JP7110170B2 - Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents

Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP7110170B2
JP7110170B2 JP2019505878A JP2019505878A JP7110170B2 JP 7110170 B2 JP7110170 B2 JP 7110170B2 JP 2019505878 A JP2019505878 A JP 2019505878A JP 2019505878 A JP2019505878 A JP 2019505878A JP 7110170 B2 JP7110170 B2 JP 7110170B2
Authority
JP
Japan
Prior art keywords
electrolyte battery
electrode
battery
binder composition
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019505878A
Other languages
Japanese (ja)
Other versions
JPWO2018168520A1 (en
Inventor
有紀 太田
雄介 天野
秀治 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2018168520A1 publication Critical patent/JPWO2018168520A1/en
Application granted granted Critical
Publication of JP7110170B2 publication Critical patent/JP7110170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、非水電解質電池用バインダー組成物、並びにそれを用いた非水電解質電池用バインダー水溶液、非水電解質電池用スラリー組成物、非水電解質電池用電極、及び非水電解質電池に関する。 The present invention relates to a binder composition for nonaqueous electrolyte batteries, an aqueous binder solution for nonaqueous electrolyte batteries using the same, a slurry composition for nonaqueous electrolyte batteries, an electrode for nonaqueous electrolyte batteries, and a nonaqueous electrolyte battery.

近年、携帯電話、ノート型パソコン、パッド型情報端末機器などの携帯端末の普及が著しい。これら携帯端末の電源に用いられている二次電池には、リチウムイオン二次電池が多用されている。携帯端末は、より快適な携帯性が求められるため、小型化、薄型化、軽量化、高性能化が急速に進み、様々な場で利用されるようになった。この動向は現在も続いており、携帯端末に使用される電池にも、小型化、薄型化、軽量化、高性能化がさらに要求されている。 2. Description of the Related Art In recent years, mobile terminals such as mobile phones, notebook personal computers, and pad-type information terminal devices have spread remarkably. Lithium-ion secondary batteries are often used as secondary batteries used as power sources for these portable terminals. Since portable terminals are required to have more comfortable portability, they have rapidly become smaller, thinner, lighter, and have higher performance, and have come to be used in various places. This trend continues today, and batteries used in mobile terminals are also required to be smaller, thinner, lighter, and have higher performance.

リチウムイオン二次電池等の非水電解質電池は、正極と負極とをセパレーターを介して設置し、LiPF、LiBF LiTFSI(リチウム(ビストリフルオロメチルスルホニルイミド))、LiFSI(リチウム(ビスフルオロスルホニルイミド))のようなリチウム塩をエチレンカーボネート等の有機液体に溶解させた電解液と共に容器内に収納した構造を有する。A non-aqueous electrolyte battery such as a lithium ion secondary battery has a positive electrode and a negative electrode placed through a separator, and LiPF 6 , LiBF 4 LiTFSI (lithium (bistrifluoromethylsulfonylimide)), LiFSI (lithium (bisfluorosulfonylimide) )) is housed in a container together with an electrolytic solution obtained by dissolving a lithium salt in an organic liquid such as ethylene carbonate.

上記負極および正極は、通常、バインダーおよび増粘剤を水または溶剤に溶解、または分散させ、これに活物質、必要に応じて導電助剤(導電付与剤)などを混合して得られる電極用スラリー(以下、単にスラリーということがある)を集電体に塗布して、水または溶剤を乾燥することにより、混合層として結着させて形成される。より具体的には、例えば、負極は、活物質であるリチウムイオン吸蔵・放出可能な炭素質材料、および、必要に応じて導電助剤のアセチレンブラックなどを、銅などの集電体に二次電池電極用バインダーにより相互に結着させたものである。一方、正極は、活物質であるLiCoOなど、および、必要に応じて負極と同様の導電助剤を、アルミニウムなどの集電体に二次電池電極用バインダーを用いて相互に結着させたものである。The negative electrode and the positive electrode are usually obtained by dissolving or dispersing a binder and a thickener in water or a solvent, and mixing an active material and, if necessary, a conductive agent (conductive agent). A slurry (hereinafter sometimes simply referred to as slurry) is applied to a current collector, and water or a solvent is dried to form a mixed layer that is bound and formed. More specifically, for example, the negative electrode is composed of a carbonaceous material capable of intercalating and deintercalating lithium ions, which is an active material, and, if necessary, a conductive agent such as acetylene black. They are bound together by a battery electrode binder. On the other hand, for the positive electrode, an active material such as LiCoO 2 and, if necessary, a conductive aid similar to that used for the negative electrode are bound together to a current collector such as aluminum using a secondary battery electrode binder. It is.

近年、環境への負荷低減および、製造装置の簡便性の観点から、溶剤を用いたスラリーから、水を用いたスラリーへの関心が高まり、特に負極では急速に移行が進んでいる。 In recent years, from the standpoints of reducing the load on the environment and simplifying production equipment, there has been an increasing interest in slurries using water from slurries using solvents.

水媒体用のバインダーとして、最も工業的に用いられているものはスチレン-ブタジエンゴム(SBR)などのジエン系ゴムに増粘剤としてカルボキシメチルセルロース・ナトリウム塩(CMC-Na)を添加した系である(例えば、特許文献1)。しかしながら、スチレン-ブタジエンゴムなどのジエン系ゴムは、銅などの金属集電極との接着性が低く、集電極と電極材の密着性を高めるために使用量を下げることが出来ないという問題がある。また、充放電時に発生する熱に対して弱く、容量維持率が低いという問題もある。さらに2液系であるために、保存安定性が低い、スラリー作製工程が煩雑であるといった製造上の課題も抱えている。 The most industrially used binder for aqueous media is a system in which carboxymethyl cellulose sodium salt (CMC-Na) is added as a thickener to diene rubber such as styrene-butadiene rubber (SBR). (For example, Patent Document 1). However, diene-based rubbers such as styrene-butadiene rubber have low adhesiveness to metal collecting electrodes such as copper, and there is a problem that the amount used cannot be reduced in order to increase the adhesion between the collecting electrode and the electrode material. . In addition, there is also the problem that it is vulnerable to heat generated during charging and discharging, and the capacity retention rate is low. Further, since it is a two-liquid system, it has problems in manufacturing such as low storage stability and complicated slurry preparation process.

SBR/CMC-Na添加系の課題を解消するため、ポリアクリル酸などのアクリル系バインダー(例えば、特許文献2)、または、ポリアミド/イミド系のバインダー(例えば、特許文献3)が開発されている。 In order to solve the problems of SBR/CMC-Na addition systems, acrylic binders such as polyacrylic acid (eg, Patent Document 2) or polyamide/imide binders (eg, Patent Document 3) have been developed. .

アクリル系バインダーは高い接着性を示し、電解液に対する低い膨潤性を有するという点において優れている。一方で、電気抵抗が高く、柔軟性が乏しく電極が容易に割れるという課題がある。柔軟性については、例えば特許文献4のようにニトリル基を導入し、改善する報告も見られているが、未だ電気抵抗は高い傾向にある。 Acrylic binders are excellent in that they exhibit high adhesiveness and have low swelling properties with respect to electrolytic solutions. On the other hand, there is a problem that the electrical resistance is high, the flexibility is poor, and the electrode is easily broken. Regarding flexibility, there are reports of introducing nitrile groups to improve flexibility, as in Patent Document 4, for example, but electrical resistance still tends to be high.

また、ポリアミド/イミド系のバインダーも高い接着性を示し、特に電気的、熱的安定性、機械的強度に優れている。課題としては、アクリル系バインダーと同様、電気抵抗が高く、柔軟性が乏しく電極が容易に割れることが挙げられるが、機械的強度を活かして、充放電時のリチウムイオンの挿入と脱離に伴う電極の膨張収縮が大きい金属酸化物を負極活物質として用いることで柔軟性を補う例が報告されている(例えば、特許文献5)。しかし、ポリアミド/イミド系のバインダーと金属酸化物との組み合わせでは、抵抗が高い、柔軟性が乏しいという問題を十分に解消できておらず、さらに、ポリアミド/イミド系のバインダーは価格が高いという難点もある。 Polyamide/imide binders also exhibit high adhesiveness, and are particularly excellent in electrical and thermal stability and mechanical strength. As with acrylic binders, the problems include high electrical resistance, poor flexibility, and easy cracking of the electrodes. An example of compensating for flexibility by using a metal oxide having a large electrode expansion and contraction as a negative electrode active material has been reported (for example, Patent Document 5). However, the combination of a polyamide/imide binder and a metal oxide cannot sufficiently solve the problems of high resistance and poor flexibility, and furthermore, the polyamide/imide binder is expensive. There is also

最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、特に、電池の高容量化(低抵抗化、高効率化)、寿命(サイクル特性)、充電速度(レート特性)の向上が急務となっている。 Recently, there has been a growing demand for longer usage times and shorter charging times for mobile devices. There is an urgent need to improve

非水電解質電池において、電池容量は活物質の量に影響されるため、電池という限られた空間内で活物質を増加させるには、バインダーおよび増粘剤の量を抑えることが有効である。また、レート特性についても、電子の移動の容易さに影響されるため、非導電性で電子の移動を妨げるバインダーおよび増粘剤の量を抑えることが有効である。しかしながら、バインダーおよび増粘剤の量を少なくすると、集電極と電極材および電極内の活物質間の結着性が低下し、長時間の使用に対する耐久性(電池寿命)が著しく低下するだけでなく、電極として脆いものとなってしまう。このように、これまで、集電極と電極材の結着性を保持し、電極としての靱性を保持したまま電池容量などの電池特性の向上、特に低抵抗化を図ることは困難であった。 In a non-aqueous electrolyte battery, since the battery capacity is affected by the amount of active material, it is effective to reduce the amount of binder and thickener in order to increase the amount of active material in the limited space of the battery. The rate characteristics are also affected by the ease with which electrons move, so it is effective to reduce the amount of the binder and thickener, which are non-conductive and hinder the movement of electrons. However, when the amount of binder and thickener is reduced, the adhesion between the collecting electrode and the electrode material and the active material in the electrode is lowered, and the durability (battery life) for long-term use is only significantly lowered. Therefore, the electrode becomes fragile. Thus, until now, it has been difficult to improve the battery characteristics such as the battery capacity, especially to lower the resistance, while maintaining the adhesion between the collecting electrode and the electrode material and maintaining the toughness of the electrode.

本発明は上記課題事情に鑑みてなされたものであり、バインダーとしての機能、すなわち、活物質間および集電極との結着性と電極としての靱性を損なうことなく、非水電解質電池における電池特性の向上(高効率化)を図ることを目的とする。 The present invention has been made in view of the above problems, and the battery characteristics in a non-aqueous electrolyte battery without impairing the function as a binder, that is, the binding property between the active materials and with the collector electrode and the toughness as an electrode The purpose is to improve (high efficiency).

特開2014-13693公報Japanese Unexamined Patent Application Publication No. 2014-13693 特開2002-260667公報Japanese Patent Application Laid-Open No. 2002-260667 特開2001-68115公報Japanese Patent Application Laid-Open No. 2001-68115 特開2003-282061公報Japanese Patent Application Laid-Open No. 2003-282061 特開2015-65164公報Japanese Patent Application Laid-Open No. 2015-65164

本発明者らは、上記課題を解決すべく鋭意研究した結果、下記構成の非水電解質電池用バインダー組成物を使用することで、上記目的を達することを見出し、この知見に基づいて更に検討を重ねることによって本発明を完成した。 As a result of intensive studies aimed at solving the above problems, the present inventors have found that the above objects can be achieved by using a binder composition for non-aqueous electrolyte batteries having the following composition. The present invention was completed by stacking.

すなわち、本発明の一局面に係る非水電解質電池用バインダー組成物(以下、単にバインダー組成物とも称す)は、(A)ポリビニルアルコール、及び、(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つを含むことを特徴とする。 That is, the binder composition for non-aqueous electrolyte batteries according to one aspect of the present invention (hereinafter also simply referred to as the binder composition) comprises (A) polyvinyl alcohol, and (B) vinyl alcohol and ethylenically unsaturated carboxylic acid. and at least one selected from a copolymer and a neutralized salt thereof.

以下、本発明の実施形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Embodiments of the present invention will be described in detail below, but the present invention is not limited to these.

本実施形態の非水電解質電池用バインダー組成物(以下、単にバインダー組成物とも称す)は、下記(A)及び(B)を含むことを特徴とする:
(A)ポリビニルアルコール、
(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つ。
The binder composition for non-aqueous electrolyte batteries of the present embodiment (hereinafter also simply referred to as the binder composition) is characterized by comprising the following (A) and (B):
(A) polyvinyl alcohol,
(B) At least one selected from copolymers of vinyl alcohol and ethylenically unsaturated carboxylic acid and neutralized salts thereof.

上記構成によれば、結着性と靱性を備えた非水電解質電池用バインダー組成物を得ることができ、さらにそれを用いて、非水電解質電池の電池特性(高効率化)の向上を実現することができる。 According to the above configuration, it is possible to obtain a binder composition for a non-aqueous electrolyte battery having binding properties and toughness, and by using it, improve the battery characteristics (high efficiency) of the non-aqueous electrolyte battery. can do.

本実施形態のバインダー組成物中における、(A)成分であるポリビニルアルコールの含有量としては、特に限定されるものではないが、50重量%以下であることが好ましく、40重量%以下であることがより好ましく、30重量%以下であることが更に好ましい。また、前記ポリビニルアルコールの含有量の下限値は、0.1重量%以上であることが好ましく、0.5重量%以上であることがより好ましく、1重量%以上であることが更に好ましい。(A)成分の含有量が50重量%を超えると、電気抵抗が高くなり高い充放電効率を得ることができなくなるおそれがあり、1重量%未満となると、スラリー安定性が悪くなる場合がある。 The content of polyvinyl alcohol as component (A) in the binder composition of the present embodiment is not particularly limited, but is preferably 50% by weight or less, and 40% by weight or less. is more preferable, and 30% by weight or less is even more preferable. The lower limit of the polyvinyl alcohol content is preferably 0.1% by weight or more, more preferably 0.5% by weight or more, and even more preferably 1% by weight or more. If the content of component (A) exceeds 50% by weight, the electrical resistance may increase and high charge-discharge efficiency may not be obtained. If the content is less than 1% by weight, slurry stability may deteriorate. .

(A)成分であるポリビニルアルコールを含有することで、カルボキシル基によるバインダーの凝集性と集電極との親和性が高まり接着性が向上する効果が期待できる。また、異なるポリマーを混合することで、見かけ上、分子量分布がブロードとなり、さらにポリマーの結晶性が低下するために柔軟性が向上する効果が期待できる。加えて、単独ポリマーでの凝集を、異種ポリマーとの分子間相互作用により抑制することで、スラリー安定性を向上する効果が期待できる。 By including polyvinyl alcohol as the component (A), an effect of enhancing the cohesiveness of the binder due to the carboxyl group and the affinity with the collecting electrode and improving the adhesiveness can be expected. Further, by mixing different polymers, the molecular weight distribution appears to be broadened, and the crystallinity of the polymer is lowered, so that the effect of improving the flexibility can be expected. In addition, the effect of improving slurry stability can be expected by suppressing aggregation of a single polymer through intermolecular interaction with a different polymer.

本実施形態において、ポリビニルアルコールのけん化度も、特に限定されるものでなく、通常50モル%以上、より好ましくは80モル%以上、更に好ましくは95モル%以上である。けん化度が低い場合、バインダー組成物中に含まれるアルカリ金属により、加水分解され、安定性が定まらないことがあり好ましくない。 In the present embodiment, the degree of saponification of polyvinyl alcohol is also not particularly limited, and is usually 50 mol% or more, more preferably 80 mol% or more, still more preferably 95 mol% or more. If the degree of saponification is low, it may be hydrolyzed by alkali metals contained in the binder composition, and the stability may not be determined, which is not preferable.

本実施形態において、(B)成分を構成するエチレン性不飽和カルボン酸とは、例えば、アクリル酸、メタクリル酸、メタクリル酸のメチルエステル、エチルエステル、クロトン酸などのエチレン性不飽和モノカルボン酸、フマール酸、イタコン酸、マレイン酸などのエチレン性不飽和ジカルボン酸を挙げられる。この中でも特に、入手性、重合成、生成物の安定性という観点から、アクリル酸、メタクリル酸、マレイン酸が好ましい。これらのエチレン性不飽和カルボン酸エステルは、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 In the present embodiment, the ethylenically unsaturated carboxylic acid constituting the component (B) includes, for example, ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, methacrylic acid methyl esters, ethyl esters, and crotonic acid, Examples include ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid. Among these, acrylic acid, methacrylic acid, and maleic acid are particularly preferable from the viewpoint of availability, polymerization synthesis, and product stability. These ethylenically unsaturated carboxylic acid esters may be used alone or in combination of two or more.

本実施形態の(B)成分の共重合体におけるビニルアルコールとエチレン性不飽和カルボン酸との含有割合は、モル比で100/1~1/100の範囲内にあるのが望ましい。水に溶解する高分子量体としての親水性、水溶性、金属やイオンへの親和性という利点が得られるからである。エチレン性不飽和カルボン酸が少なすぎると接着性及び柔軟性が低下し、多すぎると熱・電気安定性が低下する。 The content ratio of vinyl alcohol and ethylenically unsaturated carboxylic acid in the copolymer of component (B) of the present embodiment is desirably in the range of 100/1 to 1/100 in terms of molar ratio. This is because the advantages of hydrophilicity, water solubility, and affinity for metals and ions as a water-soluble polymer can be obtained. If the amount of the ethylenically unsaturated carboxylic acid is too small, the adhesion and flexibility will be lowered, and if it is too large, the thermal and electrical stability will be lowered.

本実施形態の共重合体における(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体およびその中和塩から選択される少なくとも一つにおいて、その共重合形態は特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等が挙げられる。特に、高い接着性を得るためには規則的にビニルアルコールが配列したブロック共重合、グラフト共重合が好ましい。また、接着性と柔軟性の両立の観点からは、グラフト共重合体であることがより好ましい。 In at least one selected from (B) vinyl alcohol and ethylenically unsaturated carboxylic acid copolymers and neutralized salts thereof in the copolymer of the present embodiment, the copolymerization form is not particularly limited, and random copolymerization , alternating copolymerization, block copolymerization, graft copolymerization, and the like. In particular, block copolymerization or graft copolymerization in which vinyl alcohols are regularly arranged is preferred for obtaining high adhesiveness. Moreover, from the viewpoint of achieving both adhesiveness and flexibility, a graft copolymer is more preferable.

本実施形態の共重合体を製造する方法もまた、特に制限されることはなく、アニオン重合、カチオン重合、ラジカル重合など、いずれの重合開始方法でも良く、重合体の製造方法としても、溶液重合、塊状重合、懸濁重合、分散重合、またはエマルジョン重合など、いずれの方法であってもよい。 The method for producing the copolymer of the present embodiment is also not particularly limited, and any polymerization initiation method such as anionic polymerization, cationic polymerization, or radical polymerization may be used. , bulk polymerization, suspension polymerization, dispersion polymerization, or emulsion polymerization.

本実施形態の(B)成分であるビニルアルコールとエチレン性不飽和カルボン酸共重合体およびその中和塩から選択される少なくとも一つにおいて、そのエチレン性不飽和カルボン酸変性量は、0.1~60モル%程度であることが好ましい。それにより、靱性及び低抵抗性を付与できるという利点がある。より好ましいエチレン性不飽和カルボン酸変性量は、1~40モル%程度である。本実施形態のエチレン性不飽和カルボン酸変性量は、例えば、核磁気共鳴分光法(NMR)によって定量することができる。 At least one selected from vinyl alcohol, an ethylenically unsaturated carboxylic acid copolymer, and a neutralized salt thereof, which is the component (B) of the present embodiment, has an ethylenically unsaturated carboxylic acid modification amount of 0.1. It is preferably about 60 mol %. Thereby, there is an advantage that toughness and low resistance can be imparted. A more preferable ethylenically unsaturated carboxylic acid modification amount is about 1 to 40 mol %. The amount of ethylenically unsaturated carboxylic acid modified in the present embodiment can be quantified by, for example, nuclear magnetic resonance spectroscopy (NMR).

また、耐熱性の観点からは、上記エチレン性不飽和カルボン酸変性量は、20モル%未満であることが好ましく、15モル%未満であることがより好ましい。また、低抵抗性向上の観点からは、上記エチレン性不飽和カルボン酸変性量が11モル%以上であることも好ましい態様である。 From the viewpoint of heat resistance, the amount of ethylenically unsaturated carboxylic acid modification is preferably less than 20 mol %, more preferably less than 15 mol %. From the viewpoint of improving low resistance, it is also a preferred embodiment that the amount of modification with ethylenically unsaturated carboxylic acid is 11 mol % or more.

本実施形態の共重合体の平均分子量は、数平均分子量が5,000~250,000であることが好ましい。共重合体の数平均分子量が5,000未満の場合、バインダーの機械的強度が低下するおそれがある。数平均分子量が10,000以上であることがより好ましく、15,000以上であることがさらに好ましい。一方、共重合体の数平均分子量が250,000を超える場合、非水電解質電池用スラリー組成物の粘度安定性が低下したり、スラリーの凝集を引き起こしたりする等、取り扱い性が不十分になるおそれがある。数平均分子量が200,000以下であることがより好ましく、150,000以下であることがさらに好ましい。なお、本発明における共重合体の数平均分子量は、標準物質としてポリエチレンオキシド及びポリエチレングリコールを用い、カラムとして水系カラムを用いたゲルパーミエーションクロマトグラフィー(GPC)法により測定した値を意味する。 The number average molecular weight of the copolymer of the present embodiment is preferably from 5,000 to 250,000. If the number average molecular weight of the copolymer is less than 5,000, the mechanical strength of the binder may deteriorate. More preferably, the number average molecular weight is 10,000 or more, and even more preferably 15,000 or more. On the other hand, if the number-average molecular weight of the copolymer exceeds 250,000, the viscosity stability of the slurry composition for non-aqueous electrolyte batteries may be lowered, or the slurry may aggregate, resulting in insufficient handleability. There is a risk. More preferably, the number average molecular weight is 200,000 or less, and even more preferably 150,000 or less. The number average molecular weight of the copolymer in the present invention means a value measured by a gel permeation chromatography (GPC) method using polyethylene oxide and polyethylene glycol as standard substances and an aqueous column as a column.

本実施形態において、共重合体の中和塩とは、エチレン性不飽和カルボン酸から生成するカルボニル酸の活性水素が、塩基性物質と反応し、塩を形成して中和物となっているものであることが好ましい。本実施形態で使用する(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩においては、バインダーとしての結着性の観点から前記塩基性物質として、一価の金属を含む塩基性物質および/またはアンモニアを使用することが好ましい。 In the present embodiment, the neutralized salt of the copolymer means that the active hydrogen of the carbonyl acid generated from the ethylenically unsaturated carboxylic acid reacts with a basic substance to form a salt and become a neutralized product. It is preferable to be In the (B) vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and/or neutralized salt thereof used in the present embodiment, a monovalent metal is used as the basic substance from the viewpoint of binding properties as a binder. It is preferred to use a basic substance containing and/or ammonia.

本実施形態で使用可能な一価の金属を含む塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;酢酸ナトリウム、酢酸カリウムなどのアルカリ金属の酢酸塩;リン酸三ナトリウムなどのアルカリ金属のリン酸塩等が挙げられる。これらの中でもアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましい。特に、リチウムイオン二次電池用のバインダーとしては、アンモニア、水酸化リチウムの使用が好ましい。一価の金属を含む塩基性物質および/またはアンモニアは単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また電池性能に悪影響を及ぼさない範囲内であれば、水酸化ナトリウムなどのアルカリ金属の水酸化物などを含有する塩基性物質を併用して、中和物を調製してもよい。 Basic substances containing a monovalent metal that can be used in the present embodiment include, for example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metals such as sodium carbonate and potassium carbonate; carbonates; alkali metal acetates such as sodium acetate and potassium acetate; alkali metal phosphates such as trisodium phosphate. Among these, ammonia, lithium hydroxide, sodium hydroxide, and potassium hydroxide are preferred. In particular, ammonia and lithium hydroxide are preferably used as binders for lithium ion secondary batteries. A basic substance containing a monovalent metal and/or ammonia may be used alone or in combination of two or more. In addition, a basic substance containing an alkali metal hydroxide such as sodium hydroxide may be used in combination to prepare the neutralized product, as long as it does not adversely affect the battery performance.

中和度としては特に限定されるものではないが、バインダーとして使用する場合に、電解液との反応性を考慮して、通常、エチレン性不飽和カルボン酸から生成するカルボン酸に対し、0.1~1当量の範囲にあることが好ましく、より好ましくは、0.3~1当量範囲で、中和されたものを用いることが好ましい。このような中和度であれば、酸性度が低く電解液分解抑制という利点がある。 The degree of neutralization is not particularly limited, but when it is used as a binder, it is usually 0.00 to the carboxylic acid generated from the ethylenically unsaturated carboxylic acid in consideration of the reactivity with the electrolytic solution. It is preferably in the range of 1 to 1 equivalent, more preferably in the range of 0.3 to 1 equivalent, and preferably neutralized. With such a degree of neutralization, there is an advantage that the acidity is low and the decomposition of the electrolytic solution is suppressed.

本実施形態において、中和度の決定方法は、塩基による定、赤外線スペクトル、NMRスペクトルなどの方法を用いることができるが、簡便且つ正確に中和点を測定するには、塩基による滴定を行うことが好ましい。具体的な滴定の方法としては、特に限定されるものではないが、イオン交換水等の不純物の少ない水に溶解して、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどの塩基性物質により、中和を行うことによって実施できる。中和点の指示薬としては、特に限定するものではないが、塩基によりpH指示するフェノールフタレインなどの指示薬を使用することが出来る。 In the present embodiment, the method for determining the degree of neutralization can be titration with a base, infrared spectrum, NMR spectrum, or the like. In order to simply and accurately measure the neutralization point, titration with a base is used. preferably. A specific titration method is not particularly limited. It can be carried out by carrying out neutralization. The indicator for the neutralization point is not particularly limited, but an indicator such as phenolphthalein that indicates pH with a base can be used.

本実施形態において、一価の金属を含む塩基性物質および/またはアンモニアの使用量は、特に制限されるものではなく、使用目的等により適宜選択されるが、通常、エチレン性不飽和カルボン酸単位に対し0.1~1当量となる量であることが好ましい。なお、一価の金属を含む塩基性物質の使用量を、好ましくは、マレイン酸共重合体中のマレイン酸単位に対し0.3~1.0当量、より好ましくは0.4~1.0当量となる量とすると、アルカリ残留の少なく水溶性の共重合体塩を得ることができる。 In the present embodiment, the amount of the basic substance containing a monovalent metal and/or ammonia used is not particularly limited and is appropriately selected depending on the purpose of use. It is preferable that the amount is 0.1 to 1 equivalent with respect to The amount of the basic substance containing a monovalent metal used is preferably 0.3 to 1.0 equivalents, more preferably 0.4 to 1.0 equivalents, relative to the maleic acid units in the maleic acid copolymer. When the amount is equivalent, a water-soluble copolymer salt with little residual alkali can be obtained.

本実施形態において、(B)ビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩の反応は、常法に従って実施できるが、水の存在下に実施し、中和物を水溶液として得る方法が簡便であり、好ましい。 In the present embodiment, (B) the reaction of vinyl alcohol with an ethylenically unsaturated carboxylic acid copolymer and/or a neutralized salt thereof can be carried out according to a conventional method, but is carried out in the presence of water to obtain a neutralized product. A method of obtaining an aqueous solution is simple and preferable.

本実施形態のバインダー組成物中における、(B)成分であるビニルアルコールとエチレン性不飽和カルボン酸共重合体及び/又はその中和塩の含有量としては、特に限定されるものではないが、99.9重量%以下であることが好ましく、99.5重量%以下であることがより好ましく、99重量%以下であることが更に好ましい。また、前記含有量の下限値は、50重量%以上であることが好ましく、60重量%以上であることがより好ましく、70重量%以上であることが更に好ましく、80重量%以上であることが特に好ましい。(B)成分の含有量が99.9重量%を超えると、スラリー安定性が悪くなるおそれがあり、50重量%未満となると、電気抵抗が高くなり高い充放電効率を得ることができなくなる場合がある。 The content of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer and/or neutralized salt thereof, which is the component (B), in the binder composition of the present embodiment is not particularly limited. It is preferably 99.9% by weight or less, more preferably 99.5% by weight or less, and even more preferably 99% by weight or less. The lower limit of the content is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 70% by weight or more, and 80% by weight or more. Especially preferred. If the content of component (B) exceeds 99.9% by weight, the slurry stability may deteriorate. There is

また、本実施形態において、前記(A)成分と前記(B)成分の組成比は、固形分重量比で0.1:99.9~50:50程度であることが好ましい。より好ましくは、1:99~40:60程度である。また、低抵抗性を得る観点からは、前記(A)成分と前記(B)成分の組成比は、1:99~30:70であることが好ましく、1:99~20:80程度であることがさらに好ましい。 In the present embodiment, the composition ratio of the component (A) and the component (B) is preferably about 0.1:99.9 to 50:50 in solid content weight ratio. More preferably, it is about 1:99 to 40:60. From the viewpoint of obtaining low resistance, the composition ratio of the component (A) and the component (B) is preferably 1:99 to 30:70, and is about 1:99 to 20:80. is more preferred.

本実施形態のバインダー組成物は、通常、上述のバインダー組成物と水とからなる、非水電解質電池用バインダー水溶液として使用される。 The binder composition of the present embodiment is generally used as an aqueous binder solution for non-aqueous electrolyte batteries, which consists of the binder composition described above and water.

本実施形態の非水電解質電池用バインダー組成物は、通常、上述のバインダー組成物に加えて、さらに活物質と水とを含有する、非水電解質電池用スラリー組成物(以下、単にスラリー組成物とも称する)として使用されることが好ましい。すなわち、本実施形態のスラリー組成物は、上述した本実施形態のバインダー組成物と、活物質と水とを含有する。 The binder composition for non-aqueous electrolyte batteries of the present embodiment is a slurry composition for non-aqueous electrolyte batteries (hereinafter, simply slurry composition Also called) is preferably used as. That is, the slurry composition of this embodiment contains the binder composition of this embodiment described above, an active material, and water.

また、本実施形態において非水電解質電池用電極は集電体に、少なくとも本実施形態のバインダー組成物および活物質を含む混合層を結着させてなることを特徴とする。この電極は、上述のスラリー組成物を集電体に塗布してから溶媒を乾燥などの方法で除去することにより形成することができる。前記混合層には、必要に応じてさらに増粘剤、導電助剤などを加えることができる。 Further, in the present embodiment, the electrode for a non-aqueous electrolyte battery is characterized in that a mixed layer containing at least the binder composition of the present embodiment and an active material is bound to a current collector. This electrode can be formed by applying the above slurry composition to a current collector and then removing the solvent by a method such as drying. If necessary, a thickener, a conductive aid, etc. can be added to the mixed layer.

前記非水電解質電池用スラリー組成物において、活物質の重量を100とした場合の、バインダー組成物の使用量は、通常、0.1~15重量%であることが好ましく、より好ましくは0.5~10重量%、さらに好ましくは1~8重量%である。バインダー組成物の量が過度に少ないとスラリーの粘度が低すぎて混合層の厚みが薄くなるおそれがありバインダー組成物が過度に多いと放電容量が低下する可能性がある。 In the slurry composition for a nonaqueous electrolyte battery, the amount of the binder composition used is usually preferably 0.1 to 15% by weight, more preferably 0.1 to 15% by weight, based on the weight of the active material being 100%. 5 to 10% by weight, more preferably 1 to 8% by weight. If the amount of the binder composition is too small, the viscosity of the slurry will be too low and the thickness of the mixed layer may become thin. If the amount of the binder composition is too large, the discharge capacity may decrease.

一方、上記スラリー組成物における水の量は、活物質の重量を100とした場合、通常、30~150重量%であることが好ましく、より好ましくは70~120重量%である。 On the other hand, the amount of water in the slurry composition is usually preferably 30 to 150% by weight, more preferably 70 to 120% by weight, when the weight of the active material is 100%.

本実施形態のスラリー組成物における溶媒としては、上記水以外に、例えば、メタノール、エタノール、プロパノール、2-プロパノールなどのアルコール類、テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル類、N,N-ジメチルホルアミド、N,N-ジメチルアセトアミドなどのアミド類、N-メチルピロリドン、N-エチルピロリドンなどの環状アミド類、ジメチルスルホキシドなどのスルホキシド類などを使用することもできる。これらの中では、安全性という観点から、水の使用が好ましい。 As the solvent in the slurry composition of the present embodiment, in addition to water, for example, alcohols such as methanol, ethanol, propanol, 2-propanol, tetrahydrofuran, cyclic ethers such as 1,4-dioxane, N,N- Amides such as dimethylformamide and N,N-dimethylacetamide, cyclic amides such as N-methylpyrrolidone and N-ethylpyrrolidone, and sulfoxides such as dimethylsulfoxide can also be used. Among these, the use of water is preferable from the viewpoint of safety.

また、本実施形態のスラリー組成物の溶媒として水以外にも、次に記す有機溶媒を、溶媒全体の好ましくは20重量%以下となる範囲で併用しても良い。そのような有機溶媒としては、常圧における沸点が100℃以上300℃以下のものが好ましく、例えば、n-ドデカンなどの炭化水素類;2-エチル-1-ヘキサノール、1-ノナノールなどのアルコール類;γ-ブチロラクトン、乳酸メチルなどのエステル類;N-メチルピロリドン、N,N-ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;ジメチルスルホキシド、スルホランなどのスルホキシド・スルホン類などの有機分散媒が挙げられる。 In addition to water, the following organic solvent may be used as the solvent for the slurry composition of the present embodiment, preferably within a range of 20% by weight or less of the entire solvent. Such an organic solvent preferably has a boiling point of 100° C. or higher and 300° C. or lower at normal pressure. Examples include hydrocarbons such as n-dodecane; alcohols such as 2-ethyl-1-hexanol and 1-nonanol. esters such as γ-butyrolactone and methyl lactate; amides such as N-methylpyrrolidone, N,N-dimethylacetamide and dimethylformamide; and organic dispersion media such as sulfoxides and sulfones such as dimethylsulfoxide and sulfolane.

本実施形態のスラリー組成物を負極に用いる場合、該スラリー組成物に添加される負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;SiOx,SnOx,LiTiOxで表される複合金属酸化物やその他の金属酸化物やリチウム金属、リチウム合金などのリチウム系金属;TiS、LiTiSなどの金属化合物などが例示される。When the slurry composition of the present embodiment is used for a negative electrode, the negative electrode active material added to the slurry composition includes, for example, amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), pitch-based carbon fiber, and the like. carbonaceous materials; conductive polymers such as polyacene; composite metal oxides represented by SiOx, SnOx, LiTiOx , other metal oxides, lithium metals, lithium - based metals such as lithium alloys; and the like are exemplified.

本実施形態のスラリー組成物を正極用に用いる場合、該スラリー組成物に添加される正極活物質としては、例えば、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)、リン酸コバルトリチウム(LiCoPO)、ピロリン酸鉄(LiFeP)、コバルト酸リチウム複合酸化物(LiCoO)、スピネル型マンガン酸リチウム複合酸化物(LiMn)、マンガン酸リチウム複合酸化物(LiMnO)、ニッケル酸リチウム複合酸化物(LiNiO)、ニオブ酸リチウム複合酸化物(LiNbO)、鉄酸リチウム複合酸化物(LiFeO)、マグネシウム酸リチウム複合酸化物(LiMgO)、カルシウム酸リチウム複合酸化物(LiCaO)、銅酸リチウム複合酸化物(LiCuO)、亜鉛酸リチウム複合酸化物(LiZnO)、モリブデン酸リチウム複合酸化物(LiMoO)、タンタル酸リチウム複合酸化物(LiTaO)、タングステン酸リチウム複合酸化物(LiWO)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05)、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi0.33Co0.33Mn0.33)、Li過剰系ニッケル-コバルト-マンガン複合酸化物(LixNiACoBMnCO固溶体)、酸化マンガンニッケル(LiNi0.5Mn1.5)、酸化マンガン(MnO)、バナジウム系酸化物、硫黄系酸化物、シリケート系酸化物、などが例示される。When the slurry composition of the present embodiment is used for a positive electrode, the positive electrode active material added to the slurry composition includes, for example, lithium iron phosphate (LiFePO 4 ), lithium manganese phosphate (LiMnPO 4 ), phosphoric acid Lithium cobalt (LiCoPO 4 ), iron pyrophosphate (Li 2 FeP 2 O 7 ), lithium cobaltate composite oxide (LiCoO 2 ), spinel type lithium manganate composite oxide (LiMn 2 O 4 ), lithium manganate composite oxide (LiMnO 2 ), lithium nickelate composite oxide (LiNiO 2 ), lithium niobate composite oxide (LiNbO 2 ), lithium ferrate composite oxide (LiFeO 2 ), lithium magnesium oxide composite oxide (LiMgO 2 ), Lithium calcate composite oxide (LiCaO 2 ), Lithium cuprate composite oxide (LiCuO 2 ), Lithium zincate composite oxide (LiZnO 2 ), Lithium molybdate composite oxide (LiMoO 2 ), Lithium tantalate composite oxide (LiTaO 2 ), lithium tungstate composite oxide (LiWO 2 ), lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ), lithium-nickel-cobalt-manganese Composite oxide (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ), Li-excess nickel-cobalt-manganese composite oxide (LixNiACoBMnCO 2 solid solution), manganese nickel oxide (LiNi 0.5 Mn 1.5 O 4 ), manganese oxide (MnO 2 ), vanadium-based oxides, sulfur-based oxides, silicate-based oxides, and the like.

本実施形態では、前記スラリー組成物に、必要に応じて、さらに増粘剤を添加することができる。添加できる増粘剤としては、特に限定されるものではなく、種々のアルコール類、不飽和カルボン酸類およびその変性物、α-オレフィン-マレイン酸類およびその変性物、セルロース類、でんぷんなどの多糖類を使用することができる。 In this embodiment, a thickening agent can be added to the slurry composition as needed. The thickening agent that can be added is not particularly limited, and various alcohols, unsaturated carboxylic acids and modified products thereof, α-olefin-maleic acids and modified products thereof, celluloses, and polysaccharides such as starch can be used. can be used.

スラリー組成物に必要に応じて配合される増粘剤の使用量は、活物質の重量を100とした場合、0.1~4重量%程度であることが好ましく、より好ましくは0.3~3重量%、さらに好ましくは0.5~2重量%である。増粘剤が過度に少ないと二次電池負極用スラリーの粘度が低すぎて混合層の厚みが薄くなる場合があり、逆に、増粘剤が過度に多いと放電容量が低下する場合がある。 The amount of the thickening agent that is optionally blended in the slurry composition is preferably about 0.1 to 4% by weight, more preferably 0.3 to 4% by weight, when the weight of the active material is 100. 3% by weight, more preferably 0.5 to 2% by weight. If the amount of the thickening agent is too small, the viscosity of the secondary battery negative electrode slurry is too low and the thickness of the mixed layer may become thin. Conversely, if the amount of the thickening agent is too large, the discharge capacity may decrease. .

また、スラリー組成物に必要に応じて配合される導電助剤としては、例えば、金属粉、導電性ポリマー、アセチレンブラックなどが挙げられる。導電助剤の使用量は、活物質の重量を100とした場合、通常、0.1~10重量%であることが好ましく、より好ましくは0.8~7重量%である。 Examples of conductive aids that are optionally blended into the slurry composition include metal powders, conductive polymers, and acetylene black. The amount of the conductive aid used is preferably 0.1 to 10% by weight, more preferably 0.8 to 7% by weight, when the weight of the active material is 100%.

上述したように、本実施形態において非水電解質電池用電極は、集電体に、少なくとも本実施形態のバインダー組成物および活物質を含む混合層を結着させてなることを特徴とする。本実施形態の非水電解質電池負極に使用される集電体は、導電性材料からなるものであれば特に制限されないが、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料を使用することができる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As described above, in the present embodiment, the electrode for a non-aqueous electrolyte battery is characterized by binding a mixed layer containing at least the binder composition of the present embodiment and an active material to a current collector. The current collector used in the negative electrode of the non-aqueous electrolyte battery of the present embodiment is not particularly limited as long as it is made of a conductive material. , platinum and other metal materials can be used. One of these may be used alone, or two or more of them may be used in combination at any ratio.

特に、負極用集電体として銅を用いた場合に、本発明の非水電解質電池負極用スラリーの効果が最もよく現れる。これは、本実施形態のバインダー組成物と銅箔との親和性が高く、高い接着性を有した負極を作製できるためである。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状であることが好ましい。 In particular, when copper is used as the current collector for the negative electrode, the effect of the slurry for the negative electrode of the non-aqueous electrolyte battery of the present invention appears most effectively. This is because the binder composition of the present embodiment has a high affinity with the copper foil, and a negative electrode having high adhesiveness can be produced. Although the shape of the current collector is not particularly limited, it is usually preferably in the form of a sheet with a thickness of about 0.001 to 0.5 mm.

さらに、正極用集電体としてアルミニウムを用いた場合に、本発明の非水電解質電池負極用スラリーの効果が最もよく現れる。これは、本実施形態のバインダー組成物とアルミニウム箔との親和性が高く、高い接着性を有した負極を作製できるためである。集電体の形状は特に制限されないが、通常、厚さ0.001~0.5mm程度のシート状であることが好ましい。 Furthermore, when aluminum is used as the current collector for the positive electrode, the effect of the slurry for the negative electrode of the non-aqueous electrolyte battery of the present invention appears most effectively. This is because the binder composition of the present embodiment has a high affinity with the aluminum foil, and a negative electrode having high adhesiveness can be produced. Although the shape of the current collector is not particularly limited, it is usually preferably in the form of a sheet with a thickness of about 0.001 to 0.5 mm.


スラリーを集電体へ塗布する方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、浸漬法、ハケ塗り法などの方法が挙げられる。塗布する量も特に制限されないが、溶媒または分散媒を乾燥などの方法によって除去した後に形成される活物質、導電助剤、バインダーおよび増粘剤を含む混合層の厚みが好ましくは0.005~5mm、より好ましくは0.01~2mmとなる量が一般的である。

The method of applying the slurry to the current collector is not particularly limited. For example, doctor blade method, dip method, reverse roll method, direct roll method, gravure method, extrusion method, immersion method, brush coating method and the like can be used. The amount to be applied is not particularly limited, but the thickness of the mixed layer containing the active material, conductive aid, binder and thickener formed after removing the solvent or dispersion medium by a method such as drying is preferably 0.005 to 0.005. An amount of 5 mm, more preferably 0.01 to 2 mm is common.


スラリー組成物に含まれる水などの溶媒の乾燥方法は特に制限されず、例えば温風、熱風、低湿風による通気乾燥;真空乾燥;赤外線、遠赤外線、電子線などの照射線乾燥などが挙げられる。乾燥条件は、応力集中によって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲となる中で、できるだけ早く溶媒が除去できるように調整するとよい。更に、電極の活物質の密度を高めるために、乾燥後の集電体をプレスすることは有効である。プレス方法としては、金型プレスやロールプレスなどの方法が挙げられる。

The method for drying the solvent such as water contained in the slurry composition is not particularly limited, and includes, for example, hot air, hot air, and low humidity air drying; vacuum drying; infrared rays, far infrared rays, irradiation drying such as electron beams, and the like. . The drying conditions should be adjusted so that the solvent can be removed as quickly as possible within a speed range in which the active material layer does not crack due to stress concentration or the active material layer does not separate from the current collector. Furthermore, it is effective to press the dried current collector in order to increase the density of the active material of the electrode. Examples of the pressing method include methods such as die pressing and roll pressing.


さらに、本発明には、上記電極を有する非水電解質電池も包含される。非水電解質電池には、通常、負極と、正極と、電解液が含まれる。

Furthermore, the present invention also includes a non-aqueous electrolyte battery having the above electrodes. A non-aqueous electrolyte battery typically includes a negative electrode, a positive electrode, and an electrolyte.


正極に本実施形態のバインダー組成物を使用する場合、負極は、リチウムイオン二次電池等の非水電解質電池に通常使用される負極が特に制限なく使用される。例えば、負極活物質としては、黒鉛、ハードカーボン、Si系酸化物などが使用される。また、負極活物質を、上記に示す導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した負極用スラリーを、例えば、銅箔等の負極集電体に塗布して溶媒を乾燥させて負極とすることができる。

When the binder composition of the present embodiment is used for the positive electrode, negative electrodes that are commonly used in non-aqueous electrolyte batteries such as lithium ion secondary batteries are used without particular limitations. For example, graphite, hard carbon, Si-based oxides, and the like are used as the negative electrode active material. Further, the negative electrode active material is a mixture of the above-described conductive aid and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, etc. The negative electrode slurry prepared by mixing with a solvent or the like at a temperature of 10° C. or below can be applied to, for example, a negative electrode current collector such as a copper foil, and the solvent can be dried to form a negative electrode.


負極に本実施形態のバインダー組成物を使用する場合、正極は、リチウムイオン二次電池等の非水電解質電池に通常使用される正極が特に制限なく使用される。例えば、正極活物質としては、TiS、TiS、非晶質MoS、Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物やLiCoO、LiNiO、LiMnO、LiMnなどのリチウム含有複合金属酸化物などが使用される。また、正極活物質を、上記に示す導電助剤と、SBR、NBR、アクリルゴム、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリフッ化ビニリデンなどのバインダーとを、水や上記の常圧における沸点が100℃以上300℃以下の溶媒などに混合して調製した正極用スラリーを、例えば、アルミニウム等の正極集電体に塗布して溶媒を乾燥させて正極とすることができる。

When the binder composition of the present embodiment is used for the negative electrode, the positive electrode normally used for non-aqueous electrolyte batteries such as lithium ion secondary batteries is used without particular limitation. For example, positive electrode active materials include TiS 2 , TiS 3 , amorphous MoS 3 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 and V 6 O. transition metal oxides such as 13 and lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 and LiMn 2 O 4 are used. Further, the positive electrode active material is a mixture of the above-described conductive aid and a binder such as SBR, NBR, acrylic rubber, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinylidene fluoride, etc. A positive electrode slurry prepared by mixing with a solvent or the like at a temperature of 10° C. or below can be applied to a positive electrode current collector such as aluminum, and the solvent can be dried to form a positive electrode.


また、正極および負極のいずれにも本実施形態のバインダー組成物を含む電極を用いることもできる。

An electrode containing the binder composition of the present embodiment can also be used for both the positive electrode and the negative electrode.


また、本実施形態の非水電解質電池には、電解質を溶媒に溶解させた電解液を使用することができる。電解液は、通常のリチウムイオン二次電池等の非水電解質電池に用いられるものであれば、液状でもゲル状でもよく、負極活物質、正極活物質の種類に応じて電池としての機能を発揮するものを適宜選択すればよい。具体的な電解質としては、例えば、従来より公知のリチウム塩がいずれも使用でき、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪族カルボン酸リチウムなどが挙げられる。

Further, an electrolytic solution in which an electrolyte is dissolved in a solvent can be used for the non-aqueous electrolyte battery of the present embodiment. The electrolyte may be liquid or gel as long as it is used in non-aqueous electrolyte batteries such as lithium ion secondary batteries, and exhibits battery functions depending on the type of negative electrode active material and positive electrode active material. You can choose what to do. As a specific electrolyte, for example, any conventionally known lithium salt can be used, including LiClO 4 , LiBF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiB 10 Cl 10 , LiAlCl4 , LiCl, LiBr, LiB ( C2H5 ) 4 , CF3SO3Li , CH3SO3Li , LiCF3SO3 , LiC4F9SO3 , Li ( CF3SO2 ) 2N , lithium lower aliphatic carboxylate, and the like.


このような電解質を溶解させる溶媒(電解液溶媒)は特に限定されるものではない。具体例としてはプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;γ-ブチルラクトンなどのラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3-ジオキソラン、4―メチル-1,3―ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素化合物類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエチル、炭酸ジメチル、炭酸ジエチルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン類;3-メチル-2-オキサゾリジノンなどのオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトンなどのスルトン類などが挙げられ、これらは単独もしくは二種以上混合して使用できる。ゲル状の電解液を用いるときは、ゲル化剤としてニトリル系重合体、アクリル系重合体、フッ素系重合体、アルキレンオキサイド系重合体などを加えることができる。

A solvent (electrolyte solvent) for dissolving such an electrolyte is not particularly limited. Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate and diethyl carbonate; lactones such as γ-butyl lactone; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether and 2-ethoxyethane. , tetrahydrofuran, ethers such as 2-methyltetrahydrofuran; sulfoxides such as dimethylsulfoxide; oxolane such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; formic acid organic acid esters such as methyl, methyl acetate, ethyl acetate, butyl acetate, methyl propionate, and ethyl propionate; inorganic acid esters such as triethyl phosphate, dimethyl carbonate, and diethyl carbonate; diglymes; triglymes; sulfolanes; oxazolidinones such as 3-methyl-2-oxazolidinone; sultones such as 1,3-propanesultone, 1,4-butanesultone and naphthsultone; these can be used alone or in combination of two or more. When a gel electrolyte is used, a nitrile polymer, an acrylic polymer, a fluorine polymer, an alkylene oxide polymer, or the like can be added as a gelling agent.


本実施形態の非水電解質電池を製造する方法としては、特に限定はないが、例えば、次の製造方法が例示される。すなわち、負極と正極とを、ポリプロピレン多孔膜などのセパレーターを介して重ね合わせ、電池形状に応じて巻く、折るなどして、電池容器に入れ、電解液を注入して封口する。電池の形状は、公知のコイン型、ボタン型、シート型、円筒型、角型、扁平型など何れであってもよい。

The method for manufacturing the non-aqueous electrolyte battery of this embodiment is not particularly limited, but the following manufacturing method is exemplified, for example. That is, the negative electrode and the positive electrode are superimposed via a separator such as a polypropylene porous film, rolled or folded according to the shape of the battery, placed in a battery container, an electrolytic solution is injected, and the opening is sealed. The shape of the battery may be any known coin type, button type, sheet type, cylindrical type, square type, flat type, or the like.


本実施形態の非水電解質電池は、接着性と電池特性の向上を両立させた電池であり、様々な用途に有用である。例えば、小型化、薄型化、軽量化、高性能化の要求される携帯端末に使用される電池としても非常に有用である。

The non-aqueous electrolyte battery of the present embodiment is a battery that achieves both improved adhesion and improved battery characteristics, and is useful in various applications. For example, it is very useful as a battery for use in portable terminals that are required to be smaller, thinner, lighter, and have higher performance.

本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 As described above, this specification discloses technologies of various aspects, and the main technologies thereof are summarized below.

本発明の一局面に係る非水電解質電池用バインダー組成物は、(A)ポリビニルアルコール、及び、(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つを含むことを特徴とする。 A binder composition for a non-aqueous electrolyte battery according to one aspect of the present invention is selected from (A) polyvinyl alcohol and (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof. characterized by including at least one

このような構成により、活物質間および集電極との結着性及び電極としての靱性を損なうことなく、電池特性の向上を図ることができると考えられる。 It is believed that such a configuration can improve the battery characteristics without impairing the adhesion between the active materials and the collector electrode and the toughness as an electrode.

また、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、ブロック共重合の形態で共重合していることが好ましい。それにより、より高い接着性が得られると考えられる。 In the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of block copolymerization. is preferred. It is believed that higher adhesion is thereby obtained.

さらに、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、グラフト共重合の形態で共重合していることが好ましい。それにより、接着性と柔軟性を両立することができると考えられる。 Further, in the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of graft copolymerization. is preferred. Therefore, it is considered that both adhesiveness and flexibility can be achieved.

また、前記バインダー組成物において、前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つにおける、エチレン性不飽和カルボン酸変性量が0.1~60モル%であることが好ましい。それにより、靱性および低抵抗性を付与できると考えられる。 In the binder composition, at least one selected from (B) a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof has an ethylenically unsaturated carboxylic acid modification amount of 0. .1 to 60 mol %. It is thought that toughness and low resistance can be imparted thereby.

また、前記バインダー組成物中における、前記(B)成分の含有量が50.0~99.9重量%であることが好ましい。それにより、スラリー安定性やより高い充放電効率を得ることができると考えられる。 Also, the content of the component (B) in the binder composition is preferably 50.0 to 99.9% by weight. As a result, it is considered that slurry stability and higher charge/discharge efficiency can be obtained.

本発明のさらに他の局面に係る非水電解質電池用バインダー水溶液は、上記バインダー組成物と水とを含有することを特徴とする。 An aqueous binder solution for non-aqueous electrolyte batteries according to still another aspect of the present invention is characterized by containing the binder composition and water.

本発明のさらに他の局面に係る非水電解質電池用スラリー組成物は、上記バインダー組成物と活物質と水とを含有することを特徴とする。 A slurry composition for a nonaqueous electrolyte battery according to still another aspect of the present invention is characterized by containing the above binder composition, an active material, and water.

また、本発明のさらに他の局面に係る非水電解質電池用電極は、上記バインダー組成物と活物質とを含有する混合層を集電体に結着してなることを特徴とする。 Further, according to still another aspect of the present invention, there is provided an electrode for a non-aqueous electrolyte battery, comprising a current collector and a mixed layer containing the binder composition and the active material.

本発明のさらに他の局面に係る非水電解質電池は、上記非水電解質電池用電極を有することを特徴とする。 A non-aqueous electrolyte battery according to still another aspect of the present invention is characterized by having the electrode for a non-aqueous electrolyte battery.

以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these.

(実施例1)
<ビニルアルコールとエチレン性不飽和カルボン酸共重合体の合成>
市販のポリビニルアルコール(株式会社クラレ製、28-98s)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、アクリル酸33.4g、メタノール466.6gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は6.8モル%であった。
(Example 1)
<Synthesis of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
100 g of commercially available polyvinyl alcohol (28-98s, manufactured by Kuraray Co., Ltd.) was irradiated with an electron beam (30 kGy). Next, 33.4 g of acrylic acid and 466.6 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a particle addition port, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. . 100 g of electron beam-irradiated polyvinyl alcohol was added thereto, and the mixture was stirred to disperse the particles in the solution, and the mixture was heated under reflux for 300 minutes for graft polymerization. After that, the particles were collected by filtration and vacuum-dried at 40° C. overnight to obtain the target copolymer. The ethylenically unsaturated carboxylic acid modification amount of the obtained copolymer was 6.8 mol %.

<ビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の調製>
上記で得られたビニルアルコールとアクリル酸共重合体10重量%水溶液100gに水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加し、80℃、2時間加熱撹拌し、その後、室温まで冷却した。
<Preparation of neutralized salt of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
To 100 g of the 10% by weight aqueous solution of vinyl alcohol and acrylic acid copolymer obtained above, 0.5 equivalent of lithium hydroxide is added to the carboxylic acid unit in the polymer, and the mixture is heated and stirred at 80° C. for 2 hours, and then Cooled to room temperature.

<バインダー水溶液の調整>
上記で得られたビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の10重量%水溶液(B-1)に、市販のポリビニルアルコール(株式会社クラレ製、28-98s、けん化度:98)(A-1)を固形分として、重量比で(A-1):(B-1)=10:90となるように添加し、バインダー水溶液の調整を行った。
<Adjustment of binder aqueous solution>
Commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 28-98s, degree of saponification: 98) (A-1) was added as a solid content so that the weight ratio was (A-1):(B-1)=10:90 to prepare an aqueous binder solution.

<ビニルアルコールとエチレン性不飽和カルボン酸共重合体の中和塩の融点の測定>
上記バインダー水溶液1gを熱風乾燥機にて105℃1時間乾燥して得られた固体を用い、熱分析計(ヤマト科学社製)を用いて示差走査熱量測定を行った。測定温度範囲50℃~1000℃、昇温速度10℃/分にて測定を行った。結果を下記表1に示す。
<Measurement of melting point of neutralized salt of vinyl alcohol and ethylenically unsaturated carboxylic acid copolymer>
Differential scanning calorimetry was performed using a thermal analyzer (manufactured by Yamato Scientific Co., Ltd.) using a solid obtained by drying 1 g of the aqueous binder solution with a hot air dryer at 105° C. for 1 hour. The measurement was carried out at a temperature range of 50°C to 1000°C and a heating rate of 10°C/min. The results are shown in Table 1 below.

<スラリーの作製>
電極用スラリー作製は、負極用活物質として天然黒鉛(DMGS、BYD製)96重量部に対して、前記バインダー組成物の10重量%水溶液を固形分として3重量部、および導電助剤(導電付与剤)としてSuper-P(ティムカル社製)を固形分として1重量部を専用容器に投入し、遊星攪拌器(ARE-250、シンキー製)を用いて混練し、電極塗工用スラリーを作製した。スラリー中の活物質とバインダーの組成比は固形分として、黒鉛粉末:導電助剤:バインダー組成物=96:1:3(重量比)である。
<Preparation of slurry>
Preparation of electrode slurry is performed by adding 96 parts by weight of natural graphite (DMGS, manufactured by BYD) as a negative electrode active material, 3 parts by weight of a 10% by weight aqueous solution of the binder composition as a solid content, and a conductive aid (conductivity imparting As an agent), 1 part by weight of Super-P (manufactured by Timcal Co., Ltd.) as a solid content was put into a special container and kneaded using a planetary stirrer (ARE-250, manufactured by Thinky) to prepare a slurry for electrode coating. . The composition ratio of the active material and the binder in the slurry was graphite powder:conduction aid:binder composition=96:1:3 (weight ratio) as solid content.

<スラリーの安定性>
得られたスラリーの安定性を確認するため、スラリー調整直後(30分以内)の粒子沈降の様子を目視で確認した。沈降が生じなかったスラリーを○、沈降が生じたスラリーを×と記載した。結果を下記表1に示す。
<Slurry stability>
In order to confirm the stability of the obtained slurry, the state of particle sedimentation immediately after slurry preparation (within 30 minutes) was visually confirmed. Slurries that did not precipitate were marked with ◯, and slurries that precipitated were marked with ×. The results are shown in Table 1 below.

<電池用負極の作製>
得られた前記スラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃、30分、熱風乾燥機で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった。その後、電池用電極(φ14mm)として打ち抜き後、140℃で3時間減圧条件の二次乾燥によってコイン電池用電極を作製した。
<Preparation of negative electrode for battery>
The obtained slurry is coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.), and dried at 80 ° C. for 30 minutes with a hot air dryer. After primary drying, rolling treatment was performed using a roll press (manufactured by Hosen). Then, after punching out a battery electrode (φ14 mm), a coin battery electrode was produced by secondary drying under reduced pressure conditions at 140° C. for 3 hours.

<剥離強度、靱性試験用電極の作製>
得られた前記スラリーを、バーコーター(T101、松尾産業製)を用いて集電体の銅箔(CST8G、福田金属箔粉工業製)上に塗工し、80℃、30分、熱風乾燥機で一次乾燥後、ロールプレス(宝泉製)を用いて圧延処理を行なった電極(膜厚約40μm)を用いて試験を行った。
<Preparation of electrode for peel strength and toughness test>
The obtained slurry is coated on a current collector copper foil (CST8G, manufactured by Fukuda Metal Foil & Powder Co., Ltd.) using a bar coater (T101, manufactured by Matsuo Sangyo Co., Ltd.), and dried at 80 ° C. for 30 minutes with a hot air dryer. After primary drying at , a test was performed using an electrode (thickness: about 40 μm) that had been subjected to rolling treatment using a roll press (manufactured by Hosen).

<電極の靱性試験>
電極の靭性の評価は10mm幅の前記靱性試験用電極を用いて、電極を折り曲げたときに割れが生じるか、目視で確認を行った。割れが生じなかった電極を○、割れが生じた電極を×と記載した。結果を下記表1に示す。
<Electrode toughness test>
The toughness of the electrode was evaluated using the toughness test electrode with a width of 10 mm, and it was visually confirmed whether cracks occurred when the electrode was bent. An electrode with no cracks was marked with ◯, and an electrode with cracks was marked with x. The results are shown in Table 1 below.

<電極の剥離強度測定>
集電極である銅箔から前記剥離強度試験用電極を剥離したときの強度を測定した。当該剥離強度は、50Nのロードセル(株式会社イマダ製)を用いて180°剥離強度を測定した。上記で得られた電池用塗工電極のスラリー塗布面とステンレス板とを両面テープ(ニチバン製両面テープ)を用いて貼り合わせ、180°剥離強度(剥離幅10mm、剥離速度100mm/min)を測定した。上記結果を下記表1に示す。
<Measurement of peel strength of electrode>
The strength was measured when the electrode for peel strength test was peeled off from the copper foil as the collector electrode. The peel strength was measured as 180° peel strength using a 50N load cell (manufactured by Imada Co., Ltd.). The slurry-coated surface of the battery-coated electrode obtained above and the stainless steel plate are laminated using a double-sided tape (Nichiban double-sided tape), and the 180° peel strength (peeling width 10 mm, peeling speed 100 mm / min) is measured. did. The above results are shown in Table 1 below.

<電池の作製>
上記で得られた電池用負極をアルゴンガス雰囲気下のグローブボックス(美和製作所製)に移送した。正極には金属リチウム箔(厚さ0.2mm、φ16mm)を用いた。また、セパレーターとしてポリプロピレン系セパレーター(セルガード#2400、ポリポア製)を使用して、電解液は六フッ化リン酸リチウム(LiPF)のエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)にビニレンカーボネート(VC)を添加した混合溶媒系(1M-LiPF、EC/EMC=3/7vol%、VC2重量%)を用いて注入し、コイン電池(2032タイプ)を作製した。
<Production of battery>
The battery negative electrode obtained above was transferred to a glove box (manufactured by Miwa Seisakusho) under an argon gas atmosphere. A metallic lithium foil (thickness: 0.2 mm, φ: 16 mm) was used for the positive electrode. In addition, a polypropylene separator (Celgard #2400, manufactured by Polypore) was used as the separator, and the electrolyte was lithium hexafluorophosphate (LiPF 6 ) in ethylene carbonate (EC) and ethyl methyl carbonate (EMC) and vinylene carbonate ( A mixed solvent system (1M-LiPF 6 , EC/EMC = 3/7 vol%, VC 2% by weight) to which VC) was added was injected to prepare a coin battery (2032 type).

<充放電特性試験>
作製したコイン電池は、市販充放電試験機(TOSCAT3100、東洋システム製)を用いて充放電試験を実施した。コイン電池を25℃の恒温槽に置き、充電はリチウム電位に対して0Vになるまで活物質量に対して0.1C(約0.5mA/cm)の定電流充電を行い、更にリチウム電位に対して0.02mAの電流まで0Vの定電圧充電を実施した。このときの容量を充電容量(mAh/g)とした。次いで、リチウム電位に対して0.1C(約0.5mA/cm)の定電流放電を1.5Vまで行い、このときの容量を放電容量(mAh/g)とした。初期放電容量と充電容量差を不可逆容量、放電容量/充電容量の百分率を充放電効率とした。上記結果を下記表1に示す。
<Charge-discharge characteristic test>
The produced coin battery was subjected to a charge/discharge test using a commercially available charge/discharge tester (TOSCAT3100, manufactured by Toyo System Co., Ltd.). The coin battery was placed in a constant temperature bath at 25° C., and was charged at a constant current of 0.1 C (approximately 0.5 mA/cm 2 ) with respect to the amount of active material until the lithium potential reached 0 V. A constant voltage charge of 0 V was performed to a current of 0.02 mA. The capacity at this time was defined as the charge capacity (mAh/g). Then, the battery was discharged to 1.5 V at a constant current of 0.1 C (about 0.5 mA/cm 2 ) with respect to the lithium potential, and the capacity at this time was defined as the discharge capacity (mAh/g). The difference between initial discharge capacity and charge capacity was defined as irreversible capacity, and the percentage of discharge capacity/charge capacity was defined as charge/discharge efficiency. The above results are shown in Table 1 below.

(実施例2)
実施例1と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-2)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-2)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 2)
A vinyl alcohol/ethylenically unsaturated carboxylic acid copolymer was synthesized in the same manner as in Example 1. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-2) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-2)=10:90, and the aqueous binder solution was made adjustments.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例3)
アクリル酸を100g、メタノールを400g添加したこと以外は実施例1と同様にして、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は26.2モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-3)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-3):(B-3)=7:93となるように添加し、バインダー水溶液の調整を行った。
(Example 3)
A target copolymer was synthesized in the same manner as in Example 1, except that 100 g of acrylic acid and 400 g of methanol were added. The ethylenically unsaturated carboxylic acid modification amount of the obtained copolymer was 26.2 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-3) of the copolymer. After that, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-3):(B-3)=7:93, and the aqueous binder solution was made adjustments.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例4)
市販のポリビニルアルコール(株式会社クラレ製、22-88s)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、アクリル酸33.5g、メタノール466.5gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は7.1モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-4)の調製を行った。その後、市販のポリビニルアルコール(株式会社クラレ製、22-88s、けん化度:88)(A-2)を固形分として、重量比で(A-2):(B-4)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 4)
100 g of commercially available polyvinyl alcohol (22-88s, manufactured by Kuraray Co., Ltd.) was irradiated with an electron beam (30 kGy). Next, 33.5 g of acrylic acid and 466.5 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a particle addition port, and the inside of the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. . 100 g of electron beam-irradiated polyvinyl alcohol was added thereto, and the mixture was stirred to disperse the particles in the solution, and the mixture was heated under reflux for 300 minutes for graft polymerization. After that, the particles were collected by filtration and vacuum-dried at 40° C. overnight to obtain the target copolymer. The ethylenically unsaturated carboxylic acid modification amount of the obtained copolymer was 7.1 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-4) of the copolymer. After that, commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., 22-88s, degree of saponification: 88) (A-2) was used as a solid content, and the weight ratio was (A-2): (B-4) = 10:90. was added so that the binder aqueous solution was adjusted.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例5)
市販のポリビニルアルコール(株式会社クラレ製、Elvanol 71-30)100gに電子線(30kGy)を照射した。次に、攪拌機、還流冷却管、窒素導入管及び粒子の添加口を備えた反応器に、メタクリル酸25g、メタノール475gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。ここに電子線を照射したポリビニルアルコールを100g添加し、撹拌して粒子が溶液中に分散した状態で300分間加熱還流してグラフト重合を行った。その後、ろ別して粒子を回収し、40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は7.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-5)の調製を行った。その後、市販のポリビニルアルコール(株式会社クラレ製、Elvanol 71-30、けん化度:99)(A-3)を固形分として、重量比で(A-3):(B-5)=12:88となるように添加し、バインダー水溶液の調整を行った。
(Example 5)
100 g of commercially available polyvinyl alcohol (Elvanol 71-30 manufactured by Kuraray Co., Ltd.) was irradiated with an electron beam (30 kGy). Next, 25 g of methacrylic acid and 475 g of methanol were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a particle addition port, and the system was replaced with nitrogen for 30 minutes while bubbling with nitrogen. 100 g of electron beam-irradiated polyvinyl alcohol was added thereto, and the mixture was stirred to disperse the particles in the solution, and the mixture was heated under reflux for 300 minutes for graft polymerization. After that, the particles were collected by filtration and vacuum-dried at 40° C. overnight to obtain the target copolymer. The ethylenically unsaturated carboxylic acid modification amount of the obtained copolymer was 7.0 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-5) of the copolymer. Then, commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., Elvanol 71-30, degree of saponification: 99) (A-3) as a solid content, weight ratio (A-3): (B-5) = 12:88. was added so as to adjust the binder aqueous solution.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例6)
メタクリル酸を100g、メタノールを400g添加したこと以外は実施例5と同様にして、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は34.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-6)の調製を行った。その後、実施例5と同様の市販のポリビニルアルコール(A-3)を固形分として、重量比で(A-3):(B-6)=5:95となるように添加し、バインダー水溶液の調整を行った。
(Example 6)
A target copolymer was synthesized in the same manner as in Example 5 except that 100 g of methacrylic acid and 400 g of methanol were added. The ethylenically unsaturated carboxylic acid modification amount of the resulting copolymer was 34.0 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-6) of the copolymer. Thereafter, the same commercial polyvinyl alcohol (A-3) as in Example 5 was added as a solid content so that the weight ratio was (A-3):(B-6)=5:95, and the aqueous binder solution was made adjustments.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例7)
攪拌機、還流冷却管、窒素導入管、開始剤の添加口を備えた反応器に、水370g、市販のポリビニルアルコール(株式会社クラレ製、M115)100gを仕込み、撹拌下95℃で加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に0.5規定(N)の硫酸を添加してpHを3.0にした。ここに、撹拌下アクリル酸9.9gを添加した後、該水溶液中に窒素をバブリングしながら70℃まで加温し、さらに70℃のまま30分窒素をバブリングして窒素置換した。窒素置換後、当該水溶液に過硫酸カリウム水溶液(濃度2.5重量%)80.7gを1.5時間かけて滴下した。全量添加後、75℃に昇温してさらに1時間撹拌した後、室温まで冷却した。得られた水溶液をPETフィルム上に流涎し、80℃で30分熱風乾燥することでフィルムを作製した。当該フィルムを液体窒素で凍結した後、遠心粉砕機を用いて粉砕し、さらに40℃で終夜真空乾燥することにより、目的の共重合体を得た。得られた共重合体のエチレン性不飽和カルボン酸変性量は6.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-7)の調製を行った。その後、実施例1と同様の市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-7)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 7)
370 g of water and 100 g of commercially available polyvinyl alcohol (manufactured by Kuraray Co., Ltd., M115) were charged into a reactor equipped with a stirrer, a reflux condenser, a nitrogen introduction tube, and an initiator addition port, and heated at 95° C. with stirring. After dissolving the polyvinyl alcohol, it was cooled to room temperature. 0.5 normality (N) of sulfuric acid was added to the aqueous solution to adjust the pH to 3.0. After adding 9.9 g of acrylic acid with stirring, the aqueous solution was heated to 70° C. while nitrogen was bubbled through it, and nitrogen was bubbled for 30 minutes at 70° C. to replace with nitrogen. After purging with nitrogen, 80.7 g of an aqueous potassium persulfate solution (concentration: 2.5% by weight) was added dropwise to the aqueous solution over 1.5 hours. After the total amount was added, the temperature was raised to 75° C. and the mixture was further stirred for 1 hour, and then cooled to room temperature. The resulting aqueous solution was poured onto a PET film and dried with hot air at 80° C. for 30 minutes to prepare a film. The film was frozen with liquid nitrogen, pulverized using a centrifugal pulverizer, and vacuum-dried at 40° C. overnight to obtain the target copolymer. The ethylenically unsaturated carboxylic acid modification amount of the resulting copolymer was 6.0 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-7) of the copolymer. Thereafter, the same commercial polyvinyl alcohol (A-1) as in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-7)=10:90, and the aqueous binder solution was prepared. made adjustments.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(実施例8)
実施例7と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-8)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-8)=10:90となるように添加し、バインダー水溶液の調整を行った。
(Example 8)
A vinyl alcohol/ethylenically unsaturated carboxylic acid copolymer was synthesized in the same manner as in Example 7. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-8) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-8)=10:90, and the aqueous binder solution was made adjustments.

非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。 A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(実施例9) アクリル酸を20g、過硫酸カリウム水溶液(濃度2.5重量%)150g添加したこと以外は実施例7と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は12.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-9)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-9)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 9) Vinyl alcohol and an ethylenically unsaturated carboxylic acid copolymer were prepared in the same manner as in Example 7, except that 20 g of acrylic acid and 150 g of an aqueous potassium persulfate solution (concentration: 2.5% by weight) were added. Synthesized. The ethylenically unsaturated carboxylic acid modification amount of the resulting copolymer was 12.0 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-9) of the copolymer. After that, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-9)=10:90, and the aqueous binder solution was made adjustments.


非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(実施例10) 実施例9と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化ナトリウムを重合体中のカルボン酸単位に対し0.3当量、水酸化リチウムを重合体中のカルボン酸単位に対し0.2当量添加して、前記共重合体の中和塩(B-10)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-10)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 10) A copolymer of vinyl alcohol and ethylenically unsaturated carboxylic acid was synthesized in the same manner as in Example 9. Further, 0.3 equivalents of sodium hydroxide and 0.2 equivalents of lithium hydroxide are added to the carboxylic acid units in the polymer to obtain a neutralized salt of the copolymer ( B-10) was prepared. After that, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-10)=10:90, and the aqueous binder solution was made adjustments.


非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(実施例11)

攪拌機、還流冷却管、アルゴン導入管、開始剤の添加口を備えた反応器に、酢酸ビニル640g、メタノール240.4g、アクリル酸0.88gを仕込み、窒素バブリングをしながら30分間系内を窒素置換した。これとは別に、コモノマーの逐次添加溶液(以降ディレー溶液と表記する)としてアクリル酸のメタノール溶液(濃度20重量%)を調製し、30分間アルゴンをバブリングした。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル0.15gを添加し重合を開始した。重合反応の進行中は、調製したディレー溶液を系内に滴下することで、重合溶液におけるモノマー組成(酢酸ビニルとアクリル酸のモル比率)が一定となるようにした。60℃で210分重合した後、冷却して重合を停止した。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、アクリル酸で変性されたポリ酢酸ビニルのメタノール溶液を得た。次に、当該ポリ酢酸ビニルのメタノール溶液にメタノールを追加して濃度を25重量%に調製したポリ酢酸ビニルのメタノール溶液400gに、20.4gの水酸化ナトリウムメタノール溶液(濃度18.0重量%)、メタノール79.6gを添加して、40℃でけん化を行った。水酸化ナトリウムメタノール溶液を添加後数分でゲル化物が生成したので、これを粉砕機にて粉砕し、40℃のまま60分間放置してけん化を進行させた。得られた粉砕ゲルをメタノールで繰り返し洗浄した後、40℃で終夜真空乾燥することにより、目的の共重合体を合成した。得られた共重合体のエチレン性不飽和カルボン酸変性量は5.0モル%であった。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し0.5当量添加して、前記共重合体の中和塩(B-11)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-11)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 11)

640 g of vinyl acetate, 240.4 g of methanol, and 0.88 g of acrylic acid were charged into a reactor equipped with a stirrer, a reflux condenser, an argon introduction tube, and an initiator addition port, and nitrogen was bubbled through the system for 30 minutes. replaced. Separately, a methanol solution of acrylic acid (concentration 20% by weight) was prepared as a comonomer sequential addition solution (hereinafter referred to as a delay solution), and argon was bubbled through it for 30 minutes. Heating of the reactor was started, and when the internal temperature reached 60° C., 0.15 g of 2,2′-azobisisobutyronitrile was added to initiate polymerization. During the progress of the polymerization reaction, the prepared delay solution was dropped into the system so that the monomer composition (molar ratio of vinyl acetate and acrylic acid) in the polymerization solution was kept constant. After polymerizing at 60° C. for 210 minutes, the polymerization was stopped by cooling. Subsequently, unreacted monomers were removed at 30° C. under reduced pressure while occasionally adding methanol to obtain a methanol solution of acrylic acid-modified polyvinyl acetate. Next, 20.4 g of a sodium hydroxide methanol solution (concentration of 18.0% by weight) was added to 400 g of a methanol solution of polyvinyl acetate prepared by adding methanol to the methanol solution of polyvinyl acetate to a concentration of 25% by weight. , and 79.6 g of methanol were added to perform saponification at 40°C. Several minutes after the sodium hydroxide methanol solution was added, a gelled product was formed, which was pulverized with a pulverizer and allowed to stand at 40° C. for 60 minutes to promote saponification. The pulverized gel thus obtained was repeatedly washed with methanol and then vacuum-dried at 40° C. overnight to synthesize the target copolymer. The ethylenically unsaturated carboxylic acid modification amount of the obtained copolymer was 5.0 mol %. Further, 0.5 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-11) of the copolymer. After that, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-11)=10:90, and the aqueous binder solution was made adjustments.


非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(実施例12)

実施例11と同様の中和塩(B-11)を用い、実施例1と同様の市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-11)=40:60となるように添加し、バインダー水溶液の調整を行った。

(Example 12)

Using the same neutralized salt (B-11) as in Example 11, the same commercially available polyvinyl alcohol (A-1) as in Example 1 was used as the solid content, and the weight ratio was (A-1):(B-11). )=40:60 to prepare an aqueous binder solution.


非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(実施例13)

実施例11と同様の方法にてビニルアルコールとエチレン性不飽和カルボン酸共重合体を合成した。さらに、水酸化リチウムを重合体中のカルボン酸単位に対し1.0当量添加して、前記共重合体の中和塩(B-13)の調製を行った。その後、実施例1で用いた市販のポリビニルアルコール(A-1)を固形分として、重量比で(A-1):(B-13)=10:90となるように添加し、バインダー水溶液の調整を行った。

(Example 13)

A vinyl alcohol/ethylenically unsaturated carboxylic acid copolymer was synthesized in the same manner as in Example 11. Further, 1.0 equivalent of lithium hydroxide was added to the carboxylic acid unit in the polymer to prepare a neutralized salt (B-13) of the copolymer. Thereafter, the commercially available polyvinyl alcohol (A-1) used in Example 1 was added as a solid content so that the weight ratio was (A-1):(B-13)=10:90, and the aqueous binder solution was made adjustments.


非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(比較例1)

市販のポリビニルアルコール(株式会社クラレ製、28-98s、けん化度:98)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative example 1)

A 10% by weight aqueous solution of commercially available polyvinyl alcohol (28-98s, saponification degree: 98, manufactured by Kuraray Co., Ltd.) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(比較例2)

市販のポリビニルアルコール(株式会社クラレ製、22-88s、けん化度:88)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative example 2)

A 10% by weight aqueous solution of commercially available polyvinyl alcohol (22-88s, saponification degree: 88, manufactured by Kuraray Co., Ltd.) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.


(比較例3)
実施例1と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。

(Comparative Example 3)
Using the same neutralized salt as in Example 1, a 10% by weight aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(比較例4)
実施例7と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 4)
Using the same neutralized salt as in Example 7, a 10% by weight aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(比較例5)
実施例11と同様の中和塩を用い、10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 5)
Using the same neutralized salt as in Example 11, a 10% by weight aqueous solution was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

(比較例6)
ポリアクリル酸(アルドリッチ製、分子量250,000)の10重量%水溶液を調整しバインダー組成物として用いた。非水電解質電池用スラリーを上記実施例1と同様の方法によって作製し、スラリー安定性を確認した。さらに、実施例1と同様の方法によって電池用塗工負極を作製し、コイン電池を得て、充放電特性試験を行った。また同じく実施例1と同様の方法によって靱性試験及び剥離強度用塗工電極を作製し、それを用いて、靱性試験及び剥離強度測定を行った。結果を下記表1に示す。
(Comparative Example 6)
A 10% by weight aqueous solution of polyacrylic acid (manufactured by Aldrich, molecular weight 250,000) was prepared and used as a binder composition. A slurry for a non-aqueous electrolyte battery was prepared in the same manner as in Example 1, and the stability of the slurry was confirmed. Furthermore, a coated negative electrode for a battery was produced by the same method as in Example 1, a coin battery was obtained, and a charge-discharge characteristic test was performed. Similarly, a coated electrode for toughness test and peel strength was prepared by the same method as in Example 1, and using it, the toughness test and peel strength measurement were performed. The results are shown in Table 1 below.

Figure 0007110170000001
Figure 0007110170000001

(考察)
本発明の(A)成分及び(B)成分を含む実施例1~13では、中和塩の効果で、いずれも92%以上の高い充放電効率を実現することが示された。ポリマー塩が、粉末活性材料をコーティングしてイオン性導電性層を形成したために容易にLiイオンが電池内を移動することができるようになったと想定される。また、(A)成分及び(B)成分と2成分以上が共存することで、スラリー安定性、靭性、接着性の向上が見られた。これに対し、中和塩を含まない比較例1~2及び6では充放電効率が低く(92%未満)、さらにスラリー安定性、靭性、接着性がいずれも低いという結果となった。
(Discussion)
In Examples 1 to 13 containing the components (A) and (B) of the present invention, it was shown that a high charge-discharge efficiency of 92% or more was achieved due to the effect of the neutralizing salt. It is hypothesized that the polymer salt coated the powdered active material to form an ionically conductive layer that facilitated the movement of Li ions within the cell. In addition, the coexistence of two or more components (A) component and (B) component was found to improve slurry stability, toughness, and adhesiveness. On the other hand, Comparative Examples 1 to 2 and 6, which do not contain a neutralizing salt, resulted in low charge/discharge efficiency (less than 92%), slurry stability, toughness, and adhesiveness.

また、実施例と同じく比較例3~5は高い充放電効率を示したものの、一方で、スラリー安定性が低いために均一な電極形成が難しく、実施例と比較しスラリー安定性、靭性、接着性が十分なものではなかった。 In addition, although Comparative Examples 3 to 5 showed high charge-discharge efficiency as in the Examples, on the other hand, it was difficult to form a uniform electrode due to the low slurry stability. sex wasn't good enough.

以上より、本発明のバインダー組成物を用いることにより、電極用バインダーの結着性と電極としての靱性を損なうことなく、非水電解質電池の電池特性の向上を達成できることが明らかとなった。 From the above, it was clarified that the use of the binder composition of the present invention can improve the battery characteristics of non-aqueous electrolyte batteries without impairing the binding properties of the electrode binder and the toughness of the electrode.

この出願は、2017年3月16日に出願された日本国特許出願特願2017-50807を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2017-50807 filed on March 16, 2017, the contents of which are incorporated herein.

本発明を表現するために、前述において具体例等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been adequately and fully described through the embodiments with reference to specific examples and the like in the foregoing, but those skilled in the art can easily modify and/or improve the above-described embodiments. It should be recognized that it is something that can be done. Therefore, to the extent that modifications or improvements made by those skilled in the art do not deviate from the scope of the claims set forth in the claims, such modifications or modifications do not fall within the scope of the claims. is interpreted to be subsumed by

本発明は、リチウムイオン二次電池等の非水電解質電池に関する技術分野において、広範な産業上の利用可能性を有する。 INDUSTRIAL APPLICABILITY The present invention has wide industrial applicability in the technical field related to non-aqueous electrolyte batteries such as lithium ion secondary batteries.

Claims (8)

(A)ポリビニルアルコール、及び、
(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つ、を含み、
前記(A)成分と前記(B)成分の組成比が、固形分重量比で1:99~50:50であり、
前記(B)成分の共重合体におけるビニルアルコールとエチレン性不飽和カルボン酸との含有割合が、モル比で100/1~1/100であり、
前記(B)成分の共重合体の数平均分子量が、5,000~250,000であり、
前記(B)成分における、エチレン性不飽和カルボン酸変性量が0.1~60モル%であることを特徴とする、非水電解質電池用バインダー組成物であって、
前記バインダー組成物中における、前記(A)成分の含有量が1重量%以上50重量%以下である、非水電解質電池用バインダー組成物
(A) polyvinyl alcohol, and
(B) at least one selected from copolymers of vinyl alcohol and ethylenically unsaturated carboxylic acid and neutralized salts thereof,
The composition ratio of the component (A) and the component (B) is 1:99 to 50:50 in solid content weight ratio,
The content ratio of vinyl alcohol and ethylenically unsaturated carboxylic acid in the copolymer of component (B) is 100/1 to 1/100 in terms of molar ratio,
The copolymer of component (B) has a number average molecular weight of 5,000 to 250,000,
A binder composition for a non-aqueous electrolyte battery, characterized in that the amount of ethylenically unsaturated carboxylic acid modification in the component (B) is 0.1 to 60 mol% ,
A binder composition for a non-aqueous electrolyte battery, wherein the content of the component (A) in the binder composition is 1% by weight or more and 50% by weight or less .
前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、ブロック共重合の形態で共重合している、請求項1に記載の非水電解質電池用バインダー組成物。 At least one selected from (B) a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of a block copolymer, according to claim 1 A binder composition for water electrolyte batteries. 前記(B)ビニルアルコールとエチレン性不飽和カルボン酸との共重合体及びその中和塩から選択される少なくとも1つが、グラフト共重合の形態で共重合している、請求項1に記載の非水電解質電池用バインダー組成物。 At least one selected from (B) a copolymer of vinyl alcohol and an ethylenically unsaturated carboxylic acid and a neutralized salt thereof is copolymerized in the form of a graft copolymerization. A binder composition for water electrolyte batteries. 前記バインダー組成物中における、前記(B)成分の含有量が50.0~99.0重量%である、請求項1~3のいずれかに記載の非水電解質電池用バインダー組成物。 4. The binder composition for non-aqueous electrolyte batteries according to claim 1, wherein the content of said component (B) in said binder composition is 50.0 to 99.0 % by weight. 請求項1~4のいずれかに記載のバインダー組成物と水とを含有する、非水電解質電池用バインダー水溶液。 An aqueous binder solution for non-aqueous electrolyte batteries, containing the binder composition according to any one of claims 1 to 4 and water. 請求項1~4のいずれかに記載のバインダー組成物と活物質と水とを含有する、非水電解質電池用スラリー組成物。 A slurry composition for a non-aqueous electrolyte battery, comprising the binder composition according to any one of claims 1 to 4, an active material and water. 請求項1~4のいずれかに記載のバインダー組成物と活物質とを含有する混合層を集電体に結着してなる、非水電解質電池用電極。 An electrode for a non-aqueous electrolyte battery, comprising a current collector and a mixed layer containing the binder composition according to any one of claims 1 to 4 and an active material. 請求項7に記載の非水電解質電池用電極を有する、非水電解質電池。 A nonaqueous electrolyte battery comprising the electrode for a nonaqueous electrolyte battery according to claim 7 .
JP2019505878A 2017-03-16 2018-03-02 Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Active JP7110170B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017050807 2017-03-16
JP2017050807 2017-03-16
PCT/JP2018/007981 WO2018168520A1 (en) 2017-03-16 2018-03-02 Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non-aqueous electrolyte battery each utilizing said binder composition

Publications (2)

Publication Number Publication Date
JPWO2018168520A1 JPWO2018168520A1 (en) 2020-01-16
JP7110170B2 true JP7110170B2 (en) 2022-08-01

Family

ID=63522445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019505878A Active JP7110170B2 (en) 2017-03-16 2018-03-02 Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Country Status (3)

Country Link
JP (1) JP7110170B2 (en)
TW (1) TWI795390B (en)
WO (1) WO2018168520A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7223700B2 (en) * 2017-09-29 2023-02-16 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP7223699B2 (en) * 2017-09-29 2023-02-16 住友精化株式会社 Binder for non-aqueous electrolyte secondary battery electrode, electrode mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and electrical equipment
JP6829754B1 (en) * 2019-11-19 2021-02-10 住友精化株式会社 Batteries for secondary batteries
CN114094165B (en) * 2021-11-09 2023-06-09 珠海冠宇电池股份有限公司 Lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2017006760A1 (en) 2015-07-09 2017-01-12 住友精化株式会社 Binder for lithium ion secondary battery positive electrodes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2017006760A1 (en) 2015-07-09 2017-01-12 住友精化株式会社 Binder for lithium ion secondary battery positive electrodes

Also Published As

Publication number Publication date
TW201840045A (en) 2018-11-01
JPWO2018168520A1 (en) 2020-01-16
TWI795390B (en) 2023-03-11
WO2018168520A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US11581543B2 (en) Binder composition for non-aqueous electrolyte batteries, and binder aqueous solution for non-aqueous electrolyte batteries, slurry composition for non-aqueous electrolyte batteries, electrode for non-aqueous electrolyte batteries and non aqueous electrolyte battery each utilizing same
TWI580102B (en) Lithium ion secondary battery negative electrode water-soluble adhesive composition, and a lithium ion secondary battery negative electrode composition, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6138383B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
JP7110170B2 (en) Binder composition for nonaqueous electrolyte battery, binder aqueous solution for nonaqueous electrolyte battery using the same, slurry composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP7183183B2 (en) Binder for non-aqueous electrolyte battery, binder aqueous solution and slurry composition using the same, electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
US20210296651A1 (en) Copolymer for binder for non-aqueous battery electrode, and slurry for producing non-aqueous battery electrode
JP6431651B1 (en) Nonaqueous electrolyte battery binder composition, nonaqueous electrolyte battery binder aqueous solution, nonaqueous electrolyte battery slurry composition, nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery using the same
US10644307B2 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
JP2016189253A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2018063799A (en) Nonaqueous electrolyte battery electrode binder composition, nonaqueous electrolyte battery electrode slurry composition arranged by use thereof, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2017069162A (en) Binder composition for nonaqueous electrolyte secondary battery, slurry composition for nonaqueous electrolyte secondary battery arranged by use thereof, nonaqueous electrolyte secondary battery negative electrode, and nonaqueous electrolyte secondary battery
JP6138382B1 (en) Binder composition for non-aqueous electrolyte battery, slurry composition for non-aqueous electrolyte battery using the same, non-aqueous electrolyte battery negative electrode, and non-aqueous electrolyte battery
JP6856972B2 (en) Lithium-ion secondary battery electrode slurry composition, lithium-ion secondary battery negative electrode and lithium-ion secondary battery
TWI833722B (en) Binders for non-aqueous electrolyte batteries, aqueous binder solutions and slurry compositions using the same, electrodes for non-aqueous electrolyte batteries and non-aqueous electrolyte batteries
WO2018101134A1 (en) Binder composition for nonaqueous electrolyte battery electrode, hydrogel using binder composition as raw material, slurry composition for nonaqueous electrolyte battery electrode using same, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2016189252A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189251A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2016189255A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2023074910A1 (en) Binder for power storage devices, binder solution for power storage devices, power storage device electrode slurry, power storage device electrode, and power storage device
CN116830318A (en) Negative electrode binder composition, negative electrode, and secondary battery
WO2017022842A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2020126716A (en) Binder for nonaqueous electrolyte secondary battery, electrode slurry arranged by use thereof, electrode and battery
WO2017022843A1 (en) Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery negative electrode and non aqueous electrolyte battery using same
JP2016189254A (en) Binder composition for lithium ion secondary battery electrode, and slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery using the same
JP2017033904A (en) Slurry composition for nonaqueous electrolyte battery electrode, and nonaqueous electrolyte battery negative electrode and nonaqueous electrolyte battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220720

R150 Certificate of patent or registration of utility model

Ref document number: 7110170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150