material having a small particle size occurs. In the present invention, the average particle size of the scale-like graphitized carbon is preferably 2 to 4 μm, particularly preferably 2 to 3 μm.
[0012]
In addition, the active material includes a group of Li—Co composite oxide particles having a relatively large particle size (first active material, average particle size: 7 to 13 μm) and a Li—Co composite oxide having a relatively small particle size. And a mixture ratio (first active material: second active material) of 1: 0.1-1 with a mixture of particles (second active material, average particle size: 1-6 μm). .5 (weight ratio) is important. When the ratio of the first active material is increased away from the mixing ratio, the surface of the composite material layer is not sufficiently flattened, and the low-temperature characteristics tend to deteriorate. On the other hand, when the ratio of the second active material increases, the reaction area of the active material becomes too large, and the safety of the battery tends to decrease.
[0013]
In the present invention, the average particle size of the first active material is preferably 8 to 11 μm, particularly preferably 8 to 10 μm, and the average particle size of the second active material is preferably 2 to 5 μm, particularly preferably 3 to 3 μm. 5 μm. The mixing ratio of the first active material and the second active material is preferably 1: 0.2 to 1.0, and particularly preferably 1: 0.2 to 0.6.
[0014]
In the positive electrode of the present invention, it is important to use carbon black having an average particle diameter of 0.5 μm or less together with the scale-like graphitized carbon having an average particle diameter of 1 to 6 μm as the conductive material. By using carbon black having a particle size of 0.5 μm or less, the flatness of the surface of the positive electrode mixture layer is further improved, and excellent low temperature characteristics can be obtained.
[0015]
In the present invention, the carbon black having an average particle diameter of 0.5 μm or less preferably has an average particle diameter of 80 nm (0.08 μm) or less, and the lower limit of the average particle diameter is 5 nm (0.005 μm) or more. is there. This is because those having an average particle size of less than 5 nm (0.005 μm) are flocculated in the preparation of the slurry for forming the composite material layer, and a homogeneous slurry cannot be prepared.
[0016]
In the positive electrode of the present invention, the ratio of the active material to the conductive material (active material: conductive material) is usually 1: 0.01 to 0.1 (weight ratio), preferably 1: 0.02 to 0.00. 07. When the ratio of the conductive material is small outside this range, the mixture layer is not sufficiently flattened, and problems such as a decrease in the discharge load characteristics of the battery due to an increase in the electrical resistance of the positive electrode are caused. If the ratio of the conductive material increases away from the above, the occupation ratio of the active material in the composite layer becomes too small, and the battery capacity cannot be increased.
[0017]
Moreover, it is important to set the ratio (weight ratio) between the scale-like graphitized carbon and the carbon black in the conductive material within a range of 1: 0.01 to 1 (scale-like graphitized carbon: carbon black), Preferably it is 1: 0.2-0.5. If the ratio of scale-like graphitized carbon decreases outside this range, the surface of the composite layer will not be sufficiently flattened (it tends to cause internal short circuit), and if the ratio of carbon black is small, good low temperature The characteristics cannot be obtained, and the flatness of the surface of the composite material layer is also lowered.
[0018]
In the present invention, as a specific example of the Li—Co-based composite oxide used for the active material (the first active material and the second active material), LiCoO2Or LiACo1-XMeXO2The thing shown by is mentioned. The latter LiACo1-XMeXO2In the formula, A is preferably 0.05 to 1.5, particularly preferably 0.1 to 1.1. X is preferably from 0.01 to 0.5, particularly preferably from 0.02 to 0.2. Examples of the element Me include group 3-10 elements of the periodic table such as Zr, V, Cr, Mo, Mn, Fe, Ni, and group 13-15 elements such as B, Al, Ge, Pb, Sn, Sb. Can be mentioned.
[0019]
In the present invention, a first active material (Li—Co based composite oxide having an average particle size of 7 to 13 μm) and a second active material (Li—Co based composite oxide having an average particle size of 1 to 6 μm) May have the same composition (the same constituent element and the same constituent element quantity ratio) or a different composition ((1) same constituent element, different constituent element quantity ratio, (2) different constituent elements) However, the same composition is preferable and both are LiCoO.2Is particularly preferred.
[0020]
In the Li—Co based composite oxide used in the present invention, for example, a lithium compound and a cobalt compound as starting materials are mixed so that an atomic ratio of cobalt to lithium is 1: 1 to 0.8: 1. Then, the mixture is reacted in an air atmosphere at a temperature of 700 ° C. to 1200 ° C. by heating for 3 hours to 50 hours, etc., and the reaction product is further pulverized into a granular material, or the granular material The product is further classified and used. The pulverized granular material is subjected to a heat treatment at a temperature of about 400 ° C. to 750 ° C. (preferably 450 ° C. to 700 ° C.) for about 0.5 hours to 50 hours (preferably 1 hour to 20 hours). Also good. By such heat treatment, the specific surface area can be reduced with almost no change in the average particle diameter of the granular material, which gives favorable results in the low temperature characteristics and charge / discharge cycle characteristics of the battery. The heat treatment can be performed, for example, in an air atmosphere or an inert gas atmosphere such as nitrogen or argon. However, if carbon dioxide gas is present in the atmosphere, lithium carbonate is generated and the content of impurities may increase. Therefore, it is preferable to carry out in an atmosphere where the partial pressure of carbon dioxide gas is about 10 mmHg or less.
[0021]
Examples of the lithium compound used as the starting material include lithium oxide, lithium hydroxide, lithium halide, lithium nitrate, lithium oxalate, and lithium carbonate, and mixtures thereof. Examples of the cobalt compound include cobalt oxide, cobalt hydroxide, cobalt halide, cobalt nitrate, cobalt oxalate, and cobalt carbonate, and mixtures thereof. LiACo1-XMeXO2When a Li—Co based composite oxide represented by the formula (1) is produced, a necessary amount of a substitution element compound may be added to a mixture of a lithium compound and a cobalt compound.
[0022]
In the present invention, in the first active material (Li—Co composite oxide having an average particle diameter of 7 to 13 μm) and the second active material (Li—Co composite oxide having an average particle diameter of 1 to 6 μm). The value of the average particle diameter is a volume average diameter in a number-based distribution, and is a value measured by the following measurement method.
[0023]
First, a granular material to be measured is put into an organic liquid such as water or ethanol, and an ultrasonic wave of about 35 kHz to 40 kHz is applied to perform dispersion processing for about 2 minutes. Here, the amount of the particulate matter to be measured is such that the laser transmittance (ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 95%. Next, this dispersion is applied to a microtrack particle size analyzer, and the particle diameters (D1, D2, D3,...) Of individual particles and the number of particles (N1, N2, N3) for each particle diameter are scattered by laser light scattering.・ ・ ・) Is measured. This particle size distribution measurement is calculated as the particle size distribution of a spherical particle group that has the theoretical intensity closest to the observed scattering intensity distribution (the particle is a cross-section with the same area as the projected image obtained by laser light irradiation). (It is assumed that the sphere has a circle, and the diameter (sphere equivalent diameter) of this cross-sectional circle is measured as the particle size).
The average particle size (μm) is calculated by the following formula from the particle size (D) of each particle and the number (N) of each particle size.
[0024]
Average particle diameter (μm) = (ΣNDThree/ ΣN)13
[0025]
In the present invention, the entire active material, that is, the mixture of the first Li—Co based composite oxide and the second Li—Co based composite oxide usually has an average particle size of 5 to 5 as defined by the above formula. In the range of 13 μm (preferably 7 to 11 μm), 10% volume diameter (D10) (particle size value in which the sum of volume ratios below a certain particle diameter is 10% with respect to the total volume ratio of all measured particles ) Is 2 to 6 μm, 90% volume diameter (D90) (the particle diameter value at which the sum of volume ratios below a certain particle diameter is 90% relative to the total volume ratio of all measured particles) is 15 to 25 μm Form a particle size distribution.
[0026]
In the present invention, the scale-like graphitized carbon having an average particle diameter of 1 to 6 μm can be either artificial or natural, but is preferably artificial because it has less impurities and gives more preferable results.
[0027]
In addition, the particle size of the flaky graphitized carbon means the diameter of a cross-sectional circle (a sphere equivalent diameter) when the flaky graphitized carbon is assumed to be a sphere, and the average particle size is the above-described Li-Co composite oxidation. It is a volume average diameter in a number-based distribution measured by a method similar to that for a product (method using a microtrack particle size analyzer).
[0028]
In addition, the particle size of carbon black having a flat particle size of 0.5 μm or less used together with scaly graphitized carbon is the diameter of a cross-sectional circle (sphere equivalent diameter) when the carbon black particles are assumed to be spheres, The average particle diameter is measured using an electron microscope. That is, first take an electron micrograph by setting the magnification so that 20 or more particles are in the field of view, then calculate the area of each particle image shown in the photograph, and then calculate the same from this calculated area. The diameter of a circle having an area is calculated, and this diameter is used as the particle diameter (assuming a particle made of a sphere having a cross-sectional circle of this diameter, and the diameter of the sphere is used as the particle diameter). ) To obtain the average particle size.
[0029]
Carbon black having an average particle size of 0.5 μm or less can be used as it is, but even if the average particle size exceeds 0.5 μm (commercial product), a known grinder (for example, wet type) It can also be used after being pulverized (further classified as required) by an ultrafine particle dispersion pulverizer or the like, and having a mean particle size of 0.5 μm or less. Preferable examples include acetylene black, oil furnace black, and Ixtra conductive furnace black. Oil furnace black is particularly preferable.
[0030]
In the positive electrode of the present invention, a slurry is prepared by mixing the specific active material and the specific conductive material, a polymer binder, and a solvent, and the slurry is applied on a current collector (one side or both sides). Then, it is produced by drying to form a composite layer, and further rolling the composite layer.
[0031]
As the polymer binder, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene polymer and the like are suitable, and among these, polyvinylidene fluoride is preferred.
[0032]
The amount of the polymer binder in the composite material layer (slurry) is generally 1 to 10 parts by weight, preferably 2 to 5 parts by weight with respect to 100 parts by weight of the active material. When the polymer binder is less than 1 part by weight, the bonding between the materials constituting the composite material layer becomes insufficient, the composite material layer is lost from the current collector, and the charge / discharge characteristics are deteriorated. On the other hand, if the polymer binder exceeds 10 parts by weight, the electrical resistance value of the composite material layer (positive electrode) is increased, and the low temperature characteristics tend to be lowered, which is not preferable.
[0033]
The slurry is usually prepared by kneading an active material, a conductive material and a polymer binder together with an appropriate solvent. The solvent is not particularly limited, but N-methylpyrrolidone is preferable. Moreover, kneading | mixing is performed by conventionally well-known kneading apparatuses, such as a planetary dispa kneading apparatus (made by Asada Iron Works), for example.
[0034]
Coating of the slurry on the current collector is performed by a conventionally known coating machine of a comma roll type or a die coat type, and the slurry is dried together with the current collector with the slurry coated on the current collector. Using a drying device such as a warm air drying oven, the drying is performed at a temperature of 80 to 200 ° C., preferably 100 to 180 ° C. for 2 to 5 minutes.
[0035]
In addition, although the coating amount of the slurry varies depending on the target battery capacity, it is generally 30 to 100 mg / cm as indicated by the adhesion amount after drying per unit area of the current collector (adhesion amount of the mixture).2Degree.
[0036]
The rolling (compression) treatment of the mixed material layer after drying is performed by rolling the entire positive electrode (current collector + composite material layer) using a rolling press or the like. The rolling conditions are generally set so that the rolling temperature is 20 to 100 ° C. and the rolling rate is 10 to 60% (preferably 20 to 50%). Here, the rolling temperature is the temperature of the composite material layer, and the rolling rate is a scale representing the degree of rolling called the rolling reduction, and the thickness of the positive electrode plate (current collector + composite material layer) before rolling. Where h1 is the thickness of the positive electrode plate (current collector + mixture layer) after rolling, and h3 is the thickness of the current collector.
Rolling ratio (%) = (h1-h2) × 100 / (h1-h3) (II)
[0037]
In addition, when the temperature in a rolling process is lower than said range, it is easy to produce a crack (crack) in a compound material layer by rolling, and it is not preferable. On the other hand, when it is high, the impregnation with the electrolytic solution does not proceed sufficiently, resulting in an increase in resistance, which is not preferable. Moreover, since the positive electrode (electrode) thickness cannot be made sufficiently small when the rolling rate in the rolling process is smaller than the above range, it becomes difficult to store in a battery can of a predetermined size.
[0038]
In the positive electrode of the present invention thus obtained, the composite layer has excellent flatness in which the difference in thickness between the maximum thickness portion and the minimum thickness portion is 10 μm or less. Here, the difference in thickness between the maximum thickness portion and the minimum thickness portion means that the cross section of the positive electrode (electrode) is observed with an SEM, and a photograph is taken. The maximum thickness portion and the minimum thickness portion of the composite material layer reflected in the photograph are taken. The thickness is measured with calipers, and the difference is obtained. The photograph is taken with respect to arbitrary five cross sections of the positive electrode (electrode), and the average value of the difference in thickness between the maximum thickness portion and the minimum thickness portion at the five points is calculated.
[0039]
As the current collector used for the positive electrode of the present invention, for example, a conventional one such as a foil or an expanded metal formed of aluminum, an aluminum alloy, titanium or the like can be used. When the current collector is a foil or a perforated foil, the thickness is usually about 5 to 100 μm, preferably about 10 to 50 μm. When the current collector is an expanded metal, the thickness is usually about 25 to 300 μm, preferably about 30 to 150 μm.
[0040]
The lithium ion secondary battery of this invention is comprised using the positive electrode of this invention demonstrated above. The constituent elements of the battery other than the positive electrode such as the negative electrode, the electrolytic solution, and the separator are not particularly limited, and known ones can be used according to a conventional method.
[0041]
The negative electrode is formed by forming a layer of a composite material containing an active material and a binder on a current collector. Examples of the active material include graphites (natural and artificial), carbon black, and amorphous carbon materials. The granular carbon material currently used as an active material for negative electrodes of well-known lithium secondary batteries, such as (hard carbon, soft carbon), activated carbon, can be used. Among these, graphite is preferable, and artificial graphite (graphitized carbon) is particularly preferable. Moreover, in graphite, fibrous things other than a granular material can be used, and this fibrous graphite carbon may be linear or curled, and the size is not particularly limited, but the average fiber length is 1 to 100 μm. And those having an average fiber length of 3 to 50 μm are particularly preferred. The aspect ratio (average fiber length / average fiber diameter) of the fibrous graphitized carbon is preferably 1 to 5, particularly preferably 3 to 5.
[0042]
The size (fiber diameter, fiber length) of the fibrous graphitized carbon can be measured using an electron microscope. That is, the magnification can be set so that 20 or more fibers are in the field of view, an electron micrograph is taken, and the fiber diameter and fiber length of each fiber in the photograph are measured with a caliper or the like. The fiber length may be measured by measuring the shortest distance between one end and the other end if the fiber is linear. However, if the fiber is curled or the like, any two points on the fiber that are most distant from each other are taken, the distance between the two points is measured, and this is taken as the fiber length. The average fiber diameter and the average fiber length are the number average values of the measured numbers.
[0043]
Examples of the binder include binders conventionally used for the active material layer of the negative electrode of a lithium secondary battery, for example, fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), ethylene- Polymer materials such as propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC) are used.
[0044]
The amount of active material in the negative electrode mixture layer (the amount of active material present per unit area of the current collector) is usually 3 to 30 mg / cm.2Degree, preferably 5-20 mg / cm2Degree. Moreover, the ratio of the active material and the binder in the composite layer is generally 80:20 to 98: 2 in weight ratio (active material: binder).
[0045]
The electrolyte preferably has a viscosity adjusted to 3 cps or less, and the electrolyte having a viscosity of 3 cps or less includes at least one selected from diethyl carbonate (DEC) and ethyl methyl carbonate (EMC), ethylene carbonate (EC), It is preferably achieved by a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC).
[0046]
At this time, the total amount of ethylene carbonate (EC) and propylene carbonate (PC) is preferably 25% by volume or less, and the specific composition is, for example, at least one selected from diethyl carbonate and ethyl methyl carbonate. 25 vol% to 50 vol% (preferably 30 vol% to 35 vol%), ethylene carbonate 4 vol% to 20 vol% (preferably 6 vol% to 18 vol%), propylene carbonate 3 vol% to 17 vol% % (Preferably 5% by volume to 15% by volume) and dimethyl carbonate by 40% to 60% by volume (preferably 45% by volume to 55% by volume).
[0047]
In at least one selected from diethyl carbonate and ethyl methyl carbonate, if the mixing ratio is less than 25% by volume, the freezing point of the electrolyte rises, and the internal resistance of the battery is reduced particularly at a low temperature of −20 ° C. or lower. This may increase the charge / discharge cycle characteristics and low temperature characteristics, which is not preferable. On the other hand, when the mixing ratio exceeds 50% by volume, the viscosity of the electrolytic solution is increased to increase the internal resistance of the battery, and the charge / discharge cycle characteristics are deteriorated.
[0048]
In ethylene carbonate, if the mixing ratio is less than 4% by volume, it is difficult to form a stable film on the surface of the negative electrode plate, and cycle characteristics may be deteriorated. Moreover, when the said mixing ratio exceeds 20 volume%, the viscosity of electrolyte solution rises, the internal resistance of a battery is increased, and a charge / discharge cycle characteristic may fall, and it is unpreferable.
[0049]
In the case of propylene carbonate, if the mixing ratio is less than 3% by volume, the effect of suppressing an increase in impedance associated with the charge / discharge cycle is reduced, and cycle characteristics may be deteriorated. If the mixing ratio exceeds 17% by volume, the viscosity of the electrolytic solution is increased, the internal resistance of the battery is increased, and charge / discharge cycle characteristics are deteriorated.
[0050]
In dimethyl carbonate, if the mixing ratio is less than 40% by volume, the viscosity of the electrolytic solution increases, the internal resistance of the battery is increased, and charge / discharge cycle characteristics are deteriorated. When the mixing ratio exceeds 60% by volume, the volatilization of the electrolytic solution easily proceeds and the high temperature characteristics tend to deteriorate, which is not preferable.
[0051]
Examples of the lithium salt dissolved in the electrolyte include LiClO.Four, LiBFFour, LiPF6, LiAsF6LiAlClFour, Li (CFThreeSO2)2N etc. are mentioned. Among these, only 1 type may be used and 2 or more types may be used. Of these, LiPF has a large dissociation constant, high thermal stability, and low toxicity.6Is preferably used.
[0052]
It can be said that increasing the lithium salt dissolved in the electrolytic solution is effective in terms of increasing the limit current density at room temperature or higher. However, salt dissociation is limited at low temperatures. Therefore, even if the amount of lithium salt is increased, it is not possible to expect an increase in the amount of lithium salt that is effective for carrying the charge. Conversely, the viscosity of the electrolyte is increased and the diffusion rate of lithium ions is decreased, resulting in low temperature characteristics. Will be reduced. Therefore, the electrolyte solution should be prepared so that the concentration of the lithium salt is 0.5 mol / L to 1.5 mol / L, preferably 0.7 mol / L to 1.2 mol / L.
[0053]
As the separator, a known separator conventionally used in lithium secondary batteries such as a polyolefin separator is used. Here, the separator may be a porous one or a separator (solid separator) in which pores are not substantially formed. The polyolefin separator may be a single polyethylene (PE) layer or a single polypropylene (PP) layer, but a type in which a polyethylene layer and a polypropylene layer are laminated is preferable. In the case of the laminated type, the number of laminated layers and the laminated pattern are not particularly limited, but a three-layer type such as PP / PE / PP is preferable from the viewpoint of preventing internal short circuit at a higher level. Although the thickness of a separator changes also with the form of a battery, generally it is about 10-50 micrometers. In the present invention, even when a separator having a relatively thin thickness of about 15 to 30 μm is used to reduce the size (thinner) of the battery, the occurrence of an internal short circuit can be sufficiently prevented.
[0054]
The form of the battery is not particularly limited. Conventionally used lithium secondary batteries can be used, for example, cylindrical cans, rectangular cans, button-like cans made of metal such as Fe, Fe (Ni plating), SUS, aluminum, aluminum alloy, etc. Alternatively, a sheet-like exterior material such as a laminate film is used. The laminate film is preferably one in which a thermoplastic resin laminate layer such as polyester or polypropylene is formed on at least one surface of a metal foil such as copper or aluminum.
[0055]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
[Positive electrode]
LiCoO with an average particle size of 10 μm2(First active material) 65 parts by weight of LiCoO having an average particle size of 5 μm2(Second active material) 28 parts by weight, 3 parts by weight of scaly graphitized carbon (first conductive material) having an average particle diameter of 2 μm, and oil furnace black (second conductive material) having an average particle diameter of 40 nm (0.04 μm) Material) 1 part by weight and 3 parts by weight of polyvinylidene fluoride (binder) are kneaded (mixed) with N-methyl-2-pyrrolidone as a dispersion solvent to prepare a slurry, and the slurry is a current collector It is applied onto both sides of an aluminum foil (width 55 mm, length 600 mm), dried to form a composite layer, and further subjected to a rolling treatment (rolling temperature: 30 ° C., rolling rate: 40%), so that the total thickness is A 150 μm positive electrode was completed.
[0056]
[Negative electrode]
100 parts by weight of graphitized carbon fiber (average fiber diameter 8 μm) as an active material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed with N-methyl-2-pyrrolidone as a dispersion solvent to form a slurry, This slurry was applied to both sides of a copper foil having a width of 57 mm and a length of 600 mm to be a current collector, dried to form a composite layer, and further subjected to a rolling treatment to complete a negative electrode having a total thickness of 150 μm. .
[0057]
[Assembly of lithium secondary battery]
LiPF was added to a mixed solvent composed of 4% by volume of diethyl carbonate, 29% by volume of ethyl methyl carbonate, 9% by volume of propylene carbonate, 11% by volume of ethylene carbonate, and 47% by volume of dimethyl carbonate.6Was dissolved at 1 mol / L to prepare an electrolytic solution. Then, the prepared positive electrode and negative electrode are wound through a polypropylene-polyethylene composite separator (overall thickness 20 μm, laminated configuration PP / PE / PP), and this is wound into a cylindrical battery can (outer diameter 18 mm, inner diameter 17. 5 mm, height 65 mm), and thereafter, an electrolyte was impregnated between the positive electrode and the negative electrode to complete a lithium secondary battery.
[0058]
Example 2
The first active material is LiCoO having an average particle size of 8 μm.2In 65 parts by weight, the second active material is LiCoO having an average particle diameter of 3 μm.2A positive electrode having an overall thickness of 150 μm was produced in accordance with Example 1 except that the content was changed to 28 parts by weight. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0059]
Example 3
First active material (LiCoO having an average particle size of 10 μm2) Was changed to 79 parts by weight, and the second active material (LiCoO having an average particle size of 5 μm) was changed.2) Was changed to 14 parts by weight, and a positive electrode having an overall thickness of 150 μm was produced in accordance with Example 1. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0060]
Example 4
First active material (LiCoO having an average particle size of 10 μm2) Was changed to 43 parts by weight, and the second active material (LiCoO having an average particle size of 5 μm)2) Was changed to 50 parts by weight, respectively, and a positive electrode having an overall thickness of 150 μm was produced in accordance with Example 1. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0061]
Comparative Example 1
LiCoO with an average particle size of 20 μm as the active material291 parts by weight, 5 parts by weight of spherical graphitized carbon (first conductive material) having an average particle diameter of 6 μm and oil furnace black (second conductive material) having an average particle diameter of 40 nm (0.04 μm) as the conductive material A positive electrode having an overall thickness of 150 μm was prepared in the same manner as in Example 1 except that 1 part by weight was used. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0062]
Comparative Example 2
A positive electrode having an overall thickness of 150 μm was prepared in accordance with Example 1 except that the first conductive material was changed to 3 parts by weight of spherical graphitized carbon having an average particle diameter of 6 μm. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0063]
Comparative Example 3
A positive electrode having an overall thickness of 150 μm was prepared in accordance with Example 1, except that the first conductive material was changed to 3 parts by weight of massive graphitized carbon having an average particle diameter of 5 μm. A battery was fabricated in the same manner as in Example 1 except for this positive electrode. Here, the “bulky” of massive graphitized carbon means a massive having irregularities on the surface such as rocks.
[0064]
Comparative Example 4
Instead of using oil furnace black (second conductive material) having an average particle size of 40 nm (0.04 μm), the amount of scaly graphitized carbon (first conductive material) having an average particle size of 2 μm is 4 parts by weight. A positive electrode having an overall thickness of 150 μm was produced in accordance with Example 1 except that the thickness was changed to. A battery was fabricated in the same manner as in Example 1 except for this positive electrode.
[0065]
An evaluation test was conducted on the lithium ion secondary batteries produced in the above examples and comparative examples. The results are shown in Table 1. The rolling load (t / cm) in Table 1 is a value obtained by dividing the load (T) applied to the electrode (positive electrode) during rolling by the electrode width (W), and the rolling load is attached to the rolling device. It was obtained from a rolling load meter. The electrode width (W) is a width in a direction orthogonal to the traveling direction of the electrode (axial direction of the rolling roll). It means that the smaller the rolling load, the smaller the load applied to the positive electrode (electrode) during rolling and the better the workability.
[0066]
[Battery initial capacity]
Under an environment of 20 ° C., after constant current-constant voltage charge (2000 mA, 4.2 V), constant current discharge (400 mA, cut-off voltage: 3 V) is performed, and capacity [mA · H] is obtained from discharge time × current. .
[0067]
[Low temperature characteristics test]
After charging at room temperature, this is left in an atmosphere of −20 ° C. for 6 hours. The charging here is the same as that in the measurement of the initial capacity. Next, discharge is performed in this air atmosphere at −20 ° C. with a 1 C (2000 mAh) / 3 V cut-off, and the discharge capacity [mA · H] is obtained from the discharge time × current at that time.
[0068]
[Internal short test]
100 batteries are fully charged to 4.2 V and left for 2 weeks, and the voltage after being left is measured. The number of such batteries is defined as n1 as a cut-off reference (the voltage after being left is 4 V or less). Then, assuming that the average voltage of (100−n1) batteries is Vn, the number n2 of batteries having a voltage 10mV lower than Vn is used, and the defect rate (= internal short circuit occurrence rate) is calculated by the following formula.
Defective rate (%) = [(n1 + n2) / 100] × 100
[0069]
[Nail penetration test (safety test)]
The battery is charged at 1.5 A until the voltage reaches 4.3 V. Immediately after charging, a nail with an outer diameter of 3 mm is moved at a speed of 4 cm / second around the center between the positive electrode terminal and the negative electrode terminal of each lithium ion secondary battery. A safety test was conducted to penetrate through the battery and examine the number of fires in ten. Of the 10 samples, one that ignited was rejected (x), and one that did not ignite 10 was determined to be acceptable (O).
[0070]
The above test results are shown in Table 1 below.
[0071]
[Table 1]
Figure 0004025094
[0072]
In the table, (foil breakage) in the rolling load of Comparative Examples 1 and 2 means that the foil was cut or damaged during the rolling process.
[0073]
【The invention's effect】
As is clear from the above description, by using the positive electrode for the lithium ion secondary battery of the present invention, it exhibits high capacity and excellent low temperature characteristics, and is also highly efficient and has an internal short circuit and an abnormal reaction. A highly reliable lithium secondary battery can be realized.

Claims (2)

集電体上に、活物質、導電材およびバインダーを含む合材の層を形成してなる、リチウムイオン二次電池用の正極であって、
活物質が、平均粒径が7〜13μmのLiC と平均粒径が1〜6μmのLiC とを1:0.1〜1.5の割合(重量比)で含む混合物であり、
導電材が、平均粒径が2〜3μmの鱗片状黒鉛化炭素と平均粒径が0.5μm以下のカーボンブラックとを1003:1の割合(重量比)で含む混合物であり、
活物質と導電材の割合(重量比)が1:0.01〜0.1であることを特徴とするリチウム二次電池用正極。
A positive electrode for a lithium ion secondary battery, which is formed by forming a mixture layer containing an active material, a conductive material and a binder on a current collector,
Active material has an average particle size of the L iC o O 2 of 7~13μm and an average particle size of 1~6μm L iC o O 2 1: in a proportion of 0.1 to 1.5 (weight ratio) A mixture of
The conductive material is a mixture containing scaly graphitized carbon having an average particle diameter of 2 to 3 μm and carbon black having an average particle diameter of 0.5 μm or less in a ratio (weight ratio) of 100 : 1 to 3: 1 . ,
A positive electrode for a lithium secondary battery, wherein a ratio (weight ratio) between an active material and a conductive material is 1: 0.01 to 0.1.
正極、負極、当該正極と負極の間に介在するセパレータ、および、電解液を含むリチウムイオン二次電池であって、正極が請求項1記載の正極からなることを特徴とするリチウムイオン二次電池。  A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the positive electrode comprises the positive electrode according to claim 1. .
JP2002057076A 2002-03-04 2002-03-04 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode Expired - Fee Related JP4025094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057076A JP4025094B2 (en) 2002-03-04 2002-03-04 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057076A JP4025094B2 (en) 2002-03-04 2002-03-04 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode

Publications (2)

Publication Number Publication Date
JP2003257416A JP2003257416A (en) 2003-09-12
JP4025094B2 true JP4025094B2 (en) 2007-12-19

Family

ID=28667432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057076A Expired - Fee Related JP4025094B2 (en) 2002-03-04 2002-03-04 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode

Country Status (1)

Country Link
JP (1) JP4025094B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382363C (en) 2002-09-26 2008-04-16 清美化学股份有限公司 Positive active material for lithium secondary battery and its manufacturing method
KR100548988B1 (en) * 2003-11-26 2006-02-02 학교법인 한양학원 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
JP4639775B2 (en) * 2004-11-26 2011-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR20060091486A (en) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP5176356B2 (en) * 2006-04-21 2013-04-03 住友化学株式会社 Positive electrode powder and positive electrode mixture
WO2007123248A1 (en) * 2006-04-21 2007-11-01 Sumitomo Chemical Company, Limited Powder for positive electrode and positive electrode composite
KR100907621B1 (en) * 2006-08-28 2009-07-15 주식회사 엘지화학 A positive electrode mixture containing a conductive material of two components and a lithium secondary battery composed of it
KR100834053B1 (en) 2006-09-29 2008-06-02 한양대학교 산학협력단 Cathode, and lithium secondary battery and hybrid capacitor comprising same
JP2008159410A (en) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
KR101123060B1 (en) 2007-07-23 2012-03-15 주식회사 엘지화학 High Power Secondary Battery
JP5205090B2 (en) * 2008-03-19 2013-06-05 日立ビークルエナジー株式会社 Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5254722B2 (en) * 2008-09-25 2013-08-07 日立ビークルエナジー株式会社 Lithium secondary battery
CN102447107A (en) * 2011-10-17 2012-05-09 江苏科捷锂电池有限公司 High density lithium ion battery cathode material lithium cobalt oxide and preparation method thereof
CN102683743A (en) * 2012-06-28 2012-09-19 上海广为美线电源电器有限公司 High-power lithium oil battery
JP6105224B2 (en) * 2012-08-09 2017-03-29 東洋インキScホールディングス株式会社 Primer composition, nickel metal hydride secondary battery positive electrode and method for producing the same
JP2014123529A (en) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery
CN103904310A (en) * 2012-12-28 2014-07-02 北京当升材料科技股份有限公司 Preparation method for mixed nickel-cobalt-lithium manganate material
CN105474435A (en) * 2013-06-21 2016-04-06 卡博特公司 Active materials for lithium ion batteries
JP6456630B2 (en) * 2013-09-18 2019-01-23 株式会社東芝 Non-aqueous electrolyte battery
KR102270513B1 (en) 2014-08-05 2021-06-30 삼성에스디아이 주식회사 Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20170009097A (en) * 2015-07-15 2017-01-25 주식회사 엘지화학 Cathode improved conductivity and electrochemical device including the same
CN107046815B (en) 2015-12-09 2020-06-30 株式会社Lg化学 Positive electrode material slurry for lithium secondary battery comprising at least two conductive materials and lithium secondary battery using the same
KR102479910B1 (en) * 2016-10-28 2022-12-22 어드벤 인더스트리스 인코포레이티드 Conductive flake-reinforced, polymer-stabilized electrode composition and manufacturing method thereof
JP6749884B2 (en) * 2017-12-05 2020-09-02 Jfeミネラル株式会社 Positive electrode material for lithium secondary batteries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186845A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JP2971451B1 (en) * 1998-06-30 1999-11-08 株式会社東芝 Lithium secondary battery

Also Published As

Publication number Publication date
JP2003257416A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP4025094B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
EP3588627B1 (en) Lithium-ion battery
US9312559B2 (en) Nonaqueous electrolyte secondary battery provided with a wound electrode body
KR101211072B1 (en) Powdered graphite and nonaqueous electrolyte secondary battery
JP6356066B2 (en) Lithium secondary battery containing spheroidized natural graphite as negative electrode active material
US9184442B2 (en) Secondary battery
CN110710030A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5574196B2 (en) Non-aqueous electrolyte secondary battery
JP5773225B2 (en) Secondary battery
WO2011086690A1 (en) Method for evaluating positive electrode active material
KR102563808B1 (en) Jelly-Roll Type Electrode Having Anode which anode mixtures comprising active material composition different each other are formed on both sides of electrode current collector, Secondary Battery comprising the same, and Device comprising secondary battery
KR102609884B1 (en) Multi-layer Electrode for Secondary Battery Comprising Binder with High Crystallinity
JP2016528706A (en) Lithium secondary battery
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP2019175657A (en) Lithium ion secondary battery
JP2021524134A (en) Negative electrode active material for secondary batteries, electrodes containing it, and manufacturing method thereof
JP7270833B2 (en) High nickel electrode sheet and manufacturing method thereof
JP7313536B2 (en) High-nickel electrode sheet with reduced reactivity with moisture and method for producing the same
JP2019530188A (en) Method for producing positive electrode slurry for lithium secondary battery and positive electrode for lithium secondary battery produced by the method
JP3422369B2 (en) Non-aqueous electrolyte secondary battery
EP4037010A1 (en) Electrode for secondary battery, and secondary battery comprising same
KR102646711B1 (en) Multi-layer Electrode for Secondary Battery Comprising Binder with High Crystallinity
JP2002063937A (en) Lithium ion secondary battery
US11594716B2 (en) Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
JP2023500220A (en) Positive electrode active material, positive electrode containing the same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees