JP2855877B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2855877B2
JP2855877B2 JP3085109A JP8510991A JP2855877B2 JP 2855877 B2 JP2855877 B2 JP 2855877B2 JP 3085109 A JP3085109 A JP 3085109A JP 8510991 A JP8510991 A JP 8510991A JP 2855877 B2 JP2855877 B2 JP 2855877B2
Authority
JP
Japan
Prior art keywords
zirconium
battery
positive electrode
lithium
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3085109A
Other languages
Japanese (ja)
Other versions
JPH04319260A (en
Inventor
庄一郎 渡邊
晃好 西山
秀 越名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3085109A priority Critical patent/JP2855877B2/en
Publication of JPH04319260A publication Critical patent/JPH04319260A/en
Application granted granted Critical
Publication of JP2855877B2 publication Critical patent/JP2855877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
特にリチウム複合酸化物を正極に用いた電池の特性改良
に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to improvement of characteristics of a battery using a lithium composite oxide for a positive electrode.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコン等の電
子機器のポ−タブル化、コ−ドレス化が急速に進んでお
り、これらの駆動用電源として小型、軽量で高エネルギ
−密度を有する二次電池への要望が高い。このような点
で非水系二次電池、特にリチウム二次電池はとりわけ高
電圧、高エネルギ−密度を有する電池として期待が大き
い。
2. Description of the Related Art In recent years, portable devices and cordless electronic devices such as AV devices and personal computers have been rapidly developed, and secondary power sources having a small size, light weight and high energy density are used as power sources for driving these devices. Demand for batteries is high. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】この要望を満たす正極活物質としてリチウ
ムをインタ−カレ−ション、デインタ−カレ−ションす
ることのできる層状化合物、例えばLiCoO2、Li
NiO2(例えば米国特許第4302518号)やLi
CoxNi1-x2(x≦0.27)(特開昭62−26
4560号)などのリチウムと遷移金属を主体とする複
合酸化物(以下、リチウム複合酸化物と記す)が提案さ
れ、これらの活物質を用いて4V級の電圧をもった高エ
ネルギ−密度二次電池の具体化開発が進められている。
[0003] As a positive electrode active material satisfying this demand, a layered compound capable of intercalating and deintercalating lithium, for example, LiCoO 2 , Li
NiO 2 (eg, US Pat. No. 4,302,518) or Li
Co x Ni 1-x O 2 (x ≦ 0.27) (JP-A-62-26)
No. 4560) and other composite oxides mainly composed of lithium and a transition metal (hereinafter referred to as lithium composite oxides). Using these active materials, a high-energy-density secondary having a voltage of 4 V class has been proposed. The practical development of batteries is underway.

【0004】[0004]

【発明が解決しようとする課題】Li1-xCoO2(0≦
x<1)(以下LiCoO2と記す)は、リチウムに対
し4V以上の電位を示し、正極活物質として用いると高
エネルギ−密度を有する二次電池が実現できる。しか
し、逆に電位が高い故に電解液を形成するプロピレンカ
−ボネ−トやジメトキシエタンなどの有機溶媒を分解す
るなど、電池の充放電特性に悪影響を与え、電池特性の
劣化の原因となっていた。このような問題に対し、コバ
ルトの一部をニッケル(特開昭63−299056
号)、鉄(特開昭63−211564号)、アルミニウ
ム、スズ、インジウム(特開昭62−90863号)で
置換した複合酸化物を合成し、正極活物質を改質するこ
とにより優れた充放電特性が得られるという提案がなさ
れている。しかし、このような元素でコバルトの一部を
置換したリチウム複合酸化物は、放電電圧が小さくなる
傾向があり、本来の高電圧、高エネルギ−密度という特
徴を低減する結果となる。また、このようなリチウム複
合酸化物は、充電状態で高温に保存すると、LiCoO
2と同様に著しく容量が減少するという問題が依然とし
て残されている。
SUMMARY OF THE INVENTION Li 1-x CoO 2 (0 ≦
x <1) (hereinafter referred to as LiCoO 2 ) shows a potential of 4 V or more with respect to lithium, and a secondary battery having a high energy density can be realized when used as a positive electrode active material. However, on the contrary, since the potential is high, an organic solvent such as propylene carbonate or dimethoxyethane that forms an electrolytic solution is decomposed, thereby adversely affecting the charge / discharge characteristics of the battery and causing deterioration of the battery characteristics. Was. To solve such a problem, part of cobalt is replaced by nickel (Japanese Patent Application Laid-Open No. 63-299056).
), Iron (JP-A-63-212564), aluminum, tin, and indium (JP-A-62-90863) to synthesize a composite oxide, which is improved by modifying the positive electrode active material. It has been proposed that discharge characteristics can be obtained. However, a lithium composite oxide in which cobalt is partially substituted with such an element tends to have a low discharge voltage, which results in a reduction in the inherent characteristics of high voltage and high energy density. Further, such a lithium composite oxide, when stored at a high temperature in a charged state, has a LiCoO 2
As in 2 , the problem that the capacity is significantly reduced still remains.

【0005】本発明はこのような課題を解決するもの
で、高い作動電圧を維持すると共に、優れた充放電特
性、保存特性をもった二次電池を提供することを目的と
するものである。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a secondary battery which maintains a high operating voltage and has excellent charge / discharge characteristics and storage characteristics.

【0006】[0006]

【課題を解決するための手段】これらの課題を解決する
ために本発明は、正極活物質であるLiCoO2にジル
コニウムを添加することで、高電圧を発生し、かつ優れ
た充放電特性と保存特性を示す非水電解液二次電池が得
られることを見出したものである。
SUMMARY OF THE INVENTION In order to solve these problems, the present invention provides a high voltage, excellent charge / discharge characteristics and excellent storage characteristics by adding zirconium to LiCoO 2 as a positive electrode active material. It has been found that a nonaqueous electrolyte secondary battery exhibiting characteristics can be obtained.

【0007】[0007]

【作用】LiCoO2を正極活物質とした電池を充電状
態で高温保存した場合、保存後の電池の容量、サイクル
特性は極端に劣化する。これは電解液の分解や結晶構造
の破壊が原因と考えられる。このような高電位における
LiCoO2上での電解液の分解反応や結晶破壊を抑制
することが、実用上の電池として非常に重要なポイント
となる。
When a battery using LiCoO 2 as a positive electrode active material is stored at a high temperature in a charged state, the capacity and cycle characteristics of the battery after storage are extremely deteriorated. This is considered to be caused by decomposition of the electrolyte and destruction of the crystal structure. It is a very important point for a practical battery to suppress the decomposition reaction and crystal destruction of the electrolytic solution on LiCoO 2 at such a high potential.

【0008】本発明はLiCoO2にジルコニウムを添
加することにより、LiCoO2粒子の表面が酸化ジル
コニウムZrO2もしくはリチウムとジルコニウムとの
複合酸化物Li2ZrO3に覆われることによって安定化
され、その結果高い電位においても電解液の分解反応や
結晶破壊を起こすことなく、優れたサイクル特性、保存
特性を示す正極活物質が得られることによるものであ
る。また、この効果は単に焼成後のLiCoO2に、ジ
ルコニウムもしくはジルコニウムの化合物を混合するだ
けでは得られず、リチウム塩とコバルト化合物とを混合
したものにジルコニウムを添加して焼成することにより
得られるものである。
[0008] The present invention is by adding a zirconium LiCoO 2, is stabilized by the surface of the LiCoO 2 particles are covered with the composite oxide Li 2 ZrO 3 with zirconium oxide ZrO 2 or lithium and zirconium, as a result This is because a positive electrode active material exhibiting excellent cycle characteristics and storage characteristics can be obtained without causing decomposition reaction or crystal destruction of the electrolytic solution even at a high potential. In addition, this effect can not be obtained simply by mixing zirconium or a zirconium compound with LiCoO 2 after firing , but by mixing a lithium salt with a cobalt compound.
By adding zirconium and firing
It is obtained.

【0009】[0009]

【実施例】以下、図面とともに本発明を具体的な実施例
に沿って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings according to specific embodiments.

【0010】Li2CO3とCoCO3とをLiとCoの
原子比が1対1になるように混合したものに、酸化ジル
コニウム(ZrO2)を添加し、空気中において900
℃で5時間焼成したものを正極活物質とした。酸化ジル
コニウム(ZrO2)の添加割合は、合成した主活物質
LiCoO2のコバルトに対しジルコニウムのモル%で
表すものとし、表1に示したように6種類の検討を行っ
た。
[0010] Zirconium oxide (ZrO 2 ) is added to a mixture of Li 2 CO 3 and CoCO 3 so that the atomic ratio of Li to Co is 1 to 1, and 900 in air.
The material fired at 5 ° C. for 5 hours was used as a positive electrode active material. The addition ratio of zirconium oxide (ZrO 2 ) is represented by mol% of zirconium with respect to the cobalt of the synthesized main active material LiCoO 2 , and six kinds of studies were performed as shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】このようにして合成した正極活物質100
重量部、アセチレンブラック4重量部、グラファイト4
重量部、フッ素樹脂系結着剤7重量部を混合して正極合
剤とし、カルボキシメチルセルロ−ス水溶液に懸濁させ
てペ−スト状にした。このぺ−ストをアルミ箔の両面に
塗着し、乾燥後圧延して極板とした。
The positive electrode active material 100 synthesized as described above
Parts by weight, acetylene black 4 parts by weight, graphite 4
By weight, 7 parts by weight of a fluororesin binder was mixed to prepare a positive electrode mixture, and the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. The paste was applied on both sides of an aluminum foil, dried and rolled to obtain an electrode plate.

【0013】負極は、コ−クスを焼成した炭素材100
重量部に、フッ素樹脂系結着剤10重量部を混合し、カ
ルボキシメチルセルロ−ス水溶液に懸濁させてペ−スト
状にした。そしてこのぺ−ストを銅箔の両面に塗着し、
乾燥後圧延して極板とした。
The negative electrode is made of carbon material 100 obtained by firing coke.
10 parts by weight of a fluororesin binder was mixed with the parts by weight and suspended in an aqueous solution of carboxymethyl cellulose to form a paste. And apply this paste on both sides of the copper foil,
After drying, it was rolled to obtain an electrode plate.

【0014】図1に本実施例で用いた円筒形電池の縦断
面図を示す。電池の構成は正、負極それぞれにリ−ドを
取りつけ、ポリプロピレン製のセパレ−タを介して渦巻
き状に巻回し、電池ケ−ス内に収納した。電解液には炭
酸プロピレンと炭酸エチレンとの等容積混合溶媒に、過
塩素酸リチウムを1モル/lの割合で溶解したものを用
い、封口したものを試験電池とした。
FIG. 1 is a longitudinal sectional view of a cylindrical battery used in this embodiment. The battery was constructed such that a lead was attached to each of the positive and negative electrodes, spirally wound through a polypropylene separator, and housed in a battery case. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate was used, and the sealed battery was used as a test battery.

【0015】この図1において1は耐有機電解液性のス
テンレス鋼板を加工した電池ケ−ス、2は安全弁を設け
た封口板、3は絶縁パッキングを示す。4は極板群であ
り、正極および負極がセパレ−タを介して渦巻き状に巻
回されてケ−ス内に収納されている。そして上記正極か
らは正極リ−ド5が引き出されて封口板2に接続され、
負極からは負極リ−ド6が引き出されて電池ケ−ス1の
底部に接続されている。7は絶縁リングで極板群4の上
下部にそれぞれ設けられている。
In FIG. 1, reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolyte, 2 denotes a sealing plate provided with a safety valve, and 3 denotes an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode and a negative electrode are spirally wound via a separator and housed in a case. Then, a positive electrode lead 5 is pulled out from the positive electrode and connected to the sealing plate 2,
A negative electrode lead 6 is drawn from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0016】これらの試験電池を充放電電流100mA
h、充電終止電圧4.1V、放電終止電圧3.0Vの条
件下で定電流充放電試験を行った。また、充放電を10
サイクル繰り返した後、充電状態において60℃、20
日間の保存試験(以下、高温充電保存と記す)を行い、
保存後の電池における容量保持率を求めた。
These test batteries were charged and discharged at a current of 100 mA.
h, a constant current charge / discharge test was performed under the conditions of a charge end voltage of 4.1 V and a discharge end voltage of 3.0 V. In addition, charge and discharge
After repeating the cycle, the battery is charged at 60 ° C. and 20 ° C.
Day storage test (hereinafter referred to as high temperature charge storage)
The capacity retention of the battery after storage was determined.

【0017】このときの電池A〜Fの充放電サイクル数
と放電容量との関係を図2に示す。また、LiCoO2
へのジルコニウムの添加量とそれに対応した電池A〜F
の高温充電保存試験後の電池の容量保持率(保存後の容
量/保存前の容量)との関係を図3に示す。
FIG. 2 shows the relationship between the number of charge / discharge cycles and the discharge capacity of the batteries A to F at this time. In addition, LiCoO 2
Of Zirconium to Battery and Batteries A to F Corresponding to It
FIG. 3 shows the relationship between the battery capacity retention rate (capacity after storage / capacity before storage) after the high-temperature charge storage test.

【0018】図2より、ジルコニウムをまったく添加し
ていない電池Aは初期の放電容量は大きいものの、充放
電に伴う容量低下は大きく、300サイクル時点では初
期容量の50%となる。これに対し、ジルコニウムを添
加した電池B〜Fでは添加量が増加するに従い容量は低
下するが、充放電サイクルに伴う容量低下はAに比べて
著しく緩和され、ジルコニウムを5モル%以上添加した
電池D〜Fでは300サイクルの時点でも初期容量の8
0%以上を維持している。
FIG. 2 shows that the battery A to which no zirconium is added has a large initial discharge capacity, but has a large capacity decrease due to charge / discharge, and becomes 50% of the initial capacity at 300 cycles. On the other hand, in the batteries B to F to which zirconium is added, the capacity decreases as the addition amount increases. In D to F, the initial capacity is 8 even at the time of 300 cycles.
Maintain 0% or more.

【0019】また、図3からジルコニウムを添加するこ
とにより、高温保存後の電池の容量保持率は著しく向上
し、ジルコニウムを添加しない電池Aが52%であるの
に対し、5%添加した電池Dでは88%以上を示した。
さらにジルコニウムの添加量を増加しても容量保持率は
余り変化しなかった。ジルコニウムを10%添加した電
池Fではサイクル特性、保存特性共に良好であるが、L
iCoO2の表面被覆率が大きくなるので相対的に放電
容量がかなり小さくなる。このためジルコニウムの添加
量は5%程度が適当である。
Further, from FIG. 3, by adding zirconium, the capacity retention rate of the battery after high-temperature storage is remarkably improved, and the battery A without added zirconium is 52%, while the battery D with 5% added. Showed 88% or more.
Further, even when the amount of zirconium added was increased, the capacity retention did not change much. Battery F containing 10% zirconium has good cycle characteristics and storage characteristics,
Since the surface coverage of iCoO 2 increases, the discharge capacity becomes relatively small. For this reason, the addition amount of zirconium is suitably about 5%.

【0020】LiCoO2のコバルトの一部をニッケル
(特開昭63−299056号)、鉄(特開昭63−2
11564号)、アルミニウム、スズ、インジウム(特
開昭62−90863号)で置換した場合、コバルトと
固溶体を形成してLiMyCo1-y2(0≦y≦1:M
はNi,Fe,Al等)で示される複合酸化物となるた
め、表面を安定化させるジルコニウムのような効果は得
られない。
A part of the cobalt of LiCoO 2 is replaced with nickel (JP-A-63-299056) and iron (JP-A-63-2990).
11564 No.), aluminum, tin, when substituted with indium (JP 62-90863), LiM y Co 1- y O 2 to form cobalt and solid solution (0 ≦ y ≦ 1: M
Is a composite oxide represented by Ni, Fe, Al, etc.), so that an effect such as zirconium for stabilizing the surface cannot be obtained.

【0021】また、これらのコバルトの一部を遷移金属
で置換した複合酸化物は、平均電圧が小さくなる欠点が
あったが、ジルコニウム添加の場合はこのような電圧降
下は認めらなかった。従って、ジルコニウムは最適な添
加剤であると言える。
Further, these composite oxides in which a part of cobalt is replaced by a transition metal have a disadvantage that the average voltage is reduced, but when zirconium is added, such a voltage drop is not recognized. Therefore, zirconium can be said to be the optimal additive.

【0022】なお、本実施例では正極合成時の出発材料
としてLi2CO3とCoCO3とを用いたが、それぞれ
リチウムとコバルトの酸化物、水酸化物、酢酸塩などで
あっても構わない。添加するジルコニウムについても酸
化ジルコニウムを用いたが、他のジルコニウム化合物で
あってもよい。また正極活物質としてLiCoO2を用
いたが、化合物中のコバルトの一部を遷移金属で置換し
た化合物でも同様の効果が認められる。さらに負極とし
て炭素質材料を用いたが、これはリチウム金属やリチウ
ム合金であっても構わない。さらにまた電解液には炭酸
プロピレンと炭酸エチレンとの等容積混合溶媒に、過塩
素酸リチウムを1モル/lの割合で溶解したものを用い
たが、他の溶媒にリチウム塩を溶解した電解液でも同様
である。
Although Li 2 CO 3 and CoCO 3 are used as starting materials in the synthesis of the positive electrode in this embodiment, they may be oxides, hydroxides and acetates of lithium and cobalt, respectively. . Although zirconium oxide is used for zirconium to be added, other zirconium compounds may be used. In addition, although LiCoO 2 was used as the positive electrode active material, the same effect can be obtained with a compound in which a part of cobalt in the compound is replaced with a transition metal. Further, although a carbonaceous material was used as the negative electrode, it may be a lithium metal or a lithium alloy. Further, as the electrolytic solution, a solution prepared by dissolving lithium perchlorate at a ratio of 1 mol / l in an equal volume mixed solvent of propylene carbonate and ethylene carbonate was used. However, an electrolytic solution obtained by dissolving a lithium salt in another solvent was used. But the same is true.

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明に
よれば正極活物質であるLiCoO2に適量のジルコニ
ウムを添加することにより、充放電サイクル特性および
高温保存特性に優れた非水電解液二次電池を得ることが
できる。
As is apparent from the above description, according to the present invention, by adding an appropriate amount of zirconium to LiCoO 2 as a positive electrode active material, a non-aqueous electrolyte having excellent charge-discharge cycle characteristics and high-temperature storage characteristics can be obtained. A liquid secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における円筒形電池の縦断面図FIG. 1 is a longitudinal sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】同電池の20℃での充放電サイクル特性図FIG. 2 is a charge / discharge cycle characteristic diagram of the battery at 20 ° C.

【図3】ジルコニウムの添加量と、それに対応した電池
の高温保存後の容量保存率との関係図
FIG. 3 is a diagram showing the relationship between the amount of zirconium added and the capacity retention rate after high-temperature storage of the battery corresponding thereto.

【符号の説明】[Explanation of symbols]

1 電池ケ−ス 2 封口板 3 絶縁パッキング 4 極板群 5 正極リ−ド 6 負極リ−ド 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/58 H01M 4/02 H01M 10/40──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジルコニウム(Zr)を添加したLi1-x
CoO2(0≦x<1)もしくはそのコバルトの一部を
他の遷移金属で置換したものからなる正極と、リチウ
ム、リチウム合金もしくは炭素質材料からなる負極と、
非水電解液とからなる非水電解液二次電池。
1. Li 1-x containing zirconium (Zr)
A positive electrode composed of CoO 2 (0 ≦ x <1) or a substance obtained by substituting a part of cobalt thereof with another transition metal; a negative electrode composed of lithium, lithium alloy or carbonaceous material;
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte.
【請求項2】上記ジルコニウムの添加割合が上記コバル
トに対しモル比で1〜10%である請求項1記載の非水
電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the zirconium is added in a molar ratio of 1 to 10% with respect to the cobalt.
JP3085109A 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2855877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085109A JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085109A JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04319260A JPH04319260A (en) 1992-11-10
JP2855877B2 true JP2855877B2 (en) 1999-02-10

Family

ID=13849460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085109A Expired - Lifetime JP2855877B2 (en) 1991-04-17 1991-04-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2855877B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
JP2007157596A (en) * 2005-12-07 2007-06-21 Seimi Chem Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7452631B2 (en) 2004-05-28 2008-11-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
US8101300B2 (en) 2006-03-02 2012-01-24 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
KR101146878B1 (en) 2003-12-18 2012-05-16 산요덴키가부시키가이샤 Non-aqueous electrolytic secondary battery
US8343662B2 (en) 2003-08-08 2013-01-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US9225006B2 (en) 2011-11-25 2015-12-29 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2020217579A1 (en) 2019-04-26 2020-10-29 日本碍子株式会社 Lithium secondary battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200605A (en) 1998-10-30 2000-07-18 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacture
JP3617447B2 (en) 1999-12-01 2005-02-02 松下電器産業株式会社 Lithium secondary battery
KR100501104B1 (en) * 2001-06-01 2005-07-18 니폰 가가쿠 고교 가부시키가이샤 Lithium cobalt based composite oxide, manufacturing method thereof, positive electrode active material for lithium secondary batteries containing the same and lithium secondary batteries
CN100517818C (en) * 2002-09-25 2009-07-22 清美化学股份有限公司 Positive electrode material for lithium secondary battery and process for producing the same
TWI286849B (en) 2003-03-25 2007-09-11 Nichia Corp Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4737952B2 (en) * 2003-07-24 2011-08-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP4518865B2 (en) 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2005339887A (en) * 2004-05-25 2005-12-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4794180B2 (en) 2005-02-24 2011-10-19 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
EP1947710A1 (en) * 2005-09-29 2008-07-23 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using those
JP2007123238A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, separator for nonaqueous electrolyte battery, and manufacturing method of this separator
JP4958484B2 (en) * 2006-03-17 2012-06-20 三洋電機株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
JP5110818B2 (en) * 2006-03-17 2012-12-26 三洋電機株式会社 Non-aqueous electrolyte battery
JP5110817B2 (en) * 2006-03-17 2012-12-26 三洋電機株式会社 Non-aqueous electrolyte battery
JP4240060B2 (en) 2006-05-26 2009-03-18 ソニー株式会社 Positive electrode active material and battery
JP5463652B2 (en) 2008-11-14 2014-04-09 Tdk株式会社 Active material and electrode manufacturing method
JP5347522B2 (en) 2009-01-20 2013-11-20 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
JP5434278B2 (en) 2009-05-29 2014-03-05 Tdk株式会社 Active material and electrode manufacturing method, active material and electrode
JP2013089321A (en) * 2011-10-13 2013-05-13 Samsung Yokohama Research Institute Co Ltd Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP5987401B2 (en) * 2012-03-28 2016-09-07 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
CN105140492A (en) * 2015-10-14 2015-12-09 广东天劲新能源科技股份有限公司 Cobalt-nickel lithium manganate composite positive electrode material with surface wrapped by lithium zirconate and preparation method
EP3951948A4 (en) 2019-03-27 2022-12-28 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
EP3951947A4 (en) 2019-03-27 2022-12-28 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material for lithium-ion secondary cell, method for manufacturing positive-electrode active material, and lithium-ion secondary cell
JP2022054292A (en) 2020-09-25 2022-04-06 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018741B2 (en) 2002-02-15 2006-03-28 Seimi Chemical Co., Ltd. Particulate positive electrode active material for a lithium secondary cell
US8343662B2 (en) 2003-08-08 2013-01-01 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2005027243A1 (en) * 2003-09-09 2005-03-24 Sanyo Electric Co.,Ltd. Nonaqueous electrolyte secondary battery
US8268485B2 (en) 2003-09-09 2012-09-18 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
KR101146878B1 (en) 2003-12-18 2012-05-16 산요덴키가부시키가이샤 Non-aqueous electrolytic secondary battery
US7452631B2 (en) 2004-05-28 2008-11-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
JP2007157596A (en) * 2005-12-07 2007-06-21 Seimi Chem Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method
US8101300B2 (en) 2006-03-02 2012-01-24 Agc Seimi Chemical Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and its production method
US9225006B2 (en) 2011-11-25 2015-12-29 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2020217579A1 (en) 2019-04-26 2020-10-29 日本碍子株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JPH04319260A (en) 1992-11-10

Similar Documents

Publication Publication Date Title
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
JPH05290843A (en) Lithium secondary battery
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3252433B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same
JPH056779A (en) Nonaqueous electrolytic secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
JPH06124707A (en) Nonaqueous electrolytic battery
JPH056780A (en) Nonaqueous electrolytic secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JP4530843B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP3008638B2 (en) Non-aqueous electrolyte secondary battery and its negative electrode active material
JP2006040572A (en) Positive active material for aqueous lithium secondary battery and aqueous lithium secondary battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13