JP2971451B1 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2971451B1
JP2971451B1 JP10184443A JP18444398A JP2971451B1 JP 2971451 B1 JP2971451 B1 JP 2971451B1 JP 10184443 A JP10184443 A JP 10184443A JP 18444398 A JP18444398 A JP 18444398A JP 2971451 B1 JP2971451 B1 JP 2971451B1
Authority
JP
Japan
Prior art keywords
weight
parts
positive electrode
secondary battery
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10184443A
Other languages
Japanese (ja)
Other versions
JP2000021407A (en
Inventor
義之 五十崎
勝之 櫻井
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10184443A priority Critical patent/JP2971451B1/en
Application granted granted Critical
Publication of JP2971451B1 publication Critical patent/JP2971451B1/en
Publication of JP2000021407A publication Critical patent/JP2000021407A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【要約】 【課題】 充放電サイクル寿命特性の優れたリチウム二
次電池を提供することを目的とする。 【解決手段】 組成式LiNi1-xx2 (但し、前
記Mは1種以上の元素からなり、xは0<x≦0.5を
示す)で表されるリチウム複合金属酸化物と、平均粒径
が100nm以下の炭素質物A及び平均粒径が1μm以
上の炭素質物Bを含む導電剤と、アクリル系ゴム質共重
合体を含む結着剤とを含有する正極4を備えたことを特
徴とする。
An object of the present invention is to provide a lithium secondary battery having excellent charge / discharge cycle life characteristics. SOLUTION: The lithium composite metal oxide represented by a composition formula LiNi 1-x M x O 2 (wherein M is composed of one or more elements and x represents 0 <x ≦ 0.5) And a positive electrode 4 containing a conductive agent containing a carbonaceous material A having an average particle size of 100 nm or less and a carbonaceous material B having an average particle size of 1 μm or more, and a binder containing an acrylic rubbery copolymer. It is characterized by.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池に
関し、特に正極を改良したリチウム二次電池に係わるも
のである。
The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having an improved positive electrode.

【0002】[0002]

【従来の技術】近年、携帯電話やVTRなどの電子機器
の小型化と需要の増大に伴い、これら電子機器の電源で
ある二次電池に対する高容量化が要求されている。ま
た、自動車からの排ガスによる大気汚染が社会問題とな
っており、電気自動車用電源として軽量で、かつ高性能
な二次電池が要望されている。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and VTRs have been reduced in size and demand has increased, there has been a demand for higher capacity secondary batteries which are power sources for these electronic devices. In addition, air pollution due to exhaust gas from automobiles has become a social problem, and there is a demand for a lightweight and high-performance secondary battery as a power supply for electric vehicles.

【0003】かかる二次電池としては、活物質としてL
iCoO2 のようなコバルト系酸化物を含む正極と、炭
素質物を含む負極とを備えた非水電解液二次電池が開発
され、現在広く普及している。
[0003] As such a secondary battery, L is used as an active material.
A non-aqueous electrolyte secondary battery including a positive electrode containing a cobalt-based oxide such as iCoO 2 and a negative electrode containing a carbonaceous material has been developed and is now widely used.

【0004】しかしながら、前記二次電池の正極材料で
あるLiCoO2 は、Coを含むために高価であり、か
つ資源的にも制約があるため、代替材料としてLiNi
2や、Niの一部をCoで置換したLiNi1-x Cox
2 、あるいはLiMn24 等の金属酸化物系化合物
が提案され、研究が活発に行われている。
However, LiCoO 2 , which is a positive electrode material of the secondary battery, is expensive because of containing Co and is limited in resources.
O 2 or LiNi 1-x Co x in which Ni is partially replaced by Co
Metal oxide compounds such as O 2 and LiMn 2 O 4 have been proposed and are being actively researched.

【0005】特に、LiNiO2 や、LiNi1-x Co
x2 のようなニッケル系酸化物を活物質として含む正
極は、活物質としてコバルト系酸化物を含む正極に比較
してエネルギー密度を大きくすることが可能であり、電
池の低コスト化を可能にする上に、非水電解液二次電池
の容量特性が向上するという特徴を有している。
[0005] In particular, LiNiO 2 and LiNi 1-x Co
x A positive electrode containing a nickel-based oxide such as O 2 as an active material can have a higher energy density than a positive electrode containing a cobalt-based oxide as an active material, and can reduce the cost of a battery. In addition, the non-aqueous electrolyte secondary battery has a feature that the capacity characteristics are improved.

【0006】ところで、実験室的にはともかく工業的に
は、前記二次電池用の正極は、結着剤を有機溶媒に分散
させた溶液に活物質を加え、攪拌混合して得られる塗液
を集電体上に塗布し、乾燥後、圧延して薄板状にするこ
とにより作製される。前記結着剤としては、例えば、ポ
リテトラフルオロエチレン(PTFE)、ポリフッ化ビ
ニリデン(PVdF)、エチレンープロピレンージエン
共重合体(EPDM)、スチレンーブタジエンゴム(S
BR)等を用いることができる。これらの結着剤のう
ち、ポリフッ化ビニリデンは電解液に対する耐溶解性及
び保液性に優れており、前記二次電池用電極の結着剤と
して好適な材料のひとつである。
Incidentally, aside from the laboratory, industrially, the positive electrode for the secondary battery is a coating liquid obtained by adding an active material to a solution in which a binder is dispersed in an organic solvent, stirring and mixing. Is applied on a current collector, dried, and then rolled into a thin plate. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene diene copolymer (EPDM), and styrene butadiene rubber (S
BR) or the like can be used. Among these binders, polyvinylidene fluoride is excellent in dissolution resistance to an electrolytic solution and liquid retention, and is one of the materials suitable as a binder for the secondary battery electrode.

【0007】しかしながら、ポリフッ化ビニリデンや、
フッ化ビニリデンを基本構造とする共重合体は、耐アル
カリ性が低いため、前記塗液中にアルカリ塩が含まれて
いる場合、前記塗液が比較的短時間でゲル化・硬化する
という問題点がある。
However, polyvinylidene fluoride,
A copolymer having a basic structure of vinylidene fluoride has a low alkali resistance, so that when an alkali salt is contained in the coating liquid, the coating liquid gels and hardens in a relatively short time. There is.

【0008】通常、LiCoO2 やLiNiO2 に代表
されるリチウム複合金属酸化物は、その製造過程での余
剰のアルカリの混入が不可避である。特に、LiNiO
2 においては、合成時に過剰量のアルカリを必要とする
ため、この余剰アルカリ塩による塗液のゲル化が顕著に
生じる。このゲル化の原因は、次のように考えられる。
すなわち、合成後の活物質に含まれるリチウム塩(アル
カリ成分)は、ポリフッ化ビニリデンの脱フッ化水素
(HF)反応を引き起こして炭素―炭素二重結合を生じ
る。この二重結合は極めて不安定であり、分子間あるい
は分子内での架橋反応を生じさせる、つまりゲル化を生
じる。このような反応が塗液の調製中に生じると、集電
体に塗液を塗工することが困難になる。また、前記架橋
反応が生じると、前記塗液中の結着剤として機能するポ
リフッ化ビニリデンが減少する。従って、塗液を集電体
に塗布することができて正極が得られたとしても、正極
層と集電体との密着性が低下するため、充放電サイクル
の進行に伴い正極層が集電体から剥離し、充放電サイク
ル寿命が低下するという問題点を生じる。
In general, in the case of lithium composite metal oxides represented by LiCoO 2 and LiNiO 2 , it is inevitable that surplus alkali is mixed during the production process. In particular, LiNiO
In the case of 2 , since an excessive amount of alkali is required at the time of synthesis, gelling of the coating liquid due to this excess alkali salt occurs remarkably. The cause of this gelation is considered as follows.
That is, the lithium salt (alkali component) contained in the synthesized active material causes a dehydrofluorination (HF) reaction of polyvinylidene fluoride to generate a carbon-carbon double bond. This double bond is extremely unstable and causes a cross-linking reaction between molecules or within a molecule, that is, gelation. If such a reaction occurs during the preparation of the coating liquid, it becomes difficult to apply the coating liquid to the current collector. Further, when the crosslinking reaction occurs, polyvinylidene fluoride functioning as a binder in the coating liquid decreases. Therefore, even if the coating liquid can be applied to the current collector to obtain a positive electrode, the adhesion between the positive electrode layer and the current collector is reduced, and the current is collected by the positive electrode layer as the charge / discharge cycle proceeds. There is a problem in that the charge / discharge cycle life is reduced due to peeling from the body.

【0009】ゲル化防止の対策として、リチウム複合金
属酸化物を焼成後水洗することにより余剰アルカリ塩を
除去する手法が考えられる。しかしながら、水洗を行う
ことにより製造作業が繁雑になるためにコストの上昇を
招き、そのうえLiNiO2においては、水に対して不
安定なために水洗による性能劣化が大きい等の問題点が
ある。
As a countermeasure for preventing gelation, a method of removing excess alkali salts by sintering and washing the lithium composite metal oxide with water may be considered. However, washing with water makes the manufacturing operation complicated, which leads to an increase in cost. In addition, LiNiO 2 is unstable with water, and thus has a problem in that the performance is greatly deteriorated due to washing with water.

【0010】また、特開平9−306502号公報で
は、LiNi0.8 Co0.22 のような複合金属酸化物
からなる正極活物質に、導電性カーボンブラックのよう
な導電助剤と、フッ化ビニリデン重合体と、マレイン酸
のような有機酸とを添加し、溶媒の存在下で混練してス
ラリーを調製することにより、スラリーのゲル化を防止
することが開示されている。
In Japanese Patent Application Laid-Open No. 9-306502, a positive electrode active material composed of a composite metal oxide such as LiNi 0.8 Co 0.2 O 2 is provided with a conductive auxiliary such as conductive carbon black and a vinylidene fluoride compound. It is disclosed that gelation of a slurry is prevented by adding a coalesced substance and an organic acid such as maleic acid and kneading the mixture in the presence of a solvent to prepare a slurry.

【0011】しかしながら、前記複合金属酸化物に含有
されるアルカリ塩と前記有機酸との中和反応により生成
した塩によって、前記スラリーと集電体との密着性が低
下するため、充放電サイクル寿命が短くなるという問題
点がある。
However, the adhesion between the slurry and the current collector is reduced by the salt generated by the neutralization reaction between the alkali salt and the organic acid contained in the composite metal oxide, and the charge-discharge cycle life is reduced. Is shortened.

【0012】ところで、コバルト系酸化物を正極活物質
として用いる非水電解液二次電池においては、正極の導
電剤として、アセチレンブラックとグラファイトのよう
な平均粒径が異なる2種類の炭素質物を用いることが検
討されている。このような導電剤を用いると、二次電池
の大電流放電特性及びサイクル寿命が向上される。
In a non-aqueous electrolyte secondary battery using a cobalt-based oxide as a positive electrode active material, two types of carbonaceous materials having different average particle sizes, such as acetylene black and graphite, are used as a conductive agent for the positive electrode. That is being considered. When such a conductive agent is used, large current discharge characteristics and cycle life of the secondary battery are improved.

【0013】しかしながら、正極活物質としてニッケル
系酸化物を用い、かつ結着剤としてポリフッ化ビニリデ
ンか、あるいはフッ化ビニリデンを基本構造とする共重
合体を用いる場合に、導電剤としてアセチレンブラック
のような平均粒径が小さい炭素質物を添加すると、前述
した塗液のゲル化が加速されるという問題点がある。こ
の原因は明らかでないものの、アセチレンブラックは吸
液性が高いため、塗液中の溶媒がアセチレンブラックに
吸収されることにより塗液の固形分濃度が次第に高くな
り、前述したアルカリによるポリフッ化ビニリデンの脱
HF反応、それに続く架橋反応が促進される状態になる
ためではないかと考えられる。
However, when a nickel-based oxide is used as a positive electrode active material and polyvinylidene fluoride or a copolymer having a basic structure of vinylidene fluoride is used as a binder, acetylene black is used as a conductive agent. When a carbonaceous substance having a small average particle size is added, there is a problem that the above-mentioned gelation of the coating liquid is accelerated. Although the cause is not clear, acetylene black has a high liquid absorbing property, so that the solvent in the coating liquid is absorbed by acetylene black, so that the solid content concentration of the coating liquid gradually increases, and the above-mentioned alkali-based polyvinylidene fluoride is dissolved. It is considered that the removal of the HF reaction and the subsequent crosslinking reaction are promoted.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、充放電サイク
ル寿命特性の優れたリチウム二次電池を提供しようとす
るものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a lithium secondary battery having excellent charge-discharge cycle life characteristics.

【0015】[0015]

【課題を解決するための手段】本発明に係わるリチウム
二次電池は、組成式LiNi1-xx2(但し、前記M
は1種以上の元素からなり、xは0<x≦0.5を示
す)で表されるリチウム複合金属酸化物と、平均粒径が
100nm以下の炭素質物A及び平均粒径が1μm以上
の炭素質物Bを含む導電剤と、アクリル系ゴム質共重合
及びフッ化ビニリデン系フッ素樹脂からなる結着剤と
を含有する正極合剤が集電体に担持された構造の正極
と、負極と、非水電解液とを具備し、前記結着剤中のフ
ッ化ビニリデン系フッ素樹脂の混合比は45重量%以下
であることを特徴とするものである。
The lithium secondary battery according to the present invention has a composition formula of LiNi 1-x M x O 2 (where M is
Is composed of one or more elements, and x represents 0 <x ≦ 0.5), a carbonaceous material A having an average particle diameter of 100 nm or less, and a carbonaceous material A having an average particle diameter of 1 μm or more. A conductive agent containing carbonaceous material B, and a binder made of an acrylic rubbery copolymer and a vinylidene fluoride-based fluororesin;
Having a structure in which a positive electrode mixture containing
, A negative electrode, and a non-aqueous electrolyte, and
Mixing ratio of vinylidene trifluoride resin is 45% by weight or less
It is characterized by being.

【0016】[0016]

【0017】[0017]

【発明の実施の形態】以下、本発明に係るリチウム二次
電池(例えば円筒形リチウム二次電池)を、図1を参照
して説明する。例えばステンレスからなる有底円筒状の
容器1は、底部に絶縁体2が配置されている。電極群3
は、前記容器1内に収納されている。前記電極群3は、
正極4、セパレ―タ5及び負極6をこの順序で積層した
帯状物を渦巻き状に巻回した構造になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lithium secondary battery (for example, a cylindrical lithium secondary battery) according to the present invention will be described with reference to FIG. For example, a cylindrical container 1 with a bottom made of stainless steel has an insulator 2 disposed at the bottom. Electrode group 3
Are stored in the container 1. The electrode group 3 includes:
It has a structure in which a belt-like material in which a positive electrode 4, a separator 5 and a negative electrode 6 are laminated in this order is spirally wound.

【0018】前記容器1内には、非水電解液が収容され
ている。中央部に孔が開口されたPTC素子7、前記P
TC素子7上に配置された安全弁8及び前記安全弁8に
配置された帽子形状の正極端子9は、前記容器1の上部
開口部に絶縁ガスケット10を介してかしめ固定されて
いる。なお、前記正極端子9には、ガス抜き孔(図示し
ない)が開口されている。正極リ―ド11の一端は、前
記正極4に、他端は前記PTC素子7にそれぞれ接続さ
れている。前記負極6は、図示しない負極リ―ドを介し
て負極端子である前記容器1に接続されている。
The container 1 contains a non-aqueous electrolyte. A PTC element 7 having an opening in the center,
A safety valve 8 disposed on the TC element 7 and a hat-shaped positive terminal 9 disposed on the safety valve 8 are caulked and fixed to an upper opening of the container 1 via an insulating gasket 10. The positive electrode terminal 9 has a vent hole (not shown). One end of the positive electrode lead 11 is connected to the positive electrode 4, and the other end is connected to the PTC element 7. The negative electrode 6 is connected to the container 1 as a negative terminal via a negative lead (not shown).

【0019】次に、前記正極4、前記セパレータ5、前
記負極6および前記非水電解液について詳しく説明す
る。 1)正極4 この正極4は、組成式LiNi1-xx2 (但し、前
記Mは1種以上の元素からなり、xは0<x≦0.5を
示す)で表されるリチウム複合金属酸化物(活物質)
と、平均粒径が100nm以下の炭素質物A及び平均粒
径が1μm以上の炭素質物Bを含む導電剤と、アクリル
系ゴム質共重合体を含む結着剤とを含有する合剤が集電
体に担持された構造を有する。
Next, the positive electrode 4, the separator 5, the negative electrode 6, and the non-aqueous electrolyte will be described in detail. 1) Positive electrode 4 This positive electrode 4 is made of lithium represented by a composition formula: LiNi 1-x M x O 2 (where M is one or more elements, and x represents 0 <x ≦ 0.5). Composite metal oxide (active material)
And a mixture containing a conductive agent containing carbonaceous material A having an average particle size of 100 nm or less and carbonaceous material B having an average particle size of 1 μm or more, and a binder containing an acrylic rubbery copolymer. It has a structure carried on the body.

【0020】前記正極4は、例えば、前記活物質、前記
導電剤及び前記結着剤を適当な溶媒に分散させて得られ
るペーストを集電体に塗布し、乾燥して薄板状にしたも
のを所望の大きさに裁断することにより作製される。
The positive electrode 4 is prepared, for example, by applying a paste obtained by dispersing the active material, the conductive agent and the binder in an appropriate solvent to a current collector, and drying the paste to form a thin plate. It is produced by cutting to a desired size.

【0021】なお、ペースト調製の際に、増粘剤として
カルボキシメチルセルロース(CMC)を添加すると、
ペーストの粘度制御を行いやすくなるため、好ましい。 (1−1)活物質 前記リチウム複合金属酸化物の組成式における元素Mに
は、Co,B,Al,Mn及びFeから選ばれる1種以
上を用いることができる。また、組成式におけるxの値
を0.5以下にするのは、次のような理由によるもので
ある。xの値が0.5を越えると、塗液のゲル化は起こ
りにくくなるものの、ニッケル系酸化物を含む正極を備
えた二次電池の特徴である容量特性向上及び電池の低コ
スト化を達成できなくなる恐れがある。xのより好まし
い範囲は、0.1≦x≦0.4である。かかるリチウム
複合金属酸化物としては、例えば、LiNi1-x Cox
2 、LiNi1-x-y Coxy2 、LiNi1-x-y
Cox Aly2 、LiNi1-x-y Cox Mny2
LiNi1-x-y Cox Fey2 等を挙げることができ
る。但し、これら組成式におけるx,yは、0<x≦
0.5、0≦y<0.5,0<x+y≦0.5を示す。
When carboxymethylcellulose (CMC) is added as a thickener during the preparation of the paste,
This is preferable because the viscosity of the paste can be easily controlled. (1-1) Active Material As the element M in the composition formula of the lithium composite metal oxide, at least one selected from Co, B, Al, Mn, and Fe can be used. The reason why the value of x in the composition formula is set to 0.5 or less is as follows. When the value of x exceeds 0.5, although the gelation of the coating liquid is unlikely to occur, the improvement in capacity characteristics and the reduction in cost of the battery, which are features of a secondary battery including a positive electrode containing a nickel-based oxide, are achieved. It may not be possible. A more preferable range of x is 0.1 ≦ x ≦ 0.4. As such a lithium composite metal oxide, for example, LiNi 1-x Co x
O 2, LiNi 1-xy Co x B y O 2, LiNi 1-xy
Co x Al y O 2, LiNi 1-xy Co x Mn y O 2,
LiNi 1-xy Co x Fe y O 2 and the like can be mentioned. However, x and y in these composition formulas are 0 <x ≦
0.5, 0 ≦ y <0.5, 0 <x + y ≦ 0.5.

【0022】(1−2)導電剤 前記炭素質物Aとしては、例えば、アセチレンブラッ
ク、ケッチェンブラック等を挙げることができる。中で
も、アセチレンブラックが好ましい。
(1-2) Conductive agent Examples of the carbonaceous material A include acetylene black and Ketjen black. Among them, acetylene black is preferable.

【0023】前記炭素質物Bとしては、例えば、人造黒
鉛、天然黒鉛等を挙げることができる。前記炭素質物A
の平均粒径は、透過型電子顕微鏡(TEM)による観察
から求められる。一方、前記炭素質物Bの平均粒径は、
レーザー回折式粒度分布測定装置による測定値(d50
にて決定される。前記炭素質物Aの平均粒径が100n
mを越えるか、あるいは前記炭素質物Bの平均粒径を1
μm未満にすると、正極中に炭素質物による導電ネット
ワークを緻密に、かつ均一に形成することが困難にな
る。また、前記炭素質物Aの平均粒径は、10nm以
上、かつ100nm以下にすることが好ましく、更に好
ましい範囲は30〜60nmである。一方、前記炭素質
物Bの平均粒径は、1μm以上、かつ50μm以下にす
ることが望ましく、更に好ましい範囲は3〜30μmで
ある。
Examples of the carbonaceous material B include artificial graphite and natural graphite. The carbonaceous material A
Is determined by observation with a transmission electron microscope (TEM). On the other hand, the average particle size of the carbonaceous material B is:
Laser diffraction particle size distribution analyzer measurements from (d 50)
Is determined. The average particle size of the carbonaceous material A is 100 n.
m or the average particle size of the carbonaceous material B is 1
When the thickness is less than μm, it is difficult to form a conductive network of the carbonaceous material densely and uniformly in the positive electrode. The average particle diameter of the carbonaceous material A is preferably 10 nm or more and 100 nm or less, and more preferably 30 to 60 nm. On the other hand, the average particle diameter of the carbonaceous material B is desirably 1 μm or more and 50 μm or less, and a more preferred range is 3 to 30 μm.

【0024】前記炭素質物A及び炭素質物Bの粒子形状
は、例えば、球状、鱗片状等の様々な形状にすることが
できる。前記炭素質物A及び炭素質物Bの含有量の和
は、前記活物質100重量部に対して10重量部以下に
することが好ましい。前記含有量が10重量部を越える
と、正極の活物質充填密度が低下する恐れがある。ま
た、これら炭素質物A,Bに吸着される結着剤量が多く
なって結着剤の機能が低下し、集電体と合剤との密着性
が低下する恐れがある。
The particle shape of the carbonaceous material A and the carbonaceous material B can be, for example, various shapes such as a sphere and a scale. It is preferable that the sum of the contents of the carbonaceous material A and the carbonaceous material B be 10 parts by weight or less based on 100 parts by weight of the active material. If the content exceeds 10 parts by weight, the active material filling density of the positive electrode may decrease. In addition, the amount of the binder adsorbed on these carbonaceous materials A and B increases, and the function of the binder is reduced, and the adhesion between the current collector and the mixture may be reduced.

【0025】前記炭素質物Aの含有量は、前記炭素質物
A及び炭素質物Bの含有量の和に対して20重量%以
上、かつ80重量%以下にすることが好ましい。これは
次のような理由によるものである。前記含有量を20重
量%未満にすると、正極中に炭素質物A,Bによる導電
ネットワークを緻密に、かつ均一に形成することが困難
になる恐れがある。一方、前記含有量が80重量%を越
えると、前述した導電ネットワークを緻密に、かつ均一
に形成することが困難になる恐れがあると共に、炭素質
物Aに吸着されていない有効な結着剤量が大幅に減少し
て集電体と合剤との密着性が低下する恐れがある。前記
炭素質物Aの含有量は、前記炭素質物A及び炭素質物B
の含有量の和に対して25重量%以上、かつ50重量%
以下にすることがより好ましい。
It is preferable that the content of the carbonaceous material A is not less than 20% by weight and not more than 80% by weight based on the sum of the contents of the carbonaceous material A and the carbonaceous material B. This is due to the following reasons. If the content is less than 20% by weight, it may be difficult to form a dense and uniform conductive network of carbonaceous materials A and B in the positive electrode. On the other hand, if the content exceeds 80% by weight, it may be difficult to form the above-mentioned conductive network densely and uniformly, and the effective amount of the binder not adsorbed to the carbonaceous material A And the adhesion between the current collector and the mixture may be reduced. The content of the carbonaceous material A is the same as the carbonaceous material A and the carbonaceous material B.
25% by weight or more and 50% by weight based on the total content of
It is more preferable to set the following.

【0026】(1−3)結着剤 前記結着剤は、アクリル系ゴム質共重合体を含む。前記
アクリル系ゴム質共重合体は、ゴム質共重合体に、不飽
和カルボン酸及び不飽和カルボン酸エステルから選ばれ
る少なくとも1種類以上の原料モノマーを共重合させた
ものからなる。
(1-3) Binder The binder contains an acrylic rubbery copolymer. The acrylic rubbery copolymer is obtained by copolymerizing a rubbery copolymer with at least one or more raw material monomers selected from unsaturated carboxylic acids and unsaturated carboxylic acid esters.

【0027】前記ゴム質共重合体としては、例えば、芳
香族ビニル−共役ジエン系共重合体、エチレン性ニトリ
ル化合物−共役ジエン系共重合体等を挙げることができ
る。前記芳香族ビニル−共役ジエン系共重合体は、原料
モノマーである芳香族ビニル化合物及び共役ジエン系化
合物を共重合させてなるものである。
Examples of the rubbery copolymer include an aromatic vinyl-conjugated diene copolymer and an ethylenic nitrile compound-conjugated diene copolymer. The aromatic vinyl-conjugated diene copolymer is obtained by copolymerizing an aromatic vinyl compound and a conjugated diene compound as raw material monomers.

【0028】前記芳香族ビニル化合物としては、例え
ば、スチレン、α−メチルスチレン、ビニルトルエン、
p−t−ブチルトルエン等を挙げることができる。前記
共役ジエン系化合物としては、例えば、ブタジエン、ピ
ペリレン等を挙げることができる。
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, vinyltoluene,
pt-butyltoluene and the like can be mentioned. Examples of the conjugated diene compound include butadiene and piperylene.

【0029】前記エチレン性ニトリル化合物−共役ジエ
ン系共重合体は、原料モノマーであるエチレン性ニトリ
ル化合物及び共役ジエン系化合物を共重合させてなるも
のである。
The above-mentioned ethylenic nitrile compound-conjugated diene copolymer is obtained by copolymerizing a raw material monomer, an ethylenic nitrile compound and a conjugated diene compound.

【0030】前記エチレン性ニトリル化合物としては、
例えば、(メタ)アクリロニトリル、クロトンニトリ
ル、アリルニトリル等を挙げることができる。前記共役
ジエン系化合物としては、前述したのと同様なものを挙
げることができる。
The ethylenic nitrile compound includes:
For example, (meth) acrylonitrile, crotonnitrile, allylnitrile and the like can be mentioned. Examples of the conjugated diene-based compound include the same compounds as described above.

【0031】前記不飽和カルボン酸としては、例えば、
アクリル酸、メタクリル酸、イタコン酸、フマル酸、マ
レイン酸、クロトン酸、シトラコン酸、メサコン酸、グ
ルタコン酸、マレイン酸モノオクチル、マレイン酸モノ
ブチル、イタドン酸モノオクチル等を挙げることができ
る。また、前記無水アクリル酸、無水メタクリル酸、無
水マレイン酸等の不飽和カルボン酸無水物を用いても良
い。
As the unsaturated carboxylic acid, for example,
Acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, crotonic acid, citraconic acid, mesaconic acid, glutaconic acid, monooctyl maleate, monobutyl maleate, monooctyl itanate, and the like can be given. Further, unsaturated carboxylic anhydrides such as acrylic acid, methacrylic anhydride, and maleic anhydride may be used.

【0032】前記不飽和カルボン酸エステルとしては、
例えば、アクリル酸メチル、アクリル酸エチル、アクリ
ル酸プロピル、アクリル酸イソプロピル、アクリル酸ブ
チル、アクリル酸オクタデシル、アクリル酸ヒドロキシ
エチル、アクリル酸プロピレングリコール、アクリル酸
アミド、アクリル酸グリシジル、メタクリル酸メチル、
メタクリル酸エチル、メタクリル酸プロピル、メタクリ
ル酸イソプロピル、メタクリル酸ブチル、メタクリル酸
シクロヘキシル、メタクリル酸2−(ジエチルアミノ)
エチル、メタクリル酸ヒドロキシプロピル、メタクリア
ミド、メタクリル酸グリシジル、メタクリル酸ジメチル
アミノエチル、メタクリル酸tert−ブチルアミノエ
チル等を挙げることができる。
The unsaturated carboxylic acid esters include:
For example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, octadecyl acrylate, hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, glycidyl acrylate, methyl methacrylate,
Ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2- (diethylamino) methacrylate
Examples thereof include ethyl, hydroxypropyl methacrylate, methacrylamide, glycidyl methacrylate, dimethylaminoethyl methacrylate, and tert-butylaminoethyl methacrylate.

【0033】前記ニトリル基を有する化合物としては、
(メタ)アクリロニトリル、クロトンニトリル、アリル
ニトリル等を挙げることができる。前記アクリル系ゴム
質共重合体の含有量は、前記活物質100重量部に対し
て10重量部以下にすることが好ましく、より好ましい
範囲は5重量部以下である。
Examples of the compound having a nitrile group include:
(Meth) acrylonitrile, crotonnitrile, allylnitrile and the like can be mentioned. The content of the acrylic rubbery copolymer is preferably 10 parts by weight or less, more preferably 5 parts by weight or less based on 100 parts by weight of the active material.

【0034】前記結着剤は、前記アクリル系ゴム質共重
合体及びフッ化ビニリデン系フッ素樹脂から構成しても
良い。かかるフッ化ビニリデン系フッ素樹脂としては、
ポリフッ化ビニリデン(PVdF)、ビニリデンフルオ
ロライドの水素もしくはフッ素のうちの少なくとも1つ
を他の置換基で置換した原料モノマーと、ビニリデンフ
ルオロライドを重合させた変性ポリフッ化ビニリデン等
を挙げることができる。前記フッ化ビニリデン系フッ素
樹脂中のフッ化ビニリデンに由来する構造単位の比率
は、90重量%以上であることが好ましい。
The binder may be composed of the acrylic rubbery copolymer and a vinylidene fluoride-based fluororesin. As such vinylidene fluoride-based fluororesin,
Examples thereof include polyvinylidene fluoride (PVdF), a raw material monomer in which at least one of hydrogen or fluorine of vinylidene fluoride is substituted with another substituent, and modified polyvinylidene fluoride obtained by polymerizing vinylidene fluoride. The ratio of the structural units derived from vinylidene fluoride in the vinylidene fluoride-based fluororesin is preferably 90% by weight or more.

【0035】前記結着剤中のフッ化ビニリデン系フッ素
樹脂の含有量は、50重量%以下にすることが好まし
い。前記フッ化ビニリデン系フッ素樹脂の含有量が50
重量%を越えると、ペーストのゲル化を抑制することが
困難になる恐れがある。前記含有量のより好ましい範囲
は、30〜45重量%である。
The content of the vinylidene fluoride-based fluororesin in the binder is preferably not more than 50% by weight. When the content of the vinylidene fluoride-based fluororesin is 50,
If the content is more than 10% by weight, it may be difficult to suppress the gelation of the paste. A more preferable range of the content is 30 to 45% by weight.

【0036】(1−4)集電体 前記集電体としては、例えば厚さ10〜40μmのアル
ミニウム箔、ステンレス箔、チタン箔等を挙げることが
できる。
(1-4) Current Collector Examples of the current collector include aluminum foil, stainless steel foil, and titanium foil having a thickness of 10 to 40 μm.

【0037】(1−5)溶媒 前記結着剤を分散させるための有機溶媒としては、N−
メチル−2−ピロリドン(NMP)、ジメチルホルムア
ミド(DMF)等の極性溶媒が使用される。この場合、
前記アクリル系ゴム質共重合体にニトリル基を有するも
のを共重合させることにより極性を付与させた極性ゴム
質共重合体を用いると、前記極性溶媒に分散しやすくな
るため、好ましい。
(1-5) Solvent As the organic solvent for dispersing the binder, N-
Polar solvents such as methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF) are used. in this case,
It is preferable to use a polar rubbery copolymer obtained by copolymerizing a polymer having a nitrile group with the acrylic rubbery copolymer, since the polar rubbery copolymer is easily dispersed in the polar solvent.

【0038】2)セパレータ5 前記セパレータ5としては、例えば合成樹脂製不織布、
ポリエチレン多孔質フィルム、ポリプロピレン多孔質フ
ィルム等を用いることができる。
2) Separator 5 As the separator 5, for example, a nonwoven fabric made of synthetic resin,
A polyethylene porous film, a polypropylene porous film, or the like can be used.

【0039】3)負極6 前記負極6は、負極活物質を含む合剤が集電体に担持さ
れた構造を有する。前記負極活物質としては、例えば、
リチウムイオンを吸蔵・放出する炭素質物、リチウムイ
オンを吸蔵・放出するカルコゲン化合物、リチウムイオ
ンを吸蔵・放出する軽金属等を挙げることができる。中
でもリチウムイオンを吸蔵・放出する炭素質物またはカ
ルコゲン化合物を含む負極は、前記二次電池のサイクル
寿命などの電池特性が向上するために好ましい。
3) Negative Electrode 6 The negative electrode 6 has a structure in which a mixture containing a negative electrode active material is supported on a current collector. As the negative electrode active material, for example,
Examples include carbonaceous materials that occlude and release lithium ions, chalcogen compounds that occlude and release lithium ions, and light metals that occlude and release lithium ions. Above all, a negative electrode containing a carbonaceous substance or a chalcogen compound that occludes and releases lithium ions is preferable because battery characteristics such as cycle life of the secondary battery are improved.

【0040】前記リチウムイオンを吸蔵・放出する炭素
質物としては、例えばコークス、炭素繊維、熱分解気相
炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素
繊維またはメソフェーズ球状カーボンの焼成体などを挙
げることができる。中でも、2500℃以上で黒鉛化し
たメソフェーズピッチ系炭素繊維またはメソフェーズ球
状カーボンが電極容量が高くなるため好ましい。
Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic gas-phase carbon material, graphite, fired resin, fired mesophase pitch-based carbon fiber, and fired mesophase spherical carbon. be able to. Above all, mesophase pitch-based carbon fiber or mesophase spherical carbon which is graphitized at 2500 ° C. or higher is preferable because the electrode capacity is increased.

【0041】前記リチウムイオンを吸蔵・放出するカル
コゲン化合物としては、二硫化チタン(TiS2 )、二
硫化モリブデン(MoS2 )、セレン化ニオブ(NbS
2)などを挙げることができる。このようなカルコゲ
ン化合物を負極に用いると、前記二次電池の電圧は降下
するものの前記負極の容量が増加するため、前記二次電
池の容量が向上される。更に、前記負極はリチウムイオ
ンの拡散速度が大きいため、前記二次電池の急速充放電
性能が向上される。
The chalcogen compounds that occlude and release lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbS).
e 2 ). When such a chalcogen compound is used for the negative electrode, the capacity of the negative electrode increases although the voltage of the secondary battery drops, and the capacity of the secondary battery is improved. Further, since the negative electrode has a high diffusion rate of lithium ions, the rapid charge / discharge performance of the secondary battery is improved.

【0042】前記軽金属としては、アルミニウム、アル
ミニウム合金、マグネシウム合金、リチウム金属、リチ
ウム合金などを挙げることができる。前記集電体として
は、例えば銅箔、ニッケル箔等を用いることができる
が、電気化学的な安定性および捲回時の柔軟性等を考慮
すると、銅箔がもっとも好ましい。このときの箔の厚さ
としては、8μm以上40μm以下であることが好まし
い。
Examples of the light metal include aluminum, aluminum alloy, magnesium alloy, lithium metal, lithium alloy and the like. As the current collector, for example, a copper foil, a nickel foil, or the like can be used, but a copper foil is most preferable in consideration of electrochemical stability, flexibility at the time of winding, and the like. The thickness of the foil at this time is preferably 8 μm or more and 40 μm or less.

【0043】前記負極(例えば、負極活物質として炭素
質物を使用する負極)は、例えば、前記炭素質物および
結着剤を適当な溶媒に分散させて得られるペーストを集
電体に塗布し、乾燥して薄板状にすることにより作製さ
れる。
For the negative electrode (for example, a negative electrode using a carbonaceous material as a negative electrode active material), for example, a paste obtained by dispersing the carbonaceous material and a binder in an appropriate solvent is applied to a current collector and dried. And made into a thin plate.

【0044】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVdF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)等
を用いることができる。前記負極材料、結着剤の配合割
合は、負極材料80〜98重量%、結着剤2〜20重量
%の範囲であることが好ましい。特に、前記炭素材は負
極6を作製した状態で、片面当たりの塗布量として10
0〜200g/m2 の範囲にすることが好ましい。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). it can. The mixing ratio of the negative electrode material and the binder is preferably in the range of 80 to 98% by weight of the negative electrode material and 2 to 20% by weight of the binder. In particular, the carbon material was coated in an amount of 10
It is preferable to set it in the range of 0 to 200 g / m 2 .

【0045】4 )非水電解液 前記非水電解液は非水溶媒に電解質を溶解した組成を有
する。前記非水溶媒としては、例えばプロピレンカーボ
ネート(PC)、エチレンカーボネート(EC)などの
環状カーボネート、例えばジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)などの鎖状カーボネート、1,
2−ジメトキシエタン(DME)、ジエトキシエタン
(DEE)などの鎖状エーテル、テトラヒドロフラン
(THF)や2−メチルテトラヒドロフラン(2−Me
THF)などの環状エーテルやクラウンエーテル、γ−
ブチロラクトン(γ−BL)などの脂肪酸エステル、ア
セトニトリル(AN)などの窒素化合物、スルホラン
(SL)やジメチルスルホキシド(DMSO)などの硫
黄化合物などから選ばれる少なくとも1種を用いること
ができる。
4) Non-aqueous electrolyte The non-aqueous electrolyte has a composition in which an electrolyte is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), for example, dimethyl carbonate (DM)
C), linear carbonates such as methyl ethyl carbonate (MEC) and diethyl carbonate (DEC);
Chain ethers such as 2-dimethoxyethane (DME) and diethoxyethane (DEE), tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-Me
Cyclic ethers such as THF) and crown ethers;
At least one selected from fatty acid esters such as butyrolactone (γ-BL), nitrogen compounds such as acetonitrile (AN), and sulfur compounds such as sulfolane (SL) and dimethylsulfoxide (DMSO) can be used.

【0046】中でも、EC、PC、γ−BLから選ばれ
る少なくとも一種からなるものや、EC、PC、γ−B
Lから選ばれる少なくとも一種とDMC、MEC、DE
C、DME、DEE、THF、2−MeTHF、ANか
ら選ばれる少なくとも一種とからなる混合溶媒を用いる
ことが望ましい。また、負極に前記リチウムイオンを吸
蔵・放出する炭素質物を含むものを用いる場合に、前記
負極を備えた二次電池のサイクル寿命を向上させる観点
から、ECとPCとγ−BL、ECとPCとMEC、E
CとPCとDEC、ECとPCとDEE、ECとAN、
ECとMEC、PCとDMC、PCとDEC、またはE
CとDECからなる混合溶媒を用いることが望ましい。
Among them, those composed of at least one selected from EC, PC and γ-BL, EC, PC and γ-B
At least one selected from L and DMC, MEC, DE
It is desirable to use a mixed solvent comprising at least one selected from C, DME, DEE, THF, 2-MeTHF, and AN. Further, when using a negative electrode containing a carbonaceous material that occludes and releases lithium ions, from the viewpoint of improving the cycle life of a secondary battery including the negative electrode, EC, PC and γ-BL, EC and PC And MEC, E
C and PC and DEC, EC and PC and DEE, EC and AN,
EC and MEC, PC and DMC, PC and DEC, or E
It is desirable to use a mixed solvent consisting of C and DEC.

【0047】前記電解質としては、例えば過塩素酸リチ
ウム(LiClO4 )、六フッ化リン酸リチウム(Li
PF6 )、ホウフッ化リチウム(LiBF4 )、六フッ
化砒素リチウム(LiAsF6 )、トリフルオロメタス
ルホン酸リチウム(LiCF3 SO3 )、四塩化アルミ
ニウムリチウム(LiAlCl4 )、ビストリフルオロ
メチルスルホニルイミドリチウム[LiN(CF3 SO
22 ]などのリチウム塩を挙げることができる。中で
もLiPF6 、LiBF4 、LiN(CF3 SO22
を用いると、導電性や安全性が向上されるために好まし
い。
Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (Li
PF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethasulfonate (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO
2 ) 2 ] and the like. Among them, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2
The use of is preferred because conductivity and safety are improved.

【0048】前記電解質の前記非水溶媒に対する溶解量
は、0.5モル/L〜2.0モル/Lの範囲にすること
が好ましい。以上詳述した本発明に係わるリチウム二次
電池は、前記組成式LiNi1-xx2 で表されるリ
チウム複合金属酸化物と、平均粒径が100nm以下の
炭素質物A及び平均粒径が1μm以上の炭素質物Bを含
む導電剤と、アクリル系ゴム質共重合体を含む結着剤と
を含有する正極を備える。前記アクリル系ゴム質共重合
体を含む結着剤は、耐アルカリ性に優れるため、前記リ
チウム複合金属酸化物に由来するアルカリ塩を含んだペ
ーストがゲル化するのを抑制することができる。その結
果、前述したような平均粒径が大きく異なる2種類の炭
素質物を含む導電剤を用いることが可能になるため、正
極中に前記炭素質物Aによるミクロな導電ネットワーク
と前記炭素質物Bによるマクロな導電ネットワークとを
形成することができ、正極の導電性を良好にすることが
できる。また、前記アクリル系ゴム質共重合体を含む結
着剤は、電解液に長期間浸漬してもほとんど膨潤せず、
かつ集電体との密着性に優れる。従って、前記リチウム
複合金属酸化物と、前記導電剤と、前記結着剤とを含む
正極を備えることにより、サイクル寿命に優れたリチウ
ム二次電池を実現することができる。
The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 2.0 mol / L. The lithium secondary battery according to the present invention described in detail above includes a lithium composite metal oxide represented by the above composition formula LiNi 1-x M x O 2 , a carbonaceous material A having an average particle size of 100 nm or less, and an average particle size. Is provided with a positive electrode containing a conductive agent containing a carbonaceous substance B of 1 μm or more and a binder containing an acrylic rubbery copolymer. Since the binder containing the acrylic rubbery copolymer has excellent alkali resistance, it is possible to suppress the gelation of the paste containing the alkali salt derived from the lithium composite metal oxide. As a result, since it is possible to use a conductive agent containing two types of carbonaceous materials having significantly different average particle diameters as described above, a micro conductive network of the carbonaceous material A and a macroscopic network of the carbonaceous material B And a conductive network can be formed, and the conductivity of the positive electrode can be improved. Further, the binder containing the acrylic rubbery copolymer hardly swells even when immersed in an electrolytic solution for a long time,
And it has excellent adhesion to the current collector. Therefore, by providing a positive electrode including the lithium composite metal oxide, the conductive agent, and the binder, a lithium secondary battery having excellent cycle life can be realized.

【0049】また、本発明にかかる別のリチウム二次電
池は、前記組成式LiNi1-xx2 で表されるリチ
ウム複合金属酸化物と、平均粒径が100nm以下の炭
素質物A及び平均粒径が1μm以上の炭素質物Bを含む
導電剤と、アクリル系ゴム質共重合体及びフッ化ビニリ
デン系フッ素樹脂を含む結着剤とを含有する正極を備え
る。前記アクリル系ゴム質共重合体は、前述したように
耐アルカリ性及び集電体との密着性に優れるものの、電
解液の保液性にやや劣る。結着剤の保液性が不十分であ
ると、充放電サイクルの進行に伴って正負極間の電解液
が不足し、正極もしくは負極が劣化に至る以前に徐々に
電池の放電容量が低下する、つまり、液枯れ現象を起こ
しやすい。一方、フッ化ビニリデン系フッ素樹脂は、前
述したようなペーストのゲル化の問題があるものの、電
解液の保液性に優れる。前記共重合体及び前記フッ素樹
脂の双方を結着剤として用いることによって、前記リチ
ウム複合金属酸化物及び前記導電剤を含むペーストのゲ
ル化を抑制することができ、集電体とペーストとの密着
性を改善することができ、かつ正極の電解液保液性を向
上することができるため、リチウム二次電池の充放電サ
イクル寿命ばかりか、大電流放電特性を改善することが
できる。
Further, another lithium secondary battery according to the present invention comprises a lithium composite metal oxide represented by the above composition formula LiNi 1 -xM x O 2 , a carbonaceous material A having an average particle diameter of 100 nm or less, and A positive electrode containing a conductive agent containing a carbonaceous substance B having an average particle diameter of 1 μm or more and a binder containing an acrylic rubbery copolymer and a vinylidene fluoride-based fluororesin is provided. As described above, the acrylic rubbery copolymer is excellent in alkali resistance and adhesion to a current collector, but is slightly inferior in liquid retention of an electrolytic solution. If the liquid retaining property of the binder is insufficient, the electrolyte between the positive electrode and the negative electrode runs short with the progress of the charge / discharge cycle, and the discharge capacity of the battery gradually decreases before the positive electrode or the negative electrode is deteriorated. That is, the liquid wiping phenomenon is apt to occur. On the other hand, the vinylidene fluoride-based fluororesin has the problem of gelation of the paste as described above, but is excellent in the liquid retaining property of the electrolytic solution. By using both the copolymer and the fluororesin as the binder, the gelation of the paste containing the lithium composite metal oxide and the conductive agent can be suppressed, and the adhesion between the current collector and the paste can be reduced. The lithium secondary battery can improve not only the charge / discharge cycle life but also the large current discharge characteristics of the lithium secondary battery.

【0050】[0050]

【実施例】以下、本発明の実施例を前述した図面を参照
して詳細に説明する。 (実施例1) <正極の作製>Niの一部をCoで置換した水酸化ニッ
ケル粉末[Ni0.8 Co0.2 (OH)2 ]と水酸化リチ
ウム1水和物(LiOH・H2 O)とを混合し、焼成す
ることによりLiNi0.8 Co0.22 粉末を得た。得
られた粉末は、X線回折図からLiNiO2 構造をとる
ことを確認した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. Example 1 <Preparation of Positive Electrode> Nickel hydroxide powder [Ni 0.8 Co 0.2 (OH) 2 ] in which a part of Ni was replaced with Co was mixed with lithium hydroxide monohydrate (LiOH · H 2 O). By mixing and firing, a LiNi 0.8 Co 0.2 O 2 powder was obtained. From the X-ray diffraction pattern, it was confirmed that the obtained powder had a LiNiO 2 structure.

【0051】つづいて、前記LiNi0.8 Co0.22
粉末100重量部、平均粒径が50nmのアセチレンブ
ラック2.5重量部(50重量%)および平均粒径が1
μmの鱗片状黒鉛(人造黒鉛)2.5重量部(50重量
%)をミキサにより混合した。スチレン−ブタジエンゴ
ム(SBR)に、メタクリル酸メチル、イタコン酸及び
アクリロニトリルを共重合させてなるアクリル系ゴム質
共重合体3重量部が溶解されたN―メチル―2―ピロリ
ドンに前記混合物を分散させ、更に増粘剤としてカルボ
キシメチルセルロース(CMC)を加えて攪拌すること
により5000mPa・sのペースト(塗液)を調製し
た。
Subsequently, the LiNi 0.8 Co 0.2 O 2
100 parts by weight of powder, 2.5 parts by weight (50% by weight) of acetylene black having an average particle diameter of 50 nm, and 1 part by weight
2.5 parts by weight (50% by weight) of μm flake graphite (artificial graphite) was mixed with a mixer. The mixture was dispersed in N-methyl-2-pyrrolidone in which 3 parts by weight of an acrylic rubbery copolymer obtained by copolymerizing methyl methacrylate, itaconic acid and acrylonitrile in styrene-butadiene rubber (SBR) was dissolved. Further, carboxymethylcellulose (CMC) as a thickener was added and stirred to prepare a paste (coating liquid) of 5000 mPa · s.

【0052】この塗液を室温(25℃)で20時間放置
し、B型粘度計を用いて粘度測定を行ったところ、20
時間後の粘度はおよそ5000mPa・sであり、調製
直後とほぼ同じであった。
The coating solution was left at room temperature (25 ° C.) for 20 hours, and the viscosity was measured using a B-type viscometer.
The viscosity after time was about 5000 mPa · s, which was almost the same as immediately after preparation.

【0053】そこで、この塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。 <負極の作製>メソフェーズピッチを原料としたメソフ
ェーズピッチ炭素繊維を黒鉛化することにより炭素質物
を作製した。
Thus, this coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. <Production of Negative Electrode> A carbonaceous material was produced by graphitizing mesophase pitch carbon fibers using mesophase pitch as a raw material.

【0054】つづいて、前記炭素質物100重量部に対
し、グラファイト5重量部、ポリフッ化ビニリデン5重
量部からなる混合物をN−メチルピロリドンに分散させ
てペースト状にした後、集電体基板である銅箔の両面に
塗布し、乾燥後、ロールプレスを行うことにより、負極
を作製した。
Subsequently, a mixture of 5 parts by weight of graphite and 5 parts by weight of polyvinylidene fluoride with respect to 100 parts by weight of the carbonaceous material was dispersed in N-methylpyrrolidone to form a paste, which was then used as a current collector substrate. A negative electrode was prepared by applying the coating on both sides of the copper foil, drying it, and performing roll pressing.

【0055】前記正極、ポリエチレン製多孔質フィルム
からなるセパレータおよび前記負極をそれぞれこの順序
で積層した後、渦巻き状に捲回して電極群を作製した。
非水電解液としては、エチレンカーボネート(EC)と
メチルエチルカーボネート(MEC)の混合溶媒(混合
体積比1:2)に、六フッ化リン酸リチウム(LiPF
6 )を1M溶解したものを使用し、前記電極群および前
記非水電解液をステンレス製の有底円筒状容器内にそれ
ぞれ収納して設計定格容量1900mAhの円筒形リチ
ウムイオン二次電池(18650サイズ)を組み立て
た。
The positive electrode, the separator made of a porous film made of polyethylene and the negative electrode were laminated in this order, and then spirally wound to form an electrode group.
As a non-aqueous electrolyte, lithium hexafluorophosphate (LiPF) was mixed in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1: 2).
6 ) is dissolved in 1M, and the electrode group and the non-aqueous electrolyte are respectively accommodated in a stainless steel bottomed cylindrical container, and a cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh is used. ) Assembled.

【0056】(実施例2)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック2重量部(40重量
%)および平均粒径が1μmの鱗片状黒鉛(人造黒鉛)
3重量部(60重量%)をミキサにより混合し、得られ
た混合物を、実施例1で説明したのと同様な種類のアク
リル系ゴム質共重合体3重量部が溶解されたN―メチル
―2―ピロリドンに分散させ、更に増粘剤としてカルボ
キシメチルセルロース(CMC)を加えて攪拌すること
により5000mPa・sのペースト(塗液)を調製し
た。
Example 2 100 parts by weight of LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1, 2 parts by weight (40% by weight) of acetylene black having an average particle diameter of 50 nm, and 1 μm flaky graphite (artificial graphite)
3 parts by weight (60% by weight) were mixed by a mixer, and the obtained mixture was mixed with 3 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1 and dissolved in N-methyl- It was dispersed in 2-pyrrolidone, carboxymethylcellulose (CMC) was further added as a thickener, and the mixture was stirred to prepare a paste (coating liquid) of 5000 mPa · s.

【0057】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation.

【0058】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0059】(実施例3)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック3重量部(60重量
%)および平均粒径が1μmの鱗片状黒鉛(人造黒鉛)
2重量部(40重量%)をミキサにより混合し、得られ
た混合物を、実施例1で説明したのと同様な種類のアク
リル系ゴム質共重合体3重量部が溶解されたN―メチル
―2―ピロリドンに分散させ、更に増粘剤としてカルボ
キシメチルセルロース(CMC)を加えて攪拌すること
により5000mPa・sのペースト(塗液)を調製し
た。
Example 3 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1, 3 parts by weight (60% by weight) of acetylene black having an average particle diameter of 50 nm and an average particle diameter of 50% 1 μm flaky graphite (artificial graphite)
2 parts by weight (40% by weight) were mixed by a mixer, and the obtained mixture was mixed with 3 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1 to dissolve N-methyl- It was dispersed in 2-pyrrolidone, carboxymethylcellulose (CMC) was further added as a thickener, and the mixture was stirred to prepare a paste (coating liquid) of 5000 mPa · s.

【0060】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0061】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0062】(実施例4)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック2.5重量部(50
重量%)および平均粒径が20μmの鱗片状黒鉛(人造
黒鉛)2.5重量部(50重量%)をミキサにより混合
し、得られた混合物を、実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体3重量部が溶解された
N―メチル―2―ピロリドンに分散させ、更に増粘剤と
してカルボキシメチルセルロース(CMC)を加えて攪
拌することにより5000mPa・sのペースト(塗
液)を調製した。
Example 4 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 2.5 parts by weight of acetylene black having an average particle size of 50 nm (50 parts by weight)
% By weight) and 2.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 20 μm by a mixer, and the obtained mixture was mixed with the same kind as described in Example 1. Is dispersed in N-methyl-2-pyrrolidone in which 3 parts by weight of an acrylic rubbery copolymer is dissolved, carboxymethylcellulose (CMC) is added as a thickener, and the mixture is stirred to obtain a paste (coating) of 5000 mPa · s. Liquid).

【0063】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
The coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0064】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0065】(実施例5)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック2.5重量部(50
重量%)および平均粒径が20μmの鱗片状黒鉛(人造
黒鉛)2.5重量部(50重量%)をミキサにより混合
し、得られた混合物を、実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体5重量部が溶解された
N―メチル―2―ピロリドンに分散させ、更に増粘剤と
してカルボキシメチルセルロース(CMC)を加えて攪
拌することにより5000mPa・sのペースト(塗
液)を調製した。
Example 5 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (50 parts by weight)
% By weight) and 2.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 20 μm by a mixer, and the obtained mixture was mixed with the same kind as described in Example 1. Is dispersed in N-methyl-2-pyrrolidone in which 5 parts by weight of an acrylic rubbery copolymer is dissolved, carboxymethylcellulose (CMC) is added as a thickener, and the mixture is stirred to obtain a 5000 mPa · s paste (coating). Liquid).

【0066】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0067】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0068】(実施例6)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック3.5重量部(50
重量%)および平均粒径が1μmの鱗片状黒鉛(人造黒
鉛)3.5重量部(50重量%)をミキサにより混合
し、得られた混合物を、実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体10重量部が溶解され
たN―メチル―2―ピロリドンに分散させ、更に増粘剤
としてカルボキシメチルセルロース(CMC)を加えて
攪拌することにより粘度が5000mPa・sのペース
ト(塗液)を調製した。
Example 6 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 3.5 parts by weight of acetylene black having an average particle diameter of 50 nm (50 parts by weight)
% By weight) and 3.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle size of 1 μm were mixed by a mixer, and the obtained mixture was mixed with the same kind as described in Example 1. Is dispersed in N-methyl-2-pyrrolidone in which 10 parts by weight of an acrylic rubbery copolymer is dissolved, and carboxymethylcellulose (CMC) is added as a thickening agent, followed by stirring to obtain a paste having a viscosity of 5000 mPa · s. (Coating liquid) was prepared.

【0069】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation.

【0070】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0071】(実施例7)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック5重量部(50重量
%)および平均粒径が20μmの鱗片状黒鉛(人造黒
鉛)5重量部(50重量%)をミキサにより混合し、得
られた混合物を、実施例1で説明したのと同様な種類の
アクリル系ゴム質共重合体5重量部が溶解されたN―メ
チル―2―ピロリドンに分散させ、更に増粘剤としてカ
ルボキシメチルセルロース(CMC)を加えて攪拌する
ことにより粘度が5000mPa・sのペースト(塗
液)を調製した。
Example 7 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1, 5 parts by weight (50% by weight) of acetylene black having an average particle diameter of 50 nm, and an average particle diameter of 50% 5 parts by weight (50% by weight) of 20 μm flaky graphite (artificial graphite) are mixed by a mixer, and the obtained mixture is mixed with 5 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1. The resulting mixture was dispersed in N-methyl-2-pyrrolidone in which a portion was dissolved, carboxymethylcellulose (CMC) was added as a thickener, and the mixture was stirred to prepare a paste (coating liquid) having a viscosity of 5000 mPa · s.

【0072】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0073】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0074】(実施例8)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック3.5重量部(50
重量%)および平均粒径が1μmの鱗片状黒鉛(人造黒
鉛)3.5重量部(50重量%)をミキサにより混合
し、得られた混合物を、実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体12重量部が溶解され
たN―メチル―2―ピロリドンに分散させ、更に増粘剤
としてカルボキシメチルセルロース(CMC)を加えて
攪拌することにより5000mPa・sのペースト(塗
液)を調製した。
Example 8 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 3.5 parts by weight of acetylene black having an average particle diameter of 50 nm (50 parts by weight)
% By weight) and 3.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle size of 1 μm were mixed by a mixer, and the obtained mixture was mixed with the same kind as described in Example 1. Is dispersed in N-methyl-2-pyrrolidone in which 12 parts by weight of an acrylic rubbery copolymer is dissolved, and carboxymethylcellulose (CMC) is further added as a thickener and stirred to obtain a paste (coating material) of 5000 mPa · s. Liquid).

【0075】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0076】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0077】(実施例9)Niの一部をCo及びAlで
置換した水酸化ニッケル粉末[Ni0.8 Co0.17Al
0.03(OH)2 ]と水酸化リチウム1水和物(LiOH
・H2 O)とを混合し、焼成することによりLiNi
0.8 Co0.17Al0.032 粉末を得た。得られた粉末
は、X線回折図からLiNiO2 構造をとることを確認
した。
(Example 9) Nickel hydroxide powder [Ni 0.8 Co 0.17 Al
0.03 (OH) 2 ] and lithium hydroxide monohydrate (LiOH
· H 2 O) were mixed, LiNi by firing
0.8 Co 0.17 Al 0.03 O 2 powder was obtained. From the X-ray diffraction pattern, it was confirmed that the obtained powder had a LiNiO 2 structure.

【0078】得られたLiNi0.8 Co0.17Al0.03
2 粉末を正極活物質として用いること以外は、実施例1
と同様にして設計定格容量1900mAhの円筒形リチ
ウムイオン二次電池(18650サイズ)を組み立て
た。
The obtained LiNi 0.8 Co 0.17 Al 0.03 O
Example 1 except that powder 2 was used as the positive electrode active material
A cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1900 mAh was assembled in the same manner as described above.

【0079】なお、正極用の塗液を室温で20時間放置
し、B型粘度計を用いて粘度測定を行ったところ、20
時間後の粘度はおよそ5000mPa・sであり、調製
直後とほぼ同じであった。
The coating liquid for the positive electrode was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer.
The viscosity after time was about 5000 mPa · s, which was almost the same as immediately after preparation.

【0080】(実施例10)Niの一部をCoで置換し
た水酸化ニッケル粉末[Ni0.8 Co0.17(OH)2
と、ホウ酸リチウム(Li247 )と、水酸化リチ
ウム1水和物(LiOH・H2 O)とを混合し、焼成す
ることによりLiNi0.8 Co0.170.032 粉末を得
た。得られた粉末は、X線回折図からLiNiO2 構造
をとることを確認した。
Example 10 Nickel hydroxide powder [Ni 0.8 Co 0.17 (OH) 2 ] in which a part of Ni was replaced by Co
, Lithium borate (Li 2 B 4 O 7 ) and lithium hydroxide monohydrate (LiOH · H 2 O) were mixed and calcined to obtain LiNi 0.8 Co 0.17 B 0.03 O 2 powder. . From the X-ray diffraction pattern, it was confirmed that the obtained powder had a LiNiO 2 structure.

【0081】得られたLiNi0.8 Co0.170.032
粉末を正極活物質として用いること以外は、実施例1と
同様にして設計定格容量1900mAhの円筒形リチウ
ムイオン二次電池(18650サイズ)を組み立てた。
The obtained LiNi 0.8 Co 0.17 B 0.03 O 2
A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled in the same manner as in Example 1 except that the powder was used as the positive electrode active material.

【0082】なお、正極用の塗液を室温で20時間放置
し、B型粘度計を用いて粘度測定を行ったところ、20
時間後の粘度はおよそ5000mPa・sであり、調製
直後とほぼ同じであった。
The coating solution for the positive electrode was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer.
The viscosity after time was about 5000 mPa · s, which was almost the same as immediately after preparation.

【0083】(実施例11)結着剤として、スチレン−
ブタジエンゴム(SBR)に、メタクリル酸メチル、イ
タコン酸、フマル酸及びアクリロニトリルを共重合させ
てなるアクリル系ゴム質共重合体を用いること以外は、
実施例1と同様にして設計定格容量1900mAhの円
筒形リチウムイオン二次電池(18650サイズ)を組
み立てた。
Example 11 Styrene was used as a binder.
Except for using an acrylic rubbery copolymer obtained by copolymerizing butadiene rubber (SBR) with methyl methacrylate, itaconic acid, fumaric acid and acrylonitrile,
A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled in the same manner as in Example 1.

【0084】(実施例12)結着剤として、スチレン−
ブタジエンゴム(SBR)に、メタクリル酸メチル、ア
クリル酸及びイタコン酸を共重合させてなるアクリル系
ゴム質共重合体を用いること以外は、実施例1と同様に
して設計定格容量1900mAhの円筒形リチウムイオ
ン二次電池(18650サイズ)を組み立てた。
(Example 12) As a binder, styrene-
Except for using an acrylic rubbery copolymer obtained by copolymerizing methyl methacrylate, acrylic acid and itaconic acid with butadiene rubber (SBR), a cylindrical lithium having a design rated capacity of 1900 mAh was used in the same manner as in Example 1. An ion secondary battery (18650 size) was assembled.

【0085】(比較例1)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部及び平均
粒径が50nmのアセチレンブラック5重量部をミキサ
により混合し、得られた混合物をポリフッ化ビニリデン
3重量部が溶解されたN―メチル―2―ピロリドンに分
散させ、粘度が5000mPa・sのペースト(塗液)
を調製した。得られた塗液は、流動性に欠けており、集
電体への塗布に適さないものであった。
Comparative Example 1 100 parts by weight of LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 5 parts by weight of acetylene black having an average particle diameter of 50 nm were mixed by a mixer, and the resulting mixture was obtained. Is dispersed in N-methyl-2-pyrrolidone in which 3 parts by weight of polyvinylidene fluoride is dissolved, and a paste (coating liquid) having a viscosity of 5000 mPa · s
Was prepared. The obtained coating liquid lacked fluidity and was not suitable for application to a current collector.

【0086】この塗液を室温で20時間放置したとこ
ろ、塗液は完全に硬化し、集電体への塗布を行えなかっ
た。そこで、同様にして再び塗液を調製し、速やかに集
電体に塗布することにより正極を作製した。前記正極か
ら実施例1と同様にして設計定格容量1900mAhの
円筒形リチウムイオン二次電池(18650サイズ)を
組み立てた。
When this coating solution was left at room temperature for 20 hours, the coating solution was completely cured and could not be applied to the current collector. Therefore, a coating liquid was prepared again in the same manner, and immediately applied to the current collector to produce a positive electrode. A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled from the positive electrode in the same manner as in Example 1.

【0087】(比較例2)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック2.5重量部及び平
均粒径が1μmの鱗片状黒鉛2.5重量部をミキサによ
り混合し、得られた混合物をポリフッ化ビニリデン3重
量部が溶解されたN―メチル―2―ピロリドンに分散さ
せ、粘度が5000mPa・sのペースト(塗液)を調
製した。調製直後の塗液は、集電体への塗布に適した流
動性を有していた。この塗液を室温で20時間放置した
ところ、前記塗液は硬化にまで至らないものの、ゲル化
が認められ、集電体への塗布ができなかった。そこで、
再び塗液を調製し、速やかに集電体へ塗布することによ
り正極を作製した。前記正極から実施例1と同様にして
設計定格容量1900mAhの円筒形リチウムイオン二
次電池(18650サイズ)を組み立てた。
Comparative Example 2 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1, 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm, and scale having an average particle diameter of 1 μm 2.5 parts by weight of flake graphite are mixed by a mixer, and the obtained mixture is dispersed in N-methyl-2-pyrrolidone in which 3 parts by weight of polyvinylidene fluoride is dissolved, and a paste (coating liquid) having a viscosity of 5000 mPa · s Was prepared. The coating liquid immediately after preparation had fluidity suitable for coating on a current collector. When this coating liquid was left at room temperature for 20 hours, the coating liquid did not reach curing, but gelation was observed, and application to the current collector could not be performed. Therefore,
A coating liquid was prepared again, and immediately applied to the current collector to prepare a positive electrode. A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled from the positive electrode in the same manner as in Example 1.

【0088】(比較例3)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が1μmの鱗片状黒鉛2.5重量部及び平均粒径が2
0μmの鱗片状黒鉛2.5重量部をミキサにより混合
し、得られた混合物を、実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体3重量部が溶解された
N―メチル―2―ピロリドンに分散させ、更に増粘剤と
してカルボキシメチルセルロース(CMC)を加えて攪
拌することにより粘度が5000mPa・sのペースト
(塗液)を調製した。
Comparative Example 3 100 parts by weight of LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1, 2.5 parts by weight of flaky graphite having an average particle diameter of 1 μm, and an average particle diameter of 2
2.5 parts by weight of 0-μm flaky graphite was mixed by a mixer, and the obtained mixture was dissolved in N— containing 3 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1. It was dispersed in methyl-2-pyrrolidone, carboxymethylcellulose (CMC) was further added as a thickener, and the mixture was stirred to prepare a paste (coating liquid) having a viscosity of 5000 mPa · s.

【0089】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0090】そこで、この塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。前記正極から実施例1と同様にして設計定格容
量1900mAhの円筒形リチウムイオン二次電池(1
8650サイズ)を組み立てた。
Thus, this coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. From the positive electrode, a cylindrical lithium ion secondary battery (1
8650 size).

【0091】(比較例4)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部及び平均
粒径が50nmのアセチレンブラック5重量部をミキサ
により混合し、得られた混合物を、実施例1で説明した
のと同様な種類のアクリル系ゴム質共重合体3重量部が
溶解されたN―メチル―2―ピロリドンに分散させ、更
に増粘剤としてカルボキシメチルセルロース(CMC)
を加えて攪拌することにより粘度が5000mPa・s
のペースト(塗液)を調製した。得られた塗液は、流動
性に欠けており、集電体への塗布に適さないものであっ
た。
Comparative Example 4 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 5 parts by weight of acetylene black having an average particle diameter of 50 nm were mixed by a mixer, and the resulting mixture was obtained. Is dispersed in N-methyl-2-pyrrolidone in which 3 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1 is dissolved, and carboxymethyl cellulose (CMC) is further used as a thickener.
The viscosity is 5000 mPa · s by adding and stirring.
(Paste solution) was prepared. The obtained coating liquid lacked fluidity and was not suitable for application to a current collector.

【0092】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであったが、流動性に欠けており、集電体への塗布
に適さないものであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation. However, it lacked fluidity and was not suitable for application to a current collector.

【0093】そこで、この塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。前記正極から実施例1と同様にして設計定格容
量1900mAhの円筒形リチウムイオン二次電池(1
8650サイズ)を組み立てた。
Then, this coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. From the positive electrode, a cylindrical lithium ion secondary battery (1
8650 size).

【0094】(比較例5)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部および平
均粒径が50nmのアセチレンブラック5重量部をミキ
サにより混合し、得られた混合物をポリフッ化ビニリデ
ン3重量部及びマレイン酸0.1重量部が溶解されたN
―メチル―2―ピロリドンに分散させ、粘度が5000
mPa・sのペースト(塗液)を調製した。得られた塗
液は、流動性に欠けており、集電体への塗布に適さない
ものであった。
Comparative Example 5 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 5 parts by weight of acetylene black having an average particle diameter of 50 nm were mixed by a mixer, and the resulting mixture was obtained. Is dissolved in N in which 3 parts by weight of polyvinylidene fluoride and 0.1 part by weight of maleic acid are dissolved.
-Dispersed in methyl-2-pyrrolidone, having a viscosity of 5000
An mPa · s paste (coating liquid) was prepared. The obtained coating liquid lacked fluidity and was not suitable for application to a current collector.

【0095】この塗液を室温(25℃)で20時間放置
したところ、20時間後もほぼ同じ粘度を示し、ゲル化
は認められなかったものの、流動性に欠け、集電体への
塗布に適さないものであった。
When this coating solution was allowed to stand at room temperature (25 ° C.) for 20 hours, it showed almost the same viscosity after 20 hours, and no gelation was observed. However, the coating solution lacked fluidity and was applied to a current collector. It was not suitable.

【0096】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。得られた正極は、厚さのバラツキが大きかった。前
記正極から実施例1と同様にして設計定格容量1900
mAhの円筒形リチウムイオン二次電池(18650サ
イズ)を組み立てた。
The obtained coating liquid was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. The obtained positive electrode had a large variation in thickness. Design rated capacity 1900 from the positive electrode in the same manner as in Example 1.
A mAh cylindrical lithium ion secondary battery (18650 size) was assembled.

【0097】実施例1〜12及び比較例1〜5の二次電
池について、正極活物質、導電剤及び結着剤の種類及び
配合割合を下記表1〜4に示す。得られた実施例1〜1
2及び比較例1〜5の二次電池の正極について、集電体
との密着性を調べるため、引っ張り試験機による剥離強
度試験を実施した。各正極を幅2cm、長さ5cmに切
り出し、ペースト塗布面をガラス面に両面テープで張り
合わせ、一方の端を長辺方向に170〜180゜の角度
に保ちながら一定の速度で剥離させ、その時の強度を密
着強度として測定し、その結果を下記表5に示す。
With respect to the secondary batteries of Examples 1 to 12 and Comparative Examples 1 to 5, types and mixing ratios of the positive electrode active material, the conductive agent and the binder are shown in Tables 1 to 4 below. Examples 1 to 1 obtained
For the positive electrodes of the secondary batteries of Comparative Example 2 and Comparative Examples 1 to 5, a peel strength test was performed with a tensile tester in order to examine the adhesion to the current collector. Each positive electrode was cut into a width of 2 cm and a length of 5 cm, the paste-coated surface was adhered to a glass surface with a double-sided tape, and one end was peeled off at a constant speed while maintaining an angle of 170 to 180 ° in the long side direction. The strength was measured as the adhesion strength, and the results are shown in Table 5 below.

【0098】また、実施例1〜12及び比較例1〜5の
二次電池について、サイクル寿命試験を行った。充電
は、20℃において充電電流900mAで4.2Vまで
行った後、4.2Vの定電圧で保持し、計8時間行っ
た。放電は、900mAの定電流で行い、放電終止電圧
を2.7Vとした。充電及び放電の後の休止時間はそれ
ぞれ30分間とした。このような充放電を繰り返し行
い、各サイクル毎に放電容量を測定し、放電容量が1サ
イクル目の容量の80%に到達したサイクル数を電池寿
命とし、その結果を下記表5に示す。
Further, cycle life tests were performed on the secondary batteries of Examples 1 to 12 and Comparative Examples 1 to 5. The charging was performed at a charging current of 900 mA up to 4.2 V at 20 ° C., and then maintained at a constant voltage of 4.2 V for a total of 8 hours. The discharge was performed at a constant current of 900 mA, and the discharge end voltage was set to 2.7 V. The rest time after charging and discharging was 30 minutes each. Such charge / discharge is repeated, and the discharge capacity is measured for each cycle. The number of cycles at which the discharge capacity reaches 80% of the capacity in the first cycle is defined as the battery life. The results are shown in Table 5 below.

【0099】[0099]

【表1】 [Table 1]

【0100】[0100]

【表2】 [Table 2]

【0101】[0101]

【表3】 [Table 3]

【0102】[0102]

【表4】 [Table 4]

【0103】[0103]

【表5】 [Table 5]

【0104】表1〜5から明らかなように、平均粒径が
100nm以下の炭素質物A及び平均粒径が1μm以上
の炭素質物Bを含む導電剤と、アクリル系ゴム質共重合
体を含む結着剤とを含有する実施例1〜12の正極は、
導電剤としてアセチレンブラック及び結着剤としてポリ
フッ化ビニリデンを含む比較例1の正極、結着剤として
アクリル系ゴム質共重合体の代わりにポリフッ化ビニリ
デンを用いる比較例2の正極、導電剤が前記炭素質物B
のみからなる比較例3の正極、導電剤が前記炭素質物A
のみからなる比較例4の正極、及び導電剤としてアセチ
レンブラック及び結着剤としてポリフッ化ビニリデンを
含むと共に、正極活物質に中和処理が施された比較例5
の正極に比べて、集電体と塗液との密着強度が高いこと
がわかる。また、実施例1〜12の二次電池は、比較例
1〜5の二次電池に比べてサイクル寿命が長いことがわ
かる。
As is apparent from Tables 1 to 5, a conductive agent containing carbonaceous material A having an average particle size of 100 nm or less and a carbonaceous material B having an average particle size of 1 μm or more, and a binder containing an acrylic rubbery copolymer. Positive electrodes of Examples 1 to 12 containing a binder,
The positive electrode of Comparative Example 1 containing acetylene black as a conductive agent and polyvinylidene fluoride as a binder, and the positive electrode of Comparative Example 2 using polyvinylidene fluoride instead of an acrylic rubbery copolymer as a binder, Carbonaceous material B
The positive electrode of Comparative Example 3 consisting of only the carbonaceous material A
Comparative Example 5 consisting of only the positive electrode of Comparative Example 4 and acetylene black as the conductive agent, polyvinylidene fluoride as the binder, and neutralization of the positive electrode active material
It can be seen that the adhesion strength between the current collector and the coating liquid is higher than that of the positive electrode. In addition, it can be seen that the secondary batteries of Examples 1 to 12 have a longer cycle life than the secondary batteries of Comparative Examples 1 to 5.

【0105】(実施例13) <正極の作製>実施例1で説明したのと同様なLiNi
0.8 Co0.22 粉末100重量部、平均粒径が50n
mのアセチレンブラック2.5重量部(50重量%)お
よび平均粒径が1μmの鱗片状黒鉛(人造黒鉛)2.5
重量部(50重量%)をミキサにより混合し、得られた
混合物をポリフッ化ビニリデン1重量部(33重量%)
と実施例1で説明したのと同様な種類のアクリル系ゴム
質共重合体2重量部(67重量%)とが溶解されたN―
メチル―2―ピロリドンに分散させ、更に増粘剤として
カルボキシメチルセルロース(CMC)を加えて攪拌す
ることにより粘度が5000mPa・sのペースト(塗
液)を調製した。
Example 13 <Production of Positive Electrode> LiNi similar to that described in Example 1 was used.
0.8 Co 0.2 O 2 powder 100 parts by weight, average particle size 50n
m acetylene black 2.5 parts by weight (50% by weight) and flaky graphite (artificial graphite) 2.5 having an average particle size of 1 μm
Parts by weight (50% by weight) are mixed by a mixer, and the resulting mixture is mixed with 1 part by weight of polyvinylidene fluoride (33% by weight).
N- in which 2 parts by weight (67% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dissolved.
It was dispersed in methyl-2-pyrrolidone, carboxymethylcellulose (CMC) was further added as a thickener, and the mixture was stirred to prepare a paste (coating liquid) having a viscosity of 5000 mPa · s.

【0106】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0107】そこで、この塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。前記正極から実施例1と同様にして設計定格容
量1900mAhの円筒形リチウムイオン二次電池(1
8650サイズ)を組み立てた。
Therefore, this coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. From the positive electrode, a cylindrical lithium ion secondary battery (1
8650 size).

【0108】(実施例14)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(5
0重量%)および平均粒径が1μmの鱗片状黒鉛(人造
黒鉛)2.5重量部(50重量%)をミキサにより混合
し、得られた混合物をポリフッ化ビニリデン1.5重量
部(50重量%)及び実施例1で説明したのと同様な種
類のアクリル系ゴム質共重合体1.5重量部(50重量
%)が溶解されたN―メチル―2―ピロリドンに分散さ
せ、更に増粘剤としてカルボキシメチルセルロース(C
MC)を加えて攪拌することにより粘度が5000mP
a・sのペースト(塗液)を調製した。
Example 14 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 2.5 parts by weight of acetylene black having an average particle size of 50 nm (5 parts by weight)
0% by weight) and 2.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 1 μm are mixed by a mixer, and the obtained mixture is mixed with 1.5 parts by weight of polyvinylidene fluoride (50% by weight). %) And 1.5 parts by weight (50% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dispersed in N-methyl-2-pyrrolidone dissolved therein, and the viscosity was further increased. Carboxymethylcellulose (C
MC) and stirred to obtain a viscosity of 5000 mP.
An a · s paste (coating solution) was prepared.

【0109】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0110】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating liquid was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0111】(実施例15)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(5
0重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)2.5重量部(50重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン1重量部
(33重量%)及び実施例1で説明したのと同様な種類
のアクリル系ゴム質共重合体2重量部(67重量%)が
溶解されたN―メチル―2―ピロリドンに分散させ、更
に増粘剤としてカルボキシメチルセルロース(CMC)
を加えて攪拌することにより粘度が5000mPa・s
のペースト(塗液)を調製した。
Example 15 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (5 parts by weight)
0% by weight) and 2.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 20 μm are mixed by a mixer, and the obtained mixture is 1 part by weight of polyvinylidene fluoride (33% by weight). And 2 parts by weight (67% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 was dispersed in N-methyl-2-pyrrolidone dissolved therein, and carboxymethyl cellulose was further used as a thickener. (CMC)
The viscosity is 5000 mPa · s by adding and stirring.
(Paste solution) was prepared.

【0112】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
The coating liquid was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation.

【0113】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating liquid was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0114】(実施例16)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(5
0重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)2.5重量部(50重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン1.5重
量部(50重量%)及び実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体1.5重量部(50重
量%)が溶解されたN―メチル―2―ピロリドンに分散
させ、更に増粘剤としてカルボキシメチルセルロース
(CMC)を加えて攪拌することにより粘度が5000
mPa・sのペースト(塗液)を調製した。
Example 16 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (5 parts by weight)
0% by weight) and 2.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle size of 20 μm are mixed by a mixer, and the obtained mixture is mixed with 1.5 parts by weight of polyvinylidene fluoride (50% by weight). %) And 1.5 parts by weight (50% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dispersed in N-methyl-2-pyrrolidone dissolved therein, and the viscosity was further increased. By adding carboxymethylcellulose (CMC) as an agent and stirring, the viscosity becomes 5,000.
An mPa · s paste (coating liquid) was prepared.

【0115】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0116】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0117】(実施例17)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(2
5重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)7.5重量部(75重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン2重量部
(40重量%)及び実施例1で説明したのと同様な種類
のアクリル系ゴム質共重合体3重量部(60重量%)が
溶解されたN―メチル―2―ピロリドンに分散させ、更
に増粘剤としてカルボキシメチルセルロース(CMC)
を加えて攪拌することにより粘度が5000mPa・s
のペースト(塗液)を調製した。
Example 17 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (2
5% by weight) and 7.5 parts by weight (75% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 20 μm are mixed by a mixer, and the resulting mixture is mixed with 2 parts by weight of polyvinylidene fluoride (40% by weight). And 3 parts by weight (60% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 are dispersed in N-methyl-2-pyrrolidone dissolved therein, and carboxymethyl cellulose is further used as a thickener. (CMC)
The viscosity is 5000 mPa · s by adding and stirring.
(Paste solution) was prepared.

【0118】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation.

【0119】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating liquid was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0120】(実施例18)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(2
5重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)7.5重量部(75重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン3重量部
(60重量%)及び実施例1で説明したのと同様な種類
のアクリル系ゴム質共重合体2重量部(40重量%)が
溶解されたN―メチル―2―ピロリドンに分散させ、更
に増粘剤としてカルボキシメチルセルロース(CMC)
を加えて攪拌することにより粘度が5000mPa・s
のペースト(塗液)を調製した。得られた塗液は、集電
体への塗布に適する流動性を有するものであった。この
塗液を室温で20時間放置し、B型粘度計を用いて粘度
測定を行ったところ、20時間後の粘度は6500mP
a・sであった。
Example 18 100 parts by weight of LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (2
5% by weight) and 7.5 parts by weight (75% by weight) of flaky graphite (artificial graphite) having an average particle size of 20 μm are mixed by a mixer, and the obtained mixture is mixed with 3 parts by weight of polyvinylidene fluoride (60% by weight). And 2 parts by weight (40% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 was dispersed in N-methyl-2-pyrrolidone dissolved therein, and carboxymethyl cellulose was further used as a thickener. (CMC)
The viscosity is 5000 mPa · s by adding and stirring.
(Paste solution) was prepared. The obtained coating liquid had fluidity suitable for coating on a current collector. The coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was 6500 mP.
a · s.

【0121】ひきつづき、塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。前記正極から実施例1と同様にして設計定格容
量1900mAhの円筒形リチウムイオン二次電池(1
8650サイズ)を組み立てた。
Subsequently, a coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. From the positive electrode, a cylindrical lithium ion secondary battery (1
8650 size).

【0122】(実施例19)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック2.5重量部(2
5重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)7.5重量部(75重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン2.5重
量部(50重量%)及び実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体2.5重量部(50重
量%)が溶解されたN―メチル―2―ピロリドンに分散
させ、更に増粘剤としてカルボキシメチルセルロース
(CMC)を加えて攪拌することにより粘度が5000
mPa・sのペースト(塗液)を調製した。
(Example 19) 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1 and 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm (2
5% by weight) and 7.5 parts by weight (75% by weight) of flaky graphite (artificial graphite) having an average particle diameter of 20 μm are mixed with a mixer, and the obtained mixture is mixed with 2.5 parts by weight of polyvinylidene fluoride (50% by weight). %) And 2.5 parts by weight (50% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dispersed in N-methyl-2-pyrrolidone dissolved therein, and the viscosity was further increased. By adding carboxymethylcellulose (CMC) as an agent and stirring, the viscosity becomes 5,000.
An mPa · s paste (coating liquid) was prepared.

【0123】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0124】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0125】(実施例20)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック3.5重量部(5
0重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)3.5重量部(50重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン3.5重
量部(35重量%)及び実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体6.5重量部(65重
量%)が溶解されたN―メチル―2―ピロリドンに分散
させ、更に増粘剤としてカルボキシメチルセルロース
(CMC)を加えて攪拌することにより粘度が5000
mPa・sのペースト(塗液)を調製した。
Example 20 100 parts by weight of a LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 3.5 parts by weight of acetylene black having an average particle diameter of 50 nm (5 parts by weight)
0% by weight) and 3.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle size of 20 μm are mixed by a mixer, and the obtained mixture is mixed with 3.5 parts by weight of polyvinylidene fluoride (35 parts by weight). %) And 6.5 parts by weight (65% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dispersed in N-methyl-2-pyrrolidone dissolved therein, and the viscosity was further increased. By adding carboxymethylcellulose (CMC) as an agent and stirring, the viscosity becomes 5,000.
An mPa · s paste (coating liquid) was prepared.

【0126】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after preparation.

【0127】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0128】(実施例21)実施例1で説明したのと同
様なLiNi0.8 Co0.22 粉末100重量部、平均
粒径が50nmのアセチレンブラック3.5重量部(5
0重量%)および平均粒径が20μmの鱗片状黒鉛(人
造黒鉛)3.5重量部(50重量%)をミキサにより混
合し、得られた混合物をポリフッ化ビニリデン3.5重
量部(29重量%)及び実施例1で説明したのと同様な
種類のアクリル系ゴム質共重合体8.5重量部(71重
量%)が溶解されたN―メチル―2―ピロリドンに分散
させ、更に増粘剤としてカルボキシメチルセルロース
(CMC)を加えて攪拌することにより粘度が5000
mPa・sのペースト(塗液)を調製した。
Example 21 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 3.5 parts by weight of acetylene black having an average particle size of 50 nm (5 parts by weight)
0% by weight) and 3.5 parts by weight (50% by weight) of flaky graphite (artificial graphite) having an average particle size of 20 μm are mixed by a mixer, and the obtained mixture is mixed with 3.5 parts by weight of polyvinylidene fluoride (29 parts by weight). %) And 8.5 parts by weight (71% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1 were dispersed in N-methyl-2-pyrrolidone dissolved therein, and the viscosity was further increased. By adding carboxymethylcellulose (CMC) as an agent and stirring, the viscosity becomes 5,000.
An mPa · s paste (coating liquid) was prepared.

【0129】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
This coating solution was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was approximately 5000 mPa · s, which was almost the same as immediately after the preparation.

【0130】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating liquid was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0131】(実施例22)Niの一部をCo及びAl
で置換した水酸化ニッケル粉末[Ni0.8 Co0.17Al
0.03(OH)2 ]と水酸化リチウム1水和物(LiOH
・H2 O)とを混合し、焼成することによりLiNi
0.8 Co0.17Al0.032 粉末を得た。得られた粉末
は、X線回折図からLiNiO2 構造をとることを確認
した。
Example 22 A part of Ni was converted to Co and Al.
Nickel hydroxide powder [Ni 0.8 Co 0.17Al
0.03 (OH) 2 ] and lithium hydroxide monohydrate (LiOH
· H 2 O) were mixed, LiNi by firing
0.8 Co 0.17 Al 0.03 O 2 powder was obtained. From the X-ray diffraction pattern, it was confirmed that the obtained powder had a LiNiO 2 structure.

【0132】得られたLiNi0.8 Co0.17Al0.03
2 粉末を正極活物質として用いること以外は、実施例1
3と同様にして設計定格容量1900mAhの円筒形リ
チウムイオン二次電池(18650サイズ)を組み立て
た。
The obtained LiNi 0.8 Co 0.17 Al 0.03 O
Example 1 except that powder 2 was used as the positive electrode active material
A cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1900 mAh was assembled in the same manner as in Example 3.

【0133】なお、正極用の塗液を室温で20時間放置
し、B型粘度計を用いて粘度測定を行ったところ、20
時間後の粘度はおよそ5000mPa・sであり、調製
直後とほぼ同じであった。
The coating solution for the positive electrode was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer.
The viscosity after time was about 5000 mPa · s, which was almost the same as immediately after preparation.

【0134】(実施例23)Niの一部をCoで置換し
た水酸化ニッケル粉末[Ni0.8 Co0.17(OH)2
と、ホウ酸リチウム(Li247 )と、水酸化リチ
ウム1水和物(LiOH・H2 O)とを混合し、焼成す
ることによりLiNi0.8 Co0.170.032 粉末を得
た。得られた粉末は、X線回折図からLiNiO2 構造
をとることを確認した。
(Example 23) Nickel hydroxide powder [Ni 0.8 Co 0.17 (OH) 2 ] in which a part of Ni was replaced by Co
, Lithium borate (Li 2 B 4 O 7 ) and lithium hydroxide monohydrate (LiOH · H 2 O) were mixed and calcined to obtain LiNi 0.8 Co 0.17 B 0.03 O 2 powder. . From the X-ray diffraction pattern, it was confirmed that the obtained powder had a LiNiO 2 structure.

【0135】得られたLiNi0.8 Co0.170.032
粉末を正極活物質として用いること以外は、実施例13
と同様にして設計定格容量1900mAhの円筒形リチ
ウムイオン二次電池(18650サイズ)を組み立て
た。
The resulting LiNi 0.8 Co 0.17 B 0.03 O 2
Example 13 except that powder was used as the positive electrode active material
A cylindrical lithium ion secondary battery (18650 size) having a design rated capacity of 1900 mAh was assembled in the same manner as described above.

【0136】なお、正極用の塗液を室温で20時間放置
し、B型粘度計を用いて粘度測定を行ったところ、20
時間後の粘度はおよそ5000mPa・sであり、調製
直後とほぼ同じであった。
The coating solution for the positive electrode was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer.
The viscosity after time was about 5000 mPa · s, which was almost the same as immediately after preparation.

【0137】(実施例24) <正極の作製>実施例1で説明したのと同様なLiNi
0.8 Co0.22 粉末100重量部、平均粒径が50n
mのアセチレンブラック2.5重量部(50重量%)お
よび平均粒径が1μmの鱗片状黒鉛(人造黒鉛)2.5
重量部(50重量%)をミキサにより混合し、得られた
混合物を変性ポリフッ化ビニリデン(ビニリデンフルオ
ロライドの2つのフッ素をカルボシキル基でそれぞれ置
換し、無水物としたモノマー1重量%とビニリデンフル
オロライドとを重合させることにより得られる)1重量
部(33重量%)と実施例1で説明したのと同様な種類
のアクリル系ゴム質共重合体2重量部(67重量%)と
が溶解されたN―メチル―2―ピロリドンに分散させ、
更に増粘剤としてカルボキシメチルセルロース(CM
C)を加えて攪拌することにより粘度が5000mPa
・sのペースト(塗液)を調製した。
(Example 24) <Preparation of positive electrode> LiNi similar to that described in Example 1 was used.
0.8 Co 0.2 O 2 powder 100 parts by weight, average particle size 50n
m acetylene black 2.5 parts by weight (50% by weight) and flaky graphite (artificial graphite) 2.5 having an average particle size of 1 μm
Parts by weight (50% by weight) were mixed with a mixer, and the resulting mixture was treated with 1% by weight of a monomer obtained as an anhydride by replacing two fluorines of a modified polyvinylidene fluoride (vinylidene fluoride with a carboxy group), and vinylidene fluoride. And 2 parts by weight (67% by weight) of an acrylic rubbery copolymer of the same type as described in Example 1. Dispersed in N-methyl-2-pyrrolidone,
Furthermore, carboxymethylcellulose (CM
The viscosity is 5000 mPa by adding C) and stirring.
・ A paste (coating liquid) was prepared.

【0138】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであった。
The coating liquid was left at room temperature for 20 hours, and the viscosity was measured using a B-type viscometer. The viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation.

【0139】そこで、この塗液を集電体としてのアルミ
ニウム箔の両面に塗布し、乾燥させ、圧延し、正極を作
製した。前記正極から実施例1と同様にして設計定格容
量1900mAhの円筒形リチウムイオン二次電池(1
8650サイズ)を組み立てた。
Thus, this coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. From the positive electrode, a cylindrical lithium ion secondary battery (1
8650 size).

【0140】(比較例6)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック2.5重量部及び平
均粒径が20μmの鱗片状黒鉛2.5重量部をミキサに
より混合し、得られた混合物をポリフッ化ビニリデン3
重量部が溶解されたN―メチル―2―ピロリドンに分散
させ、粘度が5000mPa・sのペースト(塗液)を
調製した。調製直後の塗液は、集電体への塗布に適した
流動性を有していた。この塗液を20時間放置したとこ
ろ、前記塗液は硬化にまで至らないものの、ゲル化が認
められ、集電体への塗布ができなかった。そこで、再び
塗液を調製し、速やかに集電体へ塗布することにより正
極を作製した。前記正極から実施例1と同様にして設計
定格容量1900mAhの円筒形リチウムイオン二次電
池(18650サイズ)を組み立てた。
Comparative Example 6 100 parts by weight of LiNi 0.8 Co 0.2 O 2 powder similar to that described in Example 1, 2.5 parts by weight of acetylene black having an average particle diameter of 50 nm, and scale having an average particle diameter of 20 μm 2.5 parts by weight of glassy graphite is mixed with a mixer, and the resulting mixture is mixed with polyvinylidene fluoride 3
A part by weight was dispersed in the dissolved N-methyl-2-pyrrolidone to prepare a paste (coating liquid) having a viscosity of 5000 mPa · s. The coating liquid immediately after preparation had fluidity suitable for coating on a current collector. When this coating liquid was left for 20 hours, the coating liquid did not reach curing, but gelation was observed, and application to the current collector could not be performed. Therefore, a coating liquid was prepared again, and immediately applied to the current collector to prepare a positive electrode. A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled from the positive electrode in the same manner as in Example 1.

【0141】(比較例7)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部及び平均
粒径が50nmのアセチレンブラック5重量部をミキサ
により混合し、得られた混合物をポリフッ化ビニリデン
1重量部及び実施例1で説明したのと同様な種類のアク
リル系ゴム質共重合体2重量部が溶解されたN―メチル
―2―ピロリドンに分散させ、更に増粘剤としてカルボ
キシメチルセルロース(CMC)を加えて攪拌すること
により粘度が5000mPa・sのペースト(塗液)を
調製した。得られた塗液は、流動性に欠けており、集電
体への塗布に適さないものであった。
Comparative Example 7 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 5 parts by weight of acetylene black having an average particle diameter of 50 nm were mixed by a mixer, and the resulting mixture was obtained. Is dispersed in N-methyl-2-pyrrolidone in which 1 part by weight of polyvinylidene fluoride and 2 parts by weight of an acrylic rubbery copolymer of the same type as described in Example 1 are dissolved, and further as a thickener A paste (coating liquid) having a viscosity of 5000 mPa · s was prepared by adding carboxymethyl cellulose (CMC) and stirring. The obtained coating liquid lacked fluidity and was not suitable for application to a current collector.

【0142】この塗液を室温で20時間放置し、B型粘
度計を用いて粘度測定を行ったところ、20時間後の粘
度はおよそ5000mPa・sであり、調製直後とほぼ
同じであったが、流動性に欠けており、集電体への塗布
に適さないものであった。
When this coating solution was left at room temperature for 20 hours and the viscosity was measured using a B-type viscometer, the viscosity after 20 hours was about 5000 mPa · s, which was almost the same as immediately after the preparation. However, it lacked fluidity and was not suitable for application to a current collector.

【0143】得られた塗液を集電体としてのアルミニウ
ム箔の両面に塗布し、乾燥させ、圧延し、正極を作製し
た。前記正極から実施例1と同様にして設計定格容量1
900mAhの円筒形リチウムイオン二次電池(186
50サイズ)を組み立てた。
The obtained coating solution was applied to both sides of an aluminum foil as a current collector, dried, and rolled to produce a positive electrode. Design rated capacity 1 from the positive electrode in the same manner as in Example 1.
900 mAh cylindrical lithium ion secondary battery (186
50 size).

【0144】(比較例8)実施例1で説明したのと同様
なLiNi0.8 Co0.22 粉末100重量部、平均粒
径が50nmのアセチレンブラック5重量部をミキサに
より混合し、得られた混合物を変性ポリフッ化ビニリデ
ン(ビニリデンフルオロライドの2つのフッ素をカルボ
シキル基でそれぞれ置換し、無水物としたモノマー1重
量%とビニリデンフルオロライドとを重合させることに
より得られる)3重量部が溶解されたN―メチル―2―
ピロリドンに分散させ、粘度が5000mPa・sのペ
ースト(塗液)を調製した。得られた塗液は、流動性に
欠けており、集電体への塗布に適さないものであった。
Comparative Example 8 100 parts by weight of the same LiNi 0.8 Co 0.2 O 2 powder as described in Example 1 and 5 parts by weight of acetylene black having an average particle diameter of 50 nm were mixed by a mixer, and the resulting mixture was obtained. Was dissolved in 3 parts by weight of a modified polyvinylidene fluoride (obtained by substituting the two fluorines of vinylidene fluoride with carboxyl groups and polymerizing 1% by weight of an anhydride monomer and vinylidene fluoride). -Methyl-2-
It was dispersed in pyrrolidone to prepare a paste (coating liquid) having a viscosity of 5000 mPa · s. The obtained coating liquid lacked fluidity and was not suitable for application to a current collector.

【0145】この塗液を室温で20時間放置したとこ
ろ、塗液は完全に硬化し、集電体への塗布を行えなかっ
た。そこで、同様にして再び塗液を調製し、速やかに集
電体に塗布することにより正極を作製した。前記正極か
ら実施例1と同様にして設計定格容量1900mAhの
円筒形リチウムイオン二次電池(18650サイズ)を
組み立てた。
When this coating solution was left at room temperature for 20 hours, the coating solution was completely cured and could not be applied to the current collector. Therefore, a coating liquid was prepared again in the same manner, and immediately applied to the current collector to produce a positive electrode. A cylindrical lithium ion secondary battery (18650 size) having a designed rated capacity of 1900 mAh was assembled from the positive electrode in the same manner as in Example 1.

【0146】実施例13〜24及び比較例6〜8の二次
電池について、正極活物質、導電剤及び結着剤の種類及
び配合割合を下記表6〜9に示す。得られた実施例13
〜24及び比較例6〜8の二次電池の正極について、前
述したのと同様にして引っ張り試験機による剥離強度試
験を実施し、密着強度を測定し、その結果を下記表10
に示す。なお、表10には実施例1の結果を併記する。
For the secondary batteries of Examples 13 to 24 and Comparative Examples 6 to 8, the types and mixing ratios of the positive electrode active material, the conductive agent and the binder are shown in Tables 6 to 9 below. Example 13 obtained
The positive electrodes of the secondary batteries of Comparative Examples 6 to 8 and Comparative Examples 6 to 8 were subjected to a peel strength test using a tensile tester in the same manner as described above, and the adhesion strength was measured.
Shown in Table 10 also shows the results of Example 1.

【0147】また、実施例13〜24及び比較例6〜8
の二次電池について、前述したのと同様にしてサイクル
寿命試験を行い、その結果を下記表10に示す。なお、
表10には実施例1の結果を併記する。
Examples 13 to 24 and Comparative Examples 6 to 8
Was subjected to a cycle life test in the same manner as described above, and the results are shown in Table 10 below. In addition,
Table 10 also shows the results of Example 1.

【0148】さらに、前述した実施例1、実施例13〜
24及び比較例6〜8の二次電池について、大電流放電
特性を測定した。この大電流放電特性の規定は、2つの
電流値で放電した際に得られる各放電容量の比で規定す
る方法を採用した。すなわち、電池の公称容量である1
900mAhを1時間で放電する1900mAhの電流
を1Cとした際に、0.2Cで放電したときの放電容量
(0.2C)、3Cで放電したときの放電容量(3C)
をそれぞれ測定し、2つの放電容量の比である放電容量
(3C)/放電容量(0.2C)の値を大電流放電容量
比とし、その結果を下記表10に示す。
Further, the above-described Embodiments 1 and 13 to
24 and the secondary batteries of Comparative Examples 6 to 8 were measured for large-current discharge characteristics. This large current discharge characteristic was defined by a method of defining the ratio of each discharge capacity obtained when discharging at two current values. That is, 1 which is the nominal capacity of the battery
When the current of 1900 mAh for discharging 900 mAh in 1 hour is 1 C, the discharge capacity when discharging at 0.2 C (0.2 C) and the discharging capacity when discharging at 3 C (3 C)
Is measured, and the value of the discharge capacity (3C) / discharge capacity (0.2C), which is the ratio of the two discharge capacities, is defined as the large current discharge capacity ratio. The results are shown in Table 10 below.

【0149】[0149]

【表6】 [Table 6]

【0150】[0150]

【表7】 [Table 7]

【0151】[0151]

【表8】 [Table 8]

【0152】[0152]

【表9】 [Table 9]

【0153】[0153]

【表10】 [Table 10]

【0154】表6〜10から明らかなように、平均粒径
が100nm以下の炭素質物A及び平均粒径が1μm以
上の炭素質物Bを含む導電剤と、フッ化ビニリデン系フ
ッ素樹脂及びアクリル系ゴム質共重合体を含む結着剤と
を含有する実施例1,13〜24の正極は、結着剤がフ
ッ化ビニリデン系フッ素樹脂のみからなる比較例6,8
の正極、及び導電剤が前記炭素質物Aのみからなる比較
例7の正極に比べて、集電体と塗液との密着強度が高い
ことがわかる。また、実施例1,13〜24の二次電池
は、比較例6〜8の二次電池に比べてサイクル寿命及び
大電流放電特性の双方が優れていることがわかる。
As is clear from Tables 6 to 10, a conductive agent containing carbonaceous material A having an average particle size of 100 nm or less and carbonaceous material B having an average particle size of 1 μm or more, a vinylidene fluoride fluororesin and an acrylic rubber The positive electrodes of Examples 1 and 13 to 24 containing a binder containing a porous copolymer were used in Comparative Examples 6 and 8 in which the binder consisted only of a vinylidene fluoride-based fluororesin.
It can be seen that the adhesion strength between the current collector and the coating liquid is higher than that of the positive electrode of Comparative Example 7 and the positive electrode of Comparative Example 7 in which the conductive agent is only the carbonaceous material A. In addition, it can be seen that the secondary batteries of Examples 1 and 13 to 24 are superior to the secondary batteries of Comparative Examples 6 to 8 in both cycle life and large current discharge characteristics.

【0155】なお、前述した実施例においては、円筒形
リチウムイオン二次電池に適用した例を説明したが、有
底矩形筒状の容器内に正極、負極、セパレータ及び非水
電解液が収納された構造の角形リチウムイオン二次電池
にも同様に適用することができる。
In the above-described embodiment, an example in which the present invention is applied to a cylindrical lithium ion secondary battery has been described. However, a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are accommodated in a bottomed rectangular cylindrical container. The same can be applied to a prismatic lithium ion secondary battery having a different structure.

【0156】[0156]

【発明の効果】以上詳述したように本発明に係るリチウ
ム二次電池によれば、正極における塗液のゲル化を抑制
することができ、前記塗液と集電体との密着性を向上す
ることができ、充放電サイクル寿命を向上することがで
きる等の顕著な効果を奏する。
As described above in detail, according to the lithium secondary battery of the present invention, it is possible to suppress the gelation of the coating liquid on the positive electrode, and to improve the adhesion between the coating liquid and the current collector. And a remarkable effect such as improvement in the charge / discharge cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるリチウム二次電池(例えば、円
筒形リチウム二次電池)を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a lithium secondary battery (for example, a cylindrical lithium secondary battery) according to the present invention.

【符号の説明】[Explanation of symbols]

1…容器、 3…電極群、 4…正極、 5…セパレータ、 6…負極、 8…絶縁封口板。 DESCRIPTION OF SYMBOLS 1 ... container, 3 ... electrode group, 4 ... positive electrode, 5 ... separator, 6 ... negative electrode, 8 ... insulating sealing plate.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−162357(JP,A) 特開 平8−222206(JP,A) 特開 昭62−160656(JP,A) 特開 平9−199132(JP,A) 特開 平9−213337(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-162357 (JP, A) JP-A-8-222206 (JP, A) JP-A-62-160656 (JP, A) JP-A-9-96 199132 (JP, A) JP-A-9-213337 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式LiNi1-xx2(但し、前記
Mは1種以上の元素からなり、xは0<x≦0.5を示
す)で表されるリチウム複合金属酸化物と、平均粒径が
100nm以下の炭素質物A及び平均粒径が1μm以上
の炭素質物Bを含む導電剤と、アクリル系ゴム質共重合
及びフッ化ビニリデン系フッ素樹脂からなる結着剤と
を含有する正極合剤が集電体に担持された構造の正極
と、 負極と、 非水電解液とを具備し、 前記結着剤中のフッ化ビニリデン系フッ素樹脂の混合比
は45重量%以下である ことを特徴とするリチウム二次
電池。
1. A lithium composite metal oxide represented by a composition formula: LiNi 1-x M x O 2 (where M is one or more elements and x represents 0 <x ≦ 0.5) And a conductive agent containing a carbonaceous material A having an average particle size of 100 nm or less and a carbonaceous material B having an average particle size of 1 μm or more, and a binder made of an acrylic rubbery copolymer and a vinylidene fluoride-based fluororesin.
Having a structure in which a positive electrode mixture containing
, A negative electrode, and a non-aqueous electrolyte, and a mixing ratio of a vinylidene fluoride-based fluororesin in the binder.
Is 45% by weight or less .
【請求項2】 前記結着剤中のフッ化ビニリデン系フッ
素樹脂の混合比は30〜45重量%の範囲内であること
を特徴とする請求項1記載のリチウム二次電池。
2. The vinylidene fluoride-based fluorine in the binder.
The mixing ratio of the resin must be within the range of 30 to 45% by weight.
The lithium secondary battery according to claim 1, wherein:
【請求項3】 前記非水電解液は、ECとPCとγ−B
L、ECとPCとMEC、ECとPCとDEC、ECと
PCとDEE、ECとAN、ECとMEC、PCとDM
C、またはPCとDECからなる非水溶媒と、前記非水
溶媒に溶解された電解質とを含むことを特徴とする請求
項1ないし2いずれか1項記載のリチウム二次電池。
3. The non-aqueous electrolyte comprises EC, PC and γ-B.
L, EC and PC and MEC, EC and PC and DEC, EC and
PC and DEE, EC and AN, EC and MEC, PC and DM
C or a non-aqueous solvent comprising PC and DEC;
And an electrolyte dissolved in a solvent.
Item 3. The lithium secondary battery according to any one of Items 1 to 2.
JP10184443A 1998-06-30 1998-06-30 Lithium secondary battery Expired - Lifetime JP2971451B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10184443A JP2971451B1 (en) 1998-06-30 1998-06-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10184443A JP2971451B1 (en) 1998-06-30 1998-06-30 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2971451B1 true JP2971451B1 (en) 1999-11-08
JP2000021407A JP2000021407A (en) 2000-01-21

Family

ID=16153246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10184443A Expired - Lifetime JP2971451B1 (en) 1998-06-30 1998-06-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2971451B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251280A (en) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN111788719A (en) * 2018-04-02 2020-10-16 株式会社东芝 Electrode, nonaqueous electrolyte battery, and battery pack
CN113964309A (en) * 2021-11-09 2022-01-21 惠州锂威新能源科技有限公司 Negative electrode slurry and preparation method thereof, negative electrode plate and secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059992B2 (en) * 2000-09-06 2012-10-31 株式会社東芝 Positive electrode and non-aqueous electrolyte secondary battery
JP2002298928A (en) * 2001-03-30 2002-10-11 Ngk Insulators Ltd Evaluation method for electrode body, lithium secondary battery using the same, and its manufacturing method
JP4025094B2 (en) * 2002-03-04 2007-12-19 三菱電線工業株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the positive electrode
JP2003297356A (en) * 2002-04-02 2003-10-17 Toyota Central Res & Dev Lab Inc Positive electrode black mix slurry for lithium secondary battery, positive electrode using the same, and lithium secondary battery
JP4859373B2 (en) 2004-11-30 2012-01-25 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP4904709B2 (en) * 2005-03-25 2012-03-28 日本ゼオン株式会社 Binder composition for positive electrode of lithium ion secondary battery and use thereof
JP4915055B2 (en) * 2005-04-18 2012-04-11 パナソニック株式会社 Method for producing positive electrode plate for lithium secondary battery, and lithium secondary battery using positive electrode plate by this production method
JP5428126B2 (en) * 2005-10-07 2014-02-26 日立化成株式会社 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same
JP4876535B2 (en) * 2005-11-01 2012-02-15 パナソニック株式会社 Manufacturing method of positive electrode plate for lithium secondary battery and lithium secondary battery using positive electrode by this manufacturing method
KR20070065803A (en) * 2005-12-20 2007-06-25 소니 가부시끼 가이샤 Cathode active material and lithium ion secondary battery
EP2034542B1 (en) * 2006-06-27 2015-06-03 Kao Corporation Composite positive electrode material for lithium ion battery and battery using the same
JP2008159410A (en) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
WO2010092977A1 (en) * 2009-02-12 2010-08-19 ダイキン工業株式会社 Electrode mixture slurry for lithium secondary batteries, and electrode and lithium secondary battery that use said slurry
JP2010272272A (en) * 2009-05-20 2010-12-02 Hitachi Ltd Positive electrode for lithium secondary battery, and lithium secondary battery
KR20120112397A (en) * 2009-12-25 2012-10-11 제온 코포레이션 Positive electrode for secondary battery, and secondary battery
JPWO2011105126A1 (en) * 2010-02-24 2013-06-20 日立マクセル株式会社 Positive electrode material, manufacturing method thereof, positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP6523443B2 (en) * 2014-10-02 2019-05-29 エルジー・ケム・リミテッド Positive electrode active material slurry containing rubber-based binder and positive electrode produced therefrom
WO2017061504A1 (en) * 2015-10-05 2017-04-13 日立化成株式会社 Resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
WO2018092676A1 (en) * 2016-11-15 2018-05-24 株式会社クレハ Electrode mixture, electrode mixture production method, electrode structure body, electrode structure body production method and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251280A (en) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
CN111788719A (en) * 2018-04-02 2020-10-16 株式会社东芝 Electrode, nonaqueous electrolyte battery, and battery pack
CN111788719B (en) * 2018-04-02 2023-09-22 株式会社东芝 Electrode, nonaqueous electrolyte battery and battery pack
CN113964309A (en) * 2021-11-09 2022-01-21 惠州锂威新能源科技有限公司 Negative electrode slurry and preparation method thereof, negative electrode plate and secondary battery

Also Published As

Publication number Publication date
JP2000021407A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP2971451B1 (en) Lithium secondary battery
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
US20120295159A1 (en) Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5070657B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode of nonaqueous electrolyte secondary battery
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
US20220013784A1 (en) Negative electrode and secondary battery including same
KR20040044095A (en) NEGATIVE ELECTRODE FOR NON-AQUEOUS SECONDARY CELL, NON-AQUEOUS SECONDARY CELL COMPRISING THE SAME, METHOD FOR PRODUCING THE SAME AND ELECTRONIC DEVICE COMPRISING NON-x
CN107851802B (en) Slurry for positive electrode of lithium ion secondary battery, positive electrode, battery and method for producing same
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPWO2015151525A1 (en) Secondary battery electrode binder composition, secondary battery electrode slurry composition, secondary battery electrode, and secondary battery
JP4098505B2 (en) ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR LITHIUM SECONDARY BATTERY, AND LITHIUM SECONDARY BATTERY
WO2018168520A1 (en) Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition
JP2011014262A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP5232353B2 (en) Non-aqueous electrolyte secondary battery electrode composition, electrode and battery using the same
JPH11288718A (en) Nonaqueous solvent secondary battery
JP3981866B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP2020077620A (en) Binder composition for electrochemical device
JP2000195518A (en) Nonaqueous electrolyte secondary battery
JP3877147B2 (en) Method for producing positive electrode for lithium battery
KR101083129B1 (en) 2 method for preparing slurry composition for electrode of secondary cell
JP7311059B2 (en) Negative electrode binder composition, negative electrode, and secondary battery
JP7359337B1 (en) Negative electrode binder composition, method for producing the same, negative electrode, and secondary battery
WO2010082240A1 (en) Composite oxide, process for production thereof, and non-aqueous electrolyte secondary battery using the composite oxide
WO2023199657A1 (en) Negative electrode binder composition, method for producing same, negative electrode and secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 14

EXPY Cancellation because of completion of term