JP2979826B2 - Method for producing positive electrode active material for non-aqueous electrolyte secondary battery - Google Patents

Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Info

Publication number
JP2979826B2
JP2979826B2 JP4040906A JP4090692A JP2979826B2 JP 2979826 B2 JP2979826 B2 JP 2979826B2 JP 4040906 A JP4040906 A JP 4040906A JP 4090692 A JP4090692 A JP 4090692A JP 2979826 B2 JP2979826 B2 JP 2979826B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4040906A
Other languages
Japanese (ja)
Other versions
JPH05242889A (en
Inventor
雅規 北川
純一 山浦
彰克 守田
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4040906A priority Critical patent/JP2979826B2/en
Publication of JPH05242889A publication Critical patent/JPH05242889A/en
Application granted granted Critical
Publication of JP2979826B2 publication Critical patent/JP2979826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
おける正極活物質の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material in a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a drive power source for these devices. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】特に最近、Li含有複合酸化物(一般式L
iMO2またはLiM24但しMは遷移元素)を正極活
物質とし、負極に炭素材を用いた電池系が、高エネルギ
ー密度のリチウム二次電池として注目を集めている。こ
の電池系の特徴は、正負極ともにインターカレーション
反応を利用しているところにある。特に、負極に金属L
iを用いていないので、デンドライト状Liの析出によ
る電極間の短絡等もなく安全性が期待でき、急速充電も
期待できるものである。
Particularly recently, a Li-containing composite oxide (general formula L
A battery system using iMO 2 or LiM 2 O 4 ( where M is a transition element) as a positive electrode active material and a carbon material as a negative electrode has attracted attention as a high energy density lithium secondary battery. The feature of this battery system is that both the positive and negative electrodes utilize an intercalation reaction. In particular, metal L
Since i is not used, safety can be expected without short circuit between electrodes due to precipitation of dendritic Li, and rapid charging can be expected.

【0004】そこで、このような非水電解液二次電池用
のLi含有正極活物質として、幾つかの材料が提案され
てきた。特に層状構造を有するLi含有複合酸化物であ
るLiMO2やスピネル構造を有するLi含有複合酸化
物であるLiM24は、有望な正極活物質材料と言われ
ている。なかでも、LiCoO2、LiNiO2、LiM
24は盛んに研究されている。従来、LiMO2また
はLiM24の一般的な製造方法には、Mの(水)酸化
物またはMの塩(炭酸塩または硝酸塩)と、リチウムの
塩(炭酸塩、硝酸塩または水酸化物)とを混合し、空気
雰囲気下、400℃〜1000℃の温度で焼成する方法
(方法1)がある。
Therefore, several materials have been proposed as such Li-containing positive electrode active materials for non-aqueous electrolyte secondary batteries. In particular, LiMO 2 which is a Li-containing composite oxide having a layered structure and LiM 2 O 4 which is a Li-containing composite oxide having a spinel structure are said to be promising cathode active material materials. Among them, LiCoO 2 , LiNiO 2 , LiM
n 2 O 4 has been actively studied. Conventionally, general methods for producing LiMO 2 or LiM 2 O 4 include (hydr) oxide or M salt (carbonate or nitrate) and lithium salt (carbonate, nitrate or hydroxide). And baking at a temperature of 400 ° C. to 1000 ° C. in an air atmosphere (method 1).

【0005】また、LiMO2で示されるLi含有複合
酸化物を、一般式M(NO32で示される硝酸塩の水溶
液と、水酸化リチウムの水溶液とをあらかじめMとリチ
ウムをほぼ等モル含む割合で混合し、乾燥後400℃〜
1000℃で焼成することにより得る方法(方法2)が
ある。さらにLi2MO3とMOを等モル含む割合で混合
し、不活性ガス雰囲気下で400℃〜1000℃の温度
で焼成することによりLiMO2を得る方法(方法3)
もある。
Further, a Li-containing composite oxide represented by LiMO 2 is prepared by mixing an aqueous solution of a nitrate represented by the general formula M (NO 3 ) 2 and an aqueous solution of lithium hydroxide in advance containing M and lithium in approximately equimolar proportions. At 400 ℃ after drying.
There is a method (method 2) obtained by baking at 1000 ° C. Further, a method of mixing Li 2 MO 3 and MO in an equimolar ratio and baking at a temperature of 400 ° C. to 1000 ° C. in an inert gas atmosphere to obtain LiMO 2 (method 3)
There is also.

【0006】また、これらの製造方法以外に、遷移金属
酸化物または遷移金属硫化物をn−ブチルリチウム含有
のヘキサン溶液またはヨウ化リチウム含有のアセトニト
リル溶液中で反応させることにより、Li含有酸化物ま
たはLi含有硫化物を得る方法(方法4)もある。
In addition to these production methods, a transition metal oxide or a transition metal sulfide is reacted in an n-butyllithium-containing hexane solution or lithium iodide-containing acetonitrile solution to obtain a lithium-containing oxide or a lithium-iodide acetonitrile solution. There is also a method for obtaining Li-containing sulfide (method 4).

【0007】[0007]

【発明が解決しようとする課題】前記の一般的な製造方
法(方法1)は、層状構造を有するLiCoO2または
スピネル構造を有するLiMn24の製造に用いられ
る。
The above-mentioned general production method (method 1) is used for producing LiCoO 2 having a layered structure or LiMn 2 O 4 having a spinel structure.

【0008】また、層状構造を有するLiNiO2の製
造には、一般的に方法2が用いられる。これらを非水電
解液二次電池用正極活物質として用いた場合、良好な充
放電特性が得られる。しかしながら、CoやNiは資源
として限度があり、高価であるため、電池を製造する際
コストが高くなり不利である。一方、LiMn24は資
源として豊富で安価なMnを用いているため、その点は
有利であるが、LiCoO2やLiNiO2に比べて理論
容量は約半分になるため、高エネルギー密度を必要とす
る電池に用いるのは不利となる。
[0008] The method 2 is generally used for producing LiNiO 2 having a layered structure. When these are used as the positive electrode active material for a non-aqueous electrolyte secondary battery, good charge / discharge characteristics can be obtained. However, Co and Ni have limitations as resources and are expensive, which is disadvantageous because the cost increases when manufacturing a battery. On the other hand, LiMn 2 O 4 is advantageous because it uses abundant and inexpensive Mn as a resource, but the theoretical capacity is about half that of LiCoO 2 and LiNiO 2 , so a high energy density is required. It is disadvantageous to use such a battery.

【0009】そこで、資源的に豊富で安価なMnを用
い、理論容量もLiCoO2やLiNiO2とほぼ同等で
あるLiMnO2の製造を、方法3のように行った場
合、層状構造を有するLiMnO2が得られる。しかし
ながら、このようにして製造したLiMnO2を非水電
解液二次電池用正極活物質として用いた場合、良好な充
放電特性が得られない。
[0009] Therefore, when using a resource enriched inexpensive Mn, the production of LiMnO 2 is substantially equal to the theoretical capacity LiCoO 2 and LiNiO 2, was performed as a method 3, LiMnO 2 having a layered structure Is obtained. However, when the LiMnO 2 thus produced is used as a positive electrode active material for a non-aqueous electrolyte secondary battery, good charge / discharge characteristics cannot be obtained.

【0010】また、方法4を用いて製造したLi含有酸
化物またはLi含有硫化物は、水と反応して含有したL
iが遊離するため、極板を製造する際に水は使用できな
くなる。また、極板を加工する際にも、極板を貯蔵する
際にも、水分管理が必要となり、極板製造上の困難さや
工程の繁雑さの観点から実用的ではない。
The Li-containing oxide or Li-sulfide produced using the method 4 reacts with water to contain L
Since i is released, water cannot be used when manufacturing the electrode plate. In addition, when processing the electrode plate and when storing the electrode plate, water management is required, which is not practical in terms of difficulty in manufacturing the electrode plate and complicated processes.

【0011】本発明は、上記のような課題を解決するも
ので、資源的に豊富で安価なMnを用い、理論容量もL
iCoO2やLiNiO2とほぼ同等であるLiMnO2
の製造方法を提供することを目的としている。
The present invention solves the above-mentioned problems, and uses abundant and inexpensive Mn as a resource and has a theoretical capacity of L.
iCoO 2 and LiNiO 2 and LiMnO 2 is substantially the same
The purpose of the present invention is to provide a manufacturing method.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明は、Li含有酸化物である式LiMnO2で表
わされる物質を、出発物質(原材料)としてMnOOH
とLiOHをほぼ等モル含む割合で混合した後に、不活
性ガス雰囲気中で400℃以上600℃以下の温度範囲
で3時間以上焼成することにより得たものである。さら
に好ましくは、式LixMnO2のxが0.9<x<1.
1となるようにMnOOHとLiOHとを混合する。ま
た、不活性ガスは窒素、ヘリウムまたはアルゴンとし、
この不活性ガス中に含まれる酸素濃度が0.5%以下で
あり、焼成処理は温度が400℃以上600℃以下で、
3時間以上焼成するというものである。
In order to achieve the above-mentioned object, the present invention relates to a method of producing a Li-containing oxide material represented by the formula LiMnO 2 as a starting material (raw material).
And LiOH at a ratio containing approximately equimolar amounts, and then calcined in an inert gas atmosphere at a temperature range of 400 ° C. to 600 ° C. for 3 hours or more. More preferably, x in the formula Li x MnO 2 is 0.9 <x <1.
MnOOH and LiOH are mixed so as to be 1. The inert gas is nitrogen, helium or argon,
The concentration of oxygen contained in the inert gas is 0.5% or less, and the baking treatment is performed at a temperature of 400 ° C or more and 600 ° C or less.
Baking is performed for 3 hours or more.

【0013】以上のようにして得たLiMnO2の特徴
は、水と反応して結晶格子中に取り込まれたLiを放出
するといったことはなく、水に安定であり、また負極に
炭素材を用いた有機電解液二次電池の正極活物質として
用いた場合、放電容量の大きな電池を供給するものであ
る。
The characteristics of LiMnO 2 obtained as described above are such that it does not react with water to release Li taken in the crystal lattice, is stable in water, and uses a carbon material for the negative electrode. When used as a positive electrode active material of an organic electrolyte secondary battery, a battery having a large discharge capacity is supplied.

【0014】[0014]

【作用】上記製造方法によれば、出発物質(原材料)と
してMnOOHとLiOHを用いることにより、上記の
条件下で焼成した場合、下記の(式1)に示すような脱
水反応が進行する。
According to the above-mentioned production method, when MnOOH and LiOH are used as starting materials (raw materials), and when calcination is carried out under the above conditions, a dehydration reaction as shown in the following (formula 1) proceeds.

【0015】 MnOOH+LiOH→LiMnO2+H2O……式1 このようにして得たLiMnO2は、理論容量もLiC
oO2やLiNiO2とほぼ同等であり、非水電解液二次
電池用正極活物質として用いた場合、良好な充放電特性
が得られる。また、このようにして得られたLiMnO
2は、水と反応しLiが遊離することもない。そのため
極板製造上の困難さや工程の繁雑さの観点からも実用的
である。
MnOOH + LiOH → LiMnO 2 + H 2 O Formula 1 LiMnO 2 thus obtained has a theoretical capacity of LiC
It is almost equivalent to oO 2 and LiNiO 2, and when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, good charge / discharge characteristics can be obtained. Also, the LiMnO thus obtained is
2 does not react with water and liberate Li. Therefore, it is practical also from the viewpoint of difficulty in manufacturing an electrode plate and complicated processes.

【0016】これは、出発原材料としてMnOOHとL
iOHを用いることにより、脱水反応が容易に進行して
このようなLiMnO2が得られたと考えられる。
This is because MnOOH and L as starting raw materials
It is considered that the use of iOH facilitated the dehydration reaction to obtain such LiMnO 2 .

【0017】[0017]

【実施例】以下、図面とともに本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】(実施例1)本実施例においては、Li含
有Mn酸化物である式LiMnO2で表わされる組成を
もった非水電解液二次電池用正極活物質の製造を行っ
た。
Example 1 In this example, a positive electrode active material for a non-aqueous electrolyte secondary battery having a composition represented by the formula LiMnO 2 , which is a Li-containing Mn oxide, was produced.

【0019】まず、原材料としてMnOOHとLiOH
を用いて、LiとMnの原子比が1:1となるように混
合する。これを窒素雰囲気下、500℃の温度で5時間
焼成した。
First, MnOOH and LiOH are used as raw materials.
And mixing such that the atomic ratio of Li and Mn is 1: 1. This was fired at a temperature of 500 ° C. for 5 hours in a nitrogen atmosphere.

【0020】本実施例により製造した正極活物質と従来
例(方法1)により製造した正極活物質を用いて非水電
解液二次電池を構成し、それらの電池特性を比較した。
A non-aqueous electrolyte secondary battery was constructed using the positive electrode active material manufactured according to the present embodiment and the positive electrode active material manufactured according to the conventional example (method 1), and their battery characteristics were compared.

【0021】図1は本発明の実施例に用いたコイン形電
池の縦断面図である。図1において、正極1は活物質に
導電材である炭素粉末を活物質に対して5wt%、結着
材であるポリ四フッ化エチレン樹脂粉末を活物質に対し
て7wt%混合し、これを正極ケース2の内側にスポッ
ト溶接で固定したチタンネット3上にプレス成型したも
のである。
FIG. 1 is a longitudinal sectional view of a coin-type battery used in an embodiment of the present invention. In FIG. 1, a positive electrode 1 is composed of an active material in which carbon powder as a conductive material is mixed in an amount of 5 wt% with respect to the active material, and a polytetrafluoroethylene resin powder as a binder is mixed in an amount of 7 wt% with respect to the active material. It is press-formed on a titanium net 3 fixed by spot welding inside the positive electrode case 2.

【0022】また、負極4は炭素質材料、(ここではピ
ッチ系球状黒鉛を用いた)の粉末に結着材であるポリア
クリル酸系樹脂粉末を炭素質材料に対して5wt%混合
したもので、封口板5の内側にスポット溶接で固定した
ステンレスネット6にプレス成型したものである。そし
て、これら正,負極の間にポリポピレン製セパレータ7
を配し、適量の電解液8を注入すると共にポリプロピレ
ン製のガスケット9を介してケース2で封口板5を密封
し、直径20mm、高さ1.6mmの完成電池とした。ま
た、電解液には1モルの過塩素酸リチウムを炭酸プロピ
レンと炭酸エチレンとの混合溶媒1リットル中に溶かし
たものを用いた。なお、本実施例においては、主に正極
活物質の特性を評価するために、予め負極容量を大きく
したものを用いた。
The negative electrode 4 is obtained by mixing a powder of a carbonaceous material (here, pitch-based spheroidal graphite is used) with a polyacrylic acid-based resin powder as a binder at 5 wt% with respect to the carbonaceous material. It is press-formed on a stainless steel net 6 fixed to the inside of the sealing plate 5 by spot welding. A separator 7 made of polypropylene is disposed between the positive and negative electrodes.
, A proper amount of electrolyte 8 was injected, and the sealing plate 5 was sealed with the case 2 via a gasket 9 made of polypropylene to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm. The electrolyte used was one in which 1 mol of lithium perchlorate was dissolved in 1 liter of a mixed solvent of propylene carbonate and ethylene carbonate. Note that, in this example, in order to mainly evaluate the characteristics of the positive electrode active material, a material in which the negative electrode capacity was increased in advance was used.

【0023】図2中の破線で示した曲線は、従来例(方
法1)により製造したLiMnO2を正極活物質に用い
た電池における2mAの定電流充放電を充電終止電圧
4.1V、放電終止電圧2.0Vに設定して行った時の
1サイクル目の放電電圧特性である。この電池の場合、
放電容量は8.2mAhであった。一方、本発明により
製造したLiMnO2を正極活物質に用いた電池の放電
電圧特性は、図2の実線で示すように放電容量は12.
2mAhとなり従来例よりも50%近く大きくなった。
これは、焼成前に原材料を混合した時点ではLiとMn
の原子比は1:1になっているが、焼成時にMn酸化物
の結晶格子中に取り込まれるLi量に違いを生じ、本発
明により製造した正極活物質の方が多かったためと考え
られる。
The curve shown by a broken line in FIG. 2 indicates a constant current charge / discharge of 2 mA in a battery using LiMnO 2 produced as a positive electrode active material manufactured by the conventional example (method 1) at a charge end voltage of 4.1 V and a discharge end. It is a discharge voltage characteristic of the first cycle when the voltage is set to 2.0 V. For this battery,
The discharge capacity was 8.2 mAh. On the other hand, the discharge voltage characteristic of the battery using LiMnO 2 produced according to the present invention as the positive electrode active material was 12.1 as shown by the solid line in FIG.
2 mAh, which is almost 50% larger than the conventional example.
This is because Li and Mn are mixed when the raw materials are mixed before firing.
Although the atomic ratio of 1 was 1: 1, it is considered that the amount of Li taken in the crystal lattice of the Mn oxide during firing was different, and the positive electrode active material produced by the present invention was larger.

【0024】(実施例2)そこで、Mn酸化物の結晶格
子中に取り込まれるLi量を多くするために出発物質で
あるMnOOHとLiOHの混合比を変えることによ
り、正極活物質であるLixMnO2中のxの値を変化さ
せて製造した。まず、MnOOHとLiOHをxが0.
5,0.7,0.8,0.9,1.0,1.1,1.
2,1.3,1.5となるように混合し、窒素雰囲気
下、500℃の温度で5時間焼成した。それぞれの条件
で製造した正極活物質を用いて非水電解液二次電池を構
成し、それらの電池特性を比較した。実施例1に示した
条件で、充放電試験を行ったときのそれぞれのxに対す
る放電容量を図3に示す。xが0.5のとき放電容量は
5.1mAhとなり、xが1まではその値が大きくなる
につれて放電容量は大きくなった。しかしながら、xが
1.2よりも大きくなると若干ながら放電容量は小さく
なった。このことから、正極活物質であるLixMnO2
中のxの値を0.9<x<1.1となるようにMnOO
HとLiOHを混合することが望ましい。これは、xが
大きくなるにつれてMn酸化物の結晶格子中に取り込ま
れるLi量が多くなり、そのことが充放電時に動き得る
Li量の増加につながり、放電容量が大きくなったと考
えられる。しかし、xが1よりも大きくなった場合は、
Mn酸化物の結晶格子中に取り込まれるLi量以上にL
iが存在しているため、放電容量は大きくならず、逆に
過剰のLiが不純物として混入することになり、放電容
量は小さくなったと考えられる。
Example 2 In order to increase the amount of Li incorporated into the crystal lattice of Mn oxide, the mixing ratio of MnOOH and LiOH as starting materials was changed to obtain Li x MnO as a positive electrode active material. It was manufactured by changing the value of x in 2 . First, for MnOOH and LiOH, x is 0.
5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.
The mixture was mixed at 2, 1.3, 1.5 and baked at 500 ° C. for 5 hours under a nitrogen atmosphere. A non-aqueous electrolyte secondary battery was constructed using the positive electrode active material manufactured under each condition, and their battery characteristics were compared. FIG. 3 shows the discharge capacity with respect to each x when a charge / discharge test was performed under the conditions shown in Example 1. When x was 0.5, the discharge capacity was 5.1 mAh, and up to x, the discharge capacity increased as the value increased. However, when x was larger than 1.2, the discharge capacity was slightly reduced. From this, Li x MnO 2 which is a positive electrode active material
The value of x in the MnOO is set so that 0.9 <x <1.1.
It is desirable to mix H and LiOH. This is presumably because the amount of Li taken into the crystal lattice of the Mn oxide increases as x increases, which leads to an increase in the amount of Li that can move during charge and discharge, and the discharge capacity increases. However, if x is greater than 1,
L exceeds the amount of Li incorporated into the crystal lattice of the Mn oxide.
It is considered that because i exists, the discharge capacity did not increase, and conversely, excess Li was mixed in as an impurity, and the discharge capacity was reduced.

【0025】(実施例3)また、正極活物質であるMn
酸化物の結晶格子中に取り込まれるLi量が1になるた
めには、不活性ガス雰囲気で焼成する必要がある。そこ
で、不活性ガスに含まれる酸素量の検討を行った。
Example 3 In addition, Mn which is a positive electrode active material
In order for the amount of Li incorporated in the crystal lattice of the oxide to be 1, firing must be performed in an inert gas atmosphere. Therefore, the amount of oxygen contained in the inert gas was examined.

【0026】まず、出発物質であるMnOOHとLiO
Hを、LiとMnの原子比が1:1となるように混合し
たものをそれぞれ窒素中に含まれる酸素が5%,2%,
10%,0.5%,0.1%となるように混合したガス
雰囲気下で、500℃の温度で5時間焼成した。それぞ
れの条件で製造した正極活物質を用いて非水電解液二次
電池を構成し、それらの電池特性を比較した。すなわち
実施例1と同様の充放電試験を行ったときのそれぞれの
酸素濃度に対する放電容量を図4に示す。酸素濃度が
0.5%以下では、放電容量は12mAh以上を示した
が、酸素濃度が大きくなるにつれて放電容量は小さくな
った。このことから、酸素濃度が0.5%以下となるよ
うなガス雰囲気で焼成することが望ましい。これは、焼
成時に酸素が存在した場合、一部のMnイオンが3価か
ら4価に酸化され、Mn酸化物の結晶格子中に取り込ま
れるLi量が減少したためと考えられる。
First, starting materials MnOOH and LiO
H is mixed so that the atomic ratio of Li and Mn is 1: 1. The oxygen contained in nitrogen is 5%, 2%,
It was fired at a temperature of 500 ° C. for 5 hours in a gas atmosphere mixed to be 10%, 0.5%, and 0.1%. A non-aqueous electrolyte secondary battery was constructed using the positive electrode active material manufactured under each condition, and their battery characteristics were compared. That is, FIG. 4 shows the discharge capacity for each oxygen concentration when the same charge / discharge test as in Example 1 was performed. When the oxygen concentration was 0.5% or less, the discharge capacity was 12 mAh or more, but as the oxygen concentration increased, the discharge capacity decreased. For this reason, it is desirable to perform firing in a gas atmosphere in which the oxygen concentration is 0.5% or less. This is presumably because when oxygen was present during firing, some Mn ions were oxidized from trivalent to tetravalent, and the amount of Li taken into the crystal lattice of the Mn oxide was reduced.

【0027】(実施例4)次に、正極活物質であるLi
MnO2の製造に伴う化学反応を進行させるには、熱を
加える必要がある。そこで、焼成温度の違いによる放電
容量特性の検討を行った。
Example 4 Next, the positive electrode active material Li
Heat needs to be applied in order for the chemical reaction involved in the production of MnO 2 to proceed. Therefore, the discharge capacity characteristics depending on the difference in the firing temperature were examined.

【0028】まず、出発物質であるMnOOHとLiO
HをLiとMnの原子比が1:1となるように混合した
ものを、窒素中に含まれる酸素濃度が、0.1%以下と
なるようにしたガス雰囲気下で、焼成温度をそれぞれ2
00℃,300℃,400℃,500℃,600℃,7
00℃,800℃として5時間焼成した。それぞれの条
件で製造した正極活物質を用いて非水電解液二次電池を
構成し、それらの電池特性を比較した。ここで、実施例
1と同様の充放電試験を行ったときの焼成温度に対する
放電容量を図5に示す。焼成温度が200℃のとき、放
電容量は4.0mAhと小さな値を示したが、温度が高
くなるにつれ放電容量は大きくなり、400℃から60
0℃の温度で焼成したときに放電容量は最大値を示し、
さらに焼成温度を高くすると、放電容量は小さくなっ
た。このことから、焼成温度が400℃以上600℃以
下の温度になるように焼成することが望ましい。これ
は、焼成温度が400℃以下の場合、LiOHとMnO
OHの脱水反応は、完全には進行せず、Mn酸化物の結
晶格子中に取り込まれるLi量が少なかったためと考え
られる。また、焼成温度が700℃以上になると、他の
結晶相に転移してしまうことに起因していると考えられ
る。
First, the starting materials MnOOH and LiO
H was mixed at an atomic ratio of Li: Mn of 1: 1 under a gas atmosphere in which the concentration of oxygen contained in nitrogen was 0.1% or less.
00 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 7
The firing was performed at 00 ° C. and 800 ° C. for 5 hours. A non-aqueous electrolyte secondary battery was constructed using the positive electrode active material manufactured under each condition, and their battery characteristics were compared. Here, FIG. 5 shows the discharge capacity with respect to the firing temperature when the same charge / discharge test as in Example 1 was performed. When the firing temperature was 200 ° C., the discharge capacity showed a small value of 4.0 mAh, but as the temperature became higher, the discharge capacity became larger.
When fired at a temperature of 0 ° C., the discharge capacity shows a maximum value,
When the firing temperature was further increased, the discharge capacity decreased. For this reason, it is desirable to perform firing so that the firing temperature is 400 ° C. or higher and 600 ° C. or lower. This is because when the firing temperature is 400 ° C. or lower, LiOH and MnO
This is probably because the OH dehydration reaction did not proceed completely, and the amount of Li taken into the crystal lattice of the Mn oxide was small. Further, it is considered that when the sintering temperature is 700 ° C. or higher, a transition to another crystal phase occurs.

【0029】本発明の正極の製造方法により得た正極活
物質を、スパイラル構造を有する円筒形電池に用いて試
験した結果、先の実施例で用いたボタン形電池の結果と
ほとんど同じ効果が得られることがわかった。
The positive electrode active material obtained by the method for producing a positive electrode of the present invention was tested on a cylindrical battery having a spiral structure, and as a result, almost the same effect as the result of the button battery used in the previous embodiment was obtained. I knew it could be done.

【0030】なお、本実施例では電解液の溶質に過塩素
酸リチウムを用いたが、他のリチウム含有塩、例えばホ
ウフッ化リチウム、六フッ化リン酸リチウム、六フッ化
ヒ酸リチウムなどを用いてもよく、電解液の溶媒にはプ
ロピレンカーボネートとジメトキシエタンとの混合溶媒
の他、例えばエチレンカーボネートやブチレンカーボネ
ートなどの炭酸エステル類、またテトラヒドロフランな
どの炭酸エーテル類などの単独、または混合溶媒を用い
ても同様の効果が得られた。
In this embodiment, lithium perchlorate is used as the solute of the electrolytic solution. However, other lithium-containing salts, for example, lithium borofluoride, lithium hexafluorophosphate, lithium hexafluoroarsenate and the like are used. The solvent for the electrolyte may be a mixed solvent of propylene carbonate and dimethoxyethane, or a single or mixed solvent of carbonates such as ethylene carbonate and butylene carbonate, and carbonates such as tetrahydrofuran. A similar effect was obtained.

【0031】[0031]

【発明の効果】以上説明したように、本発明の製造方法
により得られたLi含有の正極活物質は、水に対して安
定であり、水と反応することで結晶格子中に取り込まれ
たLiを放出することはない。このことは電池の製造
上、有用なことである。またこの正極活物質を使用した
非水電解液電池は、その放電容量が大きくなるという効
果がある。
As described above, the Li-containing positive electrode active material obtained by the production method of the present invention is stable against water, and is incorporated into the crystal lattice by reacting with water. Will not be released. This is useful in battery production. A non-aqueous electrolyte battery using this positive electrode active material has the effect of increasing its discharge capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いたコイン形電池の縦断面
FIG. 1 is a longitudinal sectional view of a coin-type battery used in an embodiment of the present invention.

【図2】本発明における製造方法により製造した正極活
物質を使用して組み立てた電池と従来の製造方法により
製造した正極活物質を使用して組み立てた電池との放電
特性の比較を示す図
FIG. 2 is a diagram showing a comparison of discharge characteristics between a battery assembled using the positive electrode active material manufactured by the manufacturing method of the present invention and a battery assembled using the positive electrode active material manufactured by the conventional manufacturing method.

【図3】本発明の製造方法でLiOHとMnOOHの混
合比を変化させることによりLixMnO2中のxを変化
させたときの放電容量差を示した図
FIG. 3 is a diagram showing a discharge capacity difference when x in Li x MnO 2 is changed by changing a mixing ratio of LiOH and MnOOH in the manufacturing method of the present invention.

【図4】本発明の製造方法で窒素中に含まれる酸素濃度
の違いによる放電容量の差を示した図
FIG. 4 is a diagram showing a difference in discharge capacity due to a difference in the concentration of oxygen contained in nitrogen in the production method of the present invention.

【図5】本発明の製造方法で焼成温度の違いによる放電
容量の差を示した図
FIG. 5 is a view showing a difference in discharge capacity due to a difference in firing temperature in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 正極ケース 3 チタンネット 4 負極 5 封口板 6 ステンレスネット 7 セパレータ 8 電解液 9 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode case 3 Titanium net 4 Negative electrode 5 Sealing plate 6 Stainless steel net 7 Separator 8 Electrolyte 9 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 璋 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平3−4445(JP,A) 特開 平4−181660(JP,A) 特開 平3−98262(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/58 H01M 4/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sho Ota 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-3-4445 (JP, A) JP-A-4- 181660 (JP, A) JP-A-3-98262 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/58 H01M 4/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式LixMnO2(x≒1)で表わされる組
成を有するリチウムとマンガンの複合酸化物からなる非
水電解液二次電池用正極活物質の製造方法であり、
(a)マンガン源となる出発物質がMnOOHであり、
(b)リチウム源となる出発物質がLiOHであり、こ
れらの原材料をほぼ等モル含む割合で混合した後に焼成
する工程を有し、その焼成処理が(c)不活性ガス雰囲
気中で、(d)400℃以上600℃以下の温度範囲で
行なわれる非水電解液二次電池用正極活物質の製造方
法。
1. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a composite oxide of lithium and manganese having a composition represented by the formula Li x MnO 2 (x ≒ 1),
(A) the starting material serving as a manganese source is MnOOH;
(B) a starting material serving as a lithium source is LiOH, and a step of baking after mixing these raw materials at a ratio containing approximately equimolar amounts is carried out. A) a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery performed in a temperature range of 400 ° C. or more and 600 ° C. or less
【請求項2】上記両出発物質を式LixMnO2で表わさ
れる組成において、0.9<x<1.1となるよう混合
する請求項1に記載の非水電解液電池用正極活物質の製
造方法。
2. The positive electrode active material for a non-aqueous electrolyte battery according to claim 1, wherein the two starting materials are mixed so that 0.9 <x <1.1 in a composition represented by the formula Li x MnO 2. Manufacturing method.
【請求項3】不活性ガスは窒素、ヘリウムまたはアルゴ
ンであり、不活性ガス中に含まれる酸素が、0.5%以
下である請求項1に記載の非水電解液電池用正極活物質
の製造方法。
3. The positive electrode active material for a non-aqueous electrolyte battery according to claim 1, wherein the inert gas is nitrogen, helium, or argon, and oxygen contained in the inert gas is 0.5% or less. Production method.
【請求項4】焼成処理が温度400℃以上600℃以下
で5時間以上焼成するものである請求項1に記載の非水
電解液電池用正極活物質の製造方法。
4. The method for producing a positive electrode active material for a non-aqueous electrolyte battery according to claim 1, wherein the sintering is carried out at a temperature of 400 ° C. to 600 ° C. for 5 hours or more.
JP4040906A 1992-02-27 1992-02-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP2979826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040906A JP2979826B2 (en) 1992-02-27 1992-02-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040906A JP2979826B2 (en) 1992-02-27 1992-02-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05242889A JPH05242889A (en) 1993-09-21
JP2979826B2 true JP2979826B2 (en) 1999-11-15

Family

ID=12593555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040906A Expired - Fee Related JP2979826B2 (en) 1992-02-27 1992-02-27 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2979826B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2707426B1 (en) * 1993-07-09 1995-08-18 Accumulateurs Fixes Rechargeable lithium electrochemical generator and its production method.
JP4769998B2 (en) * 2000-04-20 2011-09-07 株式会社豊田中央研究所 Method for producing lithium manganese composite oxide
JP4650648B2 (en) * 2000-04-20 2011-03-16 株式会社豊田中央研究所 Method for producing lithium manganese composite oxide
US7189475B2 (en) 2000-07-27 2007-03-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
KR101139428B1 (en) * 2010-09-24 2012-04-27 한국에너지기술연구원 Electrode for capacitor and a capacitor having the same

Also Published As

Publication number Publication date
JPH05242889A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JP3502118B2 (en) Method for producing lithium secondary battery and negative electrode thereof
US9160031B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH07320784A (en) Nonaqeous electrolytic lithium secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
EP0831542A1 (en) Method for producing positive active material of lithium secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH10302766A (en) Lithium ion secondary battery
JP2009059656A (en) Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JPH04345759A (en) Non-aqueous solvent secondary battery
JP3055621B2 (en) Non-aqueous electrolyte secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPS63114065A (en) Organic electrolyte secondary battery
JPH0212768A (en) Lithium secondary battery
JPH05198300A (en) Manufacture of nonaqueous electrolyte lithium secondary battery and positive electrode active material used for it
JP3509477B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JPH04123769A (en) Nonaqueous solvent secondary battery
JP3128143B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees