JP3252433B2 - Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same - Google Patents

Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same

Info

Publication number
JP3252433B2
JP3252433B2 JP06457892A JP6457892A JP3252433B2 JP 3252433 B2 JP3252433 B2 JP 3252433B2 JP 06457892 A JP06457892 A JP 06457892A JP 6457892 A JP6457892 A JP 6457892A JP 3252433 B2 JP3252433 B2 JP 3252433B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
cobalt
licoo
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06457892A
Other languages
Japanese (ja)
Other versions
JPH05266889A (en
Inventor
庄一郎 渡邊
善一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06457892A priority Critical patent/JP3252433B2/en
Publication of JPH05266889A publication Critical patent/JPH05266889A/en
Application granted granted Critical
Publication of JP3252433B2 publication Critical patent/JP3252433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池、
とくにリチウム二次電池に用いる正極活物質の製造法お
よびこれを用いた非水電解液二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to a method for producing a positive electrode active material used for a lithium secondary battery and a nonaqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】近年、AV機器あるいはパソコンなどの
電子機器のポータブル化,コードレス化が急速に進んで
おり、これらの駆動用電源として小型,軽量で高エネル
ギー密度を有する二次電池への要望が高い。このような
点で非水系二次電池、とくにリチウム二次電池はとりわ
け高電圧,高エネルギー密度を有する電池として期待が
大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as AV devices and personal computers have been rapidly advanced, and there has been a demand for a small, lightweight, high energy density secondary battery as a power supply for driving these devices. high. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to be batteries having a high voltage and a high energy density.

【0003】この要望を満たす正極活物質としてリチウ
ムをインターカレーション,デインターカレーションす
ることのできる層状化合物としてLiCoO2が提案さ
れ、4V級の高エネルギー密度二次電池の開発が進めら
れている。
As a positive electrode active material satisfying this demand, LiCoO 2 has been proposed as a layered compound capable of intercalating and de-intercalating lithium, and the development of a 4 V class high energy density secondary battery has been advanced. .

【0004】このようなLiCoO2は、特開昭62−
256371号広報に示されているように、炭酸リチウ
ムLi2Co3と、炭酸コバルトCoCO3を、Co/L
i比がモル比で1:1となるように混合し、900℃で
5時間(一般には650〜1000℃で5〜20時間も
しくはそれを繰り返し行い、焼成する。)焼成すること
によって合成される方法が一般的である。この場合の、
化学反応式を(化1)に示す。
[0004] Such LiCoO 2 is disclosed in
As disclosed in the publication of No. 256371, lithium carbonate Li 2 Co 3 and cobalt carbonate CoCO 3 are produced by using Co / L
It is synthesized by mixing at a molar ratio of 1: 1 and firing at 900 ° C. for 5 hours (typically at 650 to 1000 ° C. for 5 to 20 hours or by repeating and firing). The method is general. In this case,
The chemical reaction formula is shown in (Chem. 1).

【0005】[0005]

【化1】 Embedded image

【0006】[0006]

【発明が解決しようとする課題】このような、従来の正
極物質を薄膜状の極板として構成する場合、正極活物質
と導電剤,結着剤を混合した後、カルボキシメチルセル
ロース水溶液などの糊料溶液に懸濁させてペースト状に
し、集電体金属箔に塗着し、乾燥後圧延して極板とす
る。この方法は製造工程が非常に容易であり、熱処理に
よって容易にカルボキシメチルセルロースを除去するこ
とができ、さらに溶媒に水を用いるのでコスト的にも有
利である。
When such a conventional cathode material is formed as a thin-film electrode plate, a paste material such as an aqueous solution of carboxymethyl cellulose is mixed after mixing the cathode active material with a conductive agent and a binder. It is suspended in a solution to form a paste, applied to a current collector metal foil, dried and rolled to obtain an electrode plate. In this method, the production process is very easy, carboxymethyl cellulose can be easily removed by heat treatment, and water is used as a solvent, which is advantageous in cost.

【0007】しかし、Li2CO3とCoCO3を出発物
質とし、Co/Liのモル比を1.0〜1.1として合
成されたLiCoO2はカルボキシメチルセルロース水
溶液に懸濁させると、著しい塩基性を呈し、集電体であ
るアルミニウム箔に塗着すると、アルミ表面を腐食して
著しい極板の崩れを生じるという問題があった。
However, LiCoO 2 synthesized with Li 2 CO 3 and CoCO 3 as starting materials and a Co / Li molar ratio of 1.0 to 1.1 is extremely basic when suspended in an aqueous solution of carboxymethylcellulose. When applied to an aluminum foil as a current collector, there is a problem that the aluminum surface is corroded and the electrode plate is significantly collapsed.

【0008】また、このような塩基成分は、電池を高温
(例えば60℃)で保存すると極板上に被膜を形成し、
電池特性を著しく劣化させるという問題があった。
Further, such a base component forms a film on the electrode plate when the battery is stored at a high temperature (for example, 60 ° C.),
There is a problem that battery characteristics are significantly deteriorated.

【0009】さらに、このような塩基成分は、水分を吸
水しやすく、電池内に混入した水分が電解質(例えばL
iPF6)を分解し電池特性を劣化させる原因となるな
ど、電池構成上の問題点を生じやすかった。
Further, such a base component easily absorbs water, and the water mixed in the battery may cause the electrolyte (for example, L
It was easy to cause problems in battery configuration, such as decomposing iPF 6 ) and deteriorating battery characteristics.

【0010】このように、塩基性を呈する原因を探求し
た結果、以下のことが明らかになった。(化1)に示し
たように、LiCoO2の合成反応には酸素が必要であ
るが、反応の進行にともなって二酸化炭素が発生するた
めに、反応系が不活性雰囲気になってしまう。このた
め、LiCoO2の合成に必要な酸素が不足し、酸化反
応が十分進行せず、未反応の炭酸リチウムが残留し、こ
れが水溶液中に溶出し塩基性を呈することがわかった。
As described above, as a result of exploring the cause of exhibiting basicity, the following has become clear. As shown in Chemical Formula 1 , oxygen is required for the synthesis reaction of LiCoO 2 , but carbon dioxide is generated as the reaction proceeds, so that the reaction system becomes an inert atmosphere. For this reason, it was found that oxygen required for the synthesis of LiCoO 2 was insufficient, the oxidation reaction did not proceed sufficiently, and unreacted lithium carbonate remained, which was eluted into the aqueous solution and exhibited basicity.

【0011】本発明はこのような課題を解決するもの
で、LiCoO2の合成時に二酸化炭素の生成を抑制
し、酸化反応を完了させる正極活物質の製造法およびこ
れを用いた電池を提供することを目的とするものであ
る。
The present invention has been made to solve the above problems, and provides a method for producing a positive electrode active material that suppresses carbon dioxide generation during the synthesis of LiCoO 2 and completes an oxidation reaction, and a battery using the same. It is intended for.

【0012】[0012]

【課題を解決するための手段】この課題を解決するため
に本発明は、LiCoO2の合成におけるコバルト源と
して、炭酸コバルトの代わりに酸化コバルトCo34
用いることにより、(化2)に示すように、LiCoO
2を1モル合成するときに発生する二酸化炭素の量は、
炭酸コバルトを用いた場合の1/3となり、不活性雰囲
気になりにくく、酸化反応を進行させるのに有利であ
る。
In order to solve this problem, the present invention provides a method for producing LiCoO 2 by using cobalt oxide Co 3 O 4 instead of cobalt carbonate as a cobalt source. As shown, LiCoO
The amount of carbon dioxide generated when 1 mole of 2 is synthesized is
This is one-third that of the case where cobalt carbonate is used, and is less likely to be in an inert atmosphere, which is advantageous for promoting the oxidation reaction.

【0013】[0013]

【化2】 Embedded image

【0014】また、炭酸リチウムを残留させないために
はCo/Li比を1よりも大きい条件にする方がさらに
好ましいが、逆にCo/Li比が大きすぎると活物質中
に酸化コバルトが残留し、高温で電池を保存した場合に
電解液を分解するなどの問題があるため、酸化コバルト
の残留量も最小にする必要があった。
In order to prevent lithium carbonate from remaining, it is more preferable to set the condition that the Co / Li ratio is larger than 1. On the contrary, if the Co / Li ratio is too large, cobalt oxide remains in the active material. However, when the battery is stored at a high temperature, there are problems such as decomposition of the electrolytic solution. Therefore, it is necessary to minimize the residual amount of cobalt oxide.

【0015】上記の条件を満たすために、本発明はLi
CoO2のコバルト源として酸化コバルトCo34を用
い、さらに反応を完全に進行させるためにCo/Li比
を1.01〜1.07としたものである。
In order to satisfy the above conditions, the present invention relates to Li
Using cobalt oxide Co 3 O 4 as cobalt sources CoO 2, is obtained by a 1.01 to 1.07 the Co / Li ratio in order to proceed to completion for a further reaction.

【0016】さらに、残留する酸化コバルトCo34
量を少なくするために、Co/Li比を1.02〜1.
05としたものが、好適である。
Further, in order to reduce the amount of the remaining cobalt oxide Co 3 O 4 , the Co / Li ratio is adjusted to 1.02 to 1.
A value of 05 is preferred.

【0017】そして、このような正極活物質を用いた非
水電解液二次電池は、リチウム含有コバルト複合酸化物
のCuKα線によるX線回析図において、20度付近の
LiCoO2の(003)面のピークと、35度付近の
Co34の(311)面のピーク強度比Co34(31
1)/LiCoO2(003)が0.005〜0.06
の範囲にあるもの、さらには、0.015〜0.055
の範囲にあるものを用いるのが好適である。
A non-aqueous electrolyte secondary battery using such a positive electrode active material has an X-ray diffraction diagram of LiCoO 2 at about 20 degrees in a CuKα ray X-ray diffraction diagram of a lithium-containing cobalt composite oxide. the peak of the surface, in the vicinity of 35 ° Co 3 of O 4 (311) peak intensity ratio of the surface Co 3 O 4 (31
1) / LiCoO 2 (003) is 0.005 to 0.06
And furthermore, 0.015 to 0.055
It is preferable to use those in the range of

【0018】[0018]

【作用】上記のように、LiCoO2の合成におけるコ
バルト源として酸化コバルトを用いることにより、二酸
化炭素の発生量が、炭酸コバルトを用いた場合の1/3
となり、酸化反応を阻害しなくなる。さらに、Co/L
i比を1.01さらには1.02以上にすることで(X
線回析においてCo34(311)/LiCoO 2(0
03)が0.005さらには0.015以上)、酸化反
応を完結させることができ、炭酸リチウムが残留するこ
となしに、LiCoO2を合成することができる。この
結果、電極の吸水や、炭酸リチウムそのものの反応に起
因していた保存特性の劣化などの電池特性の劣化を防止
することができる。
As described above, LiCoOTwoIn the synthesis of
By using cobalt oxide as a Baltic source,
The amount of carbonized carbon is 1/3 that of the case of using cobalt carbonate
And no longer inhibits the oxidation reaction. Further, Co / L
By setting the i ratio to 1.01 or 1.02 or more, (X
In the line diffraction, CoThreeOFour(311) / LiCoO Two(0
03) is 0.005 or more, 0.015 or more).
The reaction can be completed and lithium carbonate remains.
LiCoOTwoCan be synthesized. this
As a result, the electrode absorbs water and reacts with lithium carbonate itself.
Prevents deterioration of battery characteristics such as deterioration of storage characteristics
can do.

【0019】さらには、極板を構成するときに、活物質
をカルボキシメチルセルロース水溶液などの糊料に懸濁
させても塩基性を呈することがなく、アルミ表面の腐食
による極板の崩れを防止することができる。
Further, when forming the electrode plate, even if the active material is suspended in a paste such as an aqueous solution of carboxymethylcellulose, it does not exhibit basicity, and the electrode plate is prevented from collapsing due to corrosion of the aluminum surface. be able to.

【0020】また、Co/Li比を1.07さらには
1.05以下にすることによって(X線回析図において
Co34(311)/LiCoO2(003)が0.0
6さらには0.055以下)、活物質中に残留する酸化
コバルト量が最小となり、高温保存中における電解液の
分解を回避することができる。
By setting the Co / Li ratio to 1.07 or 1.05 or less (Co 3 O 4 (311) / LiCoO 2 (003) in the X-ray
6 or 0.055 or less), the amount of cobalt oxide remaining in the active material is minimized, and the decomposition of the electrolytic solution during high-temperature storage can be avoided.

【0021】また、本発明による活物質を用いた正極
を、適当な負極、例えば充放電効率のよいカーボンやリ
チウム金属などと組み合わせることによって高電圧,高
容量を有し、充放電サイクル特性に優れた非水電解液二
次電池を実現することができる。
Further, by combining the positive electrode using the active material according to the present invention with an appropriate negative electrode, for example, carbon or lithium metal having high charge / discharge efficiency, it has high voltage, high capacity, and excellent charge / discharge cycle characteristics. A non-aqueous electrolyte secondary battery can be realized.

【0022】[0022]

【実施例】以下に本発明の一実施例を図面を参照しなが
ら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0023】Li2CO3とCo34をCo/Li比が
0.9〜1.1になるように、(表1)に示す7種類の
割合で混合したものを、空気中900℃で5時間焼成し
たものを正極活物質とした。
A mixture of Li 2 CO 3 and Co 3 O 4 at the seven ratios shown in Table 1 so that the Co / Li ratio is 0.9-1.1 is obtained at 900 ° C. in air. What was calcined for 5 hours was used as a positive electrode active material.

【0024】[0024]

【表1】 [Table 1]

【0025】Co/Li比を0.9,1.0,1.0
5,1.1として合成したLiCoO 2のX線回析図を
図1に示す。
The Co / Li ratio is 0.9, 1.0, 1.0
LiCoO synthesized as 5,1.1 TwoX-ray diffraction diagram of
As shown in FIG.

【0026】図1から明らかなように、Co/Li比が
1以下ではCo34のピークは認められないが、1より
大きくなると31.24度および36.83度にCo3
4の(220)面および(311)面のピークが出現
する。
[0026] As apparent from FIG. 1, although Co / Li ratio is not observed a peak of Co 3 O 4 is 1 or less, Co 3 to 31.24 degrees and 36.83 degrees becomes greater than 1
Peaks of the (220) plane and the (311) plane of O 4 appear.

【0027】LiCoO2の(003)面のピークと、
37度付近のCo34の(311)面のピーク強度比
(Co34(311)/LiCoO2(003))とC
o/Li比との関係を図2に示した。ピーク強度比はC
o/Li比が1以上になるとほぼ直線的に上昇し、Co
/Li比が1.1では0073に達する。
The peak of the (003) plane of LiCoO 2 ,
The peak intensity ratio (Co 3 O 4 (311) / LiCoO 2 (003)) of the (311) plane of Co 3 O 4 at around 37 degrees and C
FIG. 2 shows the relationship with the o / Li ratio. The peak intensity ratio is C
When the o / Li ratio becomes 1 or more, it rises almost linearly,
When the / Li ratio is 1.1, it reaches 0073.

【0028】このようにして合成したそれぞれのサンプ
ルを正極活物質として100重量部,アセチレンブラッ
ク3重量部,フッ素樹脂系結着剤7重量部を混合して正
極合剤とし、カルボキシメチルセルロース水溶液に懸濁
させてペースト状にした。このペーストをアルミ箔の両
面に塗着し、乾燥後圧延して極板とした。
Each of the thus synthesized samples was mixed with 100 parts by weight of a positive electrode active material, 3 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder to form a positive electrode mixture, and suspended in an aqueous solution of carboxymethyl cellulose. It became cloudy and became a paste. This paste was applied on both sides of an aluminum foil, dried and rolled to obtain an electrode plate.

【0029】なお、このときのカルボキシメチルセルロ
ース水溶液と正極活物質を混練させたペースト(以後単
にペーストと称する)の示すpHを(表1)に併記し
た。
The pH of the paste obtained by kneading the carboxymethylcellulose aqueous solution and the positive electrode active material (hereinafter simply referred to as paste) is also shown in Table 1 below.

【0030】負極は、コークスを熱処理した炭素材10
0重量部に、フッ素樹脂系結着剤10重量部を混合し、
カルボキシメチルセルロース水溶液に懸濁させてペース
ト状にした。そして、このペースを銅箔の両面に塗着
し、乾燥後圧延して極板とした。
The negative electrode is a carbon material 10 obtained by heat treating coke.
0 parts by weight, 10 parts by weight of a fluororesin binder is mixed,
It was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. Then, this pace was applied to both surfaces of the copper foil, dried and rolled to obtain an electrode plate.

【0031】図3に本実施例で用いた円筒形電池の縦断
面図を示す。(電池サイズ;直径13.8mm,高さ50
mm(AA)) 上記の正,負極それぞれにリードを取りつけ、ポリプロ
ピレン製のセパレータを介して渦巻き状に巻回し、電池
ケース内に収納した。電解液には炭酸ジエチルと炭酸エ
チレンの等容積混合溶媒にLiFP6を1モル/リット
ルの割合で溶解したものを用い、封口したものを試験電
池とした。
FIG. 3 is a longitudinal sectional view of the cylindrical battery used in this embodiment. (Battery size: diameter 13.8mm, height 50
mm (AA)) Leads were attached to the positive and negative electrodes, respectively, and spirally wound through a polypropylene separator, and stored in a battery case. As the electrolytic solution, a solution prepared by dissolving LiFP 6 at a ratio of 1 mol / liter in a mixed solvent of equal volumes of diethyl carbonate and ethylene carbonate was used. The sealed battery was used as a test battery.

【0032】図3において、1は耐有機電解液性のステ
ンレス鋼板を加工した電池ケース、2は安全弁を設けた
封口板、3は絶縁パッキングである。4は極板群であ
り、正極および負極がセパレータを介して複数回渦巻き
状に巻回されてケース内に収納されている。そして、上
記正極からは正極リード5が引き出されて封口板2に接
続され、負極からは負極リード6が引き出されて電池ケ
ース1の底部に接続されている。7は絶縁リングで極板
群4の上下部にそれぞれ設けられている。
In FIG. 3, reference numeral 1 denotes a battery case formed by processing a stainless steel plate having resistance to organic electrolyte, reference numeral 2 denotes a sealing plate provided with a safety valve, and reference numeral 3 denotes an insulating packing. Reference numeral 4 denotes an electrode group, in which a positive electrode and a negative electrode are spirally wound a plurality of times via a separator and housed in a case. A positive electrode lead 5 is pulled out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Reference numeral 7 denotes an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0033】(比較例) Li2CO3CoCO 3 をCo/Li比が0.9〜1.
1になるように、(表2)に示したように7種類の割合
で混合したものを、空気中900℃で5時間焼成したも
のを正極活物質とした。また、ペーストの示すpHを
(表2)に併記した。
(Comparative Example) Li 2 CO 3 and CoCO 3 having a Co / Li ratio of 0.9 to 1.
As shown in (Table 2), a mixture obtained by mixing seven kinds at a ratio of 1 and calcining at 900 ° C. for 5 hours in air was used as a positive electrode active material. The pH of the paste is also shown in (Table 2).

【0034】[0034]

【表2】 [Table 2]

【0035】このようにして合成したそれぞれのサンプ
ルを正極活物質として、実施例と同様に電池を作成し
た。
Using each sample synthesized in this manner as a positive electrode active material, a battery was prepared in the same manner as in the example.

【0036】これらの試験電池を充放電電流100mA
h,充電終止電圧4.1V,放電終止電圧3.0Vの条
件下で定電流充放電試験を10サイクル行った後、充電
状態において60℃、20日間の保存試験(以下、高温
充電保存と記す)を行い、保存後の電池における容量保
持率を求めた。
These test batteries were charged and discharged at a current of 100 mA.
h, after 10 cycles of a constant current charge / discharge test under the conditions of a charge termination voltage of 4.1 V and a discharge termination voltage of 3.0 V, a storage test at 60 ° C. for 20 days in a charged state (hereinafter referred to as high-temperature charge storage) ) Was performed to determine the capacity retention of the battery after storage.

【0037】図4に実施例(○印;酸化コバルトより合
成)および比較例(△印;炭酸コバルトより合成)で作
成した電池のCo/Li比とそれに対応した電池A〜L
の高温充電保存試験の電池の容量保持率(保存後の容量
/保存前の容量)を示す。
FIG. 4 shows the Co / Li ratios of the batteries prepared in the example (○: synthesized from cobalt oxide) and the comparative example (合成: synthesized from cobalt carbonate) and the batteries A to L corresponding thereto.
4 shows the capacity retention ratio (capacity after storage / capacity before storage) of the battery in the high-temperature charge storage test.

【0038】図4に示すように、炭酸コバルトから合成
したLiCoO2を用いた電池(△印;電池G〜L)お
よびCo/Li比が0.9〜1.0の電池A,Bは、高
温保存後の電池の容量保持率は何れも60%程度と著し
く悪い。これらの活物質は(表1),(表2)に示した
ように、ペーストのpHが9以上の高い塩基性を示して
いる。このような高い塩基性を呈するペーストを、集電
体であるアルミニウム箔に塗着すると、アルミ表面を腐
食して著しい極板の崩れを生じる。このように、極板が
崩れることにより、保存中に活物質が脱落し、保存後の
容量が減少したと考察される。
As shown in FIG. 4, batteries using LiCoO 2 synthesized from cobalt carbonate (△: batteries GL) and batteries A and B having a Co / Li ratio of 0.9 to 1.0 are: The capacity retention of the batteries after high-temperature storage is remarkably poor at about 60%. As shown in (Table 1) and (Table 2), these active materials have high basicity with a paste pH of 9 or more. When such a highly basic paste is applied to an aluminum foil serving as a current collector, the aluminum surface is corroded, causing significant collapse of the electrode plate. Thus, it is considered that the collapse of the electrode plate caused the active material to fall off during storage, and the capacity after storage to be reduced.

【0039】また、このような塩基成分が水分を吸水
し、電池内に混入した水分が電解質であるLiPF6
分解し、フッ酸を生成する。このフッ酸が、電池内の芯
材や、ケースを腐食するために、保存特性が劣化したも
のと考えられる。また、Co/Li比が1.1の電池F
は図1のX線回析図から解るように、多量に酸化コバル
トを含有している。この酸化コバルトが、保存中に電解
液分解の触媒として作用するために、著しく容量保持率
が低下したものである。
Further, such a base component absorbs water, and the water mixed in the battery decomposes LiPF 6 as an electrolyte to generate hydrofluoric acid. It is considered that the storage characteristics deteriorated because the hydrofluoric acid corroded the core material and the case in the battery. Also, a battery F having a Co / Li ratio of 1.1
Contains a large amount of cobalt oxide, as can be seen from the X-ray diffraction diagram of FIG. Since the cobalt oxide acts as a catalyst for decomposition of the electrolytic solution during storage, the capacity retention is significantly reduced.

【0040】これに対しC〜Eの電池は、ペーストのp
Hが7もしくは8とほぼ中性を示していることからも明
らかなように、炭酸リチウムが完全に反応したことによ
り、芯材の腐食や、吸水の問題が解消し、また、酸化コ
バルトの含有量もわずかなため良好な保存特性を示した
ものである。
On the other hand, the batteries C to E have the paste p
As is evident from the fact that H is almost neutral with 7 or 8, the complete reaction of lithium carbonate eliminates the problem of corrosion of the core material and water absorption, and also contains cobalt oxide. Since the amount was small, it showed good storage characteristics.

【0041】以上のことから、本実施例の非水電解液二
次電池用活物質の製造方法は、炭酸リチウムLi2CO3
と酸化コバルトCo34をCo/Liのモル比で1.0
1〜1.07、さらには1.02〜1.05として混合
し焼成するのが望ましい。
As described above, the method for producing an active material for a non-aqueous electrolyte secondary battery according to the present embodiment uses lithium carbonate Li 2 CO 3.
And cobalt oxide Co 3 O 4 at a Co / Li molar ratio of 1.0
It is desirable to mix and bake them at 1 to 1.07, more preferably 1.02 to 1.05.

【0042】以上のように、非水電解液二次電池におけ
る正極活物質は、CuKα線によるX線回析図におい
て、2θ19度付近に認められるLiCoO2のピーク
と、37度付近に認められるCo34のピーク強度比が
0.005〜0.06、さらに好ましくは、0.015
〜0.055であるLiCoO2を用いる。
As described above, the positive electrode active material in the non-aqueous electrolyte secondary battery has a LiCoO 2 peak observed at about 2θ19 ° and a CoCo observed at about 37 ° in the X-ray diffraction diagram by CuKα ray. The peak intensity ratio of 3 O 4 is 0.005 to 0.06, more preferably 0.015
LiCoO 2 〜0.055 is used.

【0043】なお、本実施例では、電解質として、Li
PF6を用いたが、LiClO4,LiBF4,LiAsF
6などの電解質でも同様の効果が認められた。
In this embodiment, Li is used as the electrolyte.
PF 6 was used, but LiClO 4 , LiBF 4 , LiAsF
Similar effects were observed with electrolytes such as 6 .

【0044】また、非水溶媒についても、本実施例で示
し炭酸ジエチルと炭酸エチレン以外の炭酸プロピレンや
炭酸ブチレンなどの環状エステル,テトラヒドロフラ
ン,4−メチルジオキソランなどの環状エーテル、ジメ
トキシエタンなどの鎖状エーテルなどを用いた2元系の
混合溶媒を用いても、さらにメチルフォルメート,メチ
ルアセテート,エチルアセテート,メチルプロピオネー
ト,エチルプロピオネートなどの鎖状エステルや、ジメ
トキシエタンなどの鎖状エーテルなどを加えた3元系以
上の多元系溶媒でも同様の効果を示した。
As for the non-aqueous solvent, cyclic esters such as propylene carbonate and butylene carbonate other than diethyl carbonate and ethylene carbonate, cyclic ethers such as tetrahydrofuran and 4-methyldioxolan, and chain-like compounds such as dimethoxyethane are also shown in this embodiment. Even when a binary solvent mixture using ether or the like is used, a chain ester such as methyl formate, methyl acetate, ethyl acetate, methyl propionate or ethyl propionate, or a chain ether such as dimethoxyethane is used. The same effect was obtained with a ternary or more multi-system solvent to which the above-mentioned components were added.

【0045】同様に負極についても、本実施例では炭素
材料を負極に用いたが、金属リチウムやリチウム合金な
どの充放電可能な負極であってもよい。
Similarly, as for the negative electrode, a carbon material is used for the negative electrode in the present embodiment, but a chargeable / dischargeable negative electrode such as lithium metal or a lithium alloy may be used.

【0046】[0046]

【発明の効果】以上の実施例の説明から明らかなよう
に、本発明によれば、炭酸リチウムと酸化コバルトの混
合比をCo/Liのモル比で1.01〜1.07の範囲
に規定することにより、極板構成が容易で、高温保存特
性に優れた非水電解液二次電池を得ることができる。
As is apparent from the above description of the embodiments, according to the present invention, the mixing ratio of lithium carbonate and cobalt oxide is defined in the range of 1.01 to 1.07 by the molar ratio of Co / Li. By doing so, it is possible to obtain a nonaqueous electrolyte secondary battery having a simple electrode plate configuration and excellent in high-temperature storage characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の正極活物質であるLiCo
2のX線回析図
FIG. 1 shows LiCo as a positive electrode active material according to one embodiment of the present invention.
X-ray diffraction diagram of O 2

【図2】同酸化コバルトと炭酸リチウムの混合比(Co
/Li比)と、合成されたLiCoO2のCuKα線に
よるX線回析によるCo34のピークの積分強度比Co
34/LiCoO2の関係を示す図
FIG. 2 is a mixture ratio of cobalt oxide and lithium carbonate (Co
/ Li ratio) and the integrated intensity ratio Co of the peak of Co 3 O 4 by X-ray diffraction of the synthesized LiCoO 2 with CuKα radiation.
Diagram showing the relationship of 3 O 4 / LiCoO 2

【図3】同正極活物質を用いた円筒型電池の縦断面図FIG. 3 is a longitudinal sectional view of a cylindrical battery using the positive electrode active material.

【図4】酸化コバルトと炭酸リチウムの混合比(Co/
Li比)と、高温保存後の電池の容量保持率の関係を示
す図。
FIG. 4 shows a mixture ratio of cobalt oxide and lithium carbonate (Co /
FIG. 4 is a diagram showing a relationship between the Li ratio) and the capacity retention of the battery after storage at a high temperature.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode group 5 Positive electrode lead 6 Negative electrode lead 7 Insulation ring

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 C01G 51/00 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40 C01G 51/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸リチウムと酸化コバルトCo 3 4
混合し、焼成することによって合成される、リチウムと
コバルトを主体とする複合酸化物の製造法であって、前
記炭酸リチウムと前記酸化コバルトをCo/Liのモル
比で1.01〜1.07の範囲で混合し、焼成する正極
活物質の製造法。
1. A method for producing a composite oxide mainly composed of lithium and cobalt, which is synthesized by mixing lithium carbonate and cobalt oxide Co 3 O 4 and firing the mixture, wherein the lithium carbonate and the cobalt oxide are mixed. Is mixed at a molar ratio of Co / Li in the range of 1.01 to 1.07 and calcined.
【請求項2】 再充電可能な負極と、非水電解液と、リ
チウム含有コバルト複合酸化物を活物質とする正極とを
備えた非水電解液二次電池であって、前記リチウム含有
コバルト複合酸化物のCuKα線によるX線回析図にお
いて、2θが19度付近に認められるLiCoO2のピ
ークと、37度付近に認められるCo3 4のピーク強度
比Co34/LiCoO2が0.005〜0.06であ
る非水電解液二次電池。
2. A rechargeable negative electrode, a non-aqueous electrolyte, and a rechargeable negative electrode.
A positive electrode using a cobalt-containing cobalt composite oxide as an active material;
A non-aqueous electrolyte secondary battery comprising:
The X-ray diffraction diagram of the cobalt composite oxide with CuKα radiation
And LiCoO observed when 2θ is around 19 degreesTwoNo
And Co around 37 degreesThreeO FourPeak intensity
Ratio CoThreeOFour/ LiCoOTwoIs 0.005 to 0.06
Non-aqueous electrolyte secondary battery.
JP06457892A 1992-03-23 1992-03-23 Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same Expired - Lifetime JP3252433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06457892A JP3252433B2 (en) 1992-03-23 1992-03-23 Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06457892A JP3252433B2 (en) 1992-03-23 1992-03-23 Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH05266889A JPH05266889A (en) 1993-10-15
JP3252433B2 true JP3252433B2 (en) 2002-02-04

Family

ID=13262262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06457892A Expired - Lifetime JP3252433B2 (en) 1992-03-23 1992-03-23 Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3252433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518350B1 (en) 1999-07-30 2003-02-11 Jsr Corporation Rubber composition and tire

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JP4274801B2 (en) 2003-01-09 2009-06-10 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100508941B1 (en) * 2003-11-29 2005-08-17 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery and positive active material for rechargeable lithium battery fabricated using same
KR100570638B1 (en) 2004-02-17 2006-04-12 삼성에스디아이 주식회사 Positive active material for a lithium secondary battery and method of preparing same
KR101201170B1 (en) 2006-03-21 2012-11-13 삼성에스디아이 주식회사 Positive electrode for lithium rechargeable battery and Lithium rechargeable battery comprising the same and Method of making the lithium rechargeable battery
CN101880066B (en) * 2010-06-21 2012-01-25 中信国安盟固利电源技术有限公司 Preparation method of high-density high-safety long-life lithium cobaltate
CN114375514A (en) * 2019-09-11 2022-04-19 日本化学工业株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518350B1 (en) 1999-07-30 2003-02-11 Jsr Corporation Rubber composition and tire

Also Published As

Publication number Publication date
JPH05266889A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
JP2855877B2 (en) Non-aqueous electrolyte secondary battery
JP3067531B2 (en) Positive electrode active material of non-aqueous electrolyte secondary battery and battery using the same
JP2002151070A (en) Nonaqueous electrolyte secondary battery
CN1701459A (en) Secondary cell
JP5026629B2 (en) Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP3252433B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3291528B2 (en) Non-aqueous electrolyte battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2005158612A (en) Positive-electrode subsidiary active material for nonaqueous electrolytic secondary battery, positive-electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method for nonaqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH05174823A (en) Lithium secondary battery and its manufacture
JPH056779A (en) Nonaqueous electrolytic secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP4209160B2 (en) Lithium secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JPH056780A (en) Nonaqueous electrolytic secondary battery
JPH05251079A (en) Manufacture of positive electrode active material for nonaqueous electrolyte cell and nonaqueous electrolyte cell having same positive electrode active material
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JP2004172108A (en) CATHODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUfACTURING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2002117837A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 11