WO2018168520A1 - Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition - Google Patents

Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition Download PDF

Info

Publication number
WO2018168520A1
WO2018168520A1 PCT/JP2018/007981 JP2018007981W WO2018168520A1 WO 2018168520 A1 WO2018168520 A1 WO 2018168520A1 JP 2018007981 W JP2018007981 W JP 2018007981W WO 2018168520 A1 WO2018168520 A1 WO 2018168520A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
electrode
battery
binder composition
binder
Prior art date
Application number
PCT/JP2018/007981
Other languages
French (fr)
Japanese (ja)
Inventor
有紀 太田
雄介 天野
岩崎 秀治
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019505878A priority Critical patent/JP7110170B2/en
Publication of WO2018168520A1 publication Critical patent/WO2018168520A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a nonaqueous electrolyte battery, a binder aqueous solution for a nonaqueous electrolyte battery, a slurry composition for a nonaqueous electrolyte battery, a nonaqueous electrolyte battery electrode, and a nonaqueous electrolyte battery using the binder composition.
  • Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
  • a non-aqueous electrolyte battery such as a lithium ion secondary battery has a positive electrode and a negative electrode installed via a separator, and LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide). )) And a lithium salt dissolved in an organic liquid such as ethylene carbonate in a container.
  • the above negative electrode and positive electrode are usually for electrodes obtained by dissolving or dispersing a binder and a thickener in water or a solvent and mixing this with an active material and, if necessary, a conductive additive (conductivity imparting agent).
  • a slurry (hereinafter sometimes simply referred to as a slurry) is applied to a current collector, and water or a solvent is dried to form a mixed layer so as to be bound.
  • a carbonaceous material capable of occluding and releasing lithium ions which is an active material, and, if necessary, acetylene black, a conductive auxiliary agent, are secondary to a current collector such as copper.
  • LiCoO 2 that is an active material and, if necessary, a conductive aid similar to that of the negative electrode are bound to a current collector such as aluminum using a secondary battery electrode binder. Is.
  • the most industrially used binder for aqueous media is a system in which carboxymethylcellulose sodium salt (CMC-Na) is added as a thickener to a diene rubber such as styrene-butadiene rubber (SBR).
  • CMC-Na carboxymethylcellulose sodium salt
  • SBR styrene-butadiene rubber
  • diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced to increase the adhesion between the collector and the electrode material.
  • the capacity maintenance rate is low due to weakness against heat generated during charging and discharging.
  • it since it is a two-component system, it has problems in manufacturing such as low storage stability and complicated slurry preparation process.
  • an acrylic binder such as polyacrylic acid (for example, Patent Document 2) or a polyamide / imide binder (for example, Patent Document 3) has been developed. .
  • Acrylic binders are excellent in that they exhibit high adhesion and have low swellability to electrolytes. On the other hand, there is a problem that the electric resistance is high, the flexibility is poor, and the electrode is easily broken. As for flexibility, for example, Patent Document 4 discloses that a nitrile group is introduced and improved, but the electrical resistance still tends to be high.
  • polyamide / imide binders also exhibit high adhesion, and are particularly excellent in electrical, thermal stability, and mechanical strength.
  • the problem is that, like acrylic binders, the electrical resistance is high, the flexibility is poor and the electrode is easily cracked, but the mechanical strength is utilized to accompany the insertion and desorption of lithium ions during charging and discharging.
  • An example of supplementing flexibility by using a metal oxide having a large expansion and contraction of an electrode as a negative electrode active material has been reported (for example, Patent Document 5).
  • Patent Document 5 An example of supplementing flexibility by using a metal oxide having a large expansion and contraction of an electrode as a negative electrode active material has been reported (for example, Patent Document 5).
  • Patent Document 5 An example of supplementing flexibility by using a metal oxide having a large expansion and contraction of an electrode as a negative electrode active material has been reported (for example, Patent Document 5).
  • Patent Document 5 the combination of polyamide / imide binder and metal oxide has not fully solved the problems of high resistance and poor flexibility, and the polyamide
  • the battery capacity is affected by the amount of active material, it is effective to suppress the amount of binder and thickener in order to increase the active material in a limited space of the battery.
  • the rate characteristics are also affected by the ease of electron movement, it is effective to suppress the amount of binder and thickener that are non-conductive and prevent electron movement.
  • the amount of the binder and the thickener is reduced, the binding property between the collector electrode and the electrode material and the active material in the electrode is lowered, and the durability (battery life) for long-term use is significantly reduced.
  • the electrode becomes brittle.
  • the present invention has been made in view of the above-mentioned problems, and the battery characteristics in the nonaqueous electrolyte battery are obtained without impairing the function as the binder, that is, the binding property between the active materials and the collector electrode and the toughness as the electrode.
  • the purpose is to improve (high efficiency).
  • the present inventors have found that the above object can be achieved by using a binder composition for a nonaqueous electrolyte battery having the following constitution, and further studies are made based on this finding.
  • the present invention was completed by overlapping.
  • the binder composition for a nonaqueous electrolyte battery according to one aspect of the present invention includes (A) polyvinyl alcohol, and (B) vinyl alcohol and an ethylenically unsaturated carboxylic acid. And at least one selected from a copolymer of the above and a neutralized salt thereof.
  • the binder composition for a nonaqueous electrolyte battery of the present embodiment includes the following (A) and (B): (A) polyvinyl alcohol, (B) At least one selected from a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof.
  • a binder composition for a nonaqueous electrolyte battery having binding properties and toughness can be obtained, and further, the battery characteristics (high efficiency) of the nonaqueous electrolyte battery can be improved using the binder composition. can do.
  • the content of polyvinyl alcohol as component (A) in the binder composition of the present embodiment is not particularly limited, but is preferably 50% by weight or less, and 40% by weight or less. Is more preferable, and it is still more preferable that it is 30 weight% or less. Further, the lower limit of the content of the polyvinyl alcohol is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. When the content of the component (A) exceeds 50% by weight, the electrical resistance may increase and high charge / discharge efficiency may not be obtained. When the content is less than 1% by weight, the slurry stability may deteriorate. .
  • the adhesiveness is improved by increasing the cohesiveness of the binder due to the carboxyl group and the affinity with the collector electrode.
  • the molecular weight distribution is apparently broadened, and the crystallinity of the polymer is further lowered, so that an effect of improving flexibility can be expected.
  • an effect of improving the slurry stability can be expected by suppressing aggregation of a single polymer by intermolecular interaction with a different polymer.
  • the saponification degree of polyvinyl alcohol is not particularly limited, and is usually 50 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more.
  • the degree of saponification is low, it is not preferable because the alkali metal contained in the binder composition may be hydrolyzed and stability may not be determined.
  • the ethylenically unsaturated carboxylic acid constituting the component (B) is, for example, ethylenically unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, methyl ester of methacrylic acid, ethyl ester, crotonic acid, And ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid and maleic acid.
  • acrylic acid, methacrylic acid, and maleic acid are particularly preferable from the viewpoints of availability, polysynthesis, and product stability.
  • One of these ethylenically unsaturated carboxylic acid esters may be used alone, or two or more thereof may be used in combination.
  • the content ratio of vinyl alcohol and ethylenically unsaturated carboxylic acid in the copolymer of component (B) of this embodiment is preferably in the range of 100/1 to 1/100 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. When there is too little ethylenically unsaturated carboxylic acid, adhesiveness and a softness
  • the copolymerization form is not particularly limited, and random copolymerization , Alternating copolymerization, block copolymerization, graft copolymerization and the like.
  • block copolymerization and graft copolymerization in which vinyl alcohol is regularly arranged are preferable.
  • a graft copolymer is more preferable.
  • the method for producing the copolymer of the present embodiment is not particularly limited, and any polymerization initiation method such as anionic polymerization, cationic polymerization, or radical polymerization may be used.
  • the polymer production method may be solution polymerization. Any method such as bulk polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization may be used.
  • the amount of the ethylenically unsaturated carboxylic acid modification is 0.1 It is preferably about ⁇ 60 mol%. Thereby, there exists an advantage that toughness and low resistance can be provided.
  • a more preferable modification amount of the ethylenically unsaturated carboxylic acid is about 1 to 40 mol%.
  • the amount of ethylenically unsaturated carboxylic acid modification in this embodiment can be quantified by, for example, nuclear magnetic resonance spectroscopy (NMR).
  • the amount of modification with the ethylenically unsaturated carboxylic acid is preferably less than 20 mol%, and more preferably less than 15 mol%. From the viewpoint of improving low resistance, it is also a preferred embodiment that the amount of modification with the ethylenically unsaturated carboxylic acid is 11 mol% or more.
  • the average molecular weight of the copolymer of the present embodiment is preferably a number average molecular weight of 5,000 to 250,000. When the number average molecular weight of the copolymer is less than 5,000, the mechanical strength of the binder may be lowered. The number average molecular weight is more preferably 10,000 or more, and further preferably 15,000 or more. On the other hand, when the number average molecular weight of the copolymer exceeds 250,000, the viscosity stability of the slurry composition for non-aqueous electrolyte batteries is reduced, and the handling properties are insufficient, such as causing the aggregation of the slurry. There is a fear.
  • the number average molecular weight is more preferably 200,000 or less, and further preferably 150,000 or less.
  • the number average molecular weight of the copolymer in the present invention means a value measured by a gel permeation chromatography (GPC) method using polyethylene oxide and polyethylene glycol as standard substances and an aqueous column as a column.
  • GPC gel permeation chromatography
  • the neutralized salt of a copolymer is a neutralized product by reacting an active hydrogen of carbonyl acid generated from an ethylenically unsaturated carboxylic acid with a basic substance to form a salt. It is preferable.
  • a monovalent metal is used as the basic substance from the viewpoint of binding properties as a binder. It is preferable to use a basic substance containing and / or ammonia.
  • Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like.
  • ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable.
  • ammonia or lithium hydroxide as a binder for a lithium ion secondary battery.
  • the basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more.
  • a neutralized product may be prepared by using a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected.
  • the degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0. It is preferably in the range of 1 to 1 equivalent, and more preferably neutralized in the range of 0.3 to 1 equivalent. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
  • the determination method of the degree of neutralization can use methods such as titration with a base, infrared spectrum, NMR spectrum, etc.
  • titration with a base is used.
  • the specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization.
  • the indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein whose pH is indicated by a base can be used.
  • the usage amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use, etc., but is usually an ethylenically unsaturated carboxylic acid unit.
  • the amount is preferably 0.1 to 1 equivalent to the amount.
  • the amount of the basic substance containing a monovalent metal is preferably 0.3 to 1.0 equivalent, more preferably 0.4 to 1.0, based on the maleic acid unit in the maleic acid copolymer. When the amount is equivalent, a water-soluble copolymer salt with little alkali residue can be obtained.
  • reaction of (B) vinyl alcohol with an ethylenically unsaturated carboxylic acid copolymer and / or a neutralized salt thereof can be carried out according to a conventional method.
  • the method obtained as an aqueous solution is simple and preferable.
  • the content of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and / or neutralized salt thereof as component (B) is not particularly limited, It is preferably 99.9% by weight or less, more preferably 99.5% by weight or less, and still more preferably 99% by weight or less.
  • the lower limit of the content is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, and more preferably 80% by weight or more. Particularly preferred.
  • the content of the component (B) exceeds 99.9% by weight, the slurry stability may be deteriorated.
  • the electrical resistance increases and high charge / discharge efficiency cannot be obtained. There is.
  • the composition ratio of the component (A) and the component (B) is preferably about 0.1: 99.9 to 50:50 in terms of solid content weight ratio. More preferably, it is about 1:99 to 40:60. Further, from the viewpoint of obtaining low resistance, the composition ratio of the component (A) and the component (B) is preferably 1:99 to 30:70, and is about 1:99 to 20:80. More preferably.
  • the binder composition of this embodiment is usually used as a binder aqueous solution for a non-aqueous electrolyte battery comprising the above-described binder composition and water.
  • the binder composition for a nonaqueous electrolyte battery of the present embodiment is usually a slurry composition for a nonaqueous electrolyte battery (hereinafter simply referred to as a slurry composition), which further contains an active material and water in addition to the binder composition described above. (Also referred to as). That is, the slurry composition of this embodiment contains the binder composition of this embodiment mentioned above, an active material, and water.
  • the electrode for a nonaqueous electrolyte battery is characterized in that a mixed layer containing at least the binder composition of the present embodiment and an active material is bound to a current collector.
  • This electrode can be formed by applying the slurry composition described above to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductive aid and the like can be added to the mixed layer.
  • the amount of the binder composition used is usually preferably 0.1 to 15% by weight, more preferably 0.00. 5 to 10% by weight, more preferably 1 to 8% by weight. If the amount of the binder composition is excessively small, the viscosity of the slurry is too low and the thickness of the mixed layer may be reduced. If the amount of the binder composition is excessively large, the discharge capacity may be reduced.
  • the amount of water in the slurry composition is usually preferably 30 to 150% by weight, more preferably 70 to 120% by weight, where the weight of the active material is 100.
  • the solvent in the slurry composition of the present embodiment in addition to the above water, for example, alcohols such as methanol, ethanol, propanol and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N— Amides such as dimethylformamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide can also be used. In these, use of water is preferable from a viewpoint of safety.
  • the following organic solvent may be used in combination within a range of preferably 20% by weight or less of the entire solvent.
  • Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol.
  • Esters such as ⁇ -butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
  • examples of the negative electrode active material added to the slurry composition include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and the like.
  • polyacene conductive polymer such as; carbonaceous material SiOx, SnOx, composite metal oxides and other metal oxides or lithium metal represented by LiTiOx, lithium metal such as lithium alloy; TiS 2, LiTiS 2 etc. Examples of the metal compound are as follows.
  • examples of the positive electrode active material added to the slurry composition include lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), and phosphoric acid.
  • a thickener can be further added to the slurry composition as necessary.
  • the thickener that can be added is not particularly limited, and various alcohols, unsaturated carboxylic acids and modified products thereof, ⁇ -olefin-maleic acids and modified products thereof, celluloses, starches and other polysaccharides can be used. Can be used.
  • the amount of the thickener used as necessary in the slurry composition is preferably about 0.1 to 4% by weight, more preferably 0.3 to 4% when the weight of the active material is 100. It is 3% by weight, more preferably 0.5 to 2% by weight. If the thickener is too small, the viscosity of the secondary battery negative electrode slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the thickener is excessively large, the discharge capacity may be reduced. .
  • examples of the conductive auxiliary compounded in the slurry composition as necessary include metal powder, conductive polymer, acetylene black, and the like.
  • the amount of the conductive aid used is usually preferably 0.1 to 10% by weight, more preferably 0.8 to 7% by weight when the weight of the active material is 100.
  • the electrode for a nonaqueous electrolyte battery is characterized in that a mixed layer containing at least the binder composition of the present embodiment and an active material is bound to a current collector.
  • the current collector used for the nonaqueous electrolyte battery negative electrode of the present embodiment is not particularly limited as long as it is made of a conductive material.
  • a conductive material For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the effect of the nonaqueous electrolyte battery negative electrode slurry of the present invention is most apparent. This is because the negative electrode having high affinity between the binder composition of the present embodiment and the copper foil can be produced.
  • the shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
  • the effect of the non-aqueous electrolyte battery negative electrode slurry of the present invention is most apparent. This is because the negative electrode having high affinity with the binder composition of the present embodiment and a certain non-nium foil can be produced.
  • the shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
  • the method for applying the slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method.
  • the amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material, conductive additive, binder and thickener formed after removing the solvent or dispersion medium by a method such as drying is preferably 0.005 to An amount of 5 mm, more preferably 0.01 to 2 mm is common.
  • the method for drying a solvent such as water contained in the slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; drying with infrared rays, far infrared rays, electron beams, and the like. .
  • the drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector.
  • the pressing method include a die press and a roll press.
  • the present invention also includes a nonaqueous electrolyte battery having the above electrode.
  • the nonaqueous electrolyte battery usually includes a negative electrode, a positive electrode, and an electrolytic solution.
  • the negative electrode normally used for nonaqueous electrolyte batteries such as a lithium ion secondary battery
  • the negative electrode active material is used without a restriction
  • graphite, hard carbon, Si-based oxide, etc. are used as the negative electrode active material.
  • the negative electrode active material is composed of the above-mentioned conductive additive and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C.
  • a negative electrode slurry prepared by mixing in a solvent at a temperature of 0 ° C. or lower can be applied to a negative electrode current collector such as a copper foil, and the solvent can be dried to obtain a negative electrode.
  • the positive electrode normally used for nonaqueous electrolyte batteries such as a lithium ion secondary battery
  • the positive electrode active material TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used.
  • the positive electrode active material is composed of the above-described conductive additive and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C.
  • a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C.
  • the positive electrode slurry prepared by mixing in a solvent at a temperature of 0 ° C. or lower can be applied to a positive electrode current collector such as aluminum and the solvent can be dried to obtain a positive electrode.
  • the electrode containing the binder composition of this embodiment can also be used for both the positive electrode and the negative electrode.
  • an electrolytic solution in which an electrolyte is dissolved in a solvent can be used.
  • the electrolyte solution may be liquid or gel as long as it is used for a non-aqueous electrolyte battery such as a normal lithium ion secondary battery, and functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. What is necessary is just to select suitably.
  • lithium salt for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N And lower aliphatic lithium carboxylates.
  • a solvent (electrolyte solvent) for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as ⁇ -butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane.
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc.
  • a gel electrolyte a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.
  • the nonaqueous electrolyte battery of this embodiment Although there is no limitation in particular as a method of manufacturing the nonaqueous electrolyte battery of this embodiment, for example, the following manufacturing method is illustrated. That is, the negative electrode and the positive electrode are overlapped with each other via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed.
  • the shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.
  • the nonaqueous electrolyte battery of this embodiment is a battery that achieves both improved adhesion and improved battery characteristics, and is useful for various applications.
  • the battery is very useful as a battery used in a portable terminal that is required to be small, thin, light, and have high performance.
  • the binder composition for a non-aqueous electrolyte battery is selected from (A) polyvinyl alcohol, and (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof. Including at least one of the following.
  • the battery characteristics can be improved without impairing the binding property between the active materials and the collector electrode and the toughness as an electrode.
  • At least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of block copolymerization. It is preferable. Thereby, it is considered that higher adhesiveness can be obtained.
  • At least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of graft copolymerization. It is preferable. Thereby, it is considered that both adhesiveness and flexibility can be achieved.
  • At least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof has an ethylenically unsaturated carboxylic acid modification amount of 0. It is preferably 1 to 60 mol%. Thereby, it is considered that toughness and low resistance can be imparted.
  • the content of the component (B) in the binder composition is preferably 50.0 to 99.9% by weight. Thereby, it is considered that slurry stability and higher charge / discharge efficiency can be obtained.
  • a binder aqueous solution for a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by containing the binder composition and water.
  • a slurry composition for a non-aqueous electrolyte battery according to still another aspect of the present invention is characterized by containing the binder composition, an active material, and water.
  • the electrode for a non-aqueous electrolyte battery according to still another aspect of the present invention is characterized in that a mixed layer containing the binder composition and the active material is bound to a current collector.
  • a nonaqueous electrolyte battery according to still another aspect of the present invention has the above electrode for a nonaqueous electrolyte battery.
  • Example 1 ⁇ Synthesis of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer> 100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 28-98s) was irradiated with an electron beam (30 kGy). Next, 33.4 g of acrylic acid and 466.6 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and a particle addition port, and the inside of the system was purged with nitrogen for 30 minutes while bubbling nitrogen. .
  • Lithium hydroxide was added in an amount of 0.5 equivalent to the carboxylic acid unit in the polymer to 100 g of the vinyl alcohol and acrylic acid copolymer 10% by weight aqueous solution obtained above, and heated and stirred at 80 ° C. for 2 hours. Cooled to room temperature.
  • the electrode slurry was prepared by adding 3 parts by weight of a 10% by weight aqueous solution of the binder composition as a solid content to 96 parts by weight of natural graphite (manufactured by DMGS, BYD) as an active material for a negative electrode, 1 part by weight of Super-P (manufactured by Timcal Co.) as a solid component was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Sinky) to prepare an electrode coating slurry. .
  • ⁇ Preparation of negative electrode for battery> The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo), and heated at 80 ° C. for 30 minutes. Then, after the primary drying, rolling was performed using a roll press (made by Hosen). Then, after punching out as a battery electrode ( ⁇ 14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours.
  • CST8G current collector copper foil
  • T101 manufactured by Matsuo Sangyo
  • the negative electrode for a battery obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere.
  • a metal lithium foil (thickness 0.2 mm, ⁇ 16 mm) was used for the positive electrode.
  • a polypropylene separator (Celgard # 2400, manufactured by Polypore) was used as a separator, and the electrolyte was ethylene carbonate (EC) of lithium hexafluorophosphate (LiPF 6 ) and vinylene carbonate (EMC) to vinylene carbonate (EMC).
  • EC ethylene carbonate
  • LiPF 6 lithium hexafluorophosphate
  • EMC vinylene carbonate
  • VC vinylene carbonate
  • the produced coin battery was subjected to a charge / discharge test using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System).
  • TOSCAT3100 commercially available charge / discharge tester
  • the coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed with a constant current of 0.1 C (about 0.5 mA / cm 2 ) with respect to the amount of active material until the voltage reaches 0 V with respect to the lithium potential.
  • the constant voltage charge of 0V was implemented to the electric current of 0.02 mA.
  • the capacity at this time was defined as a charging capacity (mAh / g).
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 4 100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s) was irradiated with an electron beam (30 kGy). Next, 33.5 g of acrylic acid and 466.5 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and a particle addition port, and the system was purged with nitrogen for 30 minutes while bubbling nitrogen. . 100 g of polyvinyl alcohol irradiated with an electron beam was added thereto, and the mixture was stirred and heated and refluxed for 300 minutes in a state where the particles were dispersed in the solution to carry out graft polymerization.
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 5 100 g of commercially available polyvinyl alcohol (Elvanol 71-30, manufactured by Kuraray Co., Ltd.) was irradiated with an electron beam (30 kGy). Next, 25 g of methacrylic acid and 475 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen introduction tube and a particle addition port, and the system was purged with nitrogen for 30 minutes while bubbling nitrogen. 100 g of polyvinyl alcohol irradiated with an electron beam was added thereto, and the mixture was stirred and heated and refluxed for 300 minutes in a state where the particles were dispersed in the solution to carry out graft polymerization.
  • polyvinyl alcohol Elvanol 71-30, manufactured by Kuraray Co., Ltd.
  • the particles were collected by filtration and vacuum-dried at 40 ° C. overnight to obtain the desired copolymer.
  • the amount of ethylenically unsaturated carboxylic acid modification of the obtained copolymer was 7.0 mol%.
  • 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-5) of the copolymer.
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • A-3 polyvinyl alcohol
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 7 A reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and an initiator addition port was charged with 370 g of water and 100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., M115), and heated at 95 ° C. with stirring. After the polyvinyl alcohol was dissolved, it was cooled to room temperature. 0.5N (N) sulfuric acid was added to the aqueous solution to adjust the pH to 3.0. To this was added 9.9 g of acrylic acid with stirring, and then the mixture was heated to 70 ° C. while bubbling nitrogen into the aqueous solution, and further purged with nitrogen by bubbling nitrogen for 30 minutes while maintaining 70 ° C.
  • N 0.5N
  • aqueous potassium persulfate solution (concentration: 2.5% by weight) was added dropwise to the aqueous solution over 1.5 hours. After addition of the entire amount, the temperature was raised to 75 ° C., and the mixture was further stirred for 1 hour, and then cooled to room temperature. The obtained aqueous solution was poured onto a PET film and dried in hot air at 80 ° C. for 30 minutes to produce a film. The film was frozen with liquid nitrogen, pulverized using a centrifugal pulverizer, and further vacuum dried at 40 ° C. overnight to obtain the desired copolymer. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 6.0 mol%.
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 11 A reactor equipped with a stirrer, reflux condenser, argon inlet, and initiator addition port was charged with 640 g of vinyl acetate, 240.4 g of methanol, and 0.88 g of acrylic acid, and nitrogen was bubbled through the system for 30 minutes. Replaced. Separately, a methanol solution of acrylic acid (concentration: 20% by weight) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled for 30 minutes. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.15 g of 2,2′-azobisisobutyronitrile was added to initiate polymerization.
  • the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and acrylic acid) in the polymerization solution became constant.
  • the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed while sometimes adding methanol under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate modified with acrylic acid.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 1 A 10% by weight aqueous solution of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 28-98s, saponification degree: 98) was prepared and used as a binder composition.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed.
  • a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed.
  • a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Comparative Example 2 A 10% by weight aqueous solution of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s, saponification degree: 88) was prepared and used as a binder composition.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed.
  • a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed.
  • a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 3 Using the same neutralized salt as in Example 1, a 10% by weight aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 4 Using the same neutralized salt as in Example 7, a 10 wt% aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 5 Using the same neutralized salt as in Example 11, a 10 wt% aqueous solution was prepared and used as a binder composition.
  • a slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed.
  • a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed.
  • a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Example 6 A 10 wt% aqueous solution of polyacrylic acid (manufactured by Aldrich, molecular weight 250,000) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
  • Comparative Examples 3 to 5 showed high charge / discharge efficiency, but on the other hand, since the slurry stability was low, it was difficult to form a uniform electrode. Compared with the Examples, slurry stability, toughness, adhesion Sex was not enough.
  • the binder composition of the present invention the battery characteristics of the nonaqueous electrolyte battery can be improved without impairing the binding property of the electrode binder and the toughness of the electrode.
  • the present invention has wide industrial applicability in the technical field related to non-aqueous electrolyte batteries such as lithium ion secondary batteries.

Abstract

The present invention relates to: a binder composition for non-aqueous electrolyte batteries, characterized by containing (A) polyvinyl alcohol and (B) at least one component selected from a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and neutralized salts thereof; and a binder aqueous solution for non-aqueous electrolyte batteries, a slurry composition for non-aqueous electrolyte batteries, an electrode for non-aqueous electrolyte batteries, a non-aqueous electrolyte battery and the like, in each of which the binder composition is used.

Description

非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池用電極、及び非水電解質電池Nonaqueous electrolyte battery binder composition, nonaqueous electrolyte battery binder aqueous solution, nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery using the same
 本発明は、非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池用電極、及び非水電解質電池に関する。 The present invention relates to a binder composition for a nonaqueous electrolyte battery, a binder aqueous solution for a nonaqueous electrolyte battery, a slurry composition for a nonaqueous electrolyte battery, a nonaqueous electrolyte battery electrode, and a nonaqueous electrolyte battery using the binder composition.
 近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。 In recent years, mobile terminals such as mobile phones, notebook computers, pad-type information terminal devices have been widely used. Lithium ion secondary batteries are frequently used as secondary batteries used for the power sources of these portable terminals. Since portable terminals are required to have more comfortable portability, miniaturization, thinning, weight reduction, and high performance have rapidly progressed, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are further required to be smaller, thinner, lighter, and higher in performance.
 リチウムイオン二次電池等の非水電解質電池は、正極と負極とをセパレーターを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。 A non-aqueous electrolyte battery such as a lithium ion secondary battery has a positive electrode and a negative electrode installed via a separator, and LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide). )) And a lithium salt dissolved in an organic liquid such as ethylene carbonate in a container.
 上記負極および正極は、通常、バインダーおよび増粘剤を水または溶剤に溶解、または分散させ、これに活物質、必要に応じて導電助剤(導電付与剤)などを混合して得られる電極用スラリー(以下、単にスラリーということがある)を集電体に塗布して、水または溶剤を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極は、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電助剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させたものである。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電助剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させたものである。 The above negative electrode and positive electrode are usually for electrodes obtained by dissolving or dispersing a binder and a thickener in water or a solvent and mixing this with an active material and, if necessary, a conductive additive (conductivity imparting agent). A slurry (hereinafter sometimes simply referred to as a slurry) is applied to a current collector, and water or a solvent is dried to form a mixed layer so as to be bound. More specifically, for example, for the negative electrode, a carbonaceous material capable of occluding and releasing lithium ions, which is an active material, and, if necessary, acetylene black, a conductive auxiliary agent, are secondary to a current collector such as copper. They are bound together by a binder for battery electrodes. On the other hand, for the positive electrode, LiCoO 2 that is an active material and, if necessary, a conductive aid similar to that of the negative electrode are bound to a current collector such as aluminum using a secondary battery electrode binder. Is.
 近年、環境への負荷低減および、製造装置の簡便性の観点から、溶剤を用いたスラリーから、水を用いたスラリーへの関心が高まり、特に負極では急速に移行が進んでいる。 In recent years, from the viewpoint of reducing environmental burden and the simplicity of manufacturing equipment, interest from a slurry using a solvent to a slurry using water has increased, and in particular, there has been a rapid shift in the negative electrode.
 水媒体用のバインダーとして、最も工業的に用いられているものはスチレン-ブタジエンゴム(SBR)などのジエン系ゴムに増粘剤としてカルボキシメチルセルロース・ナトリウム塩(CMC-Na)を添加した系である(例えば、特許文献1)。しかしながら、スチレン-ブタジエンゴムなどのジエン系ゴムは、銅などの金属集電極との接着性が低く、集電極と電極材の密着性を高めるために使用量を下げることが出来ないという問題がある。また、充放電時に発生する熱に対して弱く、容量維持率が低いという問題もある。さらに2液系であるために、保存安定性が低い、スラリー作製工程が煩雑であるといった製造上の課題も抱えている。 The most industrially used binder for aqueous media is a system in which carboxymethylcellulose sodium salt (CMC-Na) is added as a thickener to a diene rubber such as styrene-butadiene rubber (SBR). (For example, patent document 1). However, diene rubbers such as styrene-butadiene rubber have low adhesion to metal collectors such as copper, and there is a problem that the amount used cannot be reduced to increase the adhesion between the collector and the electrode material. . In addition, there is a problem that the capacity maintenance rate is low due to weakness against heat generated during charging and discharging. Furthermore, since it is a two-component system, it has problems in manufacturing such as low storage stability and complicated slurry preparation process.
 SBR/CMC-Na添加系の課題を解消するため、ポリアクリル酸などのアクリル系バインダー(例えば、特許文献2)、または、ポリアミド/イミド系のバインダー(例えば、特許文献3)が開発されている。 In order to solve the problem of the SBR / CMC-Na addition system, an acrylic binder such as polyacrylic acid (for example, Patent Document 2) or a polyamide / imide binder (for example, Patent Document 3) has been developed. .
 アクリル系バインダーは高い接着性を示し、電解液に対する低い膨潤性を有するという点において優れている。一方で、電気抵抗が高く、柔軟性が乏しく電極が容易に割れるという課題がある。柔軟性については、例えば特許文献4のようにニトリル基を導入し、改善する報告も見られているが、未だ電気抵抗は高い傾向にある。 Acrylic binders are excellent in that they exhibit high adhesion and have low swellability to electrolytes. On the other hand, there is a problem that the electric resistance is high, the flexibility is poor, and the electrode is easily broken. As for flexibility, for example, Patent Document 4 discloses that a nitrile group is introduced and improved, but the electrical resistance still tends to be high.
 また、ポリアミド/イミド系のバインダーも高い接着性を示し、特に電気的、熱的安定性、機械的強度に優れている。課題としては、アクリル系バインダーと同様、電気抵抗が高く、柔軟性が乏しく電極が容易に割れることが挙げられるが、機械的強度を活かして、充放電時のリチウムイオンの挿入と脱離に伴う電極の膨張収縮が大きい金属酸化物を負極活物質として用いることで柔軟性を補う例が報告されている(例えば、特許文献5)。しかし、ポリアミド/イミド系のバインダーと金属酸化物との組み合わせでは、抵抗が高い、柔軟性が乏しいという問題を十分に解消できておらず、さらに、ポリアミド/イミド系のバインダーは価格が高いという難点もある。 In addition, polyamide / imide binders also exhibit high adhesion, and are particularly excellent in electrical, thermal stability, and mechanical strength. The problem is that, like acrylic binders, the electrical resistance is high, the flexibility is poor and the electrode is easily cracked, but the mechanical strength is utilized to accompany the insertion and desorption of lithium ions during charging and discharging. An example of supplementing flexibility by using a metal oxide having a large expansion and contraction of an electrode as a negative electrode active material has been reported (for example, Patent Document 5). However, the combination of polyamide / imide binder and metal oxide has not fully solved the problems of high resistance and poor flexibility, and the polyamide / imide binder is expensive. There is also.
 最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、特に、電池の高容量化(低抵抗化、高効率化)、寿命(サイクル特性)、充電速度(レート特性)の向上が急務となっている。 Recently, demands for extending the usage time of mobile devices and shortening the charging time have increased. In particular, the battery capacity (low resistance, high efficiency), life (cycle characteristics), charging speed (rate characteristics) Improvement is an urgent need.
 非水電解質電池において、電池容量は活物質の量に影響されるため、電池という限られた空間内で活物質を増加させるには、バインダーおよび増粘剤の量を抑えることが有効である。また、レート特性についても、電子の移動の容易さに影響されるため、非導電性で電子の移動を妨げるバインダーおよび増粘剤の量を抑えることが有効である。しかしながら、バインダーおよび増粘剤の量を少なくすると、集電極と電極材および電極内の活物質間の結着性が低下し、長時間の使用に対する耐久性(電池寿命)が著しく低下するだけでなく、電極として脆いものとなってしまう。このように、これまで、集電極と電極材の結着性を保持し、電極としての靱性を保持したまま電池容量などの電池特性の向上、特に低抵抗化を図ることは困難であった。 In a non-aqueous electrolyte battery, since the battery capacity is affected by the amount of active material, it is effective to suppress the amount of binder and thickener in order to increase the active material in a limited space of the battery. Moreover, since the rate characteristics are also affected by the ease of electron movement, it is effective to suppress the amount of binder and thickener that are non-conductive and prevent electron movement. However, if the amount of the binder and the thickener is reduced, the binding property between the collector electrode and the electrode material and the active material in the electrode is lowered, and the durability (battery life) for long-term use is significantly reduced. However, the electrode becomes brittle. Thus, it has been difficult to improve the battery characteristics such as the battery capacity, particularly to reduce the resistance while maintaining the binding property between the collecting electrode and the electrode material and maintaining the toughness as an electrode.
 本発明は上記課題事情に鑑みてなされたものであり、バインダーとしての機能、すなわち、活物質間および集電極との結着性と電極としての靱性を損なうことなく、非水電解質電池における電池特性の向上(高効率化)を図ることを目的とする。 The present invention has been made in view of the above-mentioned problems, and the battery characteristics in the nonaqueous electrolyte battery are obtained without impairing the function as the binder, that is, the binding property between the active materials and the collector electrode and the toughness as the electrode. The purpose is to improve (high efficiency).
特開2014-13693公報Japanese Patent Laid-Open No. 2014-13693 特開2002-260667公報JP 2002-260667 A 特開2001-68115公報JP 2001-68115 A 特開2003-282061公報JP 2003-282061 A 特開2015-65164公報JP2015-65164A
 本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池用バインダー組成物を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have found that the above object can be achieved by using a binder composition for a nonaqueous electrolyte battery having the following constitution, and further studies are made based on this finding. The present invention was completed by overlapping.
 すなわち、本発明の一局面に係る非水電解質電池用バインダー組成物(以下、単にバインダー組成物とも称す)は、(A)ポリビニルアルコール、及び、(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つを含むことを特徴とする。 That is, the binder composition for a nonaqueous electrolyte battery according to one aspect of the present invention (hereinafter also simply referred to as a binder composition) includes (A) polyvinyl alcohol, and (B) vinyl alcohol and an ethylenically unsaturated carboxylic acid. And at least one selected from a copolymer of the above and a neutralized salt thereof.
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
 本実施形態の非水電解質電池用バインダー組成物(以下、単にバインダー組成物とも称す)は、下記(A)及び(B)を含むことを特徴とする:
(A)ポリビニルアルコール、
(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つ。
The binder composition for a nonaqueous electrolyte battery of the present embodiment (hereinafter also simply referred to as a binder composition) includes the following (A) and (B):
(A) polyvinyl alcohol,
(B) At least one selected from a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof.
 上記構成によれば、結着性と靱性を備えた非水電解質電池用バインダー組成物を得ることができ、さらにそれを用いて、非水電解質電池の電池特性(高効率化)の向上を実現することができる。 According to the above configuration, a binder composition for a nonaqueous electrolyte battery having binding properties and toughness can be obtained, and further, the battery characteristics (high efficiency) of the nonaqueous electrolyte battery can be improved using the binder composition. can do.
 本実施形態のバインダー組成物中における、(A)成分であるポリビニルアルコールの含有量としては、特に限定されるものではないが、50重量%以下であることが好ましく、40重量%以下であることがより好ましく、30重量%以下であることが更に好ましい。また、前記ポリビニルアルコールの含有量の下限値は、0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、1重量%以上であることが更に好ましい。(A)成分の含有量が50重量%を超えると、電気抵抗が高くなり高い充放電効率を得ることができなくなるおそれがあり、1重量%未満となると、スラリー安定性が悪くなる場合がある。 The content of polyvinyl alcohol as component (A) in the binder composition of the present embodiment is not particularly limited, but is preferably 50% by weight or less, and 40% by weight or less. Is more preferable, and it is still more preferable that it is 30 weight% or less. Further, the lower limit of the content of the polyvinyl alcohol is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. When the content of the component (A) exceeds 50% by weight, the electrical resistance may increase and high charge / discharge efficiency may not be obtained. When the content is less than 1% by weight, the slurry stability may deteriorate. .
 (A)成分であるポリビニルアルコールを含有することで、カルボキシル基によるバインダーの凝集性と集電極との親和性が高まり接着性が向上する効果が期待できる。また、異なるポリマーを混合することで、見かけ上、分子量分布がブロードとなり、さらにポリマーの結晶性が低下するために柔軟性が向上する効果が期待できる。加えて、単独ポリマーでの凝集を、異種ポリマーとの分子間相互作用により抑制することで、スラリー安定性を向上する効果が期待できる。 By containing polyvinyl alcohol as the component (A), it is expected that the adhesiveness is improved by increasing the cohesiveness of the binder due to the carboxyl group and the affinity with the collector electrode. Moreover, by mixing different polymers, the molecular weight distribution is apparently broadened, and the crystallinity of the polymer is further lowered, so that an effect of improving flexibility can be expected. In addition, an effect of improving the slurry stability can be expected by suppressing aggregation of a single polymer by intermolecular interaction with a different polymer.
 本実施形態において、ポリビニルアルコールのけん化度も、特に限定されるものでなく、通常50モル%以上、より好ましくは80モル%以上、更に好ましくは95モル%以上である。けん化度が低い場合、バインダー組成物中に含まれるアルカリ金属により、加水分解され、安定性が定まらないことがあり好ましくない。 In this embodiment, the saponification degree of polyvinyl alcohol is not particularly limited, and is usually 50 mol% or more, more preferably 80 mol% or more, and further preferably 95 mol% or more. When the degree of saponification is low, it is not preferable because the alkali metal contained in the binder composition may be hydrolyzed and stability may not be determined.
 本実施形態において、(B)成分を構成するエチレン性不飽和カルボン酸とは、例えば、アクリル酸、メタクリル酸、メタクリル酸のメチルエステル、エチルエステル、クロトン酸などのエチレン性不飽和モノカルボン酸、フマール酸、イタコン酸、マレイン酸などのエチレン性不飽和ジカルボン酸を挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、アクリル酸、メタクリル酸、マレイン酸が好ましい。これらのエチレン性不飽和カルボン酸エステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 In the present embodiment, the ethylenically unsaturated carboxylic acid constituting the component (B) is, for example, ethylenically unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, methyl ester of methacrylic acid, ethyl ester, crotonic acid, And ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid and maleic acid. Among these, acrylic acid, methacrylic acid, and maleic acid are particularly preferable from the viewpoints of availability, polysynthesis, and product stability. One of these ethylenically unsaturated carboxylic acid esters may be used alone, or two or more thereof may be used in combination.
 本実施形態の(B)成分の共重合体におけるビニルアルコールとエチレン性不飽和カルボン酸との含有割合は、モル比で100/1~1/100の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。エチレン性不飽和カルボン酸が少なすぎると接着性及び柔軟性が低下し、多すぎると熱・電気安定性が低下する。 The content ratio of vinyl alcohol and ethylenically unsaturated carboxylic acid in the copolymer of component (B) of this embodiment is preferably in the range of 100/1 to 1/100 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a high molecular weight substance that dissolves in water can be obtained. When there is too little ethylenically unsaturated carboxylic acid, adhesiveness and a softness | flexibility will fall, and when too much, thermal / electrical stability will fall.
 本実施形態の共重合体における(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体およびその中和塩から選択される少なくとも一つにおいて、その共重合形態は特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等が挙げられる。特に、高い接着性を得るためには規則的にビニルアルコールが配列したブロック共重合、グラフト共重合が好ましい。また、接着性と柔軟性の両立の観点からは、グラフト共重合体であることがより好ましい。 In at least one selected from (B) vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and neutralized salt thereof in the copolymer of this embodiment, the copolymerization form is not particularly limited, and random copolymerization , Alternating copolymerization, block copolymerization, graft copolymerization and the like. In particular, in order to obtain high adhesion, block copolymerization and graft copolymerization in which vinyl alcohol is regularly arranged are preferable. Moreover, from the viewpoint of achieving both adhesiveness and flexibility, a graft copolymer is more preferable.
 本実施形態の共重合体を製造する方法もまた、特に制限されることはなく、アニオン重合、カチオン重合、ラジカル重合など、いずれの重合開始方法でも良く、重合体の製造方法としても、溶液重合、塊状重合、懸濁重合、分散重合、またはエマルジョン重合など、いずれの方法であってもよい。 The method for producing the copolymer of the present embodiment is not particularly limited, and any polymerization initiation method such as anionic polymerization, cationic polymerization, or radical polymerization may be used. The polymer production method may be solution polymerization. Any method such as bulk polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization may be used.
 本実施形態の(B)成分であるビニルアルコールとエチレン性不飽和カルボン酸共重合体およびその中和塩から選択される少なくとも一つにおいて、そのエチレン性不飽和カルボン酸変性量は、0.1~60モル%程度であることが好ましい。それにより、靱性及び低抵抗性を付与できるという利点がある。より好ましいエチレン性不飽和カルボン酸変性量は、1~40モル%程度である。本実施形態のエチレン性不飽和カルボン酸変性量は、例えば、核磁気共鳴分光法(NMR)によって定量することができる。 In at least one selected from vinyl alcohol, an ethylenically unsaturated carboxylic acid copolymer and a neutralized salt thereof as component (B) of this embodiment, the amount of the ethylenically unsaturated carboxylic acid modification is 0.1 It is preferably about ˜60 mol%. Thereby, there exists an advantage that toughness and low resistance can be provided. A more preferable modification amount of the ethylenically unsaturated carboxylic acid is about 1 to 40 mol%. The amount of ethylenically unsaturated carboxylic acid modification in this embodiment can be quantified by, for example, nuclear magnetic resonance spectroscopy (NMR).
 また、耐熱性の観点からは、上記エチレン性不飽和カルボン酸変性量は、20モル%未満であることが好ましく、15モル%未満であることがより好ましい。また、低抵抗性向上の観点からは、上記エチレン性不飽和カルボン酸変性量が11モル%以上であることも好ましい態様である。 Further, from the viewpoint of heat resistance, the amount of modification with the ethylenically unsaturated carboxylic acid is preferably less than 20 mol%, and more preferably less than 15 mol%. From the viewpoint of improving low resistance, it is also a preferred embodiment that the amount of modification with the ethylenically unsaturated carboxylic acid is 11 mol% or more.
 本実施形態の共重合体の平均分子量は、数平均分子量が5,000~250,000であることが好ましい。共重合体の数平均分子量が5,000未満の場合、バインダーの機械的強度が低下するおそれがある。数平均分子量が10,000以上であることがより好ましく、15,000以上であることがさらに好ましい。一方、共重合体の数平均分子量が250,000を超える場合、非水電解質電池用スラリー組成物の粘度安定性が低下したり、スラリーの凝集を引き起こしたりする等、取り扱い性が不十分になるおそれがある。数平均分子量が200,000以下であることがより好ましく、150,000以下であることがさらに好ましい。なお、本発明における共重合体の数平均分子量は、標準物質としてポリエチレンオキシド及びポリエチレングリコールを用い、カラムとして水系カラムを用いたゲルパーミエーションクロマトグラフィー(GPC)法により測定した値を意味する。 The average molecular weight of the copolymer of the present embodiment is preferably a number average molecular weight of 5,000 to 250,000. When the number average molecular weight of the copolymer is less than 5,000, the mechanical strength of the binder may be lowered. The number average molecular weight is more preferably 10,000 or more, and further preferably 15,000 or more. On the other hand, when the number average molecular weight of the copolymer exceeds 250,000, the viscosity stability of the slurry composition for non-aqueous electrolyte batteries is reduced, and the handling properties are insufficient, such as causing the aggregation of the slurry. There is a fear. The number average molecular weight is more preferably 200,000 or less, and further preferably 150,000 or less. The number average molecular weight of the copolymer in the present invention means a value measured by a gel permeation chromatography (GPC) method using polyethylene oxide and polyethylene glycol as standard substances and an aqueous column as a column.
 本実施形態において、共重合体の中和塩とは、エチレン性不飽和カルボン酸から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和物となっているものであることが好ましい。本実施形態で使用する(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩においては、バインダーとしての結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。 In this embodiment, the neutralized salt of a copolymer is a neutralized product by reacting an active hydrogen of carbonyl acid generated from an ethylenically unsaturated carboxylic acid with a basic substance to form a salt. It is preferable. In the (B) vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and / or neutralized salt thereof used in the present embodiment, a monovalent metal is used as the basic substance from the viewpoint of binding properties as a binder. It is preferable to use a basic substance containing and / or ammonia.
 本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、中和物を調製してもよい。 Examples of basic substances containing monovalent metals that can be used in the present embodiment include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate. Carbonates of alkali metals such as sodium acetate and potassium acetate; phosphates of alkali metals such as trisodium phosphate, and the like. Among these, ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferable. In particular, it is preferable to use ammonia or lithium hydroxide as a binder for a lithium ion secondary battery. The basic substance containing monovalent metal and / or ammonia may be used alone or in combination of two or more. In addition, a neutralized product may be prepared by using a basic substance containing an alkali metal hydroxide such as sodium hydroxide as long as the battery performance is not adversely affected.
 中和度としては特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、エチレン性不飽和カルボン酸から生成するカルボン酸に対し、0.1~1当量の範囲にあることが好ましく、より好ましくは、0.3~1当量範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。 The degree of neutralization is not particularly limited, but when used as a binder, considering the reactivity with the electrolytic solution, it is usually 0. It is preferably in the range of 1 to 1 equivalent, and more preferably neutralized in the range of 0.3 to 1 equivalent. Such a neutralization degree has the advantage of low acidity and suppression of electrolyte decomposition.
 本実施形態において、中和度の決定方法は、塩基による適定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬を使用することが出来る。 In this embodiment, the determination method of the degree of neutralization can use methods such as titration with a base, infrared spectrum, NMR spectrum, etc. In order to measure the neutralization point simply and accurately, titration with a base is used. Preferably it is done. The specific titration method is not particularly limited, but it can be dissolved in water with little impurities such as ion-exchanged water, and a basic substance such as lithium hydroxide, sodium hydroxide, potassium hydroxide, It can be carried out by neutralization. The indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein whose pH is indicated by a base can be used.
 本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、エチレン性不飽和カルボン酸単位に対し0.1~1当量となる量であることが好ましい。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位に対し0.3~1.0当量、より好ましくは0.4~1.0当量となる量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。 In the present embodiment, the usage amount of the basic substance containing monovalent metal and / or ammonia is not particularly limited and is appropriately selected depending on the purpose of use, etc., but is usually an ethylenically unsaturated carboxylic acid unit. The amount is preferably 0.1 to 1 equivalent to the amount. The amount of the basic substance containing a monovalent metal is preferably 0.3 to 1.0 equivalent, more preferably 0.4 to 1.0, based on the maleic acid unit in the maleic acid copolymer. When the amount is equivalent, a water-soluble copolymer salt with little alkali residue can be obtained.
 本実施形態において、(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩の反応は、常法に従って実施できるが、水の存在下に実施し、中和物を水溶液として得る方法が簡便であり、好ましい。 In the present embodiment, the reaction of (B) vinyl alcohol with an ethylenically unsaturated carboxylic acid copolymer and / or a neutralized salt thereof can be carried out according to a conventional method. The method obtained as an aqueous solution is simple and preferable.
 本実施形態のバインダー組成物中における、(B)成分であるビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩の含有量としては、特に限定されるものではないが、99.9重量%以下であることが好ましく、99.5重量%以下であることがより好ましく、99重量%以下であることが更に好ましい。また、前記含有量の下限値は、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることが更に好ましく、80重量%以上であることが特に好ましい。(B)成分の含有量が99.9重量%を超えると、スラリー安定性が悪くなるおそれがあり、50重量%未満となると、電気抵抗が高くなり高い充放電効率を得ることができなくなる場合がある。 In the binder composition of the present embodiment, the content of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and / or neutralized salt thereof as component (B) is not particularly limited, It is preferably 99.9% by weight or less, more preferably 99.5% by weight or less, and still more preferably 99% by weight or less. The lower limit of the content is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, and more preferably 80% by weight or more. Particularly preferred. When the content of the component (B) exceeds 99.9% by weight, the slurry stability may be deteriorated. When the content is less than 50% by weight, the electrical resistance increases and high charge / discharge efficiency cannot be obtained. There is.
 また、本実施形態において、前記(A)成分と前記(B)成分の組成比は、固形分重量比で0.1:99.9~50:50程度であることが好ましい。より好ましくは、1:99~40:60程度である。また、低抵抗性を得る観点からは、前記(A)成分と前記(B)成分の組成比は、1:99~30:70であることが好ましく、1:99~20:80程度であることがさらに好ましい。 In the present embodiment, the composition ratio of the component (A) and the component (B) is preferably about 0.1: 99.9 to 50:50 in terms of solid content weight ratio. More preferably, it is about 1:99 to 40:60. Further, from the viewpoint of obtaining low resistance, the composition ratio of the component (A) and the component (B) is preferably 1:99 to 30:70, and is about 1:99 to 20:80. More preferably.
 本実施形態のバインダー組成物は、通常、上述のバインダー組成物と水とからなる、非水電解質電池用バインダー水溶液として使用される。 The binder composition of this embodiment is usually used as a binder aqueous solution for a non-aqueous electrolyte battery comprising the above-described binder composition and water.
 本実施形態の非水電解質電池用バインダー組成物は、通常、上述のバインダー組成物に加えて、さらに活物質と水とを含有する、非水電解質電池用スラリー組成物(以下、単にスラリー組成物とも称する)として使用されることが好ましい。すなわち、本実施形態のスラリー組成物は、上述した本実施形態のバインダー組成物と、活物質と水とを含有する。 The binder composition for a nonaqueous electrolyte battery of the present embodiment is usually a slurry composition for a nonaqueous electrolyte battery (hereinafter simply referred to as a slurry composition), which further contains an active material and water in addition to the binder composition described above. (Also referred to as). That is, the slurry composition of this embodiment contains the binder composition of this embodiment mentioned above, an active material, and water.
 また、本実施形態において非水電解質電池用電極は集電体に、少なくとも本実施形態のバインダー組成物および活物質を含む混合層を結着させてなることを特徴とする。この電極は、上述のスラリー組成物を集電体に塗布してから溶媒を乾燥などの方法で除去することにより形成することができる。前記混合層には、必要に応じてさらに増粘剤、導電助剤などを加えることができる。 Further, in the present embodiment, the electrode for a nonaqueous electrolyte battery is characterized in that a mixed layer containing at least the binder composition of the present embodiment and an active material is bound to a current collector. This electrode can be formed by applying the slurry composition described above to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductive aid and the like can be added to the mixed layer.
 前記非水電解質電池用スラリー組成物において、活物質の重量を100とした場合の、バインダー組成物の使用量は、通常、0.1~15重量%であることが好ましく、より好ましくは0.5~10重量%、さらに好ましくは1~8重量%である。バインダー組成物の量が過度に少ないとスラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがありバインダー組成物が過度に多いと放電容量が低下する可能性がある。 In the non-aqueous electrolyte battery slurry composition, when the weight of the active material is 100, the amount of the binder composition used is usually preferably 0.1 to 15% by weight, more preferably 0.00. 5 to 10% by weight, more preferably 1 to 8% by weight. If the amount of the binder composition is excessively small, the viscosity of the slurry is too low and the thickness of the mixed layer may be reduced. If the amount of the binder composition is excessively large, the discharge capacity may be reduced.
 一方、上記スラリー組成物における水の量は、活物質の重量を100とした場合、通常、30~150重量%であることが好ましく、より好ましくは70~120重量%である。 On the other hand, the amount of water in the slurry composition is usually preferably 30 to 150% by weight, more preferably 70 to 120% by weight, where the weight of the active material is 100.
 本実施形態のスラリー組成物における溶媒としては、上記水以外に、例えば、メタノール、エタノール、プロパノール、2-プロパノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類、N,N-ジメチルホルミアミド、N,N-ジメチルアセトアミドなどのアミド類、N-メチルピロリドン、N-エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などを使用することもできる。これらの中では、安全性という観点から、水の使用が好ましい。 As the solvent in the slurry composition of the present embodiment, in addition to the above water, for example, alcohols such as methanol, ethanol, propanol and 2-propanol, cyclic ethers such as tetrahydrofuran and 1,4-dioxane, N, N— Amides such as dimethylformamide and N, N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide can also be used. In these, use of water is preferable from a viewpoint of safety.
 また、本実施形態のスラリー組成物の溶媒として水以外にも、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n-ドデカンなどの炭化水素類;2-エチル-1-ヘキサノール、1-ノナノールなどのアルコール類;γ-ブチロラクトン、乳酸メチルなどのエステル類;N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。 Further, in addition to water as the solvent of the slurry composition of the present embodiment, the following organic solvent may be used in combination within a range of preferably 20% by weight or less of the entire solvent. Such an organic solvent preferably has a boiling point at normal pressure of 100 ° C. or higher and 300 ° C. or lower, for example, hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol. Esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N, N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethyl sulfoxide and sulfolane.
 本実施形態のスラリー組成物を負極に用いる場合、該スラリー組成物に添加される負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。 When the slurry composition of the present embodiment is used for a negative electrode, examples of the negative electrode active material added to the slurry composition include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fibers, and the like. polyacene conductive polymer such as; carbonaceous material SiOx, SnOx, composite metal oxides and other metal oxides or lithium metal represented by LiTiOx, lithium metal such as lithium alloy; TiS 2, LiTiS 2 etc. Examples of the metal compound are as follows.
 本実施形態のスラリー組成物を正極用に用いる場合、該スラリー組成物に添加される正極活物質としては、例えば、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、リン酸コバルトリチウム(LiCoPO)、ピロリン酸鉄(LiFeP)、コバルト酸リチウム複合酸化物(LiCoO)、スピネル型マンガン酸リチウム複合酸化物(LiMn)、マンガン酸リチウム複合酸化物(LiMnO)、ニッケル酸リチウム複合酸化物(LiNiO)、ニオブ酸リチウム複合酸化物(LiNbO)、鉄酸リチウム複合酸化物(LiFeO)、マグネシウム酸リチウム複合酸化物(LiMgO)、カルシウム酸リチウム複合酸化物(LiCaO)、銅酸リチウム複合酸化物(LiCuO)、亜鉛酸リチウム複合酸化物(LiZnO)、モリブデン酸リチウム複合酸化物(LiMoO)、タンタル酸リチウム複合酸化物(LiTaO)、タングステン酸リチウム複合酸化物(LiWO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi0.33Co0.33Mn0.33)、Li過剰系ニッケル-コバルト-マンガン複合酸化物(LixNiACoBMnCO固溶体)、酸化マンガンニッケル(LiNi0.5Mn1.5)、酸化マンガン(MnO)、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物、などが例示される。 When the slurry composition of the present embodiment is used for a positive electrode, examples of the positive electrode active material added to the slurry composition include lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), and phosphoric acid. Cobalt lithium (LiCoPO 4 ), iron pyrophosphate (Li 2 FeP 2 O 7 ), lithium cobalt oxide composite oxide (LiCoO 2 ), spinel type lithium manganate composite oxide (LiMn 2 O 4 ), lithium manganate composite oxidation (LiMnO 2 ), lithium nickelate composite oxide (LiNiO 2 ), lithium niobate composite oxide (LiNbO 2 ), lithium ferrate composite oxide (LiFeO 2 ), lithium magnesium oxide composite oxide (LiMgO 2 ), lithium composite oxide of calcium acid (LiCaO 2), cuprate lithium Beam composite oxide (LiCuO 2), zinc lithium composite oxide (LiZnO 2), lithium composite oxide molybdate (LiMoO 2), lithium tantalate complex oxide (LiTaO 2), tungstic acid lithium composite oxide (LiWO 2 ), lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), lithium-nickel-cobalt-manganese composite oxide (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ), Li-rich nickel-cobalt-manganese composite oxide (LixNiACoBMnCO 2 solid solution), manganese oxide nickel (LiNi 0.5 Mn 1.5 O 4 ), manganese oxide (MnO 2 ), vanadium-based oxidation Products, sulfur oxides, silicate oxides, etc. Indicated.
 本実施形態では、前記スラリー組成物に、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、不飽和カルボン酸類およびその変性物、α-オレフィン-マレイン酸類およびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。 In this embodiment, a thickener can be further added to the slurry composition as necessary. The thickener that can be added is not particularly limited, and various alcohols, unsaturated carboxylic acids and modified products thereof, α-olefin-maleic acids and modified products thereof, celluloses, starches and other polysaccharides can be used. Can be used.
 スラリー組成物に必要に応じて配合される増粘剤の使用量は、活物質の重量を100とした場合、0.1~4重量%程度であることが好ましく、より好ましくは0.3~3重量%、さらに好ましくは0.5~2重量%である。増粘剤が過度に少ないと二次電池負極用スラリーの粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。 The amount of the thickener used as necessary in the slurry composition is preferably about 0.1 to 4% by weight, more preferably 0.3 to 4% when the weight of the active material is 100. It is 3% by weight, more preferably 0.5 to 2% by weight. If the thickener is too small, the viscosity of the secondary battery negative electrode slurry may be too low and the thickness of the mixed layer may be reduced. Conversely, if the thickener is excessively large, the discharge capacity may be reduced. .
 また、スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、活物質の重量を100とした場合、通常、0.1~10重量%であることが好ましく、より好ましくは0.8~7重量%である。 Further, examples of the conductive auxiliary compounded in the slurry composition as necessary include metal powder, conductive polymer, acetylene black, and the like. The amount of the conductive aid used is usually preferably 0.1 to 10% by weight, more preferably 0.8 to 7% by weight when the weight of the active material is 100.
 上述したように、本実施形態において非水電解質電池用電極は、集電体に、少なくとも本実施形態のバインダー組成物および活物質を含む混合層を結着させてなることを特徴とする。本実施形態の非水電解質電池負極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As described above, in the present embodiment, the electrode for a nonaqueous electrolyte battery is characterized in that a mixed layer containing at least the binder composition of the present embodiment and an active material is bound to a current collector. The current collector used for the nonaqueous electrolyte battery negative electrode of the present embodiment is not particularly limited as long as it is made of a conductive material. For example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold Metal materials such as platinum can be used. One of these may be used alone, or two or more of these may be used in combination at any ratio.
 特に、負極用集電体として銅を用いた場合に、本発明の非水電解質電池負極用スラリーの効果が最もよく現れる。これは、本実施形態のバインダー組成物と銅箔との親和性が高く、高い接着性を有した負極を作製できるためである。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状であることが好ましい。 In particular, when copper is used as the negative electrode current collector, the effect of the nonaqueous electrolyte battery negative electrode slurry of the present invention is most apparent. This is because the negative electrode having high affinity between the binder composition of the present embodiment and the copper foil can be produced. The shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
 さらに、正極用集電体としてアルミニウムを用いた場合に、本発明の非水電解質電池負極用スラリーの効果が最もよく現れる。これは、本実施形態のバインダー組成物とある無ニウム箔との親和性が高く、高い接着性を有した負極を作製できるためである。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状であることが好ましい。 Furthermore, when aluminum is used as the positive electrode current collector, the effect of the non-aqueous electrolyte battery negative electrode slurry of the present invention is most apparent. This is because the negative electrode having high affinity with the binder composition of the present embodiment and a certain non-nium foil can be produced. The shape of the current collector is not particularly limited, but usually it is preferably a sheet having a thickness of about 0.001 to 0.5 mm.

 スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005~5mm、より好ましくは0.01~2mmとなる量が一般的である。

The method for applying the slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a dipping method, and a brush coating method. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material, conductive additive, binder and thickener formed after removing the solvent or dispersion medium by a method such as drying is preferably 0.005 to An amount of 5 mm, more preferably 0.01 to 2 mm is common.

 スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。

The method for drying a solvent such as water contained in the slurry composition is not particularly limited, and examples thereof include aeration drying with hot air, hot air, and low-humidity air; vacuum drying; drying with infrared rays, far infrared rays, electron beams, and the like. . The drying conditions are preferably adjusted so that the solvent can be removed as soon as possible while the active material layer is cracked by stress concentration or the active material layer does not peel from the current collector. Furthermore, in order to increase the density of the active material of the electrode, it is effective to press the current collector after drying. Examples of the pressing method include a die press and a roll press.

 さらに、本発明には、上記電極を有する非水電解質電池も包含される。非水電解質電池には、通常、負極と、正極と、電解液が含まれる。

Furthermore, the present invention also includes a nonaqueous electrolyte battery having the above electrode. The nonaqueous electrolyte battery usually includes a negative electrode, a positive electrode, and an electrolytic solution.

 正極に本実施形態のバインダー組成物を使用する場合、負極は、リチウムイオン二次電池等の非水電解質電池に通常使用される負極が特に制限なく使用される。例えば、負極活物質としては、黒鉛、ハードカーボン、Si系酸化物などが使用される。また、負極活物質を、上記に示す導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した負極用スラリーを、例えば、銅箔等の負極集電体に塗布して溶媒を乾燥させて負極とすることができる。

When using the binder composition of this embodiment for a positive electrode, the negative electrode normally used for nonaqueous electrolyte batteries, such as a lithium ion secondary battery, is used without a restriction | limiting especially. For example, graphite, hard carbon, Si-based oxide, etc. are used as the negative electrode active material. Also, the negative electrode active material is composed of the above-mentioned conductive additive and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C. A negative electrode slurry prepared by mixing in a solvent at a temperature of 0 ° C. or lower can be applied to a negative electrode current collector such as a copper foil, and the solvent can be dried to obtain a negative electrode.

 負極に本実施形態のバインダー組成物を使用する場合、正極は、リチウムイオン二次電池等の非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記に示す導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。

When using the binder composition of this embodiment for a negative electrode, the positive electrode normally used for nonaqueous electrolyte batteries, such as a lithium ion secondary battery, is especially used for a positive electrode without a restriction | limiting. For example, as the positive electrode active material, TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O Transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used. In addition, the positive electrode active material is composed of the above-described conductive additive and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, and the boiling point at 100 ° C. The positive electrode slurry prepared by mixing in a solvent at a temperature of 0 ° C. or lower can be applied to a positive electrode current collector such as aluminum and the solvent can be dried to obtain a positive electrode.

 また、正極および負極のいずれにも本実施形態のバインダー組成物を含む電極を用いることもできる。

Moreover, the electrode containing the binder composition of this embodiment can also be used for both the positive electrode and the negative electrode.

 また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常のリチウムイオン二次電池等の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。

In the nonaqueous electrolyte battery of this embodiment, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used. The electrolyte solution may be liquid or gel as long as it is used for a non-aqueous electrolyte battery such as a normal lithium ion secondary battery, and functions as a battery depending on the type of the negative electrode active material and the positive electrode active material. What is necessary is just to select suitably. Specific electrolytes, for example, also known lithium salt is any conventionally available, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10 , LiAlCl 4 , LiCl, LiBr, LiB (C 2 H 5 ) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N And lower aliphatic lithium carboxylates.

 このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。

A solvent (electrolyte solvent) for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, and diethyl carbonate; lactones such as γ-butyllactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, and 2-ethoxyethane. Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid Organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate and diethyl carbonate Terigres; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propane sultone, 1,4-butane sultone, naphtha sultone, etc. Alternatively, two or more kinds can be mixed and used. When a gel electrolyte is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.

 本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。

Although there is no limitation in particular as a method of manufacturing the nonaqueous electrolyte battery of this embodiment, For example, the following manufacturing method is illustrated. That is, the negative electrode and the positive electrode are overlapped with each other via a separator such as a polypropylene porous membrane, wound or folded according to the shape of the battery, put into a battery container, injected with an electrolyte, and sealed. The shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, and the like.

 本実施形態の非水電解質電池は、接着性と電池特性の向上を両立させた電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。

The nonaqueous electrolyte battery of this embodiment is a battery that achieves both improved adhesion and improved battery characteristics, and is useful for various applications. For example, the battery is very useful as a battery used in a portable terminal that is required to be small, thin, light, and have high performance.
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面に係る非水電解質電池用バインダー組成物は、(A)ポリビニルアルコール、及び、(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つを含むことを特徴とする。 The binder composition for a non-aqueous electrolyte battery according to one aspect of the present invention is selected from (A) polyvinyl alcohol, and (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof. Including at least one of the following.
 このような構成により、活物質間および集電極との結着性及び電極としての靱性を損なうことなく、電池特性の向上を図ることができると考えられる。 With such a configuration, it is considered that the battery characteristics can be improved without impairing the binding property between the active materials and the collector electrode and the toughness as an electrode.
 また、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、ブロック共重合の形態で共重合していることが好ましい。それにより、より高い接着性が得られると考えられる。 In the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of block copolymerization. It is preferable. Thereby, it is considered that higher adhesiveness can be obtained.
 さらに、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、グラフト共重合の形態で共重合していることが好ましい。それにより、接着性と柔軟性を両立することができると考えられる。 Further, in the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of graft copolymerization. It is preferable. Thereby, it is considered that both adhesiveness and flexibility can be achieved.
 また、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つにおける、エチレン性不飽和カルボン酸変性量が0.1~60モル%であることが好ましい。それにより、靱性および低抵抗性を付与できると考えられる。 In the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof has an ethylenically unsaturated carboxylic acid modification amount of 0. It is preferably 1 to 60 mol%. Thereby, it is considered that toughness and low resistance can be imparted.
 また、前記バインダー組成物中における、前記(B)成分の含有量が50.0~99.9重量%であることが好ましい。それにより、スラリー安定性やより高い充放電効率を得ることができると考えられる。 The content of the component (B) in the binder composition is preferably 50.0 to 99.9% by weight. Thereby, it is considered that slurry stability and higher charge / discharge efficiency can be obtained.
 本発明のさらに他の局面に係る非水電解質電池用バインダー水溶液は、上記バインダー組成物と水とを含有することを特徴とする。 A binder aqueous solution for a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by containing the binder composition and water.
 本発明のさらに他の局面に係る非水電解質電池用スラリー組成物は、上記バインダー組成物と活物質と水とを含有することを特徴とする。 A slurry composition for a non-aqueous electrolyte battery according to still another aspect of the present invention is characterized by containing the binder composition, an active material, and water.
 また、本発明のさらに他の局面に係る非水電解質電池用電極は、上記バインダー組成物と活物質とを含有する混合層を集電体に結着してなることを特徴とする。 The electrode for a non-aqueous electrolyte battery according to still another aspect of the present invention is characterized in that a mixed layer containing the binder composition and the active material is bound to a current collector.
 本発明のさらに他の局面に係る非水電解質電池は、上記非水電解質電池用電極を有することを特徴とする。 A nonaqueous electrolyte battery according to still another aspect of the present invention has the above electrode for a nonaqueous electrolyte battery.
 以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
 (実施例1)
 <ビニルアルコールとエチレン性不飽和カルボン酸共重合体の合成>
 市販のポリビニルアルコール(株式会社クラレ製、28-98s)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、アクリル酸33.4g、メタノール466.6gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は6.8モル%であった。
Example 1
<Synthesis of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 28-98s) was irradiated with an electron beam (30 kGy). Next, 33.4 g of acrylic acid and 466.6 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and a particle addition port, and the inside of the system was purged with nitrogen for 30 minutes while bubbling nitrogen. . 100 g of polyvinyl alcohol irradiated with an electron beam was added thereto, and the mixture was stirred and heated and refluxed for 300 minutes in a state where the particles were dispersed in the solution to carry out graft polymerization. Thereafter, the particles were collected by filtration and vacuum-dried at 40 ° C. overnight to obtain the desired copolymer. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 6.8 mol%.
 <ビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の調製>
 上記で得られたビニルアルコールとアクリル酸共重合体10重量%水溶液100gに水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加し、80℃、2時間加熱撹拌し、その後、室温まで冷却した。
<Preparation of neutralized salt of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
Lithium hydroxide was added in an amount of 0.5 equivalent to the carboxylic acid unit in the polymer to 100 g of the vinyl alcohol and acrylic acid copolymer 10% by weight aqueous solution obtained above, and heated and stirred at 80 ° C. for 2 hours. Cooled to room temperature.
 <バインダー水溶液の調整>
 上記で得られたビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の10重量%水溶液(B-1)に、市販のポリビニルアルコール(株式会社クラレ製、28-98s、けん化度:98)(A-1)を固形分として、重量比で(A-1):(B-1)=10:90となるように添加し、バインダー水溶液の調整を行った。
<Preparation of aqueous binder solution>
A 10% by weight aqueous solution (B-1) of a neutralized salt of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer obtained above was added to commercially available polyvinyl alcohol (Kuraray Co., Ltd., 28-98s, saponification degree: 98) (A-1) was added as a solid content in a weight ratio of (A-1) :( B-1) = 10: 90 to prepare a binder aqueous solution.
 <ビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の融点の測定>
 上記バインダー水溶液1gを熱風乾燥機にて105℃1時間乾燥して得られた固体を用い、熱分析計(ヤマト科学社製)を用いて示差走査熱量測定を行った。測定温度範囲50℃~1000℃、昇温速度10℃/分にて測定を行った。結果を下記表1に示す。
<Measurement of melting point of neutralized salt of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
Using a solid obtained by drying 1 g of the aqueous binder solution at 105 ° C. for 1 hour with a hot air dryer, differential scanning calorimetry was performed using a thermal analyzer (manufactured by Yamato Kagaku Co., Ltd.). The measurement was performed at a measurement temperature range of 50 ° C. to 1000 ° C. and a heating rate of 10 ° C./min. The results are shown in Table 1 below.
 <スラリーの作製>
 電極用スラリー作製は、負極用活物質として天然黒鉛(DMGS、BYD製)96重量部に対して、前記バインダー組成物の10重量%水溶液を固形分として3重量部、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として1重量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練し、電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=96:1:3(重量比)である。
<Preparation of slurry>
The electrode slurry was prepared by adding 3 parts by weight of a 10% by weight aqueous solution of the binder composition as a solid content to 96 parts by weight of natural graphite (manufactured by DMGS, BYD) as an active material for a negative electrode, 1 part by weight of Super-P (manufactured by Timcal Co.) as a solid component was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Sinky) to prepare an electrode coating slurry. . The composition ratio of the active material and the binder in the slurry is, as a solid content, graphite powder: conductive aid: binder composition = 96: 1: 3 (weight ratio).
 <スラリーの安定性>
 得られたスラリーの安定性を確認するため、スラリー調整直後(30分以内)の粒子沈降の様子を目視で確認した。沈降が生じなかったスラリーを○、沈降が生じたスラリーを×と記載した。結果を下記表1に示す。
<Slurry stability>
In order to confirm the stability of the obtained slurry, the state of particle sedimentation immediately after slurry adjustment (within 30 minutes) was visually confirmed. The slurry in which sedimentation did not occur was indicated as ◯, and the slurry in which sedimentation occurred was indicated as x. The results are shown in Table 1 below.
 <電池用負極の作製>
 得られた前記スラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃、30分、熱風乾燥機で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、140℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Preparation of negative electrode for battery>
The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo), and heated at 80 ° C. for 30 minutes. Then, after the primary drying, rolling was performed using a roll press (made by Hosen). Then, after punching out as a battery electrode (φ14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 140 ° C. for 3 hours.
 <剥離強度、靱性試験用電極の作製>
 得られた前記スラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃、30分、熱風乾燥機で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった電極(膜厚約40μm)を用いて試験を行った。
<Preparation of peel strength and toughness test electrode>
The obtained slurry was coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo), and heated at 80 ° C. for 30 minutes. Then, after the primary drying, a test was performed using an electrode (film thickness: about 40 μm) that had been rolled using a roll press (made by Hosen).
 <電極の靱性試験>
 電極の靭性の評価は10mm幅の前記靱性試験用電極を用いて、電極を折り曲げたときに割れが生じるか、目視で確認を行った。割れが生じなかった電極を○、割れが生じた電極を×と記載した。結果を下記表1に示す。
<Electrode toughness test>
The evaluation of the toughness of the electrode was performed by visually checking whether or not cracking occurred when the electrode was bent using the toughness test electrode having a width of 10 mm. An electrode in which no crack was generated was indicated as ◯, and an electrode in which the crack was generated was indicated as x. The results are shown in Table 1 below.
 <電極の剥離強度測定>
 集電極である銅箔から前記剥離強度試験用電極を剥離したときの強度を測定した。当該剥離強度は、50Nのロードセル(株式会社イマダ製)を用いて180°剥離強度を測定した。上記で得られた電池用塗工電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。上記結果を下記表1に示す。
<Measurement of peel strength of electrode>
The strength when the peel strength test electrode was peeled from the copper foil as the collecting electrode was measured. The peel strength was measured at 180 ° peel strength using a 50N load cell (manufactured by Imada Co., Ltd.). The slurry-coated surface of the battery-coated electrode obtained above and a stainless steel plate were bonded together using a double-sided tape (double-faced tape made by Nichiban), and the 180 ° peel strength (peel width 10 mm, peel rate 100 mm / min) was measured. did. The results are shown in Table 1 below.
 <電池の作製>
 上記で得られた電池用負極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロピレン系セパレーター(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7vol%、VC2重量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<Production of battery>
The negative electrode for a battery obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. A metal lithium foil (thickness 0.2 mm, φ16 mm) was used for the positive electrode. In addition, a polypropylene separator (Celgard # 2400, manufactured by Polypore) was used as a separator, and the electrolyte was ethylene carbonate (EC) of lithium hexafluorophosphate (LiPF 6 ) and vinylene carbonate (EMC) to vinylene carbonate (EMC). VC) was added using a mixed solvent system (1M-LiPF 6 , EC / EMC = 3/7 vol%, VC 2 wt%) to prepare a coin battery (2032 type).
 <充放電特性試験>
 作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。上記結果を下記表1に示す。
<Charge / discharge characteristics test>
The produced coin battery was subjected to a charge / discharge test using a commercially available charge / discharge tester (TOSCAT3100, manufactured by Toyo System). The coin battery is placed in a constant temperature bath at 25 ° C., and charging is performed with a constant current of 0.1 C (about 0.5 mA / cm 2 ) with respect to the amount of active material until the voltage reaches 0 V with respect to the lithium potential. On the other hand, the constant voltage charge of 0V was implemented to the electric current of 0.02 mA. The capacity at this time was defined as a charging capacity (mAh / g). Next, a constant current discharge of 0.1 C (about 0.5 mA / cm 2 ) was performed up to 1.5 V with respect to the lithium potential, and the capacity at this time was defined as a discharge capacity (mAh / g). The difference between the initial discharge capacity and the charge capacity was taken as the irreversible capacity, and the percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency. The results are shown in Table 1 below.
 (実施例2)
 実施例1と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-2)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-2)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 2)
Vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were synthesized in the same manner as in Example 1. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-2) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-2) = 10: 90. Adjustments were made.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例3)
 アクリル酸を100g、メタノールを400g添加したこと以外は実施例1と同様にして、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は26.2モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-3)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-3):(B-3)=7:93となるように添加し、バインダー水溶液の調整を行った。
(Example 3)
The target copolymer was synthesized in the same manner as in Example 1 except that 100 g of acrylic acid and 400 g of methanol were added. The amount of ethylenically unsaturated carboxylic acid modification of the obtained copolymer was 26.2 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-3) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content in a weight ratio of (A-3) :( B-3) = 7: 93. Adjustments were made.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例4)
 市販のポリビニルアルコール(株式会社クラレ製、22-88s)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、アクリル酸33.5g、メタノール466.5gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は7.1モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-4)の調製を行った。その後、市販のポリビニルアルコール(株式会社クラレ製、22-88s、けん化度:88)(A-2)を固形分として、重量比で(A-2):(B-4)=10:90となるように添加し、バインダー水溶液の調整を行った。
Example 4
100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s) was irradiated with an electron beam (30 kGy). Next, 33.5 g of acrylic acid and 466.5 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and a particle addition port, and the system was purged with nitrogen for 30 minutes while bubbling nitrogen. . 100 g of polyvinyl alcohol irradiated with an electron beam was added thereto, and the mixture was stirred and heated and refluxed for 300 minutes in a state where the particles were dispersed in the solution to carry out graft polymerization. Thereafter, the particles were collected by filtration and vacuum-dried at 40 ° C. overnight to obtain the desired copolymer. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 7.1 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-4) of the copolymer. Thereafter, commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s, saponification degree: 88) (A-2) as a solid content, (A-2) :( B-4) = 10: 90 in weight ratio It added so that binder aqueous solution might be adjusted.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例5)
 市販のポリビニルアルコール(株式会社クラレ製、Elvanol 71-30)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、メタクリル酸25g、メタノール475gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は7.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-5)の調製を行った。その後、市販のポリビニルアルコール(株式会社クラレ製、Elvanol 71-30、けん化度:99)(A-3)を固形分として、重量比で(A-3):(B-5)=12:88となるように添加し、バインダー水溶液の調整を行った。
(Example 5)
100 g of commercially available polyvinyl alcohol (Elvanol 71-30, manufactured by Kuraray Co., Ltd.) was irradiated with an electron beam (30 kGy). Next, 25 g of methacrylic acid and 475 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen introduction tube and a particle addition port, and the system was purged with nitrogen for 30 minutes while bubbling nitrogen. 100 g of polyvinyl alcohol irradiated with an electron beam was added thereto, and the mixture was stirred and heated and refluxed for 300 minutes in a state where the particles were dispersed in the solution to carry out graft polymerization. Thereafter, the particles were collected by filtration and vacuum-dried at 40 ° C. overnight to obtain the desired copolymer. The amount of ethylenically unsaturated carboxylic acid modification of the obtained copolymer was 7.0 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-5) of the copolymer. Thereafter, commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., Elvanol 71-30, saponification degree: 99) (A-3) as a solid content, (A-3) :( B-5) = 12: 88 in weight ratio It added so that it might become, and adjustment of the binder aqueous solution was performed.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例6)
 メタクリル酸を100g、メタノールを400g添加したこと以外は実施例5と同様にして、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は34.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-6)の調製を行った。その後、実施例5と同様の市販のポリビニルアルコール(A-3)を固形分として、重量比で(A-3):(B-6)=5:95となるように添加し、バインダー水溶液の調整を行った。
(Example 6)
The target copolymer was synthesized in the same manner as in Example 5 except that 100 g of methacrylic acid and 400 g of methanol were added. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 34.0 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-6) of the copolymer. Thereafter, commercially available polyvinyl alcohol (A-3) as in Example 5 was added as a solid content so that the weight ratio was (A-3) :( B-6) = 5: 95, and the aqueous binder solution Adjustments were made.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例7)
 攪拌機、還流冷却管、窒素導入管、開始剤の添加口を備えた反応器に、水370g、市販のポリビニルアルコール(株式会社クラレ製、M115)100gを仕込み、撹拌下95℃で加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に0.5規定(N)の硫酸を添加してpHを3.0にした。ここに、撹拌下アクリル酸9.9gを添加した後、該水溶液中に窒素をバブリングしながら70℃まで加温し、さらに70℃のまま30分窒素をバブリングして窒素置換した。窒素置換後、当該水溶液に過硫酸カリウム水溶液(濃度2.5重量%)80.7gを1.5時間かけて滴下した。全量添加後、75℃に昇温してさらに1時間撹拌した後、室温まで冷却した。得られた水溶液をPETフィルム上に流涎し、80℃で30分熱風乾燥することでフィルムを作製した。当該フィルムを液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、さらに40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は6.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-7)の調製を行った。その後、実施例1と同様の市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-7)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 7)
A reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet, and an initiator addition port was charged with 370 g of water and 100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., M115), and heated at 95 ° C. with stirring. After the polyvinyl alcohol was dissolved, it was cooled to room temperature. 0.5N (N) sulfuric acid was added to the aqueous solution to adjust the pH to 3.0. To this was added 9.9 g of acrylic acid with stirring, and then the mixture was heated to 70 ° C. while bubbling nitrogen into the aqueous solution, and further purged with nitrogen by bubbling nitrogen for 30 minutes while maintaining 70 ° C. After nitrogen substitution, 80.7 g of an aqueous potassium persulfate solution (concentration: 2.5% by weight) was added dropwise to the aqueous solution over 1.5 hours. After addition of the entire amount, the temperature was raised to 75 ° C., and the mixture was further stirred for 1 hour, and then cooled to room temperature. The obtained aqueous solution was poured onto a PET film and dried in hot air at 80 ° C. for 30 minutes to produce a film. The film was frozen with liquid nitrogen, pulverized using a centrifugal pulverizer, and further vacuum dried at 40 ° C. overnight to obtain the desired copolymer. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 6.0 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-7) of the copolymer. Thereafter, commercially available polyvinyl alcohol (A-1) similar to that in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-7) = 10: 90. Adjustments were made.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (実施例8)
 実施例7と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-8)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-8)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 8)
Vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were synthesized in the same manner as in Example 7. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-8) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-8) = 10: 90. Adjustments were made.
 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (実施例9) アクリル酸を20g、過硫酸カリウム水溶液(濃度2.5重量%)150g添加したこと以外は実施例7と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は12.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-9)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-9)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 9) A vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were prepared in the same manner as in Example 7 except that 20 g of acrylic acid and 150 g of a potassium persulfate aqueous solution (concentration: 2.5 wt%) were added. Synthesized. The amount of ethylenically unsaturated carboxylic acid modification of the obtained copolymer was 12.0 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-9) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-9) = 10: 90. Adjustments were made.

 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (実施例10) 実施例9と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化ナトリウムを重合体中のカルボン酸単位に対し0.3当量、水酸化リチウムを重合体中のカルボン酸単位に対し0.2当量添加して、前記共重合体の中和塩(B-10)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-10)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 10) Vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were synthesized in the same manner as in Example 9. Further, 0.3 equivalent of sodium hydroxide with respect to the carboxylic acid unit in the polymer and 0.2 equivalent of lithium hydroxide with respect to the carboxylic acid unit in the polymer were added, and the copolymer neutralized salt ( B-10) was prepared. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-10) = 10: 90. Adjustments were made.

 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 

A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (実施例11)

 攪拌機、還流冷却管、アルゴン導入管、開始剤の添加口を備えた反応器に、酢酸ビニル640g、メタノール240.4g、アクリル酸0.88gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。これとは別に、コモノマーの逐次添加溶液(以降ディレー溶液と表記する)としてアクリル酸のメタノール溶液(濃度20重量%)を調製し、30分間アルゴンをバブリングした。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.15gを添加し重合を開始した。重合反応の進行中は、調製したディレー溶液を系内に滴下することで、重合溶液におけるモノマー組成(酢酸ビニルとアクリル酸のモル比率)が一定となるようにした。60℃で210分重合した後、冷却して重合を停止した。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、アクリル酸で変性されたポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を25重量%に調製したポリ酢酸ビニルのメタノール溶液400gに、20.4gの水酸化ナトリウムメタノール溶液(濃度18.0重量%)、メタノール79.6gを添加して、40℃でけん化を行った。水酸化ナトリウムメタノール溶液を添加後数分でゲル化物が生成したので、これを粉砕機にて粉砕し、40℃のまま60分間放置してけん化を進行させた。得られた粉砕ゲルをメタノールで繰り返し洗浄した後、40℃で終夜真空乾燥することにより、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は5.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-11)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-11)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 11)

A reactor equipped with a stirrer, reflux condenser, argon inlet, and initiator addition port was charged with 640 g of vinyl acetate, 240.4 g of methanol, and 0.88 g of acrylic acid, and nitrogen was bubbled through the system for 30 minutes. Replaced. Separately, a methanol solution of acrylic acid (concentration: 20% by weight) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled for 30 minutes. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 0.15 g of 2,2′-azobisisobutyronitrile was added to initiate polymerization. During the progress of the polymerization reaction, the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and acrylic acid) in the polymerization solution became constant. After polymerization at 60 ° C. for 210 minutes, the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed while sometimes adding methanol under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate modified with acrylic acid. Next, 20.4 g of sodium hydroxide methanol solution (concentration 18.0 wt%) was added to 400 g of polyvinyl acetate methanol solution prepared by adding methanol to the methanol solution of polyvinyl acetate to a concentration of 25 wt%. 79.6 g of methanol was added and saponification was performed at 40 ° C. A gelled product was formed within a few minutes after the addition of the sodium hydroxide methanol solution. This was pulverized by a pulverizer and allowed to stand for 60 minutes at 40 ° C. to allow saponification to proceed. The obtained pulverized gel was repeatedly washed with methanol and then vacuum dried at 40 ° C. overnight to synthesize the desired copolymer. The amount of ethylenic unsaturated carboxylic acid modification of the obtained copolymer was 5.0 mol%. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-11) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-11) = 10: 90. Adjustments were made.

 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (実施例12)

 実施例11と同様の中和塩(B-11)を用い、実施例1と同様の市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-11)=40:60となるように添加し、バインダー水溶液の調整を行った。

(Example 12)

Using the same neutralized salt (B-11) as in Example 11 and using the same commercially available polyvinyl alcohol (A-1) as in Example 1 as the solid content, (A-1) :( B-11) ) = 40: 60, and the binder aqueous solution was adjusted.

 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (実施例13)

 実施例11と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-13)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-13)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 13)

Vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were synthesized in the same manner as in Example 11. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-13) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1) :( B-13) = 10: 90. Adjustments were made.

 非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (比較例1)

 市販のポリビニルアルコール(株式会社クラレ製、28-98s、けん化度:98)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative Example 1)

A 10% by weight aqueous solution of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 28-98s, saponification degree: 98) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (比較例2)

 市販のポリビニルアルコール(株式会社クラレ製、22-88s、けん化度:88)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative Example 2)

A 10% by weight aqueous solution of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s, saponification degree: 88) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.

 (比較例3)
 実施例1と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative Example 3)
Using the same neutralized salt as in Example 1, a 10% by weight aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (比較例4)
 実施例7と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 4)
Using the same neutralized salt as in Example 7, a 10 wt% aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (比較例5)
 実施例11と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 5)
Using the same neutralized salt as in Example 11, a 10 wt% aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
 (比較例6)
 ポリアクリル酸(アルドリッチ製、分子量250,000)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 6)
A 10 wt% aqueous solution of polyacrylic acid (manufactured by Aldrich, molecular weight 250,000) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared by the same method as in Example 1, and the slurry stability was confirmed. Further, a battery coated negative electrode was prepared in the same manner as in Example 1 to obtain a coin battery, and a charge / discharge characteristic test was performed. Similarly, a toughness test and a peel strength coated electrode were prepared in the same manner as in Example 1, and a toughness test and a peel strength measurement were performed using the same. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (考察)
 本発明の(A)成分及び(B)成分を含む実施例1~13では、中和塩の効果で、いずれも92%以上の高い充放電効率を実現することが示された。ポリマー塩が、粉末活性材料をコーティングしてイオン性導電性層を形成したために容易にLiイオンが電池内を移動することができるようになったと想定される。また、(A)成分及び(B)成分と2成分以上が共存することで、スラリー安定性、靭性、接着性の向上が見られた。これに対し、中和塩を含まない比較例1~2及び6では充放電効率が低く(92%未満)、さらにスラリー安定性、靭性、接着性がいずれも低いという結果となった。
(Discussion)
In Examples 1 to 13 containing the component (A) and the component (B) of the present invention, it was shown that all of them achieved high charge / discharge efficiency of 92% or more due to the effect of the neutralized salt. It is assumed that the polymer salt coated the powdered active material to form an ionic conductive layer so that Li ions can easily move through the battery. Moreover, the improvement of slurry stability, toughness, and adhesiveness was seen by (A) component and (B) component, and 2 or more components coexisting. On the other hand, Comparative Examples 1 to 2 and 6 containing no neutralized salt had low charge / discharge efficiency (less than 92%), and the slurry stability, toughness and adhesion were all low.
 また、実施例と同じく比較例3~5は高い充放電効率を示したものの、一方で、スラリー安定性が低いために均一な電極形成が難しく、実施例と比較しスラリー安定性、靭性、接着性が十分なものではなかった。 As in the Examples, Comparative Examples 3 to 5 showed high charge / discharge efficiency, but on the other hand, since the slurry stability was low, it was difficult to form a uniform electrode. Compared with the Examples, slurry stability, toughness, adhesion Sex was not enough.
 以上より、本発明のバインダー組成物を用いることにより、電極用バインダーの結着性と電極としての靱性を損なうことなく、非水電解質電池の電池特性の向上を達成できることが明らかとなった。 From the above, it has been clarified that by using the binder composition of the present invention, the battery characteristics of the nonaqueous electrolyte battery can be improved without impairing the binding property of the electrode binder and the toughness of the electrode.
 この出願は、2017年3月16日に出願された日本国特許出願特願2017-50807を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2017-50807 filed on Mar. 16, 2017, the contents of which are included in the present application.
 本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been described appropriately and sufficiently through the embodiments with reference to specific examples and the like. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明は、リチウムイオン二次電池等の非水電解質電池に関する技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in the technical field related to non-aqueous electrolyte batteries such as lithium ion secondary batteries.

Claims (9)

  1.  (A)ポリビニルアルコール、及び、
     (B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つ、
    を含むことを特徴とする、非水電解質電池用バインダー組成物。
    (A) polyvinyl alcohol, and
    (B) at least one selected from a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof,
    A binder composition for a non-aqueous electrolyte battery, comprising:
  2.  前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、ブロック共重合の形態で共重合している、請求項1に記載の非水電解質電池用バインダー組成物。 The non-copolymer according to claim 1, wherein at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of block copolymerization. Binder composition for water electrolyte battery.
  3.  前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、グラフト共重合の形態で共重合している、請求項1に記載の非水電解質電池用バインダー組成物。 The non-copolymer according to claim 1, wherein at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of graft copolymerization. Binder composition for water electrolyte battery.
  4.  前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つにおける、エチレン性不飽和カルボン酸変性量が0.1~60モル%である、請求項1~3のいずれかに記載の非水電解質電池用バインダー組成物。 In (B) at least one selected from a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof, the amount of ethylenically unsaturated carboxylic acid modification is 0.1 to 60 mol%. The binder composition for a nonaqueous electrolyte battery according to any one of claims 1 to 3.
  5.  前記バインダー組成物中における、前記(B)成分の含有量が50.0~99.9重量%である、請求項1~4のいずれかに記載の非水電解質電池用バインダー組成物。 The binder composition for a non-aqueous electrolyte battery according to any one of claims 1 to 4, wherein the content of the component (B) in the binder composition is 50.0 to 99.9% by weight.
  6.  請求項1~5のいずれかに記載のバインダー組成物と水とを含有する、非水電解質電池用バインダー水溶液。 An aqueous binder solution for a non-aqueous electrolyte battery comprising the binder composition according to any one of claims 1 to 5 and water.
  7.  請求項1~5のいずれかに記載のバインダー組成物と活物質と水とを含有する、非水電解質電池用スラリー組成物。 A slurry composition for a non-aqueous electrolyte battery, comprising the binder composition according to any one of claims 1 to 5, an active material, and water.
  8.  請求項1~5のいずれかに記載のバインダー組成物と活物質とを含有する混合層を集電体に結着してなる、非水電解質電池用電極。 An electrode for a non-aqueous electrolyte battery, wherein a mixed layer containing the binder composition according to any one of claims 1 to 5 and an active material is bound to a current collector.
  9.  請求項8に記載の非水電解質電池用電極を有する、非水電解質電池。 A nonaqueous electrolyte battery comprising the electrode for a nonaqueous electrolyte battery according to claim 8.
PCT/JP2018/007981 2017-03-16 2018-03-02 Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition WO2018168520A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505878A JP7110170B2 (en) 2017-03-16 2018-03-02 Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050807 2017-03-16
JP2017050807 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168520A1 true WO2018168520A1 (en) 2018-09-20

Family

ID=63522445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007981 WO2018168520A1 (en) 2017-03-16 2018-03-02 Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition

Country Status (3)

Country Link
JP (1) JP7110170B2 (en)
TW (1) TWI795390B (en)
WO (1) WO2018168520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065705A1 (en) * 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
WO2019065704A1 (en) * 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
WO2021100521A1 (en) * 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2023083148A1 (en) * 2021-11-09 2023-05-19 珠海冠宇电池股份有限公司 Lithium-ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207967A1 (en) * 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2017006760A1 (en) * 2015-07-09 2017-01-12 住友精化株式会社 Binder for lithium ion secondary battery positive electrodes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207967A1 (en) * 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2017006760A1 (en) * 2015-07-09 2017-01-12 住友精化株式会社 Binder for lithium ion secondary battery positive electrodes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065705A1 (en) * 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
WO2019065704A1 (en) * 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
JPWO2019065704A1 (en) * 2017-09-29 2020-11-05 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JPWO2019065705A1 (en) * 2017-09-29 2020-11-05 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP7223699B2 (en) 2017-09-29 2023-02-16 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP7223700B2 (en) 2017-09-29 2023-02-16 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
WO2021100521A1 (en) * 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
EP4064392A4 (en) * 2019-11-19 2023-12-06 Sumitomo Seika Chemicals Co., Ltd. Binder for secondary batteries
WO2023083148A1 (en) * 2021-11-09 2023-05-19 珠海冠宇电池股份有限公司 Lithium-ion battery

Also Published As

Publication number Publication date
TW201840045A (en) 2018-11-01
JP7110170B2 (en) 2022-08-01
TWI795390B (en) 2023-03-11
JPWO2018168520A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US11581543B2 (en) Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non aqueous electrolyte battery each utilizing same
JP6138383B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
WO2016067843A1 (en) Binder composition for lithium ion secondary battery negative electrode, and slurry composition for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery using same
JP7110170B2 (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP7183183B2 (en) Binder for non-aqueous electrolyte battery, binder aqueous solution and slurry composition using the same, electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP6431651B1 (en) Nonaqueous electrolyte battery binder composition, nonaqueous electrolyte battery binder aqueous solution, nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery using the same
JP2016189253A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2018063799A (en) Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2017022844A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
TWI833722B (en) Binders for non-aqueous electrolyte batteries, aqueous binder solutions and slurry compositions using the same, electrodes for non-aqueous electrolyte batteries and non-aqueous electrolyte batteries
JP6856972B2 (en) Lithium-ion secondary battery electrode slurry composition, lithium-ion secondary battery negative electrode and lithium-ion secondary battery
JP2017069162A (en) Binder composition for nonaqueous electrolyte secondary battery, slurry composition for nonaqueous electrolyte secondary battery arranged by use thereof, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
JP2016189251A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2020126716A (en) Binder for nonaqueous electrolyte secondary battery, electrode slurry arranged by use thereof, electrode and battery
JPWO2019054173A1 (en) Slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method for producing slurry composition for electrochemical device electrode
WO2017022842A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
WO2017022843A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2016189252A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189254A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2017033904A (en) Slurry composition for nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using the same
JP2017117576A (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery, slurry composition for nonaqueous electrolyte battery, nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery
JP2016189256A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767917

Country of ref document: EP

Kind code of ref document: A1