WO2019065705A1 - Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus - Google Patents

Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus Download PDF

Info

Publication number
WO2019065705A1
WO2019065705A1 PCT/JP2018/035610 JP2018035610W WO2019065705A1 WO 2019065705 A1 WO2019065705 A1 WO 2019065705A1 JP 2018035610 W JP2018035610 W JP 2018035610W WO 2019065705 A1 WO2019065705 A1 WO 2019065705A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
secondary battery
binder
electrode
aqueous electrolyte
Prior art date
Application number
PCT/JP2018/035610
Other languages
French (fr)
Japanese (ja)
Inventor
瞬 橋本
英介 竹内
仁子 金野
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2019545548A priority Critical patent/JP7223700B2/en
Priority to CN201880060479.4A priority patent/CN111095635A/en
Priority to KR1020207008046A priority patent/KR20200062197A/en
Publication of WO2019065705A1 publication Critical patent/WO2019065705A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/064Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention comprises a binder for a non-aqueous electrolyte secondary battery electrode, an electrode mixture for a non-aqueous electrolyte secondary battery including the binder, an electrode for a non-aqueous electrolyte secondary battery using the electrode mixture, and the electrode
  • the present invention relates to a non-aqueous electrolyte secondary battery and an electric device provided with the secondary battery.
  • nickel-cadmium batteries, nickel-hydrogen batteries, etc. have mainly been used as non-aqueous electrolyte secondary batteries, but the use of lithium ion secondary batteries has increased due to the above-mentioned demands for miniaturization and high energy density.
  • An electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery usually has a binder solution in which a binder for an electrode (hereinafter, may be simply referred to as a binder) dissolved in a solvent, or a binder dispersed in a dispersion medium
  • a binder solution in which a binder for an electrode (hereinafter, may be simply referred to as a binder) dissolved in a solvent, or a binder dispersed in a dispersion medium
  • a method of applying a battery electrode mixture slurry (hereinafter may be simply referred to as a slurry) obtained by mixing an active material (electrode active material) and a conductive support agent to a slurry on a current collector, and drying the solvent and the dispersion medium It is manufactured by removing.
  • a positive electrode is a positive electrode mixture slurry in which lithium cobaltate (LiCoO 2 ) as an active material, polyvinylidene fluoride (PVDF) as a binder, and carbon black as a conductive additive are dispersed in a dispersion medium. Obtained by coating and drying on an aluminum foil current collector.
  • lithium cobaltate LiCoO 2
  • PVDF polyvinylidene fluoride
  • the negative electrode may be any of graphite (graphite) as an active material, carboxymethylcellulose (CMC) as a binder, styrene butadiene rubber (SBR), PVDF or polyimide, carbon black as a conductive aid, in water or an organic solvent It can be obtained by coating and drying the dispersed negative electrode mixture slurry on a copper foil current collector.
  • CMC carboxymethylcellulose
  • SBR styrene butadiene rubber
  • PVDF polyimide
  • carbon black as a conductive aid
  • JP-A-8-264180 Unexamined-Japanese-Patent No. 4-188559 Japanese Patent Application Laid-Open No. 10-284082 WO 2004/049475 Japanese Patent Application Laid-Open No. 10-302799
  • SBR styrene butadiene rubber
  • the main object of the present invention is to provide a binder for an electrode having sufficient binding power and capable of reducing the resistance of a non-aqueous electrolyte secondary battery.
  • a binder containing polyvinyl alcohol and a copolymer of an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol is used for an electrode of a non-aqueous electrolyte secondary battery to exhibit sufficient binding power. It was further found that the resistance of the non-aqueous electrolyte secondary battery can be further reduced.
  • a binder for a non-aqueous electrolyte secondary battery electrode comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol.
  • Item 2 The non-aqueous electrolyte according to item 1, wherein the copolymer composition ratio of the vinyl alcohol to the alkali metal neutralized product of the ethylenically unsaturated carboxylic acid in the copolymer is 95/5 to 5/95 in molar ratio.
  • Binder for secondary battery electrodes Item 3.
  • Item 4 The binder for a non-aqueous electrolyte secondary battery electrode according to any one of Items 1 to 3, wherein a mass ratio of the copolymer to the polyvinyl alcohol is 95/5 to 70/30.
  • a non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to Item 7.
  • An electrical device comprising the non-aqueous electrolyte secondary battery according to item 8.
  • a binder for an electrode having sufficient binding power and capable of reducing the resistance of a non-aqueous electrolyte secondary battery.
  • an electrode mixture for a non-aqueous electrolyte secondary battery including the binder, an electrode for a non-aqueous electrolyte secondary battery using the electrode mixture, and a non-aqueous electrolyte secondary battery including the electrode And an electric device provided with the secondary battery.
  • the binder for non-aqueous electrolyte secondary battery electrodes the electrode mixture for non-aqueous electrolyte secondary batteries, the electrode for non-aqueous electrolyte secondary batteries, the non-aqueous electrolyte secondary battery, and the electric device of the present invention will be described in detail.
  • (meth) acrylic acid means “acrylic acid” and / or “methacrylic acid”, and expressions similar thereto are also the same.
  • the binder for a non-aqueous electrolyte secondary battery electrode of the present invention (hereinafter sometimes referred to as "the binder of the present invention") is a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, It is characterized in that it contains polyvinyl alcohol.
  • the binder for the non-aqueous electrolyte secondary battery electrode of the present invention for the electrode of the non-aqueous electrolyte secondary battery, the binder can exhibit sufficient binding power, and the resistance of the non-aqueous electrolyte secondary battery can be reduced.
  • a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid means vinyl alcohol and ethylene as a monomer (monomer) component. It means a copolymer obtained by copolymerizing an aliphatic unsaturated carboxylic acid alkali metal neutralized product.
  • the said copolymer is, for example, in a mixed solvent of an aqueous organic solvent and water in the presence of an alkali containing alkali metal, and a precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester.
  • vinyl ester examples include vinyl acetate and vinyl propionate, and vinyl acetate is preferable from the viewpoint that the saponification reaction easily proceeds.
  • a vinyl ester may be used individually by 1 type, and can also be used in combination of 2 or more type.
  • ethylenically unsaturated carboxylic acid ester examples include methyl ester of (meth) acrylic acid, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, t-butyl ester and the like, and saponification reaction Methyl acrylate and methyl methacrylate are preferred from the viewpoint that The ethylenically unsaturated carboxylic acid esters may be used alone or in combination of two or more.
  • ethylenically unsaturated monomers copolymerizable with vinyl ester and ethylenically unsaturated carboxylic acid ester are used in addition to vinyl ester and ethylenically unsaturated carboxylic acid ester, and these are used. It may be copolymerized.
  • the saponification reaction in the case of 100% saponification with potassium hydroxide is shown below for the precursor obtained by copolymerizing vinyl acetate / methyl acrylate.
  • the copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid is derived from the monomer of a precursor obtained by random copolymerization of a vinyl ester and an ethylenically unsaturated carboxylic acid ester. And the bond between monomers is a C—C covalent bond.
  • a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid may be simply referred to as a copolymer. Also, “/” in the above formula indicates that random copolymerization is performed.
  • the binder of the present invention exhibits a sufficient binding power and more preferably reduces the resistance of the non-aqueous electrolyte secondary battery
  • the precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester The molar ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester is preferably 95/5 to 5/95, more preferably 90/10 to 10/90, still more preferably 80/20 to 20/80. By setting the molar ratio to 95/5 to 5/95, the retention of the copolymer obtained after saponification as a binder is further improved.
  • the obtained vinyl alcohol and the alkali metal neutralized with ethylenically unsaturated carboxylic acid The copolymer composition ratio is preferably 95/5 to 5/95, more preferably 90/10 to 10/90, still more preferably 80/20 to 20/80 in molar ratio.
  • the total mass (100% by mass) of the monomer forming the copolymer is from the viewpoint of the binder of the present invention exhibiting a sufficient binding power and reducing the resistance of the non-aqueous electrolyte secondary battery more suitably.
  • the total proportion of the vinyl ester and the ethylenically unsaturated carboxylic acid ester is preferably 5% by mass or more, more preferably 20 to 95% by mass, and still more preferably 40 to 95% by mass.
  • an alkali metal (meth) acrylate neutralized product is preferable from the viewpoint of easy handling at the time of production.
  • an alkali metal of the ethylenically unsaturated carboxylic acid alkali metal neutralized material lithium, sodium, potassium, rubidium, cesium etc. can be illustrated, Preferably it is potassium and sodium.
  • Particularly preferred ethylenically unsaturated carboxylic acid alkali metal neutralized products are selected from the group consisting of sodium acrylate neutralized products, potassium acrylate neutralized products, sodium methacrylate neutralized products, and potassium methacrylate neutralized products It is at least one kind.
  • a precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester (hereinafter sometimes referred to simply as a precursor) is a dispersant containing a polymerization catalyst from the viewpoint of obtaining a powdery precursor. It is preferable that the polymer particles be obtained by a suspension polymerization method, in which an aqueous solution is polymerized in a state in which monomers consisting mainly of a vinyl ester and an ethylenically unsaturated carboxylic acid ester are suspended to obtain polymer particles.
  • polymerization catalyst examples include organic peroxides such as benzoyl peroxide and lauryl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. Of these, lauryl peroxide is preferable. .
  • the addition amount of the polymerization catalyst is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and more preferably 0.1 to 3% by mass with respect to the total mass (100% by mass) of the monomers. Is more preferred. If the amount is less than 0.01% by mass, the polymerization reaction may not be completed. If the amount is more than 5% by mass, the binding effect of the finally obtained copolymer as a binder may not be sufficient.
  • a dispersing agent at the time of carrying out polymerization for example, polyvinyl alcohol (partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol), poly (meth) acrylic acid and salts thereof, polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxy Examples thereof include water-soluble polymers such as propyl cellulose, and water-insoluble inorganic compounds such as calcium phosphate and magnesium silicate. These dispersants may be used alone or in combination of two or more.
  • the amount of the dispersant used is preferably 0.01 to 10% by mass, preferably 0.05 to 5% by mass based on the total mass (100% by mass) of the monomers, although it depends on the kind of the monomer to be used. % By mass is more preferred.
  • water-soluble salts of alkali metals and alkaline earth metals can also be added in order to adjust the surfactant effect of the dispersant.
  • water-soluble salts include sodium chloride, potassium chloride, calcium chloride, lithium chloride, sodium sulfate, potassium sulfate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate, tripotassium phosphate and the like. These water-soluble salts may be used alone or in combination of two or more.
  • the amount of the water-soluble salt used is usually 0.01 to 10% by mass based on the mass of the aqueous dispersant solution.
  • the temperature for polymerizing the monomer is preferably -20 ° C to + 20 ° C, more preferably -10 ° C to + 10 ° C, with respect to the 10 hour half-life temperature of the polymerization catalyst. If the temperature for polymerizing the monomer is less than -20 ° C with respect to the 10 hour half-life temperature of the polymerization catalyst, the polymerization reaction may not be completed, and if it exceeds + 20 ° C, vinyl alcohol and ethylenic unsaturation obtained. In some cases, the binding effect as a binder for a copolymer with an alkali metal carboxylate is not sufficient.
  • the time for polymerizing the monomers is usually several hours to several tens of hours.
  • the precursor After completion of the polymerization reaction, the precursor is separated by a method such as centrifugation, filtration and the like to obtain a water-containing cake.
  • the obtained water-containing cake-like precursor can be used as it is or, if necessary, dried for saponification reaction.
  • the number average molecular weight of the precursor can be determined using a polar solvent such as DMF with a molecular weight measurement apparatus equipped with a GFC column (manufactured by Shodex, OHpak) or the like.
  • a molecular weight measuring device for example, 2695 manufactured by Waters, RI detector 2414 can be mentioned.
  • the number average molecular weight of the precursor is preferably 10,000 to 10,000,000, and more preferably 50,000 to 5,000,000.
  • the binding ability is improved as a binder, and in particular, when used as an aqueous binder, the thickness can be easily controlled.
  • the saponification reaction can be carried out, for example, in the presence of an alkali containing an alkali metal, in an aqueous organic solvent alone, or in a mixed solvent of an aqueous organic solvent and water.
  • An alkali metal hydroxide is preferably used as the alkali, and sodium hydroxide and potassium hydroxide are more preferably used from the viewpoint of high reactivity.
  • the amount of the alkali used is preferably 60 to 140 mol%, more preferably 80 to 120 mol%, with respect to the total number of moles of the monomer. If the amount of alkali used is less than 60 mol%, saponification may be insufficient, and even if it is used more than 140 mol%, no further effect is obtained and it is not economical.
  • the degree of saponification in the saponification reaction of the precursor is preferably 90 to 100%, and more preferably 95 to 100%. The solubility to water can be improved by making saponification degree into 90% or more.
  • the free carboxylic acid (COOH) group derived from the ethylenically unsaturated carboxylic acid ester is hardly present regardless of the amount of the alkali used.
  • the prepared slurry-like electrode mixture has an appropriate viscosity, and coating properties and storage stability can be improved.
  • aqueous organic solvent As a solvent for the saponification reaction, it is preferable to use only an aqueous organic solvent or a mixed solvent of an aqueous organic solvent and water.
  • the aqueous organic solvent include lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and t-butanol, ketones such as acetone and methyl ethyl ketone, and mixtures thereof.
  • lower alcohols are preferable, and methanol and ethanol are particularly preferable because a copolymer having excellent thickening effect and excellent resistance to mechanical shear can be obtained.
  • the aqueous organic solvent may be used alone or in combination of two or more.
  • the weight ratio (aqueous organic solvent: water) in the case of using a mixed solvent of an aqueous organic solvent and water is preferably 2: 8 to 10: 0, and more preferably 3: 7 to 8: 2. If it is out of the range of 2: 8 to 10: 0, the solvent affinity of the precursor or the solvent affinity of the copolymer after saponification may be insufficient, and the saponification reaction may not proceed sufficiently.
  • the ratio of the aqueous organic solvent is less than 2: 8, it becomes easy to thicken in the saponification reaction, and it becomes difficult to industrially obtain a copolymer.
  • the mass ratio of the mixed solvent includes water of the water-containing cake precursor.
  • the temperature of the saponification reaction of the precursor is preferably 20 to 80 ° C., and more preferably 20 to 60 ° C.
  • the reaction may not be completed, and in the case of a temperature exceeding 80 ° C., the inside of the reaction system may be thickened and it may be difficult to stir.
  • the time for the saponification reaction is usually about several hours.
  • a paste or slurry-like copolymer dispersion is usually formed.
  • the dispersion is solid-liquid separated by a method such as centrifugal separation or filtration, washed with a lower alcohol such as methanol, and dried to obtain spherical single particles or aggregated particles in which spherical particles are aggregated.
  • a copolymer with a saturated carboxylic acid alkali metal neutralized product can be obtained.
  • an acid such as an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid; an organic acid such as formic acid, acetic acid, oxalic acid or citric acid, lithium hydroxide
  • an organic acid such as formic acid, acetic acid, oxalic acid or citric acid, lithium hydroxide
  • alkali metals such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, francium hydroxide, etc. (that is, different alkali metals), vinyl alcohol and ethylenic unsaturated carboxylic acid alkali Copolymers of metal-neutralized products can also be obtained.
  • the conditions for drying the liquid-containing copolymer it is usually preferable to dry at a temperature of 30 to 120 ° C. under normal pressure or reduced pressure.
  • the drying time is usually several hours to several tens of hours, depending on the pressure and temperature at the time of drying.
  • the obtained vinyl alcohol and an ethylenically unsaturated carboxylic acid alkali metal neutralized product The volume average particle diameter of the copolymer is preferably 1 to 200 ⁇ m, and more preferably 10 to 100 ⁇ m.
  • a binding effect is more preferably obtained at 1 ⁇ m or more, and by making the thickness 200 ⁇ m or less, the thickening liquid becomes more uniform and a preferable binding effect is obtained.
  • the volume average particle size of the copolymer can be determined by installing a batch cell (SALD-BC, manufactured by Shimadzu Corporation) in a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation), and using 2-propanol as a dispersion solvent or the like. It is the value measured using methanol.
  • the liquid-containing copolymer is dried, and when the volume-average particle size of the obtained copolymer exceeds 200 ⁇ m, the volume-average particle size is 1 ⁇ m or more by grinding using a conventionally known grinding method such as mechanical milling treatment. It can be adjusted to 200 ⁇ m or less.
  • Mechanical milling is a method of applying an external force such as impact, tension, friction, compression, or shear to the obtained copolymer, and as a device therefor, a rolling mill, a vibration mill, a planetary mill, a rocking mill Horizontal mill, attritor mill, jet mill, crusher, homogenizer, fluidizer, paint shaker, mixer and the like.
  • a rolling mill a vibration mill
  • a planetary mill a rocking mill Horizontal mill
  • attritor mill jet mill
  • crusher homogenizer
  • fluidizer paint shaker, mixer and the like.
  • the copolymer and the ball are put together in a container, and the mechanical energy generated by simultaneously rotating and revolving the copolymer grinds or mixes the copolymer. According to this method, it is crushed to nano order.
  • the viscosity of an aqueous solution containing 1% by mass is preferably 20 to 10000 mPa ⁇ s, more preferably 50 to 10000 mPa ⁇ s, and still more preferably 50 to 5000 mPa ⁇ s.
  • the viscosity is 20 mPa ⁇ s or more, a slurry-like electrode mixture having a preferable viscosity can be obtained, and the coatability can be facilitated. In addition, the dispersibility of the active material and the conductive additive in the mixture becomes good. If the viscosity is 10000 mPa ⁇ s or less, the viscosity of the prepared mixture is not too high, and it becomes easier to thinly and uniformly coat the current collector.
  • the viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, spindle No. 5 and 50 rpm (liquid temperature 25 ° C.).
  • the binder of the present invention exerts sufficient binding power, and from the viewpoint of lowering the resistance of the non-aqueous electrolyte secondary battery more suitably, vinyl alcohol and alkali metal of ethylenically unsaturated carboxylic acid in the binder of the present invention are neutralized
  • the proportion of the copolymer with the substance is preferably 5% by mass or more, more preferably 20% by mass to 95% by mass, and still more preferably 40% by mass to 95% by mass.
  • the polyvinyl alcohol in the binder for a non-aqueous electrolyte secondary battery electrode of the present invention, preferably has a degree of saponification of 75% or more, more preferably 90% or more, from the viewpoint of solubility in water. Furthermore, as the polyvinyl alcohol preferably used, the degree of polymerization is preferably about 100 to about 3,000 from the viewpoint of handling.
  • the polyvinyl alcohol preferably has a number average molecular weight of 1,000 to 5,000,000, from the viewpoint of achieving a sufficient binding ability of the binder of the present invention and suitably reducing the resistance of the non-aqueous electrolyte secondary battery. From the viewpoint of providing a viscosity that is easy to handle when applying the electrode mixture, 4,000 to 1,000,000 is more preferable.
  • the number average molecular weight of polyvinyl alcohol is a value measured by a molecular weight measurement apparatus equipped with a GFC column, like the number average molecular weight of the precursor.
  • Polyvinyl alcohol can be produced by a known method, for example, can be produced by polymerizing a vinyl ester in the presence of a catalyst and saponifying in the presence of a catalyst such as an acid or an alkali.
  • a catalyst such as an acid or an alkali.
  • commercially available products such as product name "GOOSENOL” series (made by Japan Synthetic Chemical Industry Co., Ltd.) and product name “Kuraray poval” series (made by Kuraray), can also be used, for example.
  • the content of polyvinyl alcohol is relative to the total mass of the binder, from the viewpoint that the binder of the present invention exerts a more sufficient binding power and lowers the resistance of the non-aqueous electrolyte secondary battery more suitably.
  • it is 1 mass% or more, More preferably, it is 1 to 60 mass%, More preferably, it is 1 to 40 mass%.
  • the mass ratio of the copolymer to the polyvinyl alcohol (from the viewpoint of reducing the resistance of the non-aqueous electrolyte secondary battery more suitably, the binder of the present invention exhibits a sufficient binding power
  • the copolymer / polyvinyl alcohol is preferably 95/5 to 70/30, more preferably 95/5 to 65/35, still more preferably 95/5 to 60/40.
  • the binder for a non-aqueous electrolyte secondary battery electrode of the present invention may further contain other components in addition to a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol. .
  • other components include: carboxymethylcellulose (CMC), acrylic resin, sodium polyacrylate, sodium alginate, polyimide (PI), polyamide, polyamide imide, polyacrylic, styrene butadiene rubber (SBR), ethylene vinyl acetate copolymer Polymer (EVA) is mentioned.
  • acrylic resin, sodium polyacrylate, sodium alginate, polyamide, polyamide imide, and polyimide are suitably used, and acrylic resin is particularly suitably used.
  • the other components may be used alone or in combination of two or more.
  • the polyalkylene oxide may not be contained in the binder for a non-aqueous electrolyte secondary battery electrode of the present invention. That is, in one embodiment of the binder for non-aqueous electrolyte secondary battery electrodes of the present invention, the polyalkylene oxide is not contained (the content of the polyalkylene oxide is 0% by mass).
  • the polyalkylene oxide include polyethylene oxide, polypropylene oxide, polybutylene oxide, ethylene oxide-propylene oxide copolymer, ethylene oxide-butylene oxide copolymer, and propylene oxide-butylene oxide copolymer.
  • the proportion of the other components is preferably less than 80% by mass from the viewpoint that the binder of the present invention exhibits a sufficient binding power and more suitably reduces the resistance of the non-aqueous electrolyte secondary battery. More preferably, it is 50 mass% or less, More preferably, it is 20 mass% or less.
  • the vinyl alcohol and the alkali metal of the ethylenically unsaturated carboxylic acid are neutralized in the binder of the present invention from the viewpoint that the binder of the present invention exhibits a sufficient binding power and lowers the resistance of the nonaqueous electrolyte secondary battery more suitably
  • the total content of the copolymer with the polymer and the polyvinyl alcohol is preferably 20 to 100% by mass with respect to the total mass of the binder.
  • the binder for non-aqueous electrolyte secondary battery electrodes of the present invention can be suitably used as a water-based binder (that is, a water-based binder for non-aqueous electrolyte secondary battery electrodes).
  • the electrode mixture for a non-aqueous electrolyte secondary battery of the present invention comprises the binder for a non-aqueous electrolyte secondary battery electrode of the present invention, an electrode active material (a positive electrode active material and a negative electrode active material), and a conductive additive as essential components. And an electrode mixture used for producing an electrode for a non-aqueous electrolyte secondary battery.
  • the content of the binder of the present invention is 100 wt% of the total of the electrode active material, the conductive additive, and the binder, from the viewpoint of exhibiting a sufficient binding power and suitably reducing the resistance of the non-aqueous electrolyte secondary battery.
  • the amount is preferably 0.5 to 40 parts by mass, more preferably 1 to 25 parts by mass, and still more preferably 1.5 to 10 parts by mass with respect to parts.
  • the content of the binder of the present invention in the electrode mixture of the present invention is preferably 0.5 to 40% by mass, more preferably 1 to 25% by mass, and still more preferably 1.5 to 10%. %.
  • the electrode mixture of the present invention can be produced by a known method using the binder of the present invention.
  • the electrode active material, the conductive aid, the binder of the present invention, and the dispersion aid (if necessary) And water to form a paste-like slurry.
  • the timing of adding water is not particularly limited, and may be added by dissolving the binder of the present invention in water in advance, an electrode active material, a conductive aid, a dispersing aid (if necessary), and the present invention After mixing the binder in the solid state, water may be added thereto.
  • the amount of water used is, for example, preferably 40 to 2000 parts by mass, more preferably 50 to 1000 parts by mass with respect to a total of 100 parts by mass of the electrode active material, the conductive auxiliary agent, and the binder of the present invention. .
  • the handleability of the electrode mixture (slurry) of this invention improves more by making the usage-amount of water into the said range.
  • the positive electrode active material used in this technical field can be used.
  • a negative electrode active material used in the present technical field can be used.
  • a material that can occlude and release a large amount of lithium ions such as a carbon material, silicon (Si), tin (Sn), lithium titanate, or the like can be used. If it is such a material, it is possible to exhibit the effect of the present embodiment regardless of any one of a simple substance, an alloy, a compound, a solid solution, and a composite active material containing a silicon-containing material and a tin-containing material.
  • As said carbon material crystalline carbon, amorphous carbon, etc. can be used.
  • Examples of crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite.
  • Examples of amorphous carbon include soft carbon (easy-carbonized graphite) or hard carbon (hard-to-carbonize graphite), mesophase pitch carbide, calcined coke and the like.
  • As a silicon-containing material Si, SiOx (0.05 ⁇ x ⁇ 1.95), or B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, or any of these can be used.
  • An alloy, a compound, a solid solution, or the like in which a part of Si is substituted by at least one or more elements selected from the group consisting of Ta, V, W, Zn, C, N, and Sn can be used. These can be referred to as silicon or silicon compounds.
  • the tin-containing material Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 , LiSnO or the like can be applied. One of these materials may be used alone, or two or more of these materials may be used in combination.
  • graphite is preferable. By using the binder of the present invention, even when graphite is used as the negative electrode active material, the binder exhibits sufficient binding power, and the resistance of the non-aqueous electrolyte secondary battery can be suitably reduced.
  • a composite obtained by mixing silicon and a silicon compound as the first negative electrode active material, a carbon material as the second negative electrode active material, and the first and second negative electrode active materials may be used as the negative electrode active material.
  • the mixing ratio of the first and second negative electrode active materials is preferably 5/95 to 95/5 by mass.
  • the carbon material may be any carbon material used in the technical field, and typical examples thereof include the above-mentioned crystalline carbon and amorphous carbon.
  • the method for producing the negative electrode active material may be any method as long as it is possible to uniformly disperse the active material complex in which the first negative electrode active material and the second negative electrode active material are mixed.
  • a specific method of manufacturing a negative electrode active material a method of mixing a first negative electrode active material and a second negative electrode active material in a ball mill can be mentioned.
  • a method of supporting the second negative electrode active material precursor on the particle surface of the first negative electrode active material and carbonizing the precursor by the heat treatment method may be mentioned.
  • the second negative electrode active material precursor may be any carbon precursor that can be a carbon material by heat treatment, and examples thereof include glucose, citric acid, pitch, tar, binder materials (for example, polyvinylidene fluoride, carboxymethylcellulose, acrylic) Resin, sodium polyacrylate, sodium alginate, polyimide, polytetrafluoroethylene, polyamide, polyamide imide, polyacryl, styrene butadiene rubber, polyvinyl alcohol, ethylene vinyl acetate copolymer and the like can be mentioned. Commercially available products of these negative electrode active materials are readily available.
  • the carbon precursor is carbonized by heat treatment at 600 to 4000 ° C. in a non-oxidizing atmosphere (a non-oxidizable atmosphere such as a reducing atmosphere, an inert atmosphere, or a reduced pressure atmosphere). It is a way to get.
  • a non-oxidizing atmosphere a non-oxidizable atmosphere such as a reducing atmosphere, an inert atmosphere, or a reduced pressure atmosphere. It is a way to get.
  • the conductive aid can use the conductive aid used in the technical field, and carbon powder is preferable.
  • carbon powder for example, acetylene black (AB), ketjen black (KB), graphite, carbon fiber, carbon tube, graphene, amorphous carbon, hard carbon, soft carbon, glassy carbon, carbon nanofiber, carbon nanotube (CNT) and the like.
  • the amount of the conductive aid used is preferably 0.1 to 30% by mass, more preferably 0.5 to 10% by mass, with respect to 100 parts by mass in total of the electrode active material, the conductive auxiliary and the binder. 5 mass% is more preferable. If the amount of the conductive aid used is less than 0.1% by mass, the conductivity of the electrode may not be sufficiently improved. If the amount of the conductive aid exceeds 30% by mass, the proportion of the electrode active material relatively decreases, and it is difficult to obtain a high capacity at the time of charge and discharge of the battery, and the surface area is small because it is smaller than the electrode active material There is a possibility that the amount of binder used may increase.
  • the electrode mixture of the present invention may further contain a dispersion aid.
  • a dispersion aid By including the dispersion aid, the dispersibility of the electrode active material and the conductive aid in the electrode mixture becomes high.
  • the dispersion aid an organic acid having a molecular weight of 100,000 or less and soluble in an aqueous solution of pH 7 to 13 is preferable.
  • these organic acids it is preferable to contain a carboxyl group and at least one of a hydroxy group, an amino group or an imino group.
  • compounds having a carboxyl group and a hydroxy group such as lactic acid, tartaric acid, citric acid, malic acid, glycolic acid, thaltronic acid, glucuronic acid, humic acid and the like; glycine, alanine, phenylalanine, 4-aminobutyric acid, leucine Compounds having a carboxyl group and an amino group such as isoleucine and lysine; compounds having a plurality of carboxyl groups and an amino group such as glutamic acid and aspartic acid; proline, 3-hydroxyproline, 4-hydroxyproline, pipecoline Compounds having a carboxyl group such as an acid and an imino group; compounds having a carboxyl group such as glutamine, asparagine, cysteine, histidine and tryptophan and a functional group other than a hydroxyl group and an amino group may be mentioned.
  • the molecular weight of the dispersion aid is preferably 100,000 or less from the viewpoint of solubility in water in the case of an aqueous binder. When the molecular weight exceeds 100,000, the hydrophobicity of the molecule becomes strong, and the uniformity of the slurry may be impaired.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention uses the electrode mixture of the present invention (that is, uses the electrode for a non-aqueous electrolyte secondary battery of the present invention), and applies the method used in the technical field.
  • examples of materials constituting the current collector include C, Cu, Ni, Fe, V, Nb, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir Conductive materials such as Pt, Au, and AI, and alloys containing two or more of these conductive materials (for example, stainless steel) can be used.
  • the current collector may be one obtained by plating a conductive substance with another conductive substance (for example, one obtained by plating Cu on Fe). From the viewpoints of high electrical conductivity and excellent stability and oxidation resistance in the electrolytic solution, Cu, Ni, stainless steel and the like are preferable as the material constituting the current collector, and Cu and Ni are preferable from the viewpoint of material cost. preferable.
  • examples of materials constituting the current collector include conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc.
  • conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc.
  • a substance, an alloy containing two or more of these conductive substances may be used.
  • the material constituting the current collector is preferably C, Al, stainless steel, etc., and from the viewpoint of material cost, Al is preferable.
  • a foil-like substrate, a three-dimensional substrate or the like can be used as a shape of the current collector.
  • a three-dimensional substrate foil metal, mesh, woven fabric, non-woven fabric, expand, etc.
  • an electrode with a higher capacity density is obtained, and the high rate charge / discharge characteristics also become good.
  • the non-aqueous electrolyte secondary battery of the present invention (non-aqueous electrolyte secondary battery including at least the non-aqueous electrolyte secondary battery electrode of the present invention) can be produced using the electrode of the present invention.
  • the non-aqueous electrolyte secondary battery of the present invention may be provided with the non-aqueous electrolyte secondary battery electrode of the present invention as either or both of the positive electrode and the negative electrode.
  • a non-aqueous electrolyte secondary battery a lithium ion secondary battery is preferable.
  • a method of manufacturing the non-aqueous electrolyte secondary battery of the present invention a general method used in the technical field can be used.
  • lithium salts are preferably used as the electrolyte.
  • the lithium salt include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate imide and the like.
  • An electrolyte can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • an electrolytic solution of the battery for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone and the like can be used.
  • An electrolyte solution can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or ⁇ -butyrolactone alone is preferable.
  • the mixing ratio of the mixture of ethylene carbonate and diethyl carbonate described above can be arbitrarily adjusted within the range of 10 to 90% by volume of one component.
  • the electric device of the present invention is an electric device provided with at least the non-aqueous electrolyte secondary battery of the present invention. That is, the electric device according to the present invention is an electric device using at least the non-aqueous electrolyte secondary battery of the present invention as a power source.
  • the electric device of the present invention includes, for example, air conditioners, washing machines, televisions, refrigerators, personal computers, tablets, smartphones, personal computer keyboards, monitors, printers, mice, hard disks, personal computer peripherals, irons, clothes dryers, transceivers, blowers, Music recorder, music player, oven, range, warm air heater, car navigation system, flashlight, humidifier, portable karaoke machine, dry battery, air purifier, game machine, sphygmomanometer, coffee mill, coffee maker, kotatsu, copy machine, disc Changer, Radio, Shaver, Juicer, Shredder, Water Filter, Lighting Fixture, Dishware Dryer, Cooker, Trouser Press, Vacuum Cleaner, Weight Scale, Electric Carpet, Rice Cooker, Electric Pot, Electronic Dictionary, Electronic Notebook, Electromagnetic Cooker , Calculator, electric cart, electric car Child, electric tool, electric toothbrush, hearth, clock, intercom, air circulator, electric shock insecticide, hot plate, toaster, water heater, crusher, soldering iron
  • Copolymer A was produced by the following steps 1 to 3.
  • Step 1 Synthesis of vinyl ester and ethylenically unsaturated carboxylic acid ester copolymerized precursor (precursor)
  • Water (768 g) and anhydrous sodium sulfate (12 g) were charged into a 2- liter reaction vessel equipped with a stirrer, thermometer, N 2 gas introduction pipe, reflux condenser and dropping funnel, and N 2 gas was blown to deoxidize the system.
  • the obtained precursor was dissolved in DMF and filtered through a filter, and the molecular weight of the precursor in the filtrate was measured using a molecular weight measuring apparatus (2695 manufactured by Waters, RI detector 2414).
  • the number average molecular weight calculated in terms of standard polystyrene was 1,880,000.
  • Step 2 Synthesis of copolymer (copolymer) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid
  • a reaction vessel similar to Step 1 450 g of methanol, 420 g of water, 132 g (3.3 mol) of sodium hydroxide and 288 g of the precursor obtained in Step 1 (10.4 mass% water content) are charged. Saponification reaction was performed for 3 hours. After completion of the saponification reaction, the obtained copolymer is washed with methanol, filtered, dried at 70 ° C.
  • vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer (vinyl alcohol and ethylenic unsaturated carboxylic acid)
  • a copolymer with an acid alkali metal neutralized product, alkali metal sodium, 98.8% saponification degree) 193 g was obtained.
  • the volume average particle size of the obtained copolymer was 180 ⁇ m.
  • Step 3 Grinding of copolymer (copolymer) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid) 193 g of the copolymer obtained in step 2 was pulverized by a jet mill (LJ, manufactured by Nippon Pneumatic Mfg. Co., Ltd.) to obtain 173 g of a finely powdered copolymer (copolymer A).
  • the particle diameter of the obtained copolymer A was measured by a laser diffraction type particle size distribution measuring device (SALD-7100, manufactured by Shimadzu Corporation), and the volume average particle diameter was 39 ⁇ m.
  • SALD-7100 laser diffraction type particle size distribution measuring device
  • Example 1 2.7 parts by mass of the copolymer A obtained above and 0.3 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd., Kurare Pover 105, number average molecular weight 22,000) dissolved in 50 parts by mass of water are used as binders. An aqueous solution of (the binder composition) was obtained.
  • the obtained negative electrode mixture is applied on a 10 ⁇ m-thick electrolytic copper foil and dried, and then the electrolytic copper foil and the coating film are closely bonded by a roll press machine (manufactured by Ono Roll Co., Ltd.). Heat treatment (under reduced pressure, at 140 ° C. for 3 hours or more) to prepare a negative electrode.
  • the thickness of the active material layer in the obtained negative electrode was 100 ⁇ m, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
  • Example 2 The procedure of Example 1 was repeated, except that 2.4 parts by mass of the copolymer A and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., KURARAY POVAL 105, number average molecular weight 22,000) were used. In the same manner as in Example 1, a negative electrode was produced. The thickness of the active material layer in the obtained negative electrode was 101 ⁇ m, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
  • Example 1 A negative electrode was produced in the same manner as in Example 1 except that 3.0 parts by mass of the copolymer A and no polyvinyl alcohol were used in Example 1.
  • the thickness of the active material layer in the obtained negative electrode was 99 ⁇ m, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
  • Example 1 is the same as example 1 except that 3.0 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., KURARAY POVAL 105, number average molecular weight 22,000) is used and 3.0 parts by mass and copolymer A is not used. Then, a negative electrode was produced. The thickness of the active material layer in the obtained negative electrode was 102 ⁇ m, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
  • Electrode strength The electrode strength (electrode strength) depending on the presence or absence of peeling, detachment, or chipping of the active material layer when the electrodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are punched to a size of 11 mm ⁇ with a punching machine. (Referred to as Table 2 shows the evaluation results of the electrode strength.
  • O excellent in strength: Among 10 randomly punched out electrodes, 2 or less sheets in which any of peeling, falling off or chipping of the active material layer was confirmed by visual judgment.
  • significantly superior in strength: 10 out of 10 randomly punched electrodes, 3 to 5 of which the peeling, falling off or chipping of the active material layer was confirmed by visual judgment.
  • X poor strength: Of 10 sheets of the electrode randomly punched out, 6 or more sheets in which any of peeling, falling off or chipping of the active material layer was confirmed by visual observation.
  • a coin cell (CR2032) having the negative electrodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 and the following counter electrode, separator, and electrolyte is prepared, and subjected to three cycles of 0.1 C in an environment of 30 ° C. Aging treatment was performed to prepare a sample (coin cell).
  • Electrolyte solution LiPF 6 is dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1, vinylene carbonate (VC Solution containing 1% by mass of

Abstract

Provided is a binder for an electrode which has sufficient binding force and can reduce resistance of a nonaqueous electrolyte secondary battery. The binder for a nonaqueous electrolyte secondary battery electrode includes: a copolymer of a vinyl alcohol and an ethylenically unsaturated carboxylic acid alkali metal neutralization product; and a polyvinyl alcohol.

Description

非水電解質二次電池電極用バインダー、非水電解質二次電池用電極合剤、非水電解質二次電池用電極、非水電解質二次電池、及び電気機器Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric device
 本発明は、非水電解質二次電池電極用バインダー、該バインダーを含む非水電解質二次電池用電極合剤、該電極合剤を用いた非水電解質二次電池用電極、該電極を備えた非水電解質二次電池、及び該二次電池を備えた電気機器に関する。 The present invention comprises a binder for a non-aqueous electrolyte secondary battery electrode, an electrode mixture for a non-aqueous electrolyte secondary battery including the binder, an electrode for a non-aqueous electrolyte secondary battery using the electrode mixture, and the electrode The present invention relates to a non-aqueous electrolyte secondary battery and an electric device provided with the secondary battery.
 近年、ノートパソコン、スマートフォン、携帯ゲーム機器、PDA等の携帯電子機器の普及に伴い、これらの機器をより軽量化し、且つ、長時間の使用を可能とするため、電源として使用される二次電池の小型化及び高エネルギー密度化が要求されている。 In recent years, with the spread of portable electronic devices such as laptop computers, smartphones, portable game devices, PDAs, etc., secondary batteries used as a power source to reduce the weight of these devices and enable long-time use There is a demand for miniaturization and high energy density of
 特に近年では、電気自動車、電動二輪車等の車両用電源としての利用が拡大している。このような車両用電源にも使用される二次電池には、高エネルギー密度化のみならず、幅広い温度域でも動作することができる電池が求められており、種々の非水電解質二次電池が提案されている。 In particular, in recent years, the use as a power source for vehicles such as electric vehicles and electric motorcycles has been expanded. As secondary batteries to be used for such vehicle power supplies, batteries that can operate not only at high energy density but also in a wide temperature range are required, and various non-aqueous electrolyte secondary batteries are required. Proposed.
 非水電解質二次電池としては、従来、ニッケル-カドミウム電池、ニッケル-水素電池等が主流であったが、上記した小型化及び高エネルギー密度化の要求から、リチウムイオン二次電池の使用が増大する傾向にある。 Conventionally, nickel-cadmium batteries, nickel-hydrogen batteries, etc. have mainly been used as non-aqueous electrolyte secondary batteries, but the use of lithium ion secondary batteries has increased due to the above-mentioned demands for miniaturization and high energy density. Tend to
 リチウムイオン二次電池などの非水電解質二次電池の電極は、通常、電極用バインダー(以下、単にバインダーということがある)を溶媒に溶解させたバインダー溶液、またはバインダーを分散媒に分散させたスラリーに、活物質(電極活物質)、及び導電助剤を混合した電池電極合剤スラリー(以下、単にスラリーということがある)を集電体に塗布し、溶媒や分散媒を乾燥などの方法で除去して製造される。 An electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery usually has a binder solution in which a binder for an electrode (hereinafter, may be simply referred to as a binder) dissolved in a solvent, or a binder dispersed in a dispersion medium A method of applying a battery electrode mixture slurry (hereinafter may be simply referred to as a slurry) obtained by mixing an active material (electrode active material) and a conductive support agent to a slurry on a current collector, and drying the solvent and the dispersion medium It is manufactured by removing.
 リチウムイオン二次電池においては、例えば、正極は、活物質としてコバルト酸リチウム(LiCoO2)、バインダーとしてポリフッ化ビニリデン(PVDF)、導電助剤としてカーボンブラックを分散媒に分散させた正極合剤スラリーをアルミ箔集電体上に塗工・乾燥することで得られる。 In a lithium ion secondary battery, for example, a positive electrode is a positive electrode mixture slurry in which lithium cobaltate (LiCoO 2 ) as an active material, polyvinylidene fluoride (PVDF) as a binder, and carbon black as a conductive additive are dispersed in a dispersion medium. Obtained by coating and drying on an aluminum foil current collector.
 また、負極は、活物質として黒鉛(グラファイト)、バインダーとしてカルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、PVDFまたはポリイミドなどの何れか、導電助剤としてカーボンブラックを、水または有機溶媒中に分散させた負極合剤スラリーを、銅箔集電体上に塗工・乾燥することで得られる。 In addition, the negative electrode may be any of graphite (graphite) as an active material, carboxymethylcellulose (CMC) as a binder, styrene butadiene rubber (SBR), PVDF or polyimide, carbon black as a conductive aid, in water or an organic solvent It can be obtained by coating and drying the dispersed negative electrode mixture slurry on a copper foil current collector.
 さらに、リチウムイオン二次電池の大容量化するために、負極活物質として、種々の黒鉛の検討がなされている。特に、人造黒鉛では原材料、炭素化温度の違いなどから結晶状態が変化することで、負極活物質としてのエネルギー容量が変化することが知られている(特許文献1~3参照)。 Furthermore, in order to increase the capacity of lithium ion secondary batteries, various graphites have been studied as negative electrode active materials. In particular, in artificial graphite, it is known that the energy capacity as the negative electrode active material changes when the crystalline state changes due to the difference in the carbonization temperature and the raw materials (see Patent Documents 1 to 3).
特開平8-264180号公報JP-A-8-264180 特開平4-188559号公報Unexamined-Japanese-Patent No. 4-188559 特開平10-284082号公報Japanese Patent Application Laid-Open No. 10-284082 国際公開2004/049475号WO 2004/049475 特開平10-302799号公報Japanese Patent Application Laid-Open No. 10-302799
 負極活物質として種々の黒鉛を使用する場合、従来、バインダーとして用いられているPVDFでは、結着力と柔軟性が低いため、バインダーを多量に使用することが必要であった。バインダーを多量に使用することにより、活物質の量が相対的に少なくなり、電池容量が低下すると共に、電池内部の抵抗が上がってしまう不具合があった。さらに、PVDFは有機溶剤にしか溶解しないため、環境負荷の低減ができる他のバインダーが提案されている(特許文献4~5参照)。しかしながら、それらのバインダーを用いた場合、電池としての性能が十分ではない。 When various graphites are used as the negative electrode active material, it has been necessary to use a large amount of binder because PVDF, which has conventionally been used as a binder, has low binding strength and low flexibility. By using a large amount of the binder, the amount of the active material relatively decreases, and the battery capacity decreases, and there is a problem that the internal resistance of the battery increases. Furthermore, since PVDF dissolves only in organic solvents, other binders capable of reducing environmental impact have been proposed (see Patent Documents 4 to 5). However, when such binders are used, the performance as a battery is not sufficient.
 さらに、結着力を低下させずに環境負荷を低減させる効果が期待される水系バインダーとして、スチレンブタジエンゴム(SBR)を使用することが検討されている。しかしながら、絶縁体であるゴム性質のSBRが活物質の表面に存在するため、十分なレート特性が得られず、電極内での抵抗が高くなるという問題がある。 Furthermore, using a styrene butadiene rubber (SBR) as a water-based binder with which the effect of reducing an environmental impact is anticipated without reducing binding capacity is examined. However, since SBR having a rubber property, which is an insulator, is present on the surface of the active material, sufficient rate characteristics can not be obtained, and the resistance in the electrode is increased.
 このような状況下、本発明は、十分な結着力を有し、非水電解質二次電池を低抵抗化できる電極用バインダーを提供することを主な目的とする。 Under such circumstances, the main object of the present invention is to provide a binder for an electrode having sufficient binding power and capable of reducing the resistance of a non-aqueous electrolyte secondary battery.
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含むバインダーを、非水電解質二次電池の電極に用いることにより、十分な結着力を発揮し、さらに非水電解質二次電池を低抵抗化できることを見出した。 The present inventors diligently studied to solve the above problems. As a result, a binder containing polyvinyl alcohol and a copolymer of an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol is used for an electrode of a non-aqueous electrolyte secondary battery to exhibit sufficient binding power. It was further found that the resistance of the non-aqueous electrolyte secondary battery can be further reduced.
 すなわち、本発明は、下記の構成を備える発明を提供する。
項1. ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含む、非水電解質二次電池電極用バインダー。
項2. 前記共重合体における前記ビニルアルコールと前記エチレン性不飽和カルボン酸アルカリ金属中和物の共重合組成比は、モル比で、95/5~5/95である、項1に記載の非水電解質二次電池電極用バインダー。
項3. 前記エチレン性不飽和カルボン酸アルカリ金属中和物は、(メタ)アクリル酸アルカリ金属中和物である、項1または2に記載の非水電解質二次電池電極用バインダー。
項4. 前記共重合体と前記ポリビニルアルコールの質量比が、95/5~70/30である、項1~3のいずれか一項に記載の非水電解質二次電池電極用バインダー。
項5. 電極活物質と、導電助剤と、項1~4のいずれか一項に記載の非水電解質二次電池電極用バインダーとを含む、非水電解質二次電池用電極合剤。
項6. 前記バインダーの含有量が、前記電極活物質、前記導電助剤、及び前記バインダーの合計量100質量部に対して、0.5~40質量部である、項5に記載の非水電解質二次電池用電極合剤。
項7. 項5または6に記載の非水電解質二次電池用電極合剤を用いて作製された非水電解質二次電池用電極。
項8. 項7に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。
項9. 項8に記載の非水電解質二次電池を備えた電気機器。
項10. ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含むバインダーの、非水電解質二次電池電極への使用。
That is, the present invention provides an invention having the following configuration.
Item 1. A binder for a non-aqueous electrolyte secondary battery electrode, comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol.
Item 2. The non-aqueous electrolyte according to item 1, wherein the copolymer composition ratio of the vinyl alcohol to the alkali metal neutralized product of the ethylenically unsaturated carboxylic acid in the copolymer is 95/5 to 5/95 in molar ratio. Binder for secondary battery electrodes.
Item 3. The binder for non-aqueous electrolyte secondary battery electrodes according to claim 1 or 2, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is a (meth) acrylic acid alkali metal neutralized product.
Item 4. The binder for a non-aqueous electrolyte secondary battery electrode according to any one of Items 1 to 3, wherein a mass ratio of the copolymer to the polyvinyl alcohol is 95/5 to 70/30.
Item 5. An electrode mixture for a non-aqueous electrolyte secondary battery, comprising the electrode active material, a conductive additive, and the binder for a non-aqueous electrolyte secondary battery electrode according to any one of Items 1 to 4.
Item 6. The non-aqueous electrolyte secondary according to item 5, wherein the content of the binder is 0.5 to 40 parts by mass with respect to 100 parts by mass in total of the electrode active material, the conductive auxiliary agent, and the binder. Electrode mixture for batteries.
Item 7. 7. An electrode for a non-aqueous electrolyte secondary battery produced using the electrode mixture for a non-aqueous electrolyte secondary battery according to Item 5 or 6.
Item 8. Item 8. A non-aqueous electrolyte secondary battery comprising the electrode for a non-aqueous electrolyte secondary battery according to Item 7.
Item 9. Item 9. An electrical device comprising the non-aqueous electrolyte secondary battery according to item 8.
Item 10. Use of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and a binder containing polyvinyl alcohol for a non-aqueous electrolyte secondary battery electrode.
 本発明によれば、十分な結着力を有し、非水電解質二次電池を低抵抗化できる電極用バインダーを提供することができる。また、本発明によれば、当該バインダーを含む非水電解質二次電池用電極合剤、当該電極合剤を用いた非水電解質二次電池用電極、当該電極を備えた非水電解質二次電池、及び該二次電池を備えた電気機器を提供することもできる。 According to the present invention, it is possible to provide a binder for an electrode having sufficient binding power and capable of reducing the resistance of a non-aqueous electrolyte secondary battery. Further, according to the present invention, an electrode mixture for a non-aqueous electrolyte secondary battery including the binder, an electrode for a non-aqueous electrolyte secondary battery using the electrode mixture, and a non-aqueous electrolyte secondary battery including the electrode And an electric device provided with the secondary battery.
 以下、本発明の非水電解質二次電池電極用バインダー、非水電解質二次電池用電極合剤、非水電解質二次電池用電極、非水電解質二次電池、及び電気機器について詳述する。 Hereinafter, the binder for non-aqueous electrolyte secondary battery electrodes, the electrode mixture for non-aqueous electrolyte secondary batteries, the electrode for non-aqueous electrolyte secondary batteries, the non-aqueous electrolyte secondary battery, and the electric device of the present invention will be described in detail.
 なお、本発明において、「(メタ)アクリル酸」は、「アクリル酸」及び/または「メタクリル酸」を意味し、これに類する表現も同様である。 In the present invention, “(meth) acrylic acid” means “acrylic acid” and / or “methacrylic acid”, and expressions similar thereto are also the same.
<非水電解質二次電池電極用バインダー>
 本発明の非水電解質二次電池電極用バインダー(以下、「本発明のバインダー」と称する場合がある)は、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含むことを特徴としている。本発明の非水電解質二次電池電極用バインダーを、非水電解質二次電池の電極に用いることにより、バインダーは十分な結着力を発揮し、非水電解質二次電池を低抵抗化できる。
<Binder for non-aqueous electrolyte secondary battery electrode>
The binder for a non-aqueous electrolyte secondary battery electrode of the present invention (hereinafter sometimes referred to as "the binder of the present invention") is a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, It is characterized in that it contains polyvinyl alcohol. By using the binder for the non-aqueous electrolyte secondary battery electrode of the present invention for the electrode of the non-aqueous electrolyte secondary battery, the binder can exhibit sufficient binding power, and the resistance of the non-aqueous electrolyte secondary battery can be reduced.
[ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体]
 ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体(以下、単に「共重合体」と称する場合がある)とは、モノマー(単量体)成分としてのビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物とが共重合された共重合体を意味する。当該共重合体は、例えば、ビニルエステルとエチレン性不飽和カルボン酸エステルとを共重合させて得られた前駆体を、アルカリ金属を含むアルカリの存在下、水性有機溶媒と水との混合溶媒中でケン化することによって得ることができる。すなわち、ビニルアルコール自体は不安定であるため直接モノマーとして使用することはできないが、ビニルエステルをモノマーとして使用して得られた重合体をケン化することにより、生成された共重合体は、結果としてビニルアルコールがモノマー成分として共重合された態様となる。
[Copolymer of vinyl alcohol and neutralized alkali metal of ethylenically unsaturated carboxylic acid]
A copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid (hereinafter sometimes simply referred to as "copolymer") means vinyl alcohol and ethylene as a monomer (monomer) component. It means a copolymer obtained by copolymerizing an aliphatic unsaturated carboxylic acid alkali metal neutralized product. The said copolymer is, for example, in a mixed solvent of an aqueous organic solvent and water in the presence of an alkali containing alkali metal, and a precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester. Can be obtained by saponification. That is, although vinyl alcohol itself is unstable and can not be used directly as a monomer, the copolymer produced by saponifying a polymer obtained using a vinyl ester as a monomer results In this embodiment, vinyl alcohol is copolymerized as a monomer component.
 前記ビニルエステルとしては、例えば、酢酸ビニル、プロピオン酸ビニル等が挙げられ、ケン化反応が進行しやすい観点から酢酸ビニルが好ましい。ビニルエステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用することもできる。 Examples of the vinyl ester include vinyl acetate and vinyl propionate, and vinyl acetate is preferable from the viewpoint that the saponification reaction easily proceeds. A vinyl ester may be used individually by 1 type, and can also be used in combination of 2 or more type.
 前記エチレン性不飽和カルボン酸エステルとしては、例えば、(メタ)アクリル酸のメチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエステル、n-ブチルエステル、t-ブチルエステル等が挙げられ、ケン化反応が進行しやすい観点からアクリル酸メチル、メタクリル酸メチルが好ましい。エチレン性不飽和カルボン酸エステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用することもできる。 Examples of the ethylenically unsaturated carboxylic acid ester include methyl ester of (meth) acrylic acid, ethyl ester, n-propyl ester, isopropyl ester, n-butyl ester, t-butyl ester and the like, and saponification reaction Methyl acrylate and methyl methacrylate are preferred from the viewpoint that The ethylenically unsaturated carboxylic acid esters may be used alone or in combination of two or more.
 また、必要に応じてビニルエステル及びエチレン性不飽和カルボン酸エステルと共重合可能な他のエチレン性不飽和単量体を、ビニルエステル及びエチレン性不飽和カルボン酸エステルに加えて使用し、これらを共重合させてもよい。 Also, if necessary, other ethylenically unsaturated monomers copolymerizable with vinyl ester and ethylenically unsaturated carboxylic acid ester are used in addition to vinyl ester and ethylenically unsaturated carboxylic acid ester, and these are used. It may be copolymerized.
 ケン化反応の一例として、酢酸ビニル/アクリル酸メチルを共重合させて得られた前駆体を、水酸化カリウムにより100%ケン化する場合のケン化反応を以下に示す。 As an example of the saponification reaction, the saponification reaction in the case of 100% saponification with potassium hydroxide is shown below for the precursor obtained by copolymerizing vinyl acetate / methyl acrylate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、前記のビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体は、ビニルエステルとエチレン性不飽和カルボン酸エステルをランダム共重合させて得られた前駆体の、モノマー由来のエステル部分をケン化させた化合物であり、モノマー同士の結合はC-C共有結合である。以下、「ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体」を、単に共重合体ということがある。また、上記式での「/」はランダム共重合していることを示す。 The copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid is derived from the monomer of a precursor obtained by random copolymerization of a vinyl ester and an ethylenically unsaturated carboxylic acid ester. And the bond between monomers is a C—C covalent bond. Hereinafter, "a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid" may be simply referred to as a copolymer. Also, “/” in the above formula indicates that random copolymerization is performed.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、ビニルエステルとエチレン性不飽和カルボン酸エステルとを共重合させた前駆体において、ビニルエステルとエチレン性不飽和カルボン酸エステルのモル比は、好ましくは95/5~5/95、より好ましくは90/10~10/90、さらに好ましくは80/20~20/80である。当該モル比を95/5~5/95とすることにより、ケン化後に得られる共重合体のバインダーとしての保持力が一層向上する。 From the viewpoint that the binder of the present invention exhibits a sufficient binding power and more preferably reduces the resistance of the non-aqueous electrolyte secondary battery, the precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester The molar ratio of vinyl ester to ethylenically unsaturated carboxylic acid ester is preferably 95/5 to 5/95, more preferably 90/10 to 10/90, still more preferably 80/20 to 20/80. By setting the molar ratio to 95/5 to 5/95, the retention of the copolymer obtained after saponification as a binder is further improved.
 したがって、本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、得られるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体において、その共重合組成比は、モル比で好ましくは95/5~5/95、より好ましくは90/10~10/90、さらに好ましくは80/20~20/80である。前記モル比を95/5~5/95とすることにより、電極合剤におけるバインダーとしての保持力が一層向上する。 Therefore, from the viewpoint of the binder of the present invention exhibiting more sufficient binding power and reducing the resistance of the non-aqueous electrolyte secondary battery more suitably, the obtained vinyl alcohol and the alkali metal neutralized with ethylenically unsaturated carboxylic acid The copolymer composition ratio is preferably 95/5 to 5/95, more preferably 90/10 to 10/90, still more preferably 80/20 to 20/80 in molar ratio. By setting the molar ratio to 95/5 to 5/95, the retention as a binder in the electrode mixture can be further improved.
 また、本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、共重合体を形成する単量体総質量(100質量%)に対して、ビニルエステル及びエチレン性不飽和カルボン酸エステルの合計割合としては、好ましくは5質量%以上、より好ましくは20~95質量%、さらに好ましくは40~95質量%である。 In addition, the total mass (100% by mass) of the monomer forming the copolymer is from the viewpoint of the binder of the present invention exhibiting a sufficient binding power and reducing the resistance of the non-aqueous electrolyte secondary battery more suitably. On the other hand, the total proportion of the vinyl ester and the ethylenically unsaturated carboxylic acid ester is preferably 5% by mass or more, more preferably 20 to 95% by mass, and still more preferably 40 to 95% by mass.
 本発明にかかるエチレン性不飽和カルボン酸アルカリ金属中和物としては、製造時の取扱いがしやすい観点から、(メタ)アクリル酸アルカリ金属中和物が好ましい。また、エチレン性不飽和カルボン酸アルカリ金属中和物のアルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム等が例示でき、好ましくはカリウム及びナトリウムである。特に好ましいエチレン性不飽和カルボン酸アルカリ金属中和物は、アクリル酸ナトリウム中和物、アクリル酸カリウム中和物、メタクリル酸ナトリウム中和物、及びメタクリル酸カリウム中和物からなる群より選択される少なくとも1種である。 As the ethylenically unsaturated carboxylic acid alkali metal neutralized product according to the present invention, an alkali metal (meth) acrylate neutralized product is preferable from the viewpoint of easy handling at the time of production. Moreover, as an alkali metal of the ethylenically unsaturated carboxylic acid alkali metal neutralized material, lithium, sodium, potassium, rubidium, cesium etc. can be illustrated, Preferably it is potassium and sodium. Particularly preferred ethylenically unsaturated carboxylic acid alkali metal neutralized products are selected from the group consisting of sodium acrylate neutralized products, potassium acrylate neutralized products, sodium methacrylate neutralized products, and potassium methacrylate neutralized products It is at least one kind.
 ビニルエステルとエチレン性不飽和カルボン酸エステル共重合をさせて得られた前駆体(以下、単に前駆体ということがある)は、粉末状の前駆体が得られる観点から、重合触媒を含む分散剤水溶液中にビニルエステル及びエチレン性不飽和カルボン酸エステルを主体とするモノマーを懸濁させた状態で重合させて重合体粒子とする、懸濁重合法により得られたものが好ましい。 A precursor obtained by copolymerizing a vinyl ester and an ethylenically unsaturated carboxylic acid ester (hereinafter sometimes referred to simply as a precursor) is a dispersant containing a polymerization catalyst from the viewpoint of obtaining a powdery precursor. It is preferable that the polymer particles be obtained by a suspension polymerization method, in which an aqueous solution is polymerized in a state in which monomers consisting mainly of a vinyl ester and an ethylenically unsaturated carboxylic acid ester are suspended to obtain polymer particles.
 前記重合触媒としては、例えばベンゾイルパーオキシド、ラウリルパーオキシドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられ、これらのなかでもラウリルパーオキシドが好ましい。 Examples of the polymerization catalyst include organic peroxides such as benzoyl peroxide and lauryl peroxide, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. Of these, lauryl peroxide is preferable. .
 重合触媒の添加量は、単量体の総質量(100質量%)に対して、0.01~5質量%が好ましく、0.05~3質量%がより好ましく、0.1~3質量%がさらに好ましい。0.01質量%未満では、重合反応が完結しない場合があり、5質量%を超えると最終的に得られる共重合体のバインダーとしての結着効果が十分でない場合がある。 The addition amount of the polymerization catalyst is preferably 0.01 to 5% by mass, more preferably 0.05 to 3% by mass, and more preferably 0.1 to 3% by mass with respect to the total mass (100% by mass) of the monomers. Is more preferred. If the amount is less than 0.01% by mass, the polymerization reaction may not be completed. If the amount is more than 5% by mass, the binding effect of the finally obtained copolymer as a binder may not be sufficient.
 重合を行わせる際の分散剤としては、例えばポリビニルアルコール(部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール)、ポリ(メタ)アクリル酸及びその塩、ポリビニルピロリドン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの水溶性高分子、リン酸カルシウム、珪酸マグネシウムなどの水不溶性無機化合物などが挙げられる。これらの分散剤は、1種単独で使用してもよいし、2種以上を組合せて使用してもよい。 As a dispersing agent at the time of carrying out polymerization, for example, polyvinyl alcohol (partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol), poly (meth) acrylic acid and salts thereof, polyvinyl pyrrolidone, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxy Examples thereof include water-soluble polymers such as propyl cellulose, and water-insoluble inorganic compounds such as calcium phosphate and magnesium silicate. These dispersants may be used alone or in combination of two or more.
 分散剤の使用量は、使用する単量体の種類などにもよるが、単量体の総質量(100質量%)に対して、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 The amount of the dispersant used is preferably 0.01 to 10% by mass, preferably 0.05 to 5% by mass based on the total mass (100% by mass) of the monomers, although it depends on the kind of the monomer to be used. % By mass is more preferred.
 さらに、分散剤の界面活性効果などを調整するため、アルカリ金属、アルカリ土類金属の水溶性塩を添加することもできる。水溶性塩としては、例えば塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化リチウム、硫酸ナトリウム、硫酸カリウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸三ナトリウム、リン酸三カリウムなどが挙げられ、これらの水溶性塩は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Furthermore, water-soluble salts of alkali metals and alkaline earth metals can also be added in order to adjust the surfactant effect of the dispersant. Examples of water-soluble salts include sodium chloride, potassium chloride, calcium chloride, lithium chloride, sodium sulfate, potassium sulfate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate, tripotassium phosphate and the like. These water-soluble salts may be used alone or in combination of two or more.
 前記水溶性塩の使用量は、通常、分散剤水溶液の質量に対して0.01~10質量%である。 The amount of the water-soluble salt used is usually 0.01 to 10% by mass based on the mass of the aqueous dispersant solution.
 単量体を重合させる温度は、重合触媒の10時間半減期温度に対して-20℃~+20℃が好ましく、-10℃~+10℃がより好ましい。単量体を重合させる温度が、重合触媒の10時間半減期温度に対して-20℃未満では、重合反応が完結しない場合があり、+20℃を超えると、得られるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体のバインダーとしての結着効果が十分でない場合がある。 The temperature for polymerizing the monomer is preferably -20 ° C to + 20 ° C, more preferably -10 ° C to + 10 ° C, with respect to the 10 hour half-life temperature of the polymerization catalyst. If the temperature for polymerizing the monomer is less than -20 ° C with respect to the 10 hour half-life temperature of the polymerization catalyst, the polymerization reaction may not be completed, and if it exceeds + 20 ° C, vinyl alcohol and ethylenic unsaturation obtained. In some cases, the binding effect as a binder for a copolymer with an alkali metal carboxylate is not sufficient.
 単量体を重合させる時間は、通常、数時間~数十時間である。 The time for polymerizing the monomers is usually several hours to several tens of hours.
 重合反応終了後、前駆体は遠心分離、濾過などの方法により分離され、含水ケーキ状で得られる。得られた含水ケーキ状の前駆体はそのまま、もしくは必要に応じて乾燥し、ケン化反応に使用することができる。 After completion of the polymerization reaction, the precursor is separated by a method such as centrifugation, filtration and the like to obtain a water-containing cake. The obtained water-containing cake-like precursor can be used as it is or, if necessary, dried for saponification reaction.
 前記前駆体の数平均分子量は、DMFなどの極性溶媒を用いGFCカラム(Shodex社製、OHpak)などを備えた分子量測定装置にて求めることができる。このような分子量測定装置としては、例えばウォーターズ社製2695、RI検出器2414が挙げられる。 The number average molecular weight of the precursor can be determined using a polar solvent such as DMF with a molecular weight measurement apparatus equipped with a GFC column (manufactured by Shodex, OHpak) or the like. As such a molecular weight measuring device, for example, 2695 manufactured by Waters, RI detector 2414 can be mentioned.
 前記前駆体の数平均分子量は、10,000~10,000,000であることが好ましく、50,000~5,000,000であることがより好ましい。前記前駆体の数平均分子量を10,000~10,000,000の範囲内にすることで、バインダーとして結着力が向上し、特に水系バインダーとして用いた場合、厚さの調節が容易になる。 The number average molecular weight of the precursor is preferably 10,000 to 10,000,000, and more preferably 50,000 to 5,000,000. By setting the number average molecular weight of the precursor within the range of 10,000 to 10,000,000, the binding ability is improved as a binder, and in particular, when used as an aqueous binder, the thickness can be easily controlled.
 ケン化反応は、例えば、アルカリ金属を含むアルカリの存在下、水性有機溶媒のみ、又は水性有機溶媒と水との混合溶媒中で実施することができる。ケン化反応に使用するアルカリ金属を含むアルカリとしては、公知のものを使用することができる。前記アルカリとしては、好ましくはアルカリ金属水酸化物が用いられ、反応性が高いという観点から、より好ましくは水酸化ナトリウム及び水酸化カリウムが用いられる。 The saponification reaction can be carried out, for example, in the presence of an alkali containing an alkali metal, in an aqueous organic solvent alone, or in a mixed solvent of an aqueous organic solvent and water. A well-known thing can be used as an alkali containing the alkali metal used for saponification reaction. An alkali metal hydroxide is preferably used as the alkali, and sodium hydroxide and potassium hydroxide are more preferably used from the viewpoint of high reactivity.
 前記アルカリの使用量は、単量体の総モル数に対して60~140モル%が好ましく、80~120モル%がより好ましい。60モル%より少ないアルカリの使用量ではケン化が不十分となる場合があり、140モル%を超えて使用してもそれ以上の効果が得られず経済的でない。なお、前駆体のケン化反応の際のケン化度は90~100%であることが好ましく、95~100%であることが好ましい。ケン化度を90%以上にすることで、水への溶解性を向上させることができる。 The amount of the alkali used is preferably 60 to 140 mol%, more preferably 80 to 120 mol%, with respect to the total number of moles of the monomer. If the amount of alkali used is less than 60 mol%, saponification may be insufficient, and even if it is used more than 140 mol%, no further effect is obtained and it is not economical. The degree of saponification in the saponification reaction of the precursor is preferably 90 to 100%, and more preferably 95 to 100%. The solubility to water can be improved by making saponification degree into 90% or more.
 なお、本発明の共重合体においては、前記アルカリの使用量に関らず、エチレン性不飽和カルボン酸エステル由来のフリーのカルボン酸(COOH)基は、ほとんど存在しない。カルボン酸基が存在しないことで、作製したスラリー状の電極合剤が適度な粘度となり、塗工性、保存安定性を向上させることができる。 In the copolymer of the present invention, the free carboxylic acid (COOH) group derived from the ethylenically unsaturated carboxylic acid ester is hardly present regardless of the amount of the alkali used. By the absence of the carboxylic acid group, the prepared slurry-like electrode mixture has an appropriate viscosity, and coating properties and storage stability can be improved.
 ケン化反応の溶媒としては、水性有機溶媒のみ、又は水性有機溶媒と水との混合溶媒を用いることが好ましい。前記水性有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノールなどの低級アルコール類、アセトン、メチルエチルケトンなどのケトン類、及びこれらの混合物などが挙げられる。なかでも低級アルコール類が好ましく、優れた増粘効果と機械的せん断に対して優れた耐性を有する共重合体が得られることから、特にメタノール及びエタノールが好ましい。水性有機溶媒は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。 As a solvent for the saponification reaction, it is preferable to use only an aqueous organic solvent or a mixed solvent of an aqueous organic solvent and water. Examples of the aqueous organic solvent include lower alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and t-butanol, ketones such as acetone and methyl ethyl ketone, and mixtures thereof. Among these, lower alcohols are preferable, and methanol and ethanol are particularly preferable because a copolymer having excellent thickening effect and excellent resistance to mechanical shear can be obtained. The aqueous organic solvent may be used alone or in combination of two or more.
 水性有機溶媒と水との混合溶媒を用いる場合の質量比(水性有機溶媒:水)は、2:8~10:0が好ましく、3:7~8:2がより好ましい。2:8~10:0の範囲を外れる場合、前駆体の溶媒親和性またはケン化後の共重合体の溶媒親和性が不足し、充分にケン化反応が進行しないおそれがある。水性有機溶媒が2:8の比率より少ない場合、ケン化反応の際に増粘しやすくなるため工業的に共重合体を得ることが難しくなる。なお、含水ケーキ状の前駆体をそのままケン化反応に使用する場合、前記混合溶媒の質量比は、含水ケーキ状の前駆体の水を含むものとする。 The weight ratio (aqueous organic solvent: water) in the case of using a mixed solvent of an aqueous organic solvent and water is preferably 2: 8 to 10: 0, and more preferably 3: 7 to 8: 2. If it is out of the range of 2: 8 to 10: 0, the solvent affinity of the precursor or the solvent affinity of the copolymer after saponification may be insufficient, and the saponification reaction may not proceed sufficiently. When the ratio of the aqueous organic solvent is less than 2: 8, it becomes easy to thicken in the saponification reaction, and it becomes difficult to industrially obtain a copolymer. When the water-containing cake precursor is used as it is for the saponification reaction, the mass ratio of the mixed solvent includes water of the water-containing cake precursor.
 前駆体のケン化反応の温度は、20~80℃が好ましく、20~60℃がより好ましい。20℃より低い温度でケン化反応させた場合、反応が完結しないおそれがあり、80℃を超える温度の場合、反応系内が増粘し攪拌しにくくなるおそれがある。 The temperature of the saponification reaction of the precursor is preferably 20 to 80 ° C., and more preferably 20 to 60 ° C. When the saponification reaction is carried out at a temperature lower than 20 ° C., the reaction may not be completed, and in the case of a temperature exceeding 80 ° C., the inside of the reaction system may be thickened and it may be difficult to stir.
 ケン化反応の時間は、通常数時間程度である。 The time for the saponification reaction is usually about several hours.
 ケン化反応が終了した時点で、通常、ペースト又はスラリー状の共重合体の分散体となる。前記分散体を遠心分離、濾過などの方法により固液分離し、メタノールなどの低級アルコールなどで洗浄、乾燥することにより、球状単一粒子または球状粒子が凝集した凝集粒子としてビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体を得ることができる。 When the saponification reaction is completed, a paste or slurry-like copolymer dispersion is usually formed. The dispersion is solid-liquid separated by a method such as centrifugal separation or filtration, washed with a lower alcohol such as methanol, and dried to obtain spherical single particles or aggregated particles in which spherical particles are aggregated. A copolymer with a saturated carboxylic acid alkali metal neutralized product can be obtained.
 ケン化反応以降において、塩酸、硫酸、リン酸、硝酸などの無機酸;ギ酸、酢酸、シュウ酸、クエン酸などの有機酸等の酸を用いて共重合体を酸処理した後に、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化フランシウムなど任意のアルカリ金属を用いて、異種の(つまり、アルカリ金属が異なる)、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物の共重合体を得ることもできる。 After the saponification reaction, after the acid treatment of the copolymer using an acid such as an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid or nitric acid; an organic acid such as formic acid, acetic acid, oxalic acid or citric acid, lithium hydroxide Different alkali metals such as sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, francium hydroxide, etc. (that is, different alkali metals), vinyl alcohol and ethylenic unsaturated carboxylic acid alkali Copolymers of metal-neutralized products can also be obtained.
 含液共重合体を乾燥する条件は、通常、常圧もしくは減圧下、30~120℃の温度で乾燥することが好ましい。乾燥時間は、乾燥時の圧力、温度にもよるが、通常、数時間~数十時間である。 As the conditions for drying the liquid-containing copolymer, it is usually preferable to dry at a temperature of 30 to 120 ° C. under normal pressure or reduced pressure. The drying time is usually several hours to several tens of hours, depending on the pressure and temperature at the time of drying.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、得られたビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の体積平均粒子径は、1~200μmであることが好ましく、10~100μmであることがより好ましい。1μm以上でより好ましく結着効果が得られ、200μm以下であることで増粘液がより均一になり好ましい結着効果が得られる。なお、共重合体の体積平均粒子径は、レーザー回折式粒度分布測定装置(島津製作所製、SALD-710)に回分セル(同社製、SALD-BC)を設置し、分散溶媒に2-プロパノールまたはメタノールを用い測定した値である。 From the viewpoint of the binder of the present invention exhibiting a sufficient binding power and reducing the resistance of the non-aqueous electrolyte secondary battery more suitably, the obtained vinyl alcohol and an ethylenically unsaturated carboxylic acid alkali metal neutralized product The volume average particle diameter of the copolymer is preferably 1 to 200 μm, and more preferably 10 to 100 μm. A binding effect is more preferably obtained at 1 μm or more, and by making the thickness 200 μm or less, the thickening liquid becomes more uniform and a preferable binding effect is obtained. The volume average particle size of the copolymer can be determined by installing a batch cell (SALD-BC, manufactured by Shimadzu Corporation) in a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation), and using 2-propanol as a dispersion solvent or the like. It is the value measured using methanol.
 含液共重合体を乾燥し、得られた共重合体の体積平均粒子径が200μmを超える場合は、メカニカルミリング処理などの従来公知の粉砕方法にて粉砕することにより体積平均粒子径を1μm以上200μm以下に調整することができる。 The liquid-containing copolymer is dried, and when the volume-average particle size of the obtained copolymer exceeds 200 μm, the volume-average particle size is 1 μm or more by grinding using a conventionally known grinding method such as mechanical milling treatment. It can be adjusted to 200 μm or less.
 メカニカルミリング処理とは、衝撃・引張り・摩擦・圧縮・せん断等の外力を、得られた共重合体に与える方法で、そのための装置としては、転動ミル、振動ミル、遊星ミル、揺動ミル、水平ミル、アトライターミル、ジェットミル、擂潰機、ホモジナイザー、フルイダイザー、ペイントシェイカー、ミキサー等が挙げられる。例えば、遊星ミルは、共重合体とボールとを共に容器に入れ、自転と公転を同時にさせることによって生じる力学的エネルギーにより、共重合体を粉砕又は混合させるものである。この方法によれば、ナノオーダーまで粉砕される。 Mechanical milling is a method of applying an external force such as impact, tension, friction, compression, or shear to the obtained copolymer, and as a device therefor, a rolling mill, a vibration mill, a planetary mill, a rocking mill Horizontal mill, attritor mill, jet mill, crusher, homogenizer, fluidizer, paint shaker, mixer and the like. For example, in a planetary mill, the copolymer and the ball are put together in a container, and the mechanical energy generated by simultaneously rotating and revolving the copolymer grinds or mixes the copolymer. According to this method, it is crushed to nano order.
 本発明にかかるビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の増粘効果としては、作製した電極合剤の塗工のし易さの観点から、前記共重合体を1質量%含む水溶液(1質量%水溶液)の粘度が20~10000mPa・sであることが好ましく、50~10000mPa・sであることがより好ましく、50~5000mPa・sであることがさらに好ましい。前記粘度が20mPa・s以上であれば、好ましい粘度のスラリー状電極合剤が得られ、塗工性も容易となる。また合剤中の活物質や導電助剤の分散性も良好となる。前記粘度が10000mPa・s以下であると、作製した合剤の粘度が高過ぎず、集電体に薄く均一に塗工することがより簡単となる。なお、前記1質量%水溶液の粘度は、BROOKFIELD製回転粘度計(型式DV-I+)、スピンドルNo.5、50rpm(液温25℃)にて測定した値である。 As a thickening effect of the copolymer of the vinyl alcohol and the ethylenically unsaturated carboxylic acid alkali metal neutralized product according to the present invention, from the viewpoint of the easiness of coating of the produced electrode mixture, the above-mentioned copolymer The viscosity of an aqueous solution containing 1% by mass (1% by mass aqueous solution) is preferably 20 to 10000 mPa · s, more preferably 50 to 10000 mPa · s, and still more preferably 50 to 5000 mPa · s. When the viscosity is 20 mPa · s or more, a slurry-like electrode mixture having a preferable viscosity can be obtained, and the coatability can be facilitated. In addition, the dispersibility of the active material and the conductive additive in the mixture becomes good. If the viscosity is 10000 mPa · s or less, the viscosity of the prepared mixture is not too high, and it becomes easier to thinly and uniformly coat the current collector. The viscosity of the 1% by mass aqueous solution was measured using a rotational viscometer (model DV-I +) manufactured by BROOK FIELD, spindle No. 5 and 50 rpm (liquid temperature 25 ° C.).
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダー中、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体の割合は、好ましくは5質量%以上、より好ましくは20質量%以上95質量%以下、さらに好ましくは40質量%以上95質量%以下である。 The binder of the present invention exerts sufficient binding power, and from the viewpoint of lowering the resistance of the non-aqueous electrolyte secondary battery more suitably, vinyl alcohol and alkali metal of ethylenically unsaturated carboxylic acid in the binder of the present invention are neutralized The proportion of the copolymer with the substance is preferably 5% by mass or more, more preferably 20% by mass to 95% by mass, and still more preferably 40% by mass to 95% by mass.
[ポリビニルアルコール]
 本発明の非水電解質二次電池電極用バインダーにおいて、ポリビニルアルコールとしては、水への溶解性の観点からケン化度は75%以上が好ましく、90%以上がより好ましい。さらに、好適に用いられるポリビニルアルコールとしては、取り扱いの観点から重合度が100~3000程度が好ましい。
[Polyvinyl alcohol]
In the binder for a non-aqueous electrolyte secondary battery electrode of the present invention, the polyvinyl alcohol preferably has a degree of saponification of 75% or more, more preferably 90% or more, from the viewpoint of solubility in water. Furthermore, as the polyvinyl alcohol preferably used, the degree of polymerization is preferably about 100 to about 3,000 from the viewpoint of handling.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、ポリビニルアルコールの数平均分子量は、1,000~5,000,000が好ましく、電極合剤の塗工時の際に取り扱いしやすい粘度となる観点から、4,000~1,000,000がより好ましい。 The polyvinyl alcohol preferably has a number average molecular weight of 1,000 to 5,000,000, from the viewpoint of achieving a sufficient binding ability of the binder of the present invention and suitably reducing the resistance of the non-aqueous electrolyte secondary battery. From the viewpoint of providing a viscosity that is easy to handle when applying the electrode mixture, 4,000 to 1,000,000 is more preferable.
 ポリビニルアルコールの数平均分子量は、前記前駆体の数平均分子量と同様、GFCカラムを備えた分子量測定装置により測定された値である。 The number average molecular weight of polyvinyl alcohol is a value measured by a molecular weight measurement apparatus equipped with a GFC column, like the number average molecular weight of the precursor.
 ポリビニルアルコールは公知の方法によって製造することができ、例えば、触媒存在下で、ビニルエステルを重合させ、酸またはアルカリ等の触媒存在下でケン化する方法により製造できる。またポリビニルアルコールとしては、例えば、製品名「ゴーセノール」シリーズ(日本合成化学(株)製)、製品名「クラレポバール」シリーズ((株)クラレ製)等の市販品を使用することもできる。 Polyvinyl alcohol can be produced by a known method, for example, can be produced by polymerizing a vinyl ester in the presence of a catalyst and saponifying in the presence of a catalyst such as an acid or an alkali. Moreover, as polyvinyl alcohol, commercially available products, such as product name "GOOSENOL" series (made by Japan Synthetic Chemical Industry Co., Ltd.) and product name "Kuraray poval" series (made by Kuraray), can also be used, for example.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダーにおいて、ポリビニルアルコールの含有量は、バインダー全質量に対して、好ましくは1質量%以上、より好ましくは1質量%以上60質量%以下、さらに好ましくは1質量%以上40質量%以下である。 In the binder of the present invention, the content of polyvinyl alcohol is relative to the total mass of the binder, from the viewpoint that the binder of the present invention exerts a more sufficient binding power and lowers the resistance of the non-aqueous electrolyte secondary battery more suitably. Preferably it is 1 mass% or more, More preferably, it is 1 to 60 mass%, More preferably, it is 1 to 40 mass%.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダーにおいて、前記共重合体と、ポリビニルアルコールとの質量比(共重合体/ポリビニルアルコール)は、好ましくは95/5~70/30、より好ましくは95/5~65/35、さらに好ましくは95/5~60/40である。当該質量比を95/5~70/30とすることにより、電極における抵抗がより低減され、結着力不足によるサイクル寿命特性の悪化が抑制される傾向がある。 In the binder of the present invention, the mass ratio of the copolymer to the polyvinyl alcohol (from the viewpoint of reducing the resistance of the non-aqueous electrolyte secondary battery more suitably, the binder of the present invention exhibits a sufficient binding power, The copolymer / polyvinyl alcohol) is preferably 95/5 to 70/30, more preferably 95/5 to 65/35, still more preferably 95/5 to 60/40. By setting the mass ratio to 95/5 to 70/30, the resistance at the electrode tends to be further reduced, and the deterioration of the cycle life characteristics due to the insufficient binding power tends to be suppressed.
[他の成分]
 本発明の非水電解質二次電池電極用バインダーには、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、ポリビニルアルコールに加えて、さらに他の成分を加えてもよい。他の成分としては、公知の非水電解質二次電池電極用バインダーに配合されるものが挙げられる。他の成分の具体例としては、カルボキシメチルセルロース(CMC)、アクリル樹脂、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、ポリイミド(PI)、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム(SBR)、エチレン酢酸ビニル共重合体(EVA)が挙げられる。これらのうち、アクリル樹脂、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、ポリアミド、ポリアミドイミド、ポリイミドが好適に用いられ、アクリル樹脂が特に好適に用いられる。他の成分は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
[Other ingredients]
The binder for a non-aqueous electrolyte secondary battery electrode of the present invention may further contain other components in addition to a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol. . As another component, what is mix | blended with the well-known binder for nonaqueous electrolyte secondary battery electrodes is mentioned. Specific examples of other components include: carboxymethylcellulose (CMC), acrylic resin, sodium polyacrylate, sodium alginate, polyimide (PI), polyamide, polyamide imide, polyacrylic, styrene butadiene rubber (SBR), ethylene vinyl acetate copolymer Polymer (EVA) is mentioned. Among these, acrylic resin, sodium polyacrylate, sodium alginate, polyamide, polyamide imide, and polyimide are suitably used, and acrylic resin is particularly suitably used. The other components may be used alone or in combination of two or more.
 なお、本発明の非水電解質二次電池電極用バインダーには、ポリアルキレンオキシドが含まれていなくてもよい。すなわち、本発明の非水電解質二次電池電極用バインダーの一実施態様においては、ポリアルキレンオキシドが含まれない(ポリアルキレンオキシドの含有量が0質量%)。ポリアルキレンオキシドとしては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、エチレンオキシド-プロピレンオキシド共重合体、エチレンオキシド-ブチレンオキシド共重合体、プロピレンオキシド-ブチレンオキシド共重合体などが挙げられる。 The polyalkylene oxide may not be contained in the binder for a non-aqueous electrolyte secondary battery electrode of the present invention. That is, in one embodiment of the binder for non-aqueous electrolyte secondary battery electrodes of the present invention, the polyalkylene oxide is not contained (the content of the polyalkylene oxide is 0% by mass). Examples of the polyalkylene oxide include polyethylene oxide, polypropylene oxide, polybutylene oxide, ethylene oxide-propylene oxide copolymer, ethylene oxide-butylene oxide copolymer, and propylene oxide-butylene oxide copolymer.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダーにおいて、他の成分の割合は、好ましくは80質量%未満、より好ましくは50質量%以下、さらに好ましくは20質量%以下である。 In the binder of the present invention, the proportion of the other components is preferably less than 80% by mass from the viewpoint that the binder of the present invention exhibits a sufficient binding power and more suitably reduces the resistance of the non-aqueous electrolyte secondary battery. More preferably, it is 50 mass% or less, More preferably, it is 20 mass% or less.
 本発明のバインダーがより十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダーにおいて、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールの含有割合は、合計で、バインダーの全質量に対して20~100質量%であることが好ましい。 In the binder of the present invention, the vinyl alcohol and the alkali metal of the ethylenically unsaturated carboxylic acid are neutralized in the binder of the present invention from the viewpoint that the binder of the present invention exhibits a sufficient binding power and lowers the resistance of the nonaqueous electrolyte secondary battery more suitably The total content of the copolymer with the polymer and the polyvinyl alcohol is preferably 20 to 100% by mass with respect to the total mass of the binder.
 本発明の非水電解質二次電池電極用バインダーは、水系バインダー(すなわち、非水電解質二次電池電極用水系バインダー)として好適に使用することができる。 The binder for non-aqueous electrolyte secondary battery electrodes of the present invention can be suitably used as a water-based binder (that is, a water-based binder for non-aqueous electrolyte secondary battery electrodes).
<非水電解質二次電池用電極合剤>
 本発明の非水電解質二次電池用電極合剤は、本発明の非水電解質二次電池電極用バインダーと、電極活物質(正極活物質及び負極活物質)と、導電助剤とを必須成分として含む、非水電解質二次電池用電極を製造するために用いられる電極合剤である。
<Electrode mix for non-aqueous electrolyte secondary battery>
The electrode mixture for a non-aqueous electrolyte secondary battery of the present invention comprises the binder for a non-aqueous electrolyte secondary battery electrode of the present invention, an electrode active material (a positive electrode active material and a negative electrode active material), and a conductive additive as essential components. And an electrode mixture used for producing an electrode for a non-aqueous electrolyte secondary battery.
 より十分な結着力を発揮し、非水電解質二次電池をより好適に低抵抗化する観点から、本発明のバインダーの含有量は、電極活物質、導電助剤、及びバインダーの合計量100質量部に対して、好ましくは0.5~40質量部、より好ましくは1~25質量部、さらに好ましくは1.5~10質量部である。同様の観点から、本発明の電極合剤における本発明のバインダーの含有量としては、好ましくは0.5~40質量%、より好ましくは1~25質量%、さらに好ましくは1.5~10質量%である。当該含有量を0.5質量%以上とすることにより、結着力不足によるサイクル寿命特性の悪化、及びスラリーの粘性不足による凝集が抑制される傾向がある。一方、当該含有量を40質量%以下とすることにより、電池の充放電時に高容量が得られる傾向がある。 The content of the binder of the present invention is 100 wt% of the total of the electrode active material, the conductive additive, and the binder, from the viewpoint of exhibiting a sufficient binding power and suitably reducing the resistance of the non-aqueous electrolyte secondary battery. The amount is preferably 0.5 to 40 parts by mass, more preferably 1 to 25 parts by mass, and still more preferably 1.5 to 10 parts by mass with respect to parts. From the same viewpoint, the content of the binder of the present invention in the electrode mixture of the present invention is preferably 0.5 to 40% by mass, more preferably 1 to 25% by mass, and still more preferably 1.5 to 10%. %. By setting the content to 0.5% by mass or more, deterioration of cycle life characteristics due to insufficient binding power and aggregation due to insufficient viscosity of the slurry tend to be suppressed. On the other hand, by setting the content to 40% by mass or less, a high capacity tends to be obtained at the time of charge and discharge of the battery.
 本発明の電極合剤は、本発明のバインダーを用いて、公知の方法により製造することができ、例えば、電極活物質に、導電助剤、本発明のバインダー、分散助剤(必要に応じて)及び水を加えて、ペースト状のスラリーとすることによって、製造することができる。水を加えるタイミングは特に限定されず、本発明のバインダーをあらかじめ水に溶解させることによって加えてもよいし、電極活物質、導電助剤、分散助剤(必要に応じて)、及び本発明のバインダーを固体状態で混合した後、ここに水を加えてもよい。 The electrode mixture of the present invention can be produced by a known method using the binder of the present invention. For example, the electrode active material, the conductive aid, the binder of the present invention, and the dispersion aid (if necessary) And water to form a paste-like slurry. The timing of adding water is not particularly limited, and may be added by dissolving the binder of the present invention in water in advance, an electrode active material, a conductive aid, a dispersing aid (if necessary), and the present invention After mixing the binder in the solid state, water may be added thereto.
 前記水の使用量については、例えば、電極活物質、導電助剤、及び本発明のバインダーの合計100質量部に対して、好ましくは40~2000質量部、より好ましくは50~1000質量部である。なお、水の使用量を上記範囲とすることで、本発明の電極合剤(スラリー)の取り扱い性がより向上する傾向がある。 The amount of water used is, for example, preferably 40 to 2000 parts by mass, more preferably 50 to 1000 parts by mass with respect to a total of 100 parts by mass of the electrode active material, the conductive auxiliary agent, and the binder of the present invention. . In addition, there exists a tendency which the handleability of the electrode mixture (slurry) of this invention improves more by making the usage-amount of water into the said range.
[正極活物質]
 正極活物質としては、本技術分野で使用される正極活物質が使用できる。例えば、リン酸鉄リチウム(LiFePO4)、リン酸マンガンリチウム(LiMnPO4)、リン酸コバルトリチウム(LiCoPO4)、ピロリン酸鉄(Li2FeP27)、コバルト酸リチウム(LiCoO2)、スピネル型マンガン酸リチウム複合酸化物(LiMn24)、マンガン酸リチウム複合酸化物(LiMnO2)、ニッケル酸リチウム複合酸化物(LiNiO2)、ニオブ酸リチウム複合酸化物(LiNbO2)、鉄酸リチウム複合酸化物(LiFeO2)、マグネシウム酸リチウム複合酸化物(LiMgO2)、カルシウム酸リチウム複合酸化物(LiCaO2)、銅酸リチウム複合酸化物(LiCuO2)、亜鉛酸リチウム複合酸化物(LiZnO2)、モリブデン酸リチウム複合酸化物(LiMoO2)、タンタル酸リチウム複合酸化物(LiTaO2)、タングステン酸リチウム複合酸化物(LiWO2)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.052)、リチウム-ニッケル-コバルト-マンガン複合酸化物((LiNixCoyMn1-x-y2)0<x<1,0<y<1,x+y<1)、Li過剰系ニッケル-コバルト-マンガン複合酸化物、酸化マンガンニッケル(LiNi0.5Mn1.54)、酸化マンガン(MnO2)、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物等が好適に使用される。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
[Positive electrode active material]
As a positive electrode active material, the positive electrode active material used in this technical field can be used. For example, lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), lithium cobalt phosphate (LiCoPO 4 ), iron pyrophosphate (Li 2 FeP 2 O 7 ), lithium cobaltate (LiCoO 2 ), spinel Type lithium manganate composite oxide (LiMn 2 O 4 ), lithium manganate composite oxide (LiMnO 2 ), lithium nickelate composite oxide (LiNiO 2) , lithium niobate composite oxide (LiNbO 2 ), lithium ferrate composite oxides (LiFeO 2), magnesium lithium composite oxide (LiMgO 2), lithium composite oxide of calcium acid (LiCaO 2), cuprate lithium composite oxide (LiCuO 2), lithium zincate complex oxide (LiZnO 2 ), Lithium molybdate composite oxide (LiMoO 2 ), tantalum Lithium oxalate composite oxide (LiTaO 2 ), lithium tungstate composite oxide (LiWO 2 ), lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), lithium-nickel-cobalt-manganese complex oxide ((LiNi x Co y Mn 1 -xy O 2) 0 <x <1,0 <y <1, x + y <1), Li excess type nickel - cobalt - manganese complex oxide, manganese oxide nickel (LiNi 0.5 Mn 1.5 O 4 ), manganese oxide (MnO 2 ), vanadium oxides, sulfur oxides, silicate oxides, etc. are preferably used. These can be used singly or in combination of two or more.
[負極活物質]
 負極活物質としては、本技術分野で使用される負極活物質を使用できる。例えば、炭素材料、ケイ素(Si)やスズ(Sn)、チタン酸リチウムなどのようにリチウムイオンを大量に吸蔵放出可能な材料を用いることができる。このような材料であれば、単体、合金、化合物、固溶体およびケイ素含有材料やスズ含有材料を含む複合活物質の何れであっても、本実施形態の効果を発揮させることは可能である。前記炭素材料としては、結晶質炭素や非晶質炭素等を使用することができる。結晶質炭素の例としては、無定形、板状、鱗片状(flake)、球状もしくは繊維状の天然黒鉛または人造黒鉛のような黒鉛が挙げられる。非晶質炭素の例としては、ソフトカーボン(易炭素化黒鉛)またはハードカーボン(難炭素化黒鉛)、メソフェーズピッチ炭化物、焼成されたコークス等が挙げられる。ケイ素含有材料としては、Si、SiOx(0.05<x<1.95)、またはこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、または固溶体などを用いることができる。これらはケイ素又はケイ素化合物ということができる。スズ含有材料としてはNi2Sn4、Mg2Sn、SnOx(0<x<2)、SnO2、SnSiO3、LiSnOなどが適用できる。
 これらの材料は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。これらの中でも、負極活物質としては、黒鉛が好ましい。本発明のバインダーを用いることにより、負極活物質として黒鉛を用いた場合にも、バインダーが十分な結着力を発揮し、非水電解質二次電池を好適に低抵抗化することができる。
[Anode active material]
As the negative electrode active material, a negative electrode active material used in the present technical field can be used. For example, a material that can occlude and release a large amount of lithium ions, such as a carbon material, silicon (Si), tin (Sn), lithium titanate, or the like can be used. If it is such a material, it is possible to exhibit the effect of the present embodiment regardless of any one of a simple substance, an alloy, a compound, a solid solution, and a composite active material containing a silicon-containing material and a tin-containing material. As said carbon material, crystalline carbon, amorphous carbon, etc. can be used. Examples of crystalline carbon include graphite such as amorphous, plate-like, flake-like, spherical or fibrous natural graphite or artificial graphite. Examples of amorphous carbon include soft carbon (easy-carbonized graphite) or hard carbon (hard-to-carbonize graphite), mesophase pitch carbide, calcined coke and the like. As a silicon-containing material, Si, SiOx (0.05 <x <1.95), or B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, or any of these can be used. An alloy, a compound, a solid solution, or the like in which a part of Si is substituted by at least one or more elements selected from the group consisting of Ta, V, W, Zn, C, N, and Sn can be used. These can be referred to as silicon or silicon compounds. As the tin-containing material, Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 <x <2), SnO 2 , SnSiO 3 , LiSnO or the like can be applied.
One of these materials may be used alone, or two or more of these materials may be used in combination. Among these, as the negative electrode active material, graphite is preferable. By using the binder of the present invention, even when graphite is used as the negative electrode active material, the binder exhibits sufficient binding power, and the resistance of the non-aqueous electrolyte secondary battery can be suitably reduced.
 ケイ素またはケイ素化合物を第1負極活物質とし、炭素材料を第2負極活物質として、第1及び第2負極活物質を混合して得られる複合体を負極活物質として使用してもよい。この時、第1及び第2負極活物質の混合比率は、質量比で5/95~95/5が好ましい。上記炭素材料としては、本技術分野で使用される炭素材料であればよく、その代表的な例としては、上述した結晶質炭素、非晶質炭素が挙げられる。 A composite obtained by mixing silicon and a silicon compound as the first negative electrode active material, a carbon material as the second negative electrode active material, and the first and second negative electrode active materials may be used as the negative electrode active material. At this time, the mixing ratio of the first and second negative electrode active materials is preferably 5/95 to 95/5 by mass. The carbon material may be any carbon material used in the technical field, and typical examples thereof include the above-mentioned crystalline carbon and amorphous carbon.
 負極活物質の製造方法に関しては、第1負極活物質と第2負極活物質を混合した活物質複合体を製造する際に、両者が均一に分散される方法であればよい。具体的な負極活物質の製造方法としては、第1負極活物質と第2負極活物質とをボールミルで混合する方法が挙げられる。その他、例えば、第1負極活物質の粒子表面に、第2負極活物質前駆体を担持させ、これを加熱処理法により炭化する方法が挙げられる。上記第2負極活物質前駆体としては、加熱処理により炭素材料となり得る炭素前駆体であればよく、例えば、グルコース、クエン酸、ピッチ、タール、バインダー材料(例えば、ポリフッ化ビニリデン、カルボキシメチルセルロース、アクリル樹脂、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、ポリイミド、ポリテトラフルオロエチレン、ポリアミド、ポリアミドイミド、ポリアクリル、スチレンブタジエンゴム、ポリビニルアルコール、エチレン酢酸ビニル共重合体等)等が挙げられる。なお、これら負極活物質は市販品が容易に入手可能である。 The method for producing the negative electrode active material may be any method as long as it is possible to uniformly disperse the active material complex in which the first negative electrode active material and the second negative electrode active material are mixed. As a specific method of manufacturing a negative electrode active material, a method of mixing a first negative electrode active material and a second negative electrode active material in a ball mill can be mentioned. In addition, for example, a method of supporting the second negative electrode active material precursor on the particle surface of the first negative electrode active material and carbonizing the precursor by the heat treatment method may be mentioned. The second negative electrode active material precursor may be any carbon precursor that can be a carbon material by heat treatment, and examples thereof include glucose, citric acid, pitch, tar, binder materials (for example, polyvinylidene fluoride, carboxymethylcellulose, acrylic) Resin, sodium polyacrylate, sodium alginate, polyimide, polytetrafluoroethylene, polyamide, polyamide imide, polyacryl, styrene butadiene rubber, polyvinyl alcohol, ethylene vinyl acetate copolymer and the like can be mentioned. Commercially available products of these negative electrode active materials are readily available.
 上記加熱処理法とは、非酸化性雰囲気(還元雰囲気、不活性雰囲気、減圧雰囲気等の酸化されにくい雰囲気)で、600~4000℃で加熱処理を施して炭素前駆体を炭化させ、導電性を得る方法である。 In the above heat treatment method, the carbon precursor is carbonized by heat treatment at 600 to 4000 ° C. in a non-oxidizing atmosphere (a non-oxidizable atmosphere such as a reducing atmosphere, an inert atmosphere, or a reduced pressure atmosphere). It is a way to get.
[導電助剤]
 導電助剤は、本技術分野で使用される導電助剤を使用することができ、炭素粉末が好ましい。炭素粉末としては、例えば、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、カーボンファイバー、カーボンチューブ、グラフェン、非晶質炭素、ハードカーボン、ソフトカーボン、グラッシーカーボン、カーボンナノファイバー、カーボンナノチューブ(CNT)等が挙げられる。
[Conduction agent]
The conductive aid can use the conductive aid used in the technical field, and carbon powder is preferable. As carbon powder, for example, acetylene black (AB), ketjen black (KB), graphite, carbon fiber, carbon tube, graphene, amorphous carbon, hard carbon, soft carbon, glassy carbon, carbon nanofiber, carbon nanotube (CNT) and the like.
 導電助剤の使用量としては、電極活物質、導電助剤及びバインダーの合計100質量部に対して、0.1~30質量%が好ましく、0.5~10質量%がより好ましく、2~5質量%がさらに好ましい。導電助剤の使用量が0.1質量%未満であると、電極の導電性を十分に向上させることができないおそれがある。導電助剤の使用量が30質量%を超えると、電極活物質の割合が相対的に減少するため電池の充放電時に高容量が得られにくいこと、電極活物質と比較して小さいため表面積が大きくなり使用するバインダーの量が増えるおそれがある。 The amount of the conductive aid used is preferably 0.1 to 30% by mass, more preferably 0.5 to 10% by mass, with respect to 100 parts by mass in total of the electrode active material, the conductive auxiliary and the binder. 5 mass% is more preferable. If the amount of the conductive aid used is less than 0.1% by mass, the conductivity of the electrode may not be sufficiently improved. If the amount of the conductive aid exceeds 30% by mass, the proportion of the electrode active material relatively decreases, and it is difficult to obtain a high capacity at the time of charge and discharge of the battery, and the surface area is small because it is smaller than the electrode active material There is a possibility that the amount of binder used may increase.
[分散助剤]
 本発明の電極合剤には、さらに分散助剤が含まれていてもよい。分散助剤が含まれることにより電極合剤中での電極活物質や導電助剤の分散性が高くなる。分散助剤としては、pH7~13の水溶液に可溶な、分子量が100,000以下の有機酸が好ましい。これらの有機酸の中でも、カルボキシル基と、ヒドロキシ基、アミノ基またはイミノ基の少なくとも1つを含んでいることが好ましい。具体例として、乳酸、酒石酸、クエン酸、リンゴ酸、グリコール酸、タルトロン酸、グルクロン酸、フミン酸などのカルボキシル基とヒドロキシ基とを有する化合物類;グリシン、アラニン、フェニルアラニン、4-アミノ酪酸、ロイシン、イソロイシン、リシン、などのカルボキシル基とアミノ基とを有する化合物類;グルタミン酸、アスパラギン酸などの複数のカルボキシル基とアミノ基とを有する化合物類;プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン、ピペコリン酸などのカルボキシル基とイミノ基とを有する化合物類;グルタミン、アスパラギン、システイン、ヒスチジン、トリプトファンなどのカルボキシル基とヒドロキシ基及びアミノ基以外の官能基とを有する化合物類が挙げられる。これらの中でも、入手のしやすさの観点から、グルクロン酸、フミン酸、グリシン、アスパラギン酸、グルタミン酸が好ましい。
[Dispersion aid]
The electrode mixture of the present invention may further contain a dispersion aid. By including the dispersion aid, the dispersibility of the electrode active material and the conductive aid in the electrode mixture becomes high. As the dispersion aid, an organic acid having a molecular weight of 100,000 or less and soluble in an aqueous solution of pH 7 to 13 is preferable. Among these organic acids, it is preferable to contain a carboxyl group and at least one of a hydroxy group, an amino group or an imino group. As specific examples, compounds having a carboxyl group and a hydroxy group such as lactic acid, tartaric acid, citric acid, malic acid, glycolic acid, thaltronic acid, glucuronic acid, humic acid and the like; glycine, alanine, phenylalanine, 4-aminobutyric acid, leucine Compounds having a carboxyl group and an amino group such as isoleucine and lysine; compounds having a plurality of carboxyl groups and an amino group such as glutamic acid and aspartic acid; proline, 3-hydroxyproline, 4-hydroxyproline, pipecoline Compounds having a carboxyl group such as an acid and an imino group; compounds having a carboxyl group such as glutamine, asparagine, cysteine, histidine and tryptophan and a functional group other than a hydroxyl group and an amino group may be mentioned. Among these, glucuronic acid, humic acid, glycine, aspartic acid and glutamic acid are preferable from the viewpoint of availability.
 当該分散助剤の分子量としては、水系バインダーの場合は水への溶解性の観点から、分子量100,000以下であることが好ましい。分子量が100,000を超えると、分子の疎水性が強くなり、スラリーの均一性が損なわれるおそれがある。 The molecular weight of the dispersion aid is preferably 100,000 or less from the viewpoint of solubility in water in the case of an aqueous binder. When the molecular weight exceeds 100,000, the hydrophobicity of the molecule becomes strong, and the uniformity of the slurry may be impaired.
<非水電解質二次電池用電極>
 本発明の非水電解質二次電池用電極は、本発明の電極合剤を用い(すなわち、本発明の非水電解質二次電池用電極を用い)、本技術分野で使用される手法を適用して作製することができる。例えば、電極合剤を、集電体上に備えさせることにより、作製することができる。より具体的には、例えば当該電極合剤を集電体上に塗布(及び必要に応じて乾燥)させることにより作製することができる。
<Electrode for non-aqueous electrolyte secondary battery>
The electrode for a non-aqueous electrolyte secondary battery of the present invention uses the electrode mixture of the present invention (that is, uses the electrode for a non-aqueous electrolyte secondary battery of the present invention), and applies the method used in the technical field. Can be produced. For example, it can be produced by providing an electrode mixture on a current collector. More specifically, it can be produced, for example, by applying (and optionally drying) the electrode mixture on a current collector.
 本発明の電極が正極の場合、集電体を構成する材料としては、例えば、C、Cu、Ni、Fe、V、Nb、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、AI等の導電性物質、これら導電性物質の2種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。集電体は、導電性物質に異なる導電性物質をめっきしたもの(例えばFeにCuをめっきしたもの)であってもよい。電気伝導性が高く、電解液中の安定性と耐酸化性が優れる観点から、集電体を構成する材料としては、Cu、Ni、ステンレス鋼等が好ましく、材料コストの観点からCu、Niが好ましい。 When the electrode of the present invention is a positive electrode, examples of materials constituting the current collector include C, Cu, Ni, Fe, V, Nb, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir Conductive materials such as Pt, Au, and AI, and alloys containing two or more of these conductive materials (for example, stainless steel) can be used. The current collector may be one obtained by plating a conductive substance with another conductive substance (for example, one obtained by plating Cu on Fe). From the viewpoints of high electrical conductivity and excellent stability and oxidation resistance in the electrolytic solution, Cu, Ni, stainless steel and the like are preferable as the material constituting the current collector, and Cu and Ni are preferable from the viewpoint of material cost. preferable.
 本発明の電極が負極の場合、集電体を構成する材料としては、例えば、C、Ti、Cr、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Au、Al等の導電性物質、これら導電性物質の2種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。電気伝導性が高く、電解液中の安定性と耐酸化性が優れる観点から、集電体を構成する材料としてはC、Al、ステンレス鋼等が好ましく、材料コストの観点からAlが好ましい。 When the electrode of the present invention is a negative electrode, examples of materials constituting the current collector include conductive materials such as C, Ti, Cr, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Au, Al, etc. A substance, an alloy containing two or more of these conductive substances (for example, stainless steel) may be used. From the viewpoint of high electrical conductivity and excellent stability in the electrolytic solution and oxidation resistance, the material constituting the current collector is preferably C, Al, stainless steel, etc., and from the viewpoint of material cost, Al is preferable.
 集電体の形状としては、たとえば、箔状基材、三次元基材等を用いることができる。但し、三次元基材(発泡メタル、メッシュ、織布、不織布、エキスパンド等)を用いると、より高い容量密度の電極が得られ、高率充放電特性も良好となる。 As a shape of the current collector, for example, a foil-like substrate, a three-dimensional substrate or the like can be used. However, when a three-dimensional substrate (foam metal, mesh, woven fabric, non-woven fabric, expand, etc.) is used, an electrode with a higher capacity density is obtained, and the high rate charge / discharge characteristics also become good.
<非水電解質二次電池>
 本発明の非水電解質二次電池用電極を用いて、本発明の非水電解質二次電池(本発明の非水電解質二次電池用電極を少なくとも備える非水電解質二次電池)を製造できる。本発明の非水電解質二次電池は、正極及び負極のいずれか一方又は両方として、本発明の非水電解質二次電池用電極を備えるものであればよい。非水電解質二次電池としては、リチウムイオン二次電池が好ましい。本発明の非水電解質二次電池の製造方法としては、本技術分野で使用される一般的な手法を利用できる。
<Non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery of the present invention (non-aqueous electrolyte secondary battery including at least the non-aqueous electrolyte secondary battery electrode of the present invention) can be produced using the electrode of the present invention. The non-aqueous electrolyte secondary battery of the present invention may be provided with the non-aqueous electrolyte secondary battery electrode of the present invention as either or both of the positive electrode and the negative electrode. As a non-aqueous electrolyte secondary battery, a lithium ion secondary battery is preferable. As a method of manufacturing the non-aqueous electrolyte secondary battery of the present invention, a general method used in the technical field can be used.
 本発明の非水電解質二次電池の中でもリチウムイオン二次電池は、リチウムイオンを含有することから、電解質としてリチウム塩が好ましく用いられる。このリチウム塩としては、例えば、ヘキサフルオロリン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸イミドリチウム等が挙げられる。電解質は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 Among the non-aqueous electrolyte secondary batteries of the present invention, since lithium ion secondary batteries contain lithium ions, lithium salts are preferably used as the electrolyte. Examples of the lithium salt include lithium hexafluorophosphate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate imide and the like. An electrolyte can be used individually by 1 type, and can also be used in combination of 2 or more type.
 前記電池の電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン等を用いることができる。電解液は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。特に、プロピレンカーボネート単体、エチレンカーボネートとジエチルカーボネートとの混合物、またはγ-ブチロラクトン単体が好ましい。なお、上述のエチレンカーボネートとジエチルカーボネートとの混合物の混合比は、一方の成分が10~90体積%となる範囲で任意に調整可能である。 As an electrolytic solution of the battery, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone and the like can be used. An electrolyte solution can also be used individually by 1 type, and can also be used in combination of 2 or more type. In particular, propylene carbonate alone, a mixture of ethylene carbonate and diethyl carbonate, or γ-butyrolactone alone is preferable. The mixing ratio of the mixture of ethylene carbonate and diethyl carbonate described above can be arbitrarily adjusted within the range of 10 to 90% by volume of one component.
 <電気機器>
 本発明の電気機器は、本発明の非水電解質二次電池を少なくとも備える電気機器である。即ち、本発明にかかる電気機器は、少なくとも本発明の非水電解質二次電池を電源として利用する電気機器である。
<Electric equipment>
The electric device of the present invention is an electric device provided with at least the non-aqueous electrolyte secondary battery of the present invention. That is, the electric device according to the present invention is an electric device using at least the non-aqueous electrolyte secondary battery of the present invention as a power source.
 本発明の電気機器としては、例えば、エアコン、洗濯機、テレビ、冷蔵庫、パソコン、タブレット、スマートフォン、パソコンキーボード、モニター、プリンター、マウス、ハードディスク、パソコン周辺機器、アイロン、衣類乾燥機、トランシーバー、送風機、音楽レコーダー、音楽プレーヤー、オーブン、レンジ、温風ヒーター、カーナビ、懐中電灯、加湿器、携帯カラオケ機、乾電池、空気清浄器、ゲーム機、血圧計、コーヒーミル、コーヒーメーカー、こたつ、コピー機、ディスクチェンジャー、ラジオ、シェーバー、ジューサー、シュレッダー、浄水器、照明器具、食器乾燥機、炊飯器、ズボンプレッサー、掃除機、体重計、電気カーペット、炊飯器、電気ポット、電子辞書、電子手帳、電磁調理器、電卓、電動カート、電動車椅子、電動工具、電動歯ブラシ、あんか、時計、インターホン、エアサーキュレーター、電撃殺虫器、ホットプレート、トースター、給湯器、粉砕機、はんだごて、ビデオカメラ、ビデオデッキ、ファクシミリ、布団乾燥機、ミキサー、ミシン、もちつき機、冷水器、電子楽器、オートバイ、おもちゃ類、芝刈り機、自転車、自動車、ハイブリッド自動車、プラグインハイブリッド自動車、鉄道、船、飛行機、非常用蓄電池などが挙げられる。 The electric device of the present invention includes, for example, air conditioners, washing machines, televisions, refrigerators, personal computers, tablets, smartphones, personal computer keyboards, monitors, printers, mice, hard disks, personal computer peripherals, irons, clothes dryers, transceivers, blowers, Music recorder, music player, oven, range, warm air heater, car navigation system, flashlight, humidifier, portable karaoke machine, dry battery, air purifier, game machine, sphygmomanometer, coffee mill, coffee maker, kotatsu, copy machine, disc Changer, Radio, Shaver, Juicer, Shredder, Water Filter, Lighting Fixture, Dishware Dryer, Cooker, Trouser Press, Vacuum Cleaner, Weight Scale, Electric Carpet, Rice Cooker, Electric Pot, Electronic Dictionary, Electronic Notebook, Electromagnetic Cooker , Calculator, electric cart, electric car Child, electric tool, electric toothbrush, hearth, clock, intercom, air circulator, electric shock insecticide, hot plate, toaster, water heater, crusher, soldering iron, video camera, video deck, facsimile, futon dryer, mixer , Sewing machines, rice cookers, water coolers, electronic musical instruments, motorcycles, toys, lawn mowers, bicycles, automobiles, hybrid vehicles, plug-in hybrid vehicles, railways, ships, planes, emergency storage batteries, and the like.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.
 <共重合体Aの作製>
 以下の工程1~3により、共重合体Aを作製した。
<Production of Copolymer A>
Copolymer A was produced by the following steps 1 to 3.
(工程1:ビニルエステルとエチレン性不飽和カルボン酸エステル共重合させた前駆体(前駆体)の合成)
 攪拌機、温度計、N2ガス導入管、還流冷却機及び滴下ロートを備えた容量2Lの反応槽に、水768g及び無水硫酸ナトリウム12gを仕込み、N2ガスを吹き込んで系内を脱酸素した。続いて、部分ケン化ポリビニルアルコール(ケン化度88%)1g及びラウリルパーオキシド1gを仕込み、内温を60℃まで昇温した後、アクリル酸メチル104g(1.209mol)及び酢酸ビニル155g(1.802mol)を滴下ロートにより4時間かけて滴下した。その後、内温を65℃で2時間保持した。次いで、固形分を濾別することにより、前駆体288g(10.4質量%含水)を得た。得られた前駆体をDMFに溶解させた後、フィルターにてろ過し、分子量測定装置(ウォーターズ社製2695、RI検出器2414)を用いてろ液中の前駆体の分子量を測定した。標準ポリスチレン換算で算出された数平均分子量は1,880,000であった。
(Step 1: Synthesis of vinyl ester and ethylenically unsaturated carboxylic acid ester copolymerized precursor (precursor))
Water (768 g) and anhydrous sodium sulfate (12 g) were charged into a 2- liter reaction vessel equipped with a stirrer, thermometer, N 2 gas introduction pipe, reflux condenser and dropping funnel, and N 2 gas was blown to deoxidize the system. Subsequently, 1 g of partially saponified polyvinyl alcohol (saponification degree 88%) and 1 g of lauryl peroxide were charged, and after raising the internal temperature to 60 ° C., 104 g (1.209 mol) of methyl acrylate and 155 g (1 802 mol) was added dropwise over 4 hours by a dropping funnel. Thereafter, the internal temperature was maintained at 65 ° C. for 2 hours. Next, the solid content was separated by filtration to obtain 288 g of a precursor (10.4 mass% water content). The obtained precursor was dissolved in DMF and filtered through a filter, and the molecular weight of the precursor in the filtrate was measured using a molecular weight measuring apparatus (2695 manufactured by Waters, RI detector 2414). The number average molecular weight calculated in terms of standard polystyrene was 1,880,000.
(工程2:ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体(共重合体)の合成)
 工程1と同様の反応槽に、メタノール450g、水420g、水酸化ナトリウム132g(3.3mol)及び工程1で得られた前駆体288g(10.4質量%含水)を仕込み、攪拌下で30℃、3時間ケン化反応を行った。ケン化反応終了後、得られた共重合体をメタノールで洗浄、濾過し、70℃で6時間乾燥させ、ビニルエステル/エチレン性不飽和カルボン酸エステル共重合体(ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、アルカリ金属はナトリウム、ケン化度98.8%)193gを得た。得られた共重合体の体積平均粒子径は、180μmであった。
(Step 2: Synthesis of copolymer (copolymer) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid)
In a reaction vessel similar to Step 1, 450 g of methanol, 420 g of water, 132 g (3.3 mol) of sodium hydroxide and 288 g of the precursor obtained in Step 1 (10.4 mass% water content) are charged. Saponification reaction was performed for 3 hours. After completion of the saponification reaction, the obtained copolymer is washed with methanol, filtered, dried at 70 ° C. for 6 hours, vinyl ester / ethylenically unsaturated carboxylic acid ester copolymer (vinyl alcohol and ethylenic unsaturated carboxylic acid) A copolymer with an acid alkali metal neutralized product, alkali metal sodium, 98.8% saponification degree) 193 g was obtained. The volume average particle size of the obtained copolymer was 180 μm.
(工程3:ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体(共重合体)の粉砕)
 工程2で得られた共重合体193gを、ジェットミル(日本ニューマチック工業(株)製、LJ)により粉砕し、微粉末状の共重合体(共重合体A)173gを得た。得られた共重合体Aの粒子径をレーザー回折式粒度分布測定装置((株)島津製作所製、SALD-7100)により測定したところ、体積平均粒子径は39μmであった。
(Step 3: Grinding of copolymer (copolymer) of vinyl alcohol and alkali metal neutralized with ethylenically unsaturated carboxylic acid)
193 g of the copolymer obtained in step 2 was pulverized by a jet mill (LJ, manufactured by Nippon Pneumatic Mfg. Co., Ltd.) to obtain 173 g of a finely powdered copolymer (copolymer A). The particle diameter of the obtained copolymer A was measured by a laser diffraction type particle size distribution measuring device (SALD-7100, manufactured by Shimadzu Corporation), and the volume average particle diameter was 39 μm.
 <バインダー、電極合剤、及び電極の作製>
 (実施例1)
 上記で得られた共重合体A2.7質量部とポリビニルアルコール((株)クラレ製、クラレポバール105、数平均分子量22,000)0.3質量部とを水50質量部に溶解させ、バインダー(バインダー組成物)の水溶液を得た。次に、電極活物質として人造黒鉛(日立化成(株)製、MAG-D)96.5質量部、及び導電助剤としてアセチレンブラック(AB)(電気化学工業(株)製、デンカブラック(登録商標))0.5質量部を上記バインダー水溶液に加え混練した。さらに、粘度調製用の水70質量部を添加して混練することで、スラリー状の負極合剤を調製した。得られた負極合剤を厚さ10μmの電解銅箔上に塗布し、乾燥させた後、ロールプレス機(大野ロール(株)製)により、電解銅箔と塗膜とを密着接合させ、次に加熱処理(減圧中、140℃、3時間以上)を行って負極を作製した。得られた負極における活物質層の厚みは100μmであり、当該負極の容量密度は3.0mAh/cm2であった。
<Preparation of a binder, an electrode mixture, and an electrode>
Example 1
2.7 parts by mass of the copolymer A obtained above and 0.3 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., Kuraray Co., Ltd., Kurare Pover 105, number average molecular weight 22,000) dissolved in 50 parts by mass of water are used as binders. An aqueous solution of (the binder composition) was obtained. Next, 96.5 parts by mass of artificial graphite (manufactured by Hitachi Chemical Co., Ltd., MAG-D) as an electrode active material, and acetylene black (AB) as a conductive additive (Denka Black (registered trademark, manufactured by Denki Kagaku Kogyo Co., Ltd.) 0.5 parts by mass of a trade mark) was added to the above aqueous binder solution and kneaded. Furthermore, 70 parts by mass of water for viscosity adjustment was added and kneaded to prepare a slurry-like negative electrode mixture. The obtained negative electrode mixture is applied on a 10 μm-thick electrolytic copper foil and dried, and then the electrolytic copper foil and the coating film are closely bonded by a roll press machine (manufactured by Ono Roll Co., Ltd.). Heat treatment (under reduced pressure, at 140 ° C. for 3 hours or more) to prepare a negative electrode. The thickness of the active material layer in the obtained negative electrode was 100 μm, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
 (実施例2)
 実施例1において、共重合体Aを2.4質量部用い、ポリビニルアルコール((株)クラレ製、クラレポバール105、数平均分子量22,000)を0.6質量部用いたこと以外は、実施例1と同様にして、負極を作製した。得られた負極における活物質層の厚みは101μmであり、当該負極の容量密度は3.0mAh/cm2であった。
(Example 2)
The procedure of Example 1 was repeated, except that 2.4 parts by mass of the copolymer A and 0.6 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., KURARAY POVAL 105, number average molecular weight 22,000) were used. In the same manner as in Example 1, a negative electrode was produced. The thickness of the active material layer in the obtained negative electrode was 101 μm, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
 (比較例1)
 実施例1において、共重合体Aを3.0質量部用い、ポリビニルアルコールを用いなかったこと以外は、実施例1と同様にして、負極を作製した。得られた負極における活物質層の厚みは99μmであり、当該負極の容量密度は3.0mAh/cm2であった。
(Comparative example 1)
A negative electrode was produced in the same manner as in Example 1 except that 3.0 parts by mass of the copolymer A and no polyvinyl alcohol were used in Example 1. The thickness of the active material layer in the obtained negative electrode was 99 μm, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
 (比較例2)
 実施例1において、ポリビニルアルコール((株)クラレ製、クラレポバール105、数平均分子量22,000)を3.0質量部用い、共重合体Aを用いなかったこと以外は、実施例1と同様にして、負極を作製した。得られた負極における活物質層の厚みは102μmであり、当該負極の容量密度は3.0mAh/cm2であった。
(Comparative example 2)
Example 1 is the same as example 1 except that 3.0 parts by mass of polyvinyl alcohol (Kuraray Co., Ltd., KURARAY POVAL 105, number average molecular weight 22,000) is used and 3.0 parts by mass and copolymer A is not used. Then, a negative electrode was produced. The thickness of the active material layer in the obtained negative electrode was 102 μm, and the capacity density of the negative electrode was 3.0 mAh / cm 2 .
(剥離試験)
 実施例1、2及び比較例1、2で得られた負極における集電体に対する塗膜(負極活物質層)の剥離強度試験を行った。負極を幅80mm×15mmに切り出して粘着テープを表面(負極活物質層側)に貼り付けた後、両面テープでステンレス製の板に貼り付け負極(集電体側)を固定し、これを評価用サンプルとした。この評価用サンプルを引張試験機((株)島津製作所製 小型卓上試験機EZ-Test)にてステンレス製の板に対する負極の180度剥離試験(ステンレス製の板に固定した負極に対する粘着テープの180度剥離試験)を実施し、負極における活物質層と集電体間の剥離強度を測定した。表1に剥離試験(剥離強度)の評価結果を示す。
(Peeling test)
The peeling strength test of the coating film (negative electrode active material layer) with respect to the current collector in the negative electrode obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was performed. The negative electrode is cut out to a width of 80 mm × 15 mm, and an adhesive tape is attached to the surface (negative electrode active material layer side), then attached to a stainless steel plate with double-sided tape to fix the negative electrode (collector side). It was a sample. 180 degree peel test of negative electrode to stainless steel plate with tensile tester (small desktop tester EZ-Test, manufactured by Shimadzu Corporation) for this evaluation sample (180 of adhesive tape to negative electrode fixed to stainless steel plate) Degree peeling test) was performed, and the peeling strength between the active material layer and the current collector in the negative electrode was measured. Table 1 shows the evaluation results of the peel test (peel strength).
 (電極強度)
 実施例1,2及び比較例1、2で得られた電極を打ち抜き機で11mmφの大きさに打ち抜いた際の活物質層の剥離、脱落、欠けの有無により、電極の強度(「電極強度」と称する)を評価した。表2に電極強度の評価結果を示す。
(Electrode strength)
The electrode strength ("electrode strength") depending on the presence or absence of peeling, detachment, or chipping of the active material layer when the electrodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are punched to a size of 11 mmφ with a punching machine. (Referred to as Table 2 shows the evaluation results of the electrode strength.
○(強度に優れる):電極を無造作に10枚打ち抜いたうち、目視判定により活物質層の剥離、脱落、欠けのいずれかが確認されたものが2枚以下。
△(強度にやや優れる):電極を無造作に10枚打ち抜いたうち、目視判定により活物質層の剥離、脱落、欠けのいずれかが確認されたものが3~5枚。
×(強度に劣る):電極を無造作に10枚打ち抜いたうち、目視判定により活物質層の剥離、脱落、欠けのいずれかが確認されたものが6枚以上。
O (excellent in strength): Among 10 randomly punched out electrodes, 2 or less sheets in which any of peeling, falling off or chipping of the active material layer was confirmed by visual judgment.
Δ (Slightly superior in strength): 10 out of 10 randomly punched electrodes, 3 to 5 of which the peeling, falling off or chipping of the active material layer was confirmed by visual judgment.
X (poor strength): Of 10 sheets of the electrode randomly punched out, 6 or more sheets in which any of peeling, falling off or chipping of the active material layer was confirmed by visual observation.
 (電池の組立)
 実施例1,2及び比較例1、2で得られた負極と、下記の対極、セパレータ、電解液を具備したコインセル(CR2032)を作製し、30℃の環境下で0.1Cで3サイクルのエージング処理を行って、試料(コインセル)を作製した。
(Assembly of battery)
A coin cell (CR2032) having the negative electrodes obtained in Examples 1 and 2 and Comparative Examples 1 and 2 and the following counter electrode, separator, and electrolyte is prepared, and subjected to three cycles of 0.1 C in an environment of 30 ° C. Aging treatment was performed to prepare a sample (coin cell).
 ・対極:金属リチウム
 ・セパレータ:ガラスフィルター(アドバンテック(株)製、GA-100)
 ・電解液:エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:1で混合した溶媒にLiPF6を1mol/Lの濃度で溶解させ、電解液用添加剤であるビニレンカーボネート(VC)を1質量%添加した溶液
・ Counter electrode: Metallic lithium ・ Separator: Glass filter (Advantec Co., Ltd., GA-100)
Electrolyte solution: LiPF 6 is dissolved at a concentration of 1 mol / L in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1, vinylene carbonate (VC Solution containing 1% by mass of
(直流抵抗の評価方法)
 実施例1,2及び比較例1で得られた負極を有する、上述の通りに作製した各コインセルについて、それぞれ30℃環境下、0.2Cで充電し、0.2C、0.5C、1C、3C、5Cの各レートで放電を行った。なお、カットオフ電位は、上記のコインセルについて0-1.0V(vs.Li+/Li)に設定した。得られたI-V特性より、電池の直流抵抗(DC-IR)を算出した。表1に実施例と比較例の直流抵抗を示す。比較例2で得られた負極は、電極強度が低すぎて電極にすることが不適切であったため、直流抵抗の評価を行わなかった。
(Method of evaluating DC resistance)
The coin cells produced as described above having the negative electrode obtained in Examples 1 and 2 and Comparative Example 1 were each charged at 0.2 C under an environment of 30 ° C., 0.2 C, 0.5 C, 1 C, Discharge was performed at each rate of 3C and 5C. The cutoff potential was set to 0 to 1.0 V (vs. Li + / Li) for the above coin cell. From the obtained IV characteristics, the direct current resistance (DC-IR) of the battery was calculated. Table 1 shows direct current resistances of the example and the comparative example. Since the negative electrode obtained in Comparative Example 2 had an electrode strength too low to be suitable as an electrode, the DC resistance was not evaluated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含む、非水電解質二次電池電極用バインダー。 A binder for a non-aqueous electrolyte secondary battery electrode, comprising a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and polyvinyl alcohol.
  2.  前記共重合体における前記ビニルアルコールと前記エチレン性不飽和カルボン酸アルカリ金属中和物の共重合組成比は、モル比で、95/5~5/95である、請求項1に記載の非水電解質二次電池電極用バインダー。 The non-water according to claim 1, wherein the copolymer composition ratio of the vinyl alcohol and the alkali metal neutralized product of the ethylenically unsaturated carboxylic acid in the copolymer is 95/5 to 5/95 in molar ratio. Binder for electrolyte secondary battery electrode.
  3.  前記エチレン性不飽和カルボン酸アルカリ金属中和物は、(メタ)アクリル酸アルカリ金属中和物である、請求項1または2に記載の非水電解質二次電池電極用バインダー。 The binder for a non-aqueous electrolyte secondary battery electrode according to claim 1 or 2, wherein the ethylenically unsaturated carboxylic acid alkali metal neutralized product is a (meth) acrylic acid alkali metal neutralized product.
  4.  前記共重合体と前記ポリビニルアルコールの質量比が、95/5~70/30である、請求項1~3のいずれか一項に記載の非水電解質二次電池電極用バインダー。 The binder for a non-aqueous electrolyte secondary battery electrode according to any one of claims 1 to 3, wherein a mass ratio of the copolymer to the polyvinyl alcohol is 95/5 to 70/30.
  5.  電極活物質と、導電助剤と、請求項1~4のいずれか一項に記載の非水電解質二次電池電極用バインダーとを含む、非水電解質二次電池用電極合剤。 An electrode mixture for a non-aqueous electrolyte secondary battery, comprising the electrode active material, a conductive additive, and the binder for a non-aqueous electrolyte secondary battery electrode according to any one of claims 1 to 4.
  6.  前記バインダーの含有量が、前記電極活物質、前記導電助剤、及び前記バインダーの合計量100質量部に対して、0.5~40質量部である、請求項5に記載の非水電解質二次電池用電極合剤。 The nonaqueous electrolyte according to claim 5, wherein a content of the binder is 0.5 to 40 parts by mass with respect to a total amount of 100 parts by mass of the electrode active material, the conductive auxiliary agent, and the binder. Electrode mix for secondary batteries.
  7.  請求項5または6に記載の非水電解質二次電池用電極合剤を用いて作製された非水電解質二次電池用電極。 The electrode for non-aqueous electrolyte secondary batteries produced using the electrode mixture for non-aqueous electrolyte secondary batteries of Claim 5 or 6.
  8.  請求項7に記載の非水電解質二次電池用電極を備えた非水電解質二次電池。 The nonaqueous electrolyte secondary battery provided with the electrode for nonaqueous electrolyte secondary batteries of Claim 7.
  9.  請求項8に記載の非水電解質二次電池を備えた電気機器。 An electric device comprising the non-aqueous electrolyte secondary battery according to claim 8.
  10.  ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体、及びポリビニルアルコールを含むバインダーの、非水電解質二次電池電極への使用。 Use of a copolymer of vinyl alcohol and an alkali metal neutralized with an ethylenically unsaturated carboxylic acid, and a binder containing polyvinyl alcohol for a non-aqueous electrolyte secondary battery electrode.
PCT/JP2018/035610 2017-09-29 2018-09-26 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus WO2019065705A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019545548A JP7223700B2 (en) 2017-09-29 2018-09-26 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
CN201880060479.4A CN111095635A (en) 2017-09-29 2018-09-26 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and electrical device
KR1020207008046A KR20200062197A (en) 2017-09-29 2018-09-26 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electrical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017189255 2017-09-29
JP2017-189255 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065705A1 true WO2019065705A1 (en) 2019-04-04

Family

ID=65903799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035610 WO2019065705A1 (en) 2017-09-29 2018-09-26 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus

Country Status (5)

Country Link
JP (1) JP7223700B2 (en)
KR (1) KR20200062197A (en)
CN (1) CN111095635A (en)
TW (1) TWI771498B (en)
WO (1) WO2019065705A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
WO2014207967A1 (en) * 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
JP2015201267A (en) * 2014-04-04 2015-11-12 住友精化株式会社 Mixture for lithium ion secondary battery electrode, electrode for lithium ion secondary battery containing mixture, lithium ion secondary battery including electrode, and electric equipment
WO2017168947A1 (en) * 2016-03-30 2017-10-05 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
WO2018168520A1 (en) * 2017-03-16 2018-09-20 株式会社クラレ Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188559A (en) 1990-11-21 1992-07-07 Bridgestone Corp Non-aqueous electrolyte secondary battery
JPH08264180A (en) 1995-03-24 1996-10-11 Central Glass Co Ltd Lithium secondary battery negative electrode material and lithium secondary battery using it
JP4003276B2 (en) 1997-02-10 2007-11-07 東レ株式会社 Battery electrode and secondary battery using the same
JP3601250B2 (en) 1997-04-25 2004-12-15 Jsr株式会社 Binder for non-aqueous battery electrode
KR20040049475A (en) 2002-12-06 2004-06-12 삼성전자주식회사 Wafer sawing method
US10068717B2 (en) * 2014-04-01 2018-09-04 Sumitomo Seika Chemicals Co., Ltd. Binder for electric double-layer capacitor electrode, electric double-layer capacitor electrode comprising same binder, electric double-layer capacitor using same electrode, and electric apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057627A1 (en) * 2012-10-12 2014-04-17 独立行政法人産業技術総合研究所 Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus
WO2014207967A1 (en) * 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
JP2015201267A (en) * 2014-04-04 2015-11-12 住友精化株式会社 Mixture for lithium ion secondary battery electrode, electrode for lithium ion secondary battery containing mixture, lithium ion secondary battery including electrode, and electric equipment
WO2017168947A1 (en) * 2016-03-30 2017-10-05 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
WO2018168520A1 (en) * 2017-03-16 2018-09-20 株式会社クラレ Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition

Also Published As

Publication number Publication date
JP7223700B2 (en) 2023-02-16
TW201921789A (en) 2019-06-01
TWI771498B (en) 2022-07-21
CN111095635A (en) 2020-05-01
KR20200062197A (en) 2020-06-03
JPWO2019065705A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6891166B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP5686332B2 (en) Binder for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery containing this binder, lithium ion secondary battery and electric equipment using this positive electrode
TWI624982B (en) Negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery containing the same, nonaqueous electrolyte secondary battery including the negative electrode, and electrical equipment
JP6278804B2 (en) Lithium ion secondary battery electrode mixture, lithium ion secondary battery electrode containing this mixture, lithium ion secondary battery equipped with this electrode, and electrical equipment
TWI803520B (en) Electrode mixture for non-aqueous electrolyte secondary battery
JP7223699B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP7223700B2 (en) Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862828

Country of ref document: EP

Kind code of ref document: A1