KR100834053B1 - Cathode, and lithium secondary battery and hybrid capacitor comprising same - Google Patents

Cathode, and lithium secondary battery and hybrid capacitor comprising same Download PDF

Info

Publication number
KR100834053B1
KR100834053B1 KR1020060095683A KR20060095683A KR100834053B1 KR 100834053 B1 KR100834053 B1 KR 100834053B1 KR 1020060095683 A KR1020060095683 A KR 1020060095683A KR 20060095683 A KR20060095683 A KR 20060095683A KR 100834053 B1 KR100834053 B1 KR 100834053B1
Authority
KR
South Korea
Prior art keywords
active material
lithium
positive electrode
electrode active
carbon
Prior art date
Application number
KR1020060095683A
Other languages
Korean (ko)
Other versions
KR20080029479A (en
Inventor
선양국
방현주
윤지훈
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020060095683A priority Critical patent/KR100834053B1/en
Publication of KR20080029479A publication Critical patent/KR20080029479A/en
Application granted granted Critical
Publication of KR100834053B1 publication Critical patent/KR100834053B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 양극 및 이를 포함하는 리튬 이차 전지 및 하이브리드 커패시터에 관한 것으로, 상기 양극 활물질은 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제 1 활물질과 탄소계 물질을 포함하는 제2 활물질이 9.7:0.3 내지 5:5의 중량비로 혼합된 활물질을 포함한다.The present invention relates to a positive electrode, a lithium secondary battery and a hybrid capacitor including the same, wherein the positive electrode active material includes a first active material including a compound capable of reversible intercalation / deintercalation of lithium and a carbon-based material The second active material includes an active material mixed in a weight ratio of 9.7: 0.3 to 5: 5.

상기 양극 활물질은 과량의 에너지를 장시간 동안 보전할 수 있어, 종래 커패시터의 양극 활물질로 활성탄을 단독으로 사용시 발생하는 문제를 해소함으로써, 에너지 밀도 및 출력 밀도를 향상시켜 고율, 장수명 및 고용량의 하이브리드 커패시터의 제작을 가능하게 한다.The positive electrode active material can conserve excess energy for a long time, thereby eliminating the problems caused by using activated carbon alone as a positive electrode active material of a conventional capacitor, thereby improving energy density and output density, and thus improving the yield of high yield, long life and high capacity hybrid capacitors. Enable production.

하이브리드 커패시터, 탄소계 물질, 복합 전극 Hybrid Capacitors, Carbon-Based Materials, Composite Electrodes

Description

양극, 이를 포함하는 리튬 이차 전지, 및 이를 포함하는 하이브리드 커패시터{CATHODE, AND LITHIUM SECONDARY BATTERY AND HYBRID CAPACITOR COMPRISING SAME}A cathode, a lithium secondary battery comprising the same, and a hybrid capacitor including the same {CATHODE, AND LITHIUM SECONDARY BATTERY AND HYBRID CAPACITOR COMPRISING SAME}

도 1은 비교예 1 및 2에서 제조된 전지의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프.1 is a graph showing specific discharge capacity according to cycles of cells prepared in Comparative Examples 1 and 2. FIG.

도 2는 비교예 3에서 제조된 전지의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프.Figure 2 is a graph showing the specific discharge capacity (specific discharge capacity) according to the cycle of the battery prepared in Comparative Example 3.

도 3은 실시예 1 및 2에서 제조된 전지의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프. Figure 3 is a graph showing the specific discharge capacity (specific discharge capacity) according to the cycle of the battery prepared in Examples 1 and 2.

도 4a는 실시예 1, 및 비교예 1에서 제조된 전지의 10 C-rate에서의 방전 곡선 그래프.Figure 4a is a discharge curve graph at 10 C-rate of the battery prepared in Example 1, and Comparative Example 1.

도 4b는 실시예 2, 및 비교예 2에서 제조된 전지의 10 C-rate에서의 방전 곡선 그래프.4B is a graph of discharge curves at 10 C-rate of the battery prepared in Example 2 and Comparative Example 2. FIG.

도 5는 실시예 1 및 2와 비교예 1 및 2에서 제조된 전지의 20 C-rate에서의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프, 5 is a graph showing specific discharge capacity according to cycles at 20 C-rate of the batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2;

도 6은 실시예 3 및 참조예 1 에서 제조된 하이브리드 커패시터의 10 C-rate 에서의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래 프이다.FIG. 6 is a graph showing specific discharge capacity according to cycles at 10 C-rate of the hybrid capacitors prepared in Example 3 and Reference Example 1. FIG.

[산업상 이용분야][Industrial use]

본 발명은 양극 및 이를 포함하는 리튬 이차 전지 및 하이브리드 커패시터에 관한 것으로, 더욱 상세하게는 에너지 밀도 및 출력 밀도가 향상되어 고율, 장수명 및 고용량 특성이 있는 양극 및 이를 포함하는 리튬 이차 전지 및 하이브리드 커패시터에 관한 것이다.The present invention relates to a positive electrode and a lithium secondary battery and a hybrid capacitor including the same, and more particularly, to a lithium secondary battery and a hybrid capacitor including the positive electrode having a high rate, long life and high capacity characteristics, and the like, having improved energy density and output density. It is about.

[종래기술][Private Technology]

비수 전해액계 리튬 이차 전지는 리튬의 가역적인 인터칼레이션/디인터칼레이션 반응을 이용하여 전기에너지를 저장하는 축전기로서 고용량의 충방전이 가능하다. 이에 에너지 저장장치로서 유망하다. A non-aqueous electrolyte lithium secondary battery is a capacitor that stores electrical energy by using a reversible intercalation / deintercalation reaction of lithium, and is capable of high capacity charge and discharge. This is a promising energy storage device.

또한 비수 전해액계 하이브리드 커패시터는 리튬의 가역적인 인터칼레이션/디인터칼레이션 반응과 전극과 전해질간의 계면에서 발생하는 전기 이중층에 전하를 흡, 탈착하는 원리를 이용하여 에너지를 저장하는 축전기로서 대전류로 충방전이 가능하고 고용량을 가지고 있다. 이에 전기자동차, 보조전원 등의 에너지 저장장치로서 유망하다. In addition, the nonaqueous electrolyte hybrid capacitor is a capacitor that stores energy by using a reversible intercalation / deintercalation reaction of lithium and a principle of absorbing and desorbing electric charges in an electrical double layer generated at an interface between an electrode and an electrolyte. Charging and discharging is possible and has high capacity. Accordingly, it is promising as an energy storage device for electric vehicles and auxiliary power sources.

종래의 비수 전해액계 리튬 이차 전지의 양극은 금속 박막 위에 에너지 저장 반응에 참여하는 산화물계 양극 활물질과 고분자로 이루어진 바인더 및 전기 전도 도를 높여주기 위한 도전제를 일정한 비율로 혼합하여 도포되어 있다. A cathode of a conventional nonaqueous electrolyte lithium secondary battery is coated on a metal thin film by mixing an oxide-based cathode active material and a binder made of a polymer and a conductive agent for increasing electrical conductivity at a constant ratio.

상기 산화물계 양극 활물질은 전기 전도도가 좋지 않아 고전류의 충방전에서 좋지 않은 특성을 보이는 것이 알려져 있다. 따라서 리튬 이차 전지는 고전류 및 고출력을 필요로 하는 장치에는 사용되기가 힘들다. It is known that the oxide-based positive electrode active material does not have good electrical conductivity and shows poor characteristics in charge and discharge of high current. Therefore, lithium secondary batteries are difficult to use in devices requiring high current and high power.

이에 본 발명자는 상기 전술한 바와 같은 방식의 접근이 아니라 리튬 이차 전지용 양극을 제작할 때 산화물계 양극 활물질에 탄소계 양극 활물질을 혼합하여 전기 전도도를 높이고 고전류 충방전에서 뛰어난 용량 증가를 보이는 전극을 제안한다. Therefore, the present inventor proposes an electrode which improves electrical conductivity and shows excellent capacity increase in high current charge / discharge by mixing a carbon-based cathode active material with an oxide-based cathode active material when fabricating a cathode for a lithium secondary battery, rather than the above-described approach. .

본 발명의 목적은 과량의 에너지를 장시간 동안 보전이 가능할 뿐만 아니라 에너지 밀도 및 출력 밀도가 향상되어 고율, 장수명 및 고용량 특성을 가지는 에너지 저장장치를 위한 양극을 제공하는 것이다.It is an object of the present invention to provide an anode for an energy storage device having a high rate, a long life and a high capacity characteristic by not only being able to preserve excess energy for a long time but also improving energy density and output density.

본 발명의 다른 목적은 상기 양극을 포함하는 양극이 구비된 리튬 이차 전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery provided with a positive electrode including the positive electrode.

본 발명의 또 다른 목적은 상기 양극을 포함하는 양극이 구비된 하이브리드 커패시터를 제공하는 것이다.Still another object of the present invention is to provide a hybrid capacitor having an anode including the anode.

상기 목적을 달성하기 위해, 본 발명은 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 탄소계 물질을 포함하는 제2 활물질이 9.7:0.3 내지 5:5의 중량비로 혼합된 활물질을 포함하는 양극 활물질을 제공한다.In order to achieve the above object, the present invention provides a first active material comprising a compound capable of reversible intercalation / deintercalation of lithium and a second active material comprising a carbon-based material of 9.7: 0.3 to 5: 5 It provides a positive electrode active material including an active material mixed in a weight ratio.

바람직하기로 상기 양극 활물질은 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 탄소계 물질을 포함하는 제2 활물질이 9.5:0.5 내지 5:5의 중량비로 혼합되고, 더욱 바람직하기로 9:1 내지 6:4의 중량비로 혼합된다. 상기 혼합범위에서 양극 활물질의 에너지 밀도 및 출력 밀도가 향상되어 리튬 이차 전지의 고율, 장수명 및 고용량 특성을 향상시킬 수 있다. 이때 상기 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 리튬 복합금속 산화물, 리튬 함유 칼코게나이드 화합물 및 이들의 혼합물로 이루어진 군에서 선택된 1종의 화합물이 가능하다.Preferably, the positive electrode active material is mixed with a first active material containing a reversible intercalation / deintercalation of lithium and a second active material containing a carbon-based material in a weight ratio of 9.5: 0.5 to 5: 5 More preferably in a weight ratio of 9: 1 to 6: 4. In the mixing range, the energy density and the output density of the cathode active material may be improved, thereby improving the high rate, long life, and high capacity characteristics of the lithium secondary battery. In this case, the compound capable of reversible intercalation / deintercalation of lithium may be one compound selected from the group consisting of lithium composite metal oxides, lithium-containing chalcogenide compounds, and mixtures thereof.

특히 상기 탄소계 물질은 흑연계, 활성탄계, 하드 카본, 소프트 카본, 탄소 섬유 및 이들의 혼합물로 이루어진 군에서 선택된 1종을 포함한다.In particular, the carbon-based material includes one selected from the group consisting of graphite, activated carbon, hard carbon, soft carbon, carbon fiber, and mixtures thereof.

또한 본 발명은 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함하는 리튬 이차 전지를 제공한다.In addition, the present invention is a positive electrode comprising the positive electrode active material; A negative electrode including a negative electrode active material; And it provides a lithium secondary battery comprising an electrolyte present between them.

또한 본 발명은 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함하는 하이브리드 커패시터를 제공한다.In addition, the present invention is a positive electrode comprising the positive electrode active material; A negative electrode including a negative electrode active material; And it provides a hybrid capacitor comprising an electrolyte present between them.

이하 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에 제1 실시형태에 따른 양극 활물질은 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 탄소계 물질을 포함하는 제2활물질을 혼합 사용한다.The positive electrode active material according to the first embodiment of the present invention uses a first active material containing a compound capable of reversible intercalation / deintercalation of lithium and a second active material containing a carbon-based material.

이때 상기 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 리튬 복합금속 산화물 또는 리튬 함유 칼코게나이드 화합물이다. 바람직하기로, 상기 리튬 복합금속 산화물 또는 리튬 함유 칼코게나이드 화합물은 적어도 하나의 Ni, Co 또는 Mn의 금속을 포함하며, 선택적으로 Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, 및 이들의 조합으로 이루어진 군에서 선택된 1종의 금속을 포함한다.In this case, the compound capable of reversible intercalation / deintercalation of lithium is a lithium composite metal oxide or a lithium-containing chalcogenide compound. Preferably, the lithium composite metal oxide or lithium-containing chalcogenide compound comprises at least one metal of Ni, Co or Mn, optionally Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn And Si, Y, Nb, Ga, Sn, Mo, W, and one metal selected from the group consisting of a combination thereof.

더욱 바람직하기로, 상기 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 하기 화학식 1 또는 2로 표시되는 화합물이 가능하다:More preferably, the compound capable of reversible intercalation / deintercalation of lithium may be a compound represented by the following formula (1) or (2):

[화학식 1][Formula 1]

LiaNi1-x-y-zCoxMnyMzO2-δPδ Li a Ni 1-xyz Co x Mn y M z O 2-δ P δ

(상기 화학식 1에서, M은 Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, 및 W로 이루어진 군에서 선택된 1종의 원소이고, 0.95≤a≤1.2, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.3, 및 0<δ≤0.1이다.)(In Formula 1, M is one element selected from the group consisting of Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, and W) , 0.95 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.3, and 0 <δ ≦ 0.1.)

[화학식 2][Formula 2]

LiaNixCoyMn2 -x-y- zMzO4 Pδ Li a Ni x Co y Mn 2 -xy- z M z O 4 P δ

(상기 화학식 2에서, M은 Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, 및 W로 이루어진 군에서 선택된 1종의 원소이고, P는 F 또는 S 중에서 선택된 원소이고, 0.95≤a≤1.2, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.3 및 0<δ≤0.1이다.)(In Formula 2, M is one element selected from the group consisting of Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, and W) , P is an element selected from F or S, and 0.95 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.3, and 0 <δ ≦ 0.1.)

이때 상기 화학식 1 및 2의 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 큐빅 결정 구조를 가지는 스피넬 화합물이다.In this case, the compound capable of reversible intercalation / deintercalation of lithium of Formulas 1 and 2 is a spinel compound having a cubic crystal structure.

상기 탄소계 물질은 흑연계, 활성탄계, 하드 카본, 소프트 카본, 탄소 섬유 및 이들의 혼합물로 이루어진 군에서 선택된 1종을 포함한다.The carbonaceous material includes one selected from the group consisting of graphite, activated carbon, hard carbon, soft carbon, carbon fiber, and mixtures thereof.

이때 상기 하드 카본은 페놀수지, 퓨란수지, 폴리아미드 수지, 및 이들의 조합으로 이루어진 군에서 선택되는 수지를 소성하여 제조하는 것이 바람직하고, 상기 소프트 카본은 석탄계 핏치, 석유계 핏치, 석탄계 오일, 콜타르, 및 이들의 조합으로 이루어진 군에서 선택되는 탄소 전구체를 소성하여 제조하는 것이 바람직하다.At this time, the hard carbon is preferably prepared by firing a resin selected from the group consisting of phenol resin, furan resin, polyamide resin, and combinations thereof, wherein the soft carbon is coal-based pitch, petroleum-based pitch, coal-based oil, coal tar It is preferable to prepare by firing a carbon precursor selected from the group consisting of, and combinations thereof.

상기 양극 활물질은 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 탄소계 물질을 포함하는 제2 활물질이 9.7:0.3 내지 5:5 의 중량비, 바람직하기로 9.5:0.5 내지 5:5의 중량비로 혼합되고, 더욱 바람직하기로 9:1 내지 6:4의 중량비로 혼합된다.The positive electrode active material is a weight ratio of 9.7: 0.3 to 5: 5, preferably 9.5, of a first active material including a reversible intercalation / deintercalation compound of lithium and a second active material including a carbon-based material. It is mixed in the weight ratio of: 0.5-5: 5, More preferably, it is mixed in the weight ratio of 9: 1-6: 4.

이때 상기 탄소계 물질을 포함하는 제2 활물질의 함량비가 0.3 미만이면 상기 탄소계 물질이 리튬과의 가역적인 반응을 일으키지 않아 활물질로서 작용하지 않고 도전제로서만 작용하여 바람직하지 않고, 이와 반대로 5를 초과하면 제1 활물질과 리튬의 반응보다 제2 활물질과 리튬의 반응이 우세하게 되고, 고전압에서 전해액이 분해되는 등 불필요한 반응이 일어나므로 바람직하지 않다.In this case, when the content ratio of the second active material including the carbonaceous material is less than 0.3, the carbonaceous material does not cause a reversible reaction with lithium, and thus does not act as an active material, but acts only as a conductive agent. If exceeded, the reaction between the second active material and lithium is superior to the reaction between the first active material and lithium, and unnecessary reactions such as decomposition of the electrolyte at a high voltage occur, which is not preferable.

상기 양극 활물질인 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 탄소계 물질을 포함하는 제2 활물질의 혼합물, 도 전제, 및 바인더를 혼합하여 양극 형성용 조성물을 제조한 후, 이 조성물을 알루미늄 포일 등의 양극 전류 집전체에 도포한 후 압연하여 전극, 바람직하기로 양극으로 제조된다.A composition for forming a cathode by mixing a mixture of a first active material including a compound capable of reversible intercalation / deintercalation of lithium as the cathode active material and a second active material including a carbon-based material, a premise, and a binder After the preparation, the composition is applied to a positive electrode current collector such as aluminum foil and then rolled to prepare an electrode, preferably an anode.

이때 상기 양극은 양극 활물질 100 중량부에 대해 도전제 0.1 내지 5 중량부, 및 바인더 0.5 내지 5.0 중량부를 혼합하여 제조될 수 있다. 본 발명에서는 양극 활물질로 탄소계 물질을 혼합하여 사용하므로 도전제를 별도로 첨가하지 않아도 충분한 양극의 전자 전도성을 확보할 수 있다. 상기 범위에서 도전제를 첨가하면 양극 활물질의 에너지 밀도 및 출력 밀도를 저하시키지 않는 범위에서 양극의 전자전도성을 향상시킬 수 있다. In this case, the positive electrode may be prepared by mixing 0.1 to 5 parts by weight of the conductive agent and 0.5 to 5.0 parts by weight of the binder with respect to 100 parts by weight of the positive electrode active material. In the present invention, since the carbon-based material is mixed and used as the cathode active material, sufficient electronic conductivity of the cathode may be secured without additionally adding a conductive agent. When the conductive agent is added in the above range, the electron conductivity of the positive electrode can be improved in a range that does not lower the energy density and the output density of the positive electrode active material.

상기 도전제는 화학 변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말, 또는 금속 섬유 등이 가능하다.The conductive agent may be used as long as it is an electron conductive material without causing chemical change, and examples thereof include metal powders such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, aluminum, and silver. Or metal fibers and the like.

또한 상기 바인더는 본 발명에서 특별하게 한정하지는 않으며, 이 분야에서 통상적으로 사용되는 것이 가능하다. 대표적으로 스티렌-부타디엔 러버(SBR), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴 플루오라이드(PVDF), 폴리에틸렌(PE), 폴리프로필렌(PP), 불소계 고무 등이 가능하다.In addition, the binder is not particularly limited in the present invention, it is possible to be commonly used in this field. Typically, styrene-butadiene rubber (SBR), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), fluorine-based rubber and the like are possible.

이러한 양극 활물질을 포함하는 상기 양극은 리튬 이차 전지 또는 하이브리드 커패시터의 전극으로 바람직하게 도입된다.The positive electrode including the positive electrode active material is preferably introduced into the electrode of a lithium secondary battery or a hybrid capacitor.

본 발명의 제2 실시형태에 따른 리튬 이차 전지는 상기 양극 활물질을 포함 하는 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함한다.A lithium secondary battery according to a second embodiment of the present invention includes a positive electrode including the positive electrode active material; A negative electrode including a negative electrode active material; And electrolytes present between them.

리튬 이차 전지는 음극, 양극, 이 음극 및 양극 사이에 세퍼레이터를 배치하여 전극 조립체를 제조하고, 이를 케이스에 장착시킨 후 전해액을 주입하여 상기 음극, 상기 양극 및 상기 세퍼레이터가 전해액에 함침되도록 한다. 상기 리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다. In the lithium secondary battery, a separator is disposed between a negative electrode, a positive electrode, the negative electrode, and a positive electrode to manufacture an electrode assembly. The lithium secondary battery is mounted in a case, and an electrolyte is injected to inject the negative electrode, the positive electrode, and the separator into the electrolyte. The lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, and the like. Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.

이때 상기 양극은 본 발명에 따른 양극 활물질을 포함하는 전극이 사용된다.At this time, the positive electrode is used an electrode containing a positive electrode active material according to the present invention.

상기 음극은 음극 활물질을 포함한다. The negative electrode includes a negative electrode active material.

상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료, 리튬과 합금화가 가능한 금속질 화합물, 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물도 음극 활물질로 사용할 수 있다. 리튬과 합금화가 가능한 금속으로는, Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si 합금, Sn 합금, 또는 Al 합금 등을 예시할 수 있다. 또, 음극활성물질로서 금속 리튬 박막도 사용할 수 있다.As the negative electrode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber and amorphous carbon, metallic compounds capable of alloying with lithium, or composites containing metallic compounds and carbonaceous materials as negative electrode active materials. Can be used. As a metal which can be alloyed with lithium, Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, Al alloy, etc. can be illustrated. Moreover, a metal lithium thin film can also be used as a negative electrode active material.

상기 음극은 역시 양극과 마찬가지로 상기 음극 활물질, 바인더 및 선택적으 로 도전제를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후 이를 구리 포일 등의 음극 전류 집전체에 도포하여 제조될 수 있다.Like the positive electrode, the negative electrode may be prepared by mixing the negative electrode active material, a binder, and optionally a conductive agent to prepare a composition for forming a negative electrode active material layer, and then coating the negative electrode current collector such as copper foil.

상기 전해질로는 비수성 전해질 또는 공지된 고체 전해질 등이 사용 가능하며, 리튬염이 용해된 것을 사용한다. As the electrolyte, a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt is used.

상기 리튬염은 커패시터에서 통상적으로 사용되는 리튬염으로서 특별히 제한되지는 않으며, 예를 들면 LiPF6, LiBF4, LiClO4, Li(CF3SO2)2, LiCF3SO3, LiSbF6 또는 LiAsF6 등이 있다.The lithium salt is not particularly limited as a lithium salt commonly used in capacitors, for example, LiPF 6 , LiBF 4 , LiClO 4 , Li (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6, or LiAsF 6 Etc.

상기 비수성 전해질의 용매는 특별히 한정되는 것은 아니지만, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등을 사용할 수 있다. Although the solvent of the said non-aqueous electrolyte is not specifically limited, Cyclic carbonates, such as ethylene carbonate, a propylene carbonate, butylene carbonate, vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and γ-butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides, such as dimethylformamide, etc. can be used.

또한 전해질로서, 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체 전해질이나, LiI, Li3N 등의 무기 고체 전해질이 가능하다.As the electrolyte, a gel polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

이때 양극으로 본 발명에 따른 양극 활물질을 사용함으로써 종래 전지의 충전 과정 중 전해질의 산화에 의해 생성되는 산에 의해 양극 활물질이 용해되는 문 제를 해소할 뿐만 아니라 전해액과 양극 활물질 간의 반응을 억제한다. 그 결과 리튬 이차 전지의 충방전 특성, 수명특성, 고전압 특성, 고율 특성 및 열 안전성을 향상시킨다.At this time, by using the positive electrode active material according to the present invention as a positive electrode not only solves the problem of dissolving the positive electrode active material by the acid generated by the oxidation of the electrolyte during the charging process of the conventional battery, but also suppress the reaction between the electrolyte solution and the positive electrode active material. As a result, the charge and discharge characteristics, lifespan characteristics, high voltage characteristics, high rate characteristics, and thermal stability of the lithium secondary battery are improved.

또한 본 발명의 제3 실시형태에 따른 하이브리드 커패시터는 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함한다.In addition, a hybrid capacitor according to a third embodiment of the present invention includes a positive electrode including the positive electrode active material; A negative electrode including a negative electrode active material; And electrolytes present between them.

하이브리드 커패시터는 음극, 양극, 이 음극 및 양극 사이에 세퍼레이터를 배치하여 전극 조립체를 제조하고, 이를 케이스에 장착시킨 후 전해액을 주입하여 상기 음극, 상기 양극 및 상기 세퍼레이터가 전해액에 함침되도록 한다. The hybrid capacitor manufactures an electrode assembly by disposing a separator between a cathode, an anode, the cathode, and an anode, and mounts the separator in a case so that the cathode, the anode, and the separator are impregnated with the electrolyte.

이때 상기 양극은 본 발명에 따른 양극 활물질을 포함하는 전극이 사용된다.At this time, the positive electrode is used an electrode containing a positive electrode active material according to the present invention.

상기 음극의 음극 활물질은 활성탄이 사용된다. 상기 활성탄은 탄소재료를 수증기 부활처리법, 용융 KOH 부활처리법 등에 의하여 개질시킨 활성탄이 적합하며, 예를 들면, 야자껍질계 활성탄, 페놀계 활성탄, 석유코크스계 활성탄 등을 들 수 있고, 이들의 1종을 단독으로 또는 2종 이상을 조합하여 사용할 수 있다. Activated carbon is used as the negative electrode active material of the negative electrode. The activated carbon is preferably activated carbon in which a carbon material is modified by steam activating treatment, molten KOH activating treatment, or the like, and examples thereof include palm shell activated carbon, phenol based activated carbon, petroleum coke based activated carbon, and the like. May be used alone or in combination of two or more thereof.

이때 상기 세퍼레이터 및 전해액은 상기 제1 실시형태에서 언급한 바를 따른다.At this time, the separator and the electrolyte solution are as described in the first embodiment.

상기 하이브리드 커패시터는 양극으로 본 발명에 따른 양극 활물질을 사용함으로써 종래 전기 이중층 커패시터와 비교하여 빠른 충방전이 이루어질 때에도 용량 및 수명 특성이 증가된다.The hybrid capacitor increases capacity and lifespan characteristics even when fast charging and discharging is performed by using the cathode active material according to the present invention as a cathode.

이는 종래 전기 이중층 커패시터가 음극과 양극을 모두 활성탄을 사용한 경 우와 비교하여 우수한 특성을 나타내는 데, 구체적으로 기존의 전기 이중층 커패시터의 흡착 반응과 함께 리튬 이온의 디인터칼레이션 반응으로 높은 에너지를 저장할 수 있으며 또한 자가 방전률을 낮출 수 있다.This shows that the conventional electric double layer capacitor has excellent characteristics compared with the case where both the cathode and the anode are using activated carbon. Specifically, the adsorption reaction of the existing electric double layer capacitor can be stored together with the deintercalation reaction of lithium ions. And also lower the self-discharge rate.

이하, 본 발명의 실시예를 들어 본 발명을 상세히 설명하지만, 이들 실시예로 본 발명이 한정되는 것은 아니다. Hereinafter, although an Example of this invention is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

리튬 이차 전지Lithium secondary battery

(( 실시예Example 1)  One)

양극anode

양극 활물질로 Li[Ni0 .5Mn1 .5]O4 과 활성탄을 7:3의 중량비로 혼합한 다음, 여기에 도전제로 아세틸렌 블랙을, 결합제로 카르복시메틸 셀룰로오스(CMC) 및 스타디엔 부타디엔 러버(SBR)를 85:10:3:2의 중량비로 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 20 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 120 ℃에서 진공 건조하여 양극을 제조하였다.As a cathode active material Li [Ni Mn 0 .5 1 .5] O 4 and activated carbon. 7: 3 were mixed in a weight ratio of the next, here the zero conductive acetylene black, a binding agent carboxymethylcellulose (CMC) and diene star-butadiene rubber (SBR) was mixed in a weight ratio of 85: 10: 3: 2 to prepare a composition for forming an anode. The positive electrode forming composition was uniformly applied to a 20 μm thick aluminum foil, and vacuum dried at 120 ° C. to prepare a positive electrode.

전지battery

상기 제조된 양극을 사용하고, 상대 전극으로 금속 리튬을 사용하고, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 사용하고, 에틸렌 카보네이트와 디에틸 카보네이트가 1:1의 부피비로 섞여있는 용매에 LiPF6가 1 M 농도로 녹아있는 액체 전해액을 사용하여 코인형의 셀을 제조하였다.Using the prepared anode, using a metal lithium as the counter electrode, a porous polyethylene membrane (Celgard ELC, Celgard 2300, thickness: 25㎛) as a separator, ethylene carbonate and diethyl carbonate 1: A coin-type cell was prepared using a liquid electrolyte in which LiPF 6 was dissolved at a concentration of 1 M in a solvent mixed at a volume ratio of 1.

(( 실시예Example 2)  2)

액체 전해액으로 프로필렌 카보네이트 용매에 LiBF4가 1 M 농도로 녹아있는 액체 전해액을 사용한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 코인형의 셀을 제조하였다.A coin-type cell was prepared in the same manner as in Example 1 except that LiBF 4 was dissolved in a 1 M concentration in a propylene carbonate solvent as a liquid electrolyte.

(( 비교예Comparative example 1)  One)

양극 활물질로 Li[Ni0 .5Mn1 .5]O4 만을 사용하여 전극을 제작한 것을 제외하고, 상기 실시예 1 과 동일하게 수행하여 양극 및 코인형의 셀을 제조하였다.As a cathode active material Li [Ni Mn 0 .5 1 .5] O 4 only an anode and a coin-shaped cell except that one of making an electrode, and performed in the same manner as in Example 1 was prepared using.

(( 비교예Comparative example 2)  2)

액체 전해액으로 프로필렌 카보네이트 용매에 LiBF4가 1 M 농도로 녹아있는 액체 전해액을 사용한 것을 제외하고, 상기 비교예 1과 동일하게 수행하여 양극 및 코인형의 셀을 제조하였다.A positive electrode and a coin-type cell were prepared in the same manner as in Comparative Example 1, except that LiBF 4 was dissolved in a 1 M concentration in a propylene carbonate solvent as a liquid electrolyte.

(( 비교예Comparative example 3)  3)

양극 활물질로 활성탄만을 사용하고 양극을 제조하였으며, 프로필렌 카보네이트 용매에 LiBF4가 1 M 농도로 녹아있는 액체 전해액을 사용한 것을 제외하고, 상기 비교예 1과 동일하게 수행하여 코인형의 셀을 제조하였다.A positive electrode was prepared using only activated carbon as a positive electrode active material, and a coin-type cell was prepared in the same manner as in Comparative Example 1 except that a liquid electrolyte in which LiBF 4 was dissolved at a concentration of 1 M in a propylene carbonate solvent was used.

이때 상기 실시예 1 내지 2, 비교예 1 내지 3에서 제조된 양극, 음극 및 전해액의 종류를 하기 표 1에 나타내었다.In this case, the types of the positive electrode, the negative electrode, and the electrolyte prepared in Examples 1 to 2 and Comparative Examples 1 to 3 are shown in Table 1 below.

Li[Ni0 .5Mn1 .5]O4/활성탄의 함량비(중량비)Li [Ni Mn 0 .5 1 .5] O 4 / the content of the non-activated carbon (by weight) 액체 전해액Liquid electrolyte 유기 용매Organic solvent 리튬염Lithium salt 실시예 1Example 1 7:37: 3 EC/DEC EC / DEC LiBF4 LiBF 4 실시예 2Example 2 7:37: 3 PCPC LiBF4 LiBF 4 비교예 1Comparative Example 1 10:010: 0 EC/DEC EC / DEC LiBF4 LiBF 4 비교예 2Comparative Example 2 10:010: 0 PCPC LiBF4 LiBF 4 비교예 3Comparative Example 3 0:100:10 PCPC LiBF4 LiBF 4 EC: 에틸렌 카보네이트, DEC:디에틸 카보네이트, PC:프로필렌 카보네이트EC: ethylene carbonate, DEC: diethyl carbonate, PC: propylene carbonate

(( 실험예Experimental Example 1) 고전류에서의 방전 특성 1) Discharge Characteristics at High Current

상기 실시예 1 내지 2, 및 비교예 1 내지 3에서 제조된 전지의 고전류에서의 방전 특성을 전기화학 분석장치(Toyo System, Toscat 3100U)를 사용하여 3.3 내지 4.9 V 영역에서 특성을 평가하였으며, 얻어진 결과를 도 1 내지 도 3에 나타내었다. Discharge characteristics at high currents of the batteries prepared in Examples 1 to 2 and Comparative Examples 1 to 3 were evaluated in the 3.3 to 4.9 V region using an electrochemical analyzer (Toyo System, Toscat 3100U). The results are shown in FIGS. 1 to 3.

도 1은 비교예 1, 및 2에서 제조된 전지의 고전류에서의 방전 특성을 보여주는 그래프이고, 도 2는 비교예 3에서 제조된 전지의 고전류에서의 방전 특성을 보여주는 그래프이고, 도 3은 실시예 1, 및 2에서 제조된 전지의 고전류에서의 방전 특성을 보여주는 그래프이다. 하기 표 2에 10 C-rate에 따른 방전 전류밀도, 용량, 및 이론 용량을 나타내었다.1 is a graph showing discharge characteristics at high currents of the batteries prepared in Comparative Examples 1 and 2, FIG. 2 is a graph showing discharge characteristics at high currents of the batteries prepared in Comparative Example 3, and FIG. It is a graph showing the discharge characteristics at high current of the batteries prepared in 1, and 2. Table 2 shows the discharge current density, capacity, and theoretical capacity according to 10 C-rate.

10 C-rate에 따른 방전 전류밀도Discharge current density according to 10 C-rate 용량Volume 이론 용량Theoretical capacity 실시예 1Example 1 960 mA/g960 mA / g 53 mAh/g53 mAh / g 32.4 mAh/g32.4 mAh / g 실시예 2Example 2 960 mA/g960 mA / g 40 mAh/g40 mAh / g 21.9 mAh/g21.9 mAh / g 비교예 1Comparative Example 1 1200 mA/g1200 mA / g 42 mAh/g42 mAh / g -- 비교예 2Comparative Example 2 1200 mA/g1200 mA / g 27 mAh/g27 mAh / g -- 비교예 3Comparative Example 3 10 mAh/g10 mAh / g --

상기 표 2에서 실시예 1의 이론 용량은 비교예 1의 용량×0.7 + 비교예 3의 용량×0.3(42 mAh/g×0.7 + 10 mAh/g×0.3)의 식을 이용하여 계산하였고, 실시예 2의 이론 용량은 비교예 2의 용량×0.7 + 비교예 3의 용량×0.3(27 mAh/g×0.7 + 10 mAh/g×0.3)의 식을 이용하여 계산하였다.In Table 2, the theoretical capacity of Example 1 was calculated using the formula of Capacity x 0.7 of Comparative Example 1 + Capacity x 0.3 (42 mAh / g x 0.7 + 10 mAh / g x 0.3) of Comparative Example 1, and was performed. The theoretical capacity of Example 2 was calculated using the formula of Capacity x 0.7 of Comparative Example 2 + Capacity x 0.3 (27 mAh / g x 0.7 + 10 mAh / g x 0.3) of Comparative Example 3.

도 1과 상기 표 2를 참조하면, 비교예 1, 및 2의 전지는 24, 60, 120, 240, 600, 1200 mA/g의 방전 전류 밀도를 가지며, 비교예 1은 1200 mA/g (10 C-rate) 의 방전 전류밀도에서 42 mAh/g의 용량을 유지하고, 비교예 2의 전지는 27 mAh/g의 용량을 유지하는 것을 확인할 수 있다.1 and Table 2, the cells of Comparative Examples 1 and 2 have a discharge current density of 24, 60, 120, 240, 600, 1200 mA / g, Comparative Example 1 is 1200 mA / g (10 It can be seen that the capacity of 42 mAh / g is maintained at the discharge current density of C-rate, and the battery of Comparative Example 2 maintains the capacity of 27 mAh / g.

도 2와 상기 표 2를 참조하면, 비교예 3의 전지는 15, 37.5, 75, 150, 375, 750 mA/g의 방전 전류 밀도를 가지고, 750 mA/g (10 C-rate) 의 방전 전류밀도에서 10 mAh/g의 용량을 유지한다.2 and Table 2, the battery of Comparative Example 3 has a discharge current density of 15, 37.5, 75, 150, 375, 750 mA / g, discharge current of 750 mA / g (10 C-rate) Maintain a capacity of 10 mAh / g at density.

또한 도 3과 상기 표 2를 참조하면, 실시예 1, 및 2의 전지는 19.2, 48, 96, 192, 480, 960 mA/g의 방전 전류 밀도를 가지고, 5 싸이클 간격으로 방전 전류 밀도가 증가함을 알 수 있다. 또한, 실시예 1의 전지는 960 mA/g (10 C-rate) 의 방전 전류 밀도에서 53 mAh/g의 용량을 유지하고, 실시예 2의 전지는 40 mAh/g의 용량을 유지한다. 3 and Table 2, the batteries of Examples 1 and 2 have a discharge current density of 19.2, 48, 96, 192, 480, 960 mA / g, and the discharge current density increases every 5 cycles. It can be seen. In addition, the battery of Example 1 maintains a capacity of 53 mAh / g at a discharge current density of 960 mA / g (10 C-rate), and the battery of Example 2 maintains a capacity of 40 mAh / g.

이때 이론적인 계산에 따른 실시예 1의 전지는 32.4 mAh/g의 이론 용량을 가지고, 실시예 2의 전지는 21.9 mAh/g의 이론 용량을 가져야 하나, 상기에서 보이는 바와 같이 각각 53 mAh/g 및 40 mAh/g으로 높은 수치를 나타내었다. 이러한 결과는 양극 활물질인 Li[Ni1 /2Mn3 /2]O4 와 탄소계 양극 활물질인 활성탄이 상호 보완 작용으로 인해 본래의 성능보다 더 뛰어난 성능을 나타내기 때문이다.In this case, the battery of Example 1 according to the theoretical calculation has a theoretical capacity of 32.4 mAh / g, the battery of Example 2 should have a theoretical capacity of 21.9 mAh / g, as shown above, respectively 53 mAh / g and The high figure was 40 mAh / g. This result is due to indicate a better performance than the original performance due to a positive active material of Li [Ni 1/2 Mn 3 /2] O 4 and the carbon-based anode active material, the activated carbon is complementary action.

(( 실험예Experimental Example 2) 2) 10 C-10 C- raterate 에서의 비방전용량 특성Specific Discharge Characteristics at

상기 실시예 1, 및 2와 비교예 1, 및 2에서 제조된 전지의 방전 특성을 알아보았다.The discharge characteristics of the batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were examined.

도 4a는 실시예 1, 및 비교예 1에서 제조된 전지의 10 C-rate에서의 방전 곡선이고, 도 4b는 실시예 2, 및 비교예 2에서 제조된 전지의 10 C-rate에서의 방전 곡선이다.4A is a discharge curve at 10 C-rate of the battery prepared in Example 1 and Comparative Example 1, and FIG. 4B is a discharge curve at 10 C-rate of the battery prepared in Example 2 and Comparative Example 2. to be.

도 4a를 참조하면, 본 발명에 의해 양극 활물질로 활성탄을 포함하는 실시예 1에서 제조된 전지가, 상기 활성탄을 포함하지 않는 비교예 1의 전지보다 10 C-rate에서 월등히 뛰어난 성능을 보이는 것을 확인할 수 있다. 또한, 도 4b를 참조하면, 본 발명에 의해 양극 활물질로 활성탄을 포함하는 실시예 2에서 제조된 전지가, 상기 활성탄을 포함하지 않는 비교예 2의 전지보다 10 C-rate에서 월등히 뛰어난 성능을 보이는 것을 확인할 수 있다.Referring to FIG. 4A, it was confirmed that the battery prepared in Example 1 including activated carbon as a cathode active material according to the present invention showed superior performance at 10 C-rate than the battery of Comparative Example 1 including no activated carbon. Can be. In addition, referring to Figure 4b, the battery prepared in Example 2 containing activated carbon as a positive electrode active material according to the present invention shows a superior performance at 10 C-rate than the battery of Comparative Example 2 not containing the activated carbon You can see that.

(( 실험예Experimental Example 3) 3) 싸이클에In the cycle 따른 비방전용량 특성 Specific discharge characteristics

상기 실시예 1, 및 2와 비교예 1, 및 2에서 제조된 전지의 싸이클에 따른 비방전용량을 알아보았다.Specific discharge capacities according to cycles of the batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were examined.

도 5는 실시예 1, 및 2와 비교예 1, 및 2에서 제조된 전지의 20 C-rate에서의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프이다. FIG. 5 is a graph showing specific discharge capacity according to cycles at 20 C-rate of the batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2. FIG.

도 5를 참조하면, 본 발명에 의해 양극 활물질로 활성탄을 포함하는 실시예 1, 및 2의 전지는 그렇지 않은 비교예 1, 및 2와 비교하여 뛰어난 성능을 보이는 것을 알 수 있다. Referring to FIG. 5, it can be seen that the batteries of Examples 1 and 2 including activated carbon as the cathode active material show superior performance compared to Comparative Examples 1 and 2 which do not include the activated carbon according to the present invention.

하이브리드hybrid 커패시터 Capacitor

(( 실시예Example 3)  3) 하이브리드hybrid 커패시터의 제조 Manufacture of capacitors

Li[Ni0 .5Mn1 .5]O4 과 활성탄을 7:3의 중량비로 혼합한 다음, 여기에 도전제로 아세틸렌 블랙을, 결합제로 카르복시메틸 셀룰로오스(CMC) 및 스타디엔 부타디엔 러버(SBR)를 85:10:3:2의 중량비로 혼합하여 양극 형성용 조성물을 제조하였다. 상기 양극 형성용 조성물을 20 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 120 ℃에서 진공 건조하여 양극을 제조하였다.Li [Ni Mn 0 .5 1 .5] O 4 and the active carbon 7: were mixed in a weight ratio of 3, and then, where the conductive agent of acetylene black, a binder, carboxymethyl cellulose (CMC) and diene star-butadiene rubber (SBR) Was mixed in a weight ratio of 85: 10: 3: 2 to prepare a composition for forming an anode. The positive electrode forming composition was uniformly applied to a 20 μm thick aluminum foil, and vacuum dried at 120 ° C. to prepare a positive electrode.

상기 제조된 커패시터용 양극을 사용하고, 상대 전극으로 활성탄을 사용하고, 다공성 폴리에틸렌막(셀가르드 엘엘씨 제, Celgard 2300, 두께: 25㎛)을 세퍼레이터로 사용하고, 프로필렌 카보네이트 용매에 LiBF4가 1 M 농도로 녹아있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조공정에 따라 코인형의 하이브리드 커패시터를 제조하였다.The capacitor anode prepared above was used, activated carbon was used as a counter electrode, a porous polyethylene membrane (Celgard ELC, Celgard 2300, thickness: 25 µm) was used as a separator, and LiBF 4 was 1 in propylene carbonate solvent. Coin-type hybrid capacitors were manufactured according to a commonly known manufacturing process using a liquid electrolyte dissolved in M concentration.

(( 참조예Reference Example 1)  One) 하이브리드hybrid 커패시터의 제조 Manufacture of capacitors

상기 양극에서 활성탄을 사용하지 않은 것을 제외하고는 실시예 3과 동일하게 실시하여 하이브리드 커패시터를 제조하였다.A hybrid capacitor was manufactured in the same manner as in Example 3 except that the activated carbon was not used at the anode.

(( 실험예Experimental Example 4) 비방전용량 특성 4) Specific Discharge Capacity

상기 실시예 3, 및 참조예 1에서 제조된 하이브리드 커패시터의 방전 용량을 알아보기 위해, 각각의 하이브리드 커패시터를 10 C-rate에서 충방전을 수행하여 싸이클에 따른 비방전용량(specific discharge capacity)을 측정하였다.In order to determine the discharge capacities of the hybrid capacitors prepared in Example 3 and Reference Example 1, specific discharge capacities were measured according to cycles by charging and discharging each hybrid capacitor at 10 C-rate. .

도 6은 실시예 3, 및 참조예 1의 하이브리드 커패시터의 싸이클에 따른 비방전용량(specific discharge capacity)을 보여주는 그래프이다.FIG. 6 is a graph showing specific discharge capacity according to cycles of the hybrid capacitors of Example 3 and Reference Example 1. FIG.

도 6을 참조하면, 실시예 3, 및 참조예 1의 하이브리드 커패시터의 수명 특성은 큰 차이가 없으나 고전류 방전에서 뛰어난 용량 특성을 가짐을 알 수 있다.Referring to FIG. 6, it can be seen that the life characteristics of the hybrid capacitors of Example 3 and Reference Example 1 are not significantly different, but have excellent capacity characteristics in high current discharge.

전술한 바와 같이, 본 발명에 의해 탄소계 양극 활물질을 포함하는 양극을 구비한 리튬 이차 전지 및 하이브리드 커패시터를 제조하였다. 이러한 리튬 이차 전지 및 하이브리드 커패시터는 고율 특성이 우수할 뿐만 아니라 고용량, 고효율, 및 장수명의 특성이 있다.As described above, the lithium secondary battery and the hybrid capacitor having the positive electrode including the carbon-based positive electrode active material were manufactured according to the present invention. Such lithium secondary batteries and hybrid capacitors not only have high rate characteristics but also have high capacity, high efficiency, and long life.

Claims (10)

리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물을 포함하는 제1 활물질과 활성탄을 포함하는 제2 활물질이 9:1 내지 6:4의 중량비로 혼합된 활물질을 포함하는 양극 활물질; A positive electrode active material including an active material in which a first active material including a reversible intercalation / de-intercalation compound of lithium and a second active material including activated carbon are mixed in a weight ratio of 9: 1 to 6: 4; 도전제; 및Conducting agents; And 바인더를 포함하고, Including a binder, 상기 도전제는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은, 및 이들의 혼합물로 이루어진 군에서 선택되는 것인 양극.The conductive agent is selected from the group consisting of natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, copper, nickel, aluminum, silver, and mixtures thereof. 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 리튬 복합금속 산화물, 리튬 함유 칼코게나이드 화합물 및 이들의 혼합물로 이루어진 군에서 선택된 1종인 것인 양극.The compound capable of reversible intercalation / deintercalation of lithium is one selected from the group consisting of lithium composite metal oxides, lithium-containing chalcogenide compounds, and mixtures thereof. 제1항에 있어서,The method of claim 1, 상기 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 화합물은 하기 화학식 1 또는 2로 표시되는 화합물인 것인 양극:A compound capable of reversible intercalation / deintercalation of lithium is a compound represented by Formula 1 or 2 below: [화학식 1][Formula 1] LiaNi1-x-y-zCoxMnyMzO2-δPδ Li a Ni 1-xyz Co x Mn y M z O 2-δ P δ (상기 화학식 1에서, M은 Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, 및 W로 이루어진 군에서 선택된 1종의 원소이고, 0.95≤a≤1.2, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.3, 및 0<δ≤0.1이다.)(In Formula 1, M is one element selected from the group consisting of Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, and W) , 0.95 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.3, and 0 <δ ≦ 0.1.) [화학식 2][Formula 2] LiaNixCoyMn2-x-y-zMzO4-δPδ Li a Ni x Co y Mn 2-xyz M z O 4-δ P δ (상기 화학식 2에서, M은 Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, 및 W로 이루어진 군에서 선택된 1종의 원소이고, P는 F 또는 S 중에서 선택된 원소이고, 0.95≤a≤1.2, 0≤x≤0.5, 0≤y≤0.5, 0≤z≤0.3 및 0<δ≤0.1이다.)(In Formula 2, M is one element selected from the group consisting of Mg, Al, Cr, V, Ti, Cr, Fe, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, and W) , P is an element selected from F or S, and 0.95 ≦ a ≦ 1.2, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5, 0 ≦ z ≦ 0.3, and 0 <δ ≦ 0.1.) 삭제delete 제1항, 제4항 및 제5항 중 어느 한 항에 따른 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함하는 리튬 이차 전지.An anode according to any one of claims 1, 4 and 5; A negative electrode including a negative electrode active material; And a lithium secondary battery comprising an electrolyte present between them. 제7항에 있어서,The method of claim 7, wherein 상기 음극 활물질은 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 및 이들의 혼합물로 이루어진 군에서 선택된 1종의 탄소질; 리튬과 합금화가 가능한 금속질 화합물; 리튬 박막; 및 이들의 혼합물로 이루어진 군에서 선택된 1종의 화합물을 포함하는 것인 리튬 이차 전지.The negative electrode active material may be selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers, amorphous carbon, and mixtures thereof; Metallic compounds capable of alloying with lithium; Lithium thin film; And a compound selected from the group consisting of a mixture thereof. 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 이들 사이에 존재하는 전해질을 포함하고,A positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; And an electrolyte present between them, 상기 양극은 제1항, 제4항 및 제5항 중 어느 한 항에 따른 것인 하이브리드 커패시터.A hybrid capacitor according to any one of claims 1, 4 and 5. 제9항에 있어서,The method of claim 9, 상기 음극 활물질은 활성탄을 포함하는 것인 하이브리드 커패시터.The negative active material is a hybrid capacitor containing activated carbon.
KR1020060095683A 2006-09-29 2006-09-29 Cathode, and lithium secondary battery and hybrid capacitor comprising same KR100834053B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060095683A KR100834053B1 (en) 2006-09-29 2006-09-29 Cathode, and lithium secondary battery and hybrid capacitor comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060095683A KR100834053B1 (en) 2006-09-29 2006-09-29 Cathode, and lithium secondary battery and hybrid capacitor comprising same

Publications (2)

Publication Number Publication Date
KR20080029479A KR20080029479A (en) 2008-04-03
KR100834053B1 true KR100834053B1 (en) 2008-06-02

Family

ID=39532049

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060095683A KR100834053B1 (en) 2006-09-29 2006-09-29 Cathode, and lithium secondary battery and hybrid capacitor comprising same

Country Status (1)

Country Link
KR (1) KR100834053B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206998A1 (en) * 2010-02-25 2011-08-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8953303B2 (en) 2010-10-04 2015-02-10 Korea Electronics Technology Institute Cathode active material for a lithium ion capacitor, and method for producing the cathode active material
WO2021177647A1 (en) * 2020-03-03 2021-09-10 Samsung Sdi Co., Ltd. Cathode, all-solid secondary battery including cathode, and method of preparing all-solid secondary battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101098193B1 (en) 2010-04-30 2011-12-23 주식회사 엘지화학 Cathode Active Material for Secondary Battery
EP2511972B1 (en) 2010-04-30 2017-05-31 LG Chem, Ltd. Cathode active material and lithium secondary battery using same
KR101084076B1 (en) 2010-05-06 2011-11-16 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR101181841B1 (en) 2010-07-02 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery with high voltage and rechargeable lithium battery including same
WO2012036474A2 (en) 2010-09-17 2012-03-22 주식회사 엘지화학 Positive electrode active material and lithium secondary battery using same
KR101181848B1 (en) 2011-01-28 2012-09-11 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR101711987B1 (en) 2012-04-30 2017-03-03 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and lithium secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257416A (en) 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using this positive electrode
KR20050048739A (en) * 2003-11-20 2005-05-25 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR20050079782A (en) * 2004-02-06 2005-08-11 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR20060076680A (en) * 2004-12-29 2006-07-04 한국전기연구원 Hybrid energy storage device
KR20060098789A (en) * 2005-03-08 2006-09-19 삼성에스디아이 주식회사 Positive electrode slurry composition for lithium secondary battery and lithium secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257416A (en) 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using this positive electrode
KR20050048739A (en) * 2003-11-20 2005-05-25 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
KR20050079782A (en) * 2004-02-06 2005-08-11 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR20060076680A (en) * 2004-12-29 2006-07-04 한국전기연구원 Hybrid energy storage device
KR20060098789A (en) * 2005-03-08 2006-09-19 삼성에스디아이 주식회사 Positive electrode slurry composition for lithium secondary battery and lithium secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206998A1 (en) * 2010-02-25 2011-08-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US9153842B2 (en) * 2010-02-25 2015-10-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery including positive electrode including activated carbon and electrolyte containing propylene carbonate
US8953303B2 (en) 2010-10-04 2015-02-10 Korea Electronics Technology Institute Cathode active material for a lithium ion capacitor, and method for producing the cathode active material
WO2021177647A1 (en) * 2020-03-03 2021-09-10 Samsung Sdi Co., Ltd. Cathode, all-solid secondary battery including cathode, and method of preparing all-solid secondary battery

Also Published As

Publication number Publication date
KR20080029479A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
CN112313819B (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
KR100834053B1 (en) Cathode, and lithium secondary battery and hybrid capacitor comprising same
US9748574B2 (en) Anode and secondary battery
CN111542949B (en) Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery including the same
US20090155694A1 (en) Cathode and lithium battery using the same
KR20180087162A (en) Method for preparing lithium secondary battery having high-temperature storage properties
EP3731312B1 (en) Method for manufacturing negative electrode
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR20090020487A (en) Non-aqueous electrolytic solution secondary battery
US20230282836A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
KR20130018498A (en) Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
US9673446B2 (en) Lithium ion secondary battery containing a negative electrode material layer containing Si and O as constituent elements
KR101440347B1 (en) Anode Having Multi-Layer Structure for Secondary Battery and Lithium Secondary Battery Including The Same
JP2009238663A (en) Nonaqueous secondary battery
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
KR20190032248A (en) Positive electrode active material for secondary battery and lithium secondary battery comprising the same
KR20190030345A (en) Pre-lithiation method of negative electrode for secondary battery
KR102206590B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP4916263B2 (en) Power storage device
US10170760B2 (en) Lithium ion secondary battery
EP4060761A1 (en) Cathode for secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR100576221B1 (en) Negative active material for large capacity rechargeable lithium battery and large capacity rechargeable lithium battery comprising thereof
KR20080029480A (en) Lithium secondary battery, and hybrid capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee