JPH04123769A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH04123769A
JPH04123769A JP2241146A JP24114690A JPH04123769A JP H04123769 A JPH04123769 A JP H04123769A JP 2241146 A JP2241146 A JP 2241146A JP 24114690 A JP24114690 A JP 24114690A JP H04123769 A JPH04123769 A JP H04123769A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
battery
negative electrode
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2241146A
Other languages
Japanese (ja)
Inventor
Takumi Uchida
内田 卓美
Nobuaki Chiba
千葉 信昭
Hiroyoshi Nose
博義 能勢
Masami Suzuki
正美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2241146A priority Critical patent/JPH04123769A/en
Publication of JPH04123769A publication Critical patent/JPH04123769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To transmit electric current without voltage loss by using Li-doped Li-Mn composite oxide which is prepared by doping a spinel-type LiMn2O4 with Li and has a specified formula as a cathode active mass and a carbonaceous material as an anode carrier. CONSTITUTION:A lithium-doped lithium-manganese composite oxide which is obtained by doping a spinel-type LiMn2O4 with lithium and has a formula; Li1+xMn2O4(x stands for the number within the range of 0.5<=X<=1) is used as a cathode active mass and a carbonaceous material is used as an anode carrier. The Li ion, with which the cathode is doped, is reversely comes in to and out of an anode and a cathode by charging and discharging of a battery and at that time the oxidation potential is low and thus the Li ion charging and discharging is carried out efficiently. Also, breaking of the crystal structure of the lithium-manganese composite oxide, which is a cathode, is suppressed to low level.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、負極担持体として炭素質材料を用いる非水溶
媒二次電池における正極活物質の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvement of a positive electrode active material in a non-aqueous solvent secondary battery using a carbonaceous material as a negative electrode carrier.

E従来の技術) 近年、電子機器の発達に伴い、小型で軽量、かつ、エネ
ルギー密度が高く、さらに繰返し充放電可能な二次電池
の開発が要望されている。
E. Prior Art) In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged.

この種の二次電池としては、負極活物質としてリチウム
又はリチウム合金を用い、正極活物質としてモリブデン
、バナジウム、チタン、ニオブなどの酸化物、硫化物、
セレン化物などを用いたものが知られている。
This type of secondary battery uses lithium or lithium alloy as the negative electrode active material, and oxides, sulfides, etc. of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material.
Those using selenide etc. are known.

また最近では、高エネルギー密度を有するマンガン酸化
物のサイクル特性を改良・向上させたスピネル型LiM
na04や、他のリチウムマンガン複合酸化物について
の検討が活発になされている。
Recently, spinel-type LiM, which improves and improves the cycle characteristics of manganese oxide with high energy density, has been developed.
Studies on na04 and other lithium manganese composite oxides are being actively conducted.

これらのリチウムマンガン酸化物を正極活物質とし、リ
チウムを負極活物質とする電池系においては、サイクル
を繰り返すことによって負極活物質であるリチウムの溶
解・析出反応が繰り返され、やがてリチウム基板上に針
状のリチウムデンドライト析出物を形成するという問題
が生じる。
In battery systems in which lithium manganese oxide is used as a positive electrode active material and lithium is used as a negative electrode active material, by repeating the cycle, the dissolution and precipitation reactions of lithium, which is the negative electrode active material, are repeated, and eventually needles are formed on the lithium substrate. The problem arises of the formation of lithium dendrite precipitates.

そのため、電池系においては、正極活物質中で徐々に進
行する結晶構造の崩れとともに、負極側におけるデンド
ライトの生成と溶媒の分解反応によって電池寿命は規定
され、500サイクル以上の寿命と長期間にわたる信頼
性を有する電池の製造は非常に困難である。
Therefore, in battery systems, the battery life is determined by the gradual collapse of the crystal structure in the positive electrode active material, the formation of dendrites on the negative electrode side, and the decomposition reaction of the solvent, resulting in a lifespan of over 500 cycles and long-term reliability. It is extremely difficult to manufacture a battery with this property.

一方、これらマンガン酸化物と異なる反応形態である層
状化合物のインターカレーション又はドーピング現象を
利用した電極活物質が注目を集めている。これらの電極
活物質は、充電、放電反応時において複雑な化学反応を
起こさないことから、極めて優れた充放電サイクルを有
することが期待される。中でも炭素質材料を担持体とす
るものは注目を集めている。この炭素質材料を負極担持
体とし、正極活物質としてLiCoO2/L i N 
i O*やT i S t、Mo5sを用いた電池系が
提案されている。
On the other hand, electrode active materials that utilize the intercalation or doping phenomenon of layered compounds, which have a different reaction form from these manganese oxides, are attracting attention. Since these electrode active materials do not cause complicated chemical reactions during charge and discharge reactions, they are expected to have extremely excellent charge and discharge cycles. Among these, those using carbonaceous materials as a carrier are attracting attention. This carbonaceous material was used as a negative electrode carrier, and LiCoO2/L i N was used as a positive electrode active material.
Battery systems using i O*, T i S t, and Mo5s have been proposed.

[発明が解決しようとする課題] しかし、炭素質材料を負極活物質とした場合、T i 
S z、MoS、などの金属カルコゲン化合物を正極活
物質として用いると起電力が小さく、またL i Co
o !、LiNi0a等を正極活物質とすると、起電力
は3.9〜4.3vと非常に高くなるが、そのため溶媒
の分解等が起こり易いという問題点を有する。
[Problem to be solved by the invention] However, when a carbonaceous material is used as a negative electrode active material, Ti
When a metal chalcogen compound such as Sz, MoS, etc. is used as a positive electrode active material, the electromotive force is small, and LiCo
o! , LiNiOa, etc. as the positive electrode active material, the electromotive force becomes very high at 3.9 to 4.3V, but this has the problem that decomposition of the solvent is likely to occur.

本発明はかかる問題点に対してなされたもので、炭素負
極活物質を用いた際の溶媒の分解、正極の結晶構造の崩
壊等を起こさず、また正極中に電池の充放電時に移動可
能なLiイオンを含有する正極活物質を得ることにある
The present invention has been made to solve these problems, and does not cause decomposition of the solvent or collapse of the crystal structure of the positive electrode when using a carbon negative electrode active material, and also allows the material to move into the positive electrode during charging and discharging of the battery. The object of the present invention is to obtain a positive electrode active material containing Li ions.

[課題を解決するための手段] すなわち、本発明の非水溶媒二次電池は、正極活物質と
してスピネル型のLiNi0aにリチウムをドープして
得られる式 %式% (式中、Xは0.5≦X≦1の範囲の数を表す)で示さ
れるリチウムドープリチウムマンガン複合酸化物を用い
、負極担持体として炭素質材料を用いることを特徴とす
る。
[Means for Solving the Problems] That is, the non-aqueous solvent secondary battery of the present invention is obtained by doping lithium into spinel-type LiNiOa as a positive electrode active material. A lithium-doped lithium manganese composite oxide represented by a number in the range of 5≦X≦1 is used, and a carbonaceous material is used as the negative electrode support.

本発明で用いられるスピネル型L i M n 204
は、次のようにして合成される6例えば、硫酸マンガン
(MnSO4)溶液を加熱a縮して硫酸マンガン結晶を
得、これを空気中において約900℃で焙焼することに
より、硫酸マンガンを分解してM n * 04又はM
 n * Osを主成分とするマンガン酸化物を合成す
る。生成物がMn、04を主成分とするマンガン酸化物
の場合は、さらにロータリーキルンで約800’Cで焙
焼して、M n 20 sを主成分とする酸化マンガン
を得る。
Spinel type L i M n 204 used in the present invention
For example, a manganese sulfate (MnSO4) solution is heated and condensed to obtain manganese sulfate crystals, which are then roasted at about 900°C in air to decompose the manganese sulfate. M n * 04 or M
A manganese oxide containing n*Os as a main component is synthesized. If the product is a manganese oxide mainly composed of Mn, 04, it is further roasted at about 800'C in a rotary kiln to obtain manganese oxide mainly composed of Mn20s.

このようにして得られたM n * Oxを、原子比M
n : L 1 = 2 : 1 ニt!ル混合比テL
 i −COsと混合し、800’C程度の温度で加熱
して、スピネル型L iMnt 04を得る。また特開
平2−170354号公報、特願平1−135859号
及び特願平1−246470号に記載された製造方法に
よっても、スピネル型LiMn*04を得ることができ
る。
The M n *Ox obtained in this way has an atomic ratio M
n: L 1 = 2: 1 nit! Mixing ratio TeL
It is mixed with i-COs and heated at a temperature of about 800'C to obtain spinel type LiMnt 04. Spinel-type LiMn*04 can also be obtained by the manufacturing method described in Japanese Patent Application Laid-Open No. 2-170354, Japanese Patent Application No. 1-135859, and Japanese Patent Application No. 1-246470.

このスピネル型L i M n * Oaを、例えば硫
酸リチウム、硝酸リチウム、ヨウ化リチウム、炭酸リチ
ウム、水酸化リチウムなどのリチウム塩を1〜20モル
/eの濃度に調製した水溶液に浸漬する。この際、スピ
ネル型LiMn2O4のマンガンのモル数と水溶液中の
リチウムのモル数との比が、好ましくはL i / M
 nとして0.2〜1.5の範囲になるように、L i
 M n * 04の量ならびに添加するリチウム塩水
溶液の濃度と容積を調節する。
This spinel type L i M n *Oa is immersed in an aqueous solution containing a lithium salt such as lithium sulfate, lithium nitrate, lithium iodide, lithium carbonate, and lithium hydroxide at a concentration of 1 to 20 mol/e. At this time, the ratio of the number of moles of manganese in the spinel type LiMn2O4 to the number of moles of lithium in the aqueous solution is preferably L i / M
L i so that n is in the range of 0.2 to 1.5
The amount of M n *04 and the concentration and volume of the lithium salt aqueous solution to be added are adjusted.

このスピネル型L i M n t O4の粉末を含有
する水溶液を、乾燥機、減圧乾燥器等によって脱水を行
う、ついで、この物質を400〜900℃の温度範囲で
加熱処理を行い、リチウムをドープしたLi+** M
ni 04  (0,5≦X≦1)を得る。この際、加
熱雰囲気は特に限定されず、空気、窒素、アルゴン等を
用いることができる。ここでリチウムのドープ量Xは0
.5≦X≦1であり、ドープ量が0.5未満では、この
活物質を用いた電池系で電解液の分解が生じない電圧範
囲(3,8〜4.0v以下の電圧)において移動可能な
Liイオン量が限られてしまい、電池容量がとれなくな
ってしまうからであり、またドープに用いるリチウムの
量が1を越えても、過剰分のリチウムはL i M n
 x O4結晶中にドープされず、単に物理吸着される
に過ぎないからである。
The aqueous solution containing this spinel-type L i M n t O4 powder is dehydrated using a dryer, vacuum dryer, etc., and then this material is heat-treated in a temperature range of 400 to 900°C to dope it with lithium. Li + ** M
Obtain ni 04 (0,5≦X≦1). At this time, the heating atmosphere is not particularly limited, and air, nitrogen, argon, etc. can be used. Here, the lithium doping amount X is 0
.. 5 ≦ This is because the amount of Li ions is limited and the battery capacity cannot be maintained. Also, even if the amount of lithium used for doping exceeds 1, the excess lithium is
This is because x is not doped into the O4 crystal and is merely physically adsorbed.

負極担持体である炭素質材料は、電池特性の向上のため
に、好ましくは°有機化合物を焼成してなる炭素質材料
を用いる。この炭素質材料の原料となる有機化合物とし
ては、通常使用されているものであればとくに限定され
るものではなく、例えばフェノール樹脂、とくにノボラ
ック樹脂、ならびにポリアクリロニトリルなどを用いる
ことができる。またこの炭素質材料としては、特願平1
−283086号に示すような有機化合物焼成体の特性
を有するものがとくに好ましい。
The carbonaceous material serving as the negative electrode carrier is preferably a carbonaceous material obtained by firing an organic compound in order to improve battery characteristics. The organic compound that serves as a raw material for this carbonaceous material is not particularly limited as long as it is commonly used, and for example, phenol resins, particularly novolak resins, polyacrylonitrile, and the like can be used. Moreover, as this carbonaceous material, patent application No.
Particularly preferred are those having the characteristics of an organic compound fired product as shown in No. 283086.

本発明の非水溶媒二次電池において、正極及び負極を形
成するために、結着剤を用いてもよい。
In the non-aqueous solvent secondary battery of the present invention, a binder may be used to form the positive electrode and the negative electrode.

結着剤としては、例えばエチレン−プロブレン−環状ジ
エンの三元共重合体、ポリテトラフルオロエチレン、ポ
リアクリル酸、ポリアクリル酸塩類などが挙げられる。
Examples of the binder include a terpolymer of ethylene-problene-cyclic diene, polytetrafluoroethylene, polyacrylic acid, and polyacrylates.

また結着剤を分散溶媒に溶解又は分散させて用いてもよ
い1分散溶媒としては、ヘキサン、トルエン及びN−メ
チルピロリドンのような有機溶媒もしくは水が例示され
る。
Examples of the dispersion solvent in which the binder may be dissolved or dispersed include organic solvents such as hexane, toluene, and N-methylpyrrolidone, and water.

本発明の非水溶媒二次電池に用いられる非水電解液の電
解質としては、L i P F s、LICI204、
L i B F 4、L iCF 3So3等のリチウ
ム塩などが挙げられる。同電解液の溶媒としては、プロ
ピレンカーボネート(PC)、エチレンカーボネート(
EC)、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、γ−ブチロラクトン、1,2−ジメトキシエタ
ン(DME)が挙げられる。これらの溶媒は1種又は2
種以上の混合物で用いることができ、とくに充放電サイ
クル寿命を長くするし点から、プロブレンカーボネート
と1.2−ジメトキシエタンとの混合溶媒、エチレンカ
ーボネートと2−メチルテトラヒドロフランとの混合溶
媒、エチレンカーボネートと1.2−ジメトキシエタン
との混合溶媒、プロピレンカーボネートとテトラヒドロ
フランとの混合溶媒が望ましい。
Examples of the electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention include L i P F s, LICI204,
Examples include lithium salts such as L i B F 4 and L iCF 3 So3. The solvent for the electrolyte is propylene carbonate (PC), ethylene carbonate (
EC), tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and 1,2-dimethoxyethane (DME). One or two of these solvents
It can be used in a mixture of more than one species, and in particular, from the viewpoint of prolonging the charge/discharge cycle life, a mixed solvent of proplene carbonate and 1,2-dimethoxyethane, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran, and ethylene can be used. A mixed solvent of carbonate and 1,2-dimethoxyethane and a mixed solvent of propylene carbonate and tetrahydrofuran are desirable.

[実施例] 以下、本発明を実施例及び比較例により、図面を参照し
つつ詳細に説明する。
[Example] Hereinafter, the present invention will be described in detail by way of Examples and Comparative Examples with reference to the drawings.

実施例1 硫酸マンガン(MnS04)を空気中、900℃で焙焼
して得られた三二酸化マンガン(Mn*Os)60gと
Li 2COs 14g (モル比率でMn:Li=2
:1)を混合・粉砕し、空気中で850℃、1時間焙焼
し、冷却した後、再び混合・粉砕し、再度空気中で85
0℃、2時間焙焼した。この反応生成物のX線回折パタ
ーンを調べたところ、ASTM  No、18−736
のLiMntO4のデータと一致した。
Example 1 60g of manganese sesquioxide (Mn*Os) obtained by roasting manganese sulfate (MnS04) at 900°C in air and 14g of Li2COs (Mn:Li=2 in molar ratio)
: Mix and crush 1), roast in air at 850℃ for 1 hour, cool, mix and crush again, and roast in air at 850℃ for 1 hour.
Roasted at 0°C for 2 hours. When examining the X-ray diffraction pattern of this reaction product, it was found that ASTM No. 18-736
It was consistent with the data of LiMntO4.

このスピネル型L i M n t O4180gをヨ
ウ化リチウムのl Omof#水溶液1001dに浸漬
した(Li/Mn=0.5)、これを、液体窒素で冷却
したトラップを付けた真空ポンプで減圧しながら約80
℃に加温し、水分を徐々に蒸発させた。得られた粉末を
アルゴン雰囲気中で450℃に10時間加熱し、目的と
するリチウムをドープしたリチウムマンガン酸化物を得
た。
180 g of this spinel type L i M n t O4 was immersed in 1001 d of l Omof# aqueous solution of lithium iodide (Li/Mn = 0.5), while reducing the pressure with a vacuum pump equipped with a trap cooled with liquid nitrogen. Approximately 80
℃ to gradually evaporate water. The obtained powder was heated at 450° C. for 10 hours in an argon atmosphere to obtain the desired lithium-doped lithium manganese oxide.

正極活物質として、上記のリチウムマンガン酸化物粉末
90重量%、導電材としてアセチレンブラック7重量%
及び結着剤としてエチレン−プロピレン−環状ジエンの
三元共重合体3重量%を有機溶媒中で混練してスラリー
状の正極合剤を調製し、この正極合剤を厚さ15F+の
ステンレス基板上に塗布・風乾した後、加圧して一定厚
にし、つづいて、200℃、10時間の条件で加熱乾燥
して、0.26mm厚の正極合剤層を有する板状の正極
を製造した。
90% by weight of the above lithium manganese oxide powder as a positive electrode active material, 7% by weight of acetylene black as a conductive material
and 3% by weight of an ethylene-propylene-cyclic diene terpolymer as a binder were kneaded in an organic solvent to prepare a slurry positive electrode mixture, and this positive electrode mixture was placed on a 15F+ thick stainless steel substrate. After coating and air drying, pressure was applied to give a constant thickness, followed by heating and drying at 200° C. for 10 hours to produce a plate-shaped positive electrode having a positive electrode mixture layer with a thickness of 0.26 mm.

一方、負極担持体である炭素質材料は、ノボラック樹脂
を窒素雰囲気下で950℃で焼成した後、さらに200
0℃に加熱して炭素化することによって製造し、粉砕し
て平均粒径10Pの粉末とした。
On the other hand, the carbonaceous material that is the negative electrode carrier is made by baking the novolac resin at 950°C in a nitrogen atmosphere, and then heating it at 200°C.
It was produced by heating to 0° C. to carbonize it, and it was pulverized into a powder with an average particle size of 10P.

結着剤のエチレン−プロピレン−環状ジエンの三元共重
合体をヘキサンに溶解し、炭素質材料:結着剤=97 
: 3となるように分散させ、スラリー状の負極合剤を
調製した。このスラリーを厚さIOFのステンレス基板
上に塗布・乾燥して、厚さ0.2mmの負極合剤層を形
成した。
A terpolymer of ethylene-propylene-cyclic diene as a binder was dissolved in hexane, and carbonaceous material: binder = 97
: 3 to prepare a slurry-like negative electrode mixture. This slurry was applied onto a stainless steel substrate with a thickness of IOF and dried to form a negative electrode mixture layer with a thickness of 0.2 mm.

このようにして得られた正・負極を用いて、第1図に示
すような単玉(AA)サイズの非水溶媒二次電池を組立
てた。すなわち、非水溶媒二次電池lは、底部に絶縁体
2が配置され、負極端子を兼ねる有底円筒状のステンレ
ス容器3を有する。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of single cell (AA) size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1 has a bottomed cylindrical stainless steel container 3, which has an insulator 2 disposed at the bottom and also serves as a negative electrode terminal.

この容器3には、電極群4が収納されている。この電極
群4は、負極5、セパレータ6及び正極7をこの順序で
積層した帯状物を、負極5が外側に位置するように渦巻
き状に巻回した構造になっている。前記のセパレータ6
は、電解液を含浸したポリプロピレン性多孔質フィルム
から形成されている。該電解液は、プロピレンカーボネ
ートと1.2−ジメトキシエタンとの混合溶媒(体積比
率50:50)に、電解質として六フッ化リン酸リチウ
ム(LiPF、)を0.5モル濃度含有する。容器3内
で前記の電極群4の上方には、中心を開口した絶縁板8
が配置されている。前記の容器3の上部開口部には、絶
縁封口体9が、該容器3に気密にかしめ固定されている
。この絶縁封口板8の中央開口部には、正極端子10が
嵌合されている。この正極端子10は、前記の正極7に
正極リード11を介して接続されてしする。なお、前記
の負極5は、図示しない負極リードを介して負極端子で
ある前記の容器3に接続されてし)る。
This container 3 houses an electrode group 4. This electrode group 4 has a structure in which a band-like material in which a negative electrode 5, a separator 6, and a positive electrode 7 are laminated in this order is spirally wound so that the negative electrode 5 is located on the outside. Said separator 6
is formed from a polypropylene porous film impregnated with an electrolyte. The electrolytic solution contains lithium hexafluorophosphate (LiPF) as an electrolyte in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (volume ratio 50:50) at a concentration of 0.5 molar. Inside the container 3, above the electrode group 4, there is an insulating plate 8 with an open center.
is located. An insulating sealing body 9 is hermetically caulked and fixed to the upper opening of the container 3. A positive electrode terminal 10 is fitted into the central opening of the insulating sealing plate 8 . This positive electrode terminal 10 is connected to the above-mentioned positive electrode 7 via a positive electrode lead 11. Note that the negative electrode 5 is connected to the container 3, which is a negative terminal, via a negative lead (not shown).

実施例2 実施例1と同様な操作により、スピネル型L I M 
n z O4を合成する。このLiMn1O4を、硝酸
リチウムの2 mol/1水溶液40〇−中番こ浸漬し
、温度を100℃に保った乾燥器中で水分をほとんど蒸
発させた。この反応物を窒素雰囲気下の電気炉に入れ、
400℃で10時間反応させて、目的とするリチウムマ
ンガン酸化物を(得た。
Example 2 Spinel type LI M was prepared by the same operation as in Example 1.
Synthesize n z O4. This LiMn1O4 was immersed in a 2 mol/1 aqueous solution of lithium nitrate in a 400° C. water solution, and most of the moisture was evaporated in a dryer kept at a temperature of 100.degree. This reactant was placed in an electric furnace under a nitrogen atmosphere,
The reaction was carried out at 400° C. for 10 hours to obtain the desired lithium manganese oxide.

このリチウムマンガン酸化物を用いて、実施例1と同様
な正極体を形成し、炭素質負極を巻回して実施例1と同
様な単玉サイズ電池を作成した。
Using this lithium manganese oxide, a positive electrode body similar to that in Example 1 was formed, and a carbonaceous negative electrode was wound to create a single cell size battery similar to that in Example 1.

比較例 負極に金属リチウムを用いた以外は実施例1とまったく
同一構成の電池を作成した。
Comparative Example A battery having exactly the same configuration as Example 1 was prepared except that metallic lithium was used for the negative electrode.

このようにして作成した実施例1.2及び比較例の非水
溶媒二次電池を、室温20℃において、100mAの一
定放電電流で、3.5Vから2.0■までの電圧範囲の
充放電を行った。その結果を第2図に示す。図中Aは本
実施例1の電池、Bは本実施例2の電池、Cは比較例の
電池の放電容量維持率曲線である。この図から明らかな
ように、本実施例1.2の非水溶媒二次電池は、サイク
ル数の増加に伴う放電容量維持率の劣化が小さく、優れ
た充放電可逆性を有している。一方、比較例の電池は、
200サイクルを超えると容量維持率が急激に低下し、
負極活物質の特性の差が明確に表われている。
The nonaqueous solvent secondary batteries of Example 1.2 and Comparative Example thus created were charged and discharged at a constant discharge current of 100 mA at a room temperature of 20°C in a voltage range of 3.5 V to 2.0 ■. I did it. The results are shown in FIG. In the figure, A is the discharge capacity retention rate curve of the battery of Example 1, B is the battery of Example 2, and C is the discharge capacity retention rate curve of the battery of Comparative Example. As is clear from this figure, the non-aqueous solvent secondary battery of Example 1.2 shows little deterioration in the discharge capacity retention rate as the number of cycles increases, and has excellent charge-discharge reversibility. On the other hand, the battery of the comparative example is
After 200 cycles, the capacity retention rate decreases rapidly.
The differences in the characteristics of the negative electrode active materials are clearly visible.

このように正極側にリチウムドープしたスピネル型Li
Mn2O4活物質を、負極に有機化合物を焼成して得ら
れるカーボン材料を用いることによって、長寿命を有す
る電池を得ることができる。
In this way, spinel type Li doped with lithium on the positive electrode side
A battery having a long life can be obtained by using a carbon material obtained by firing an organic compound as a negative electrode with Mn2O4 active material.

[発明の効果] 本発明の非水溶媒二次電池は、正極活物質としてスピネ
ル型L iMnx 04をリチウム塩水溶液中に浸漬し
、水分を蒸発後、加熱・焼成することによってリチウム
をドープして得たL l 1 *z M n 204を
用い、負極活物質にカーボンを用いることを特徴として
いる。正極中にドープされたLiイオンが電池の充放電
によって負極・正極間に可逆的に出入りし、この際の電
池電圧が2.0−3.7■程度であるため、酸化電位が
低く、Liイオンの充放電効率がよい。また低粘度溶媒
を分解することなく用いることができ、さらに負極であ
る炭素質材料は充放電による容量劣化がほとんどなく、
正極であるリチウムマンガン複合酸化物も改良により結
晶構造の崩れは少ない。そのため、本発明によって長期
信頼性、長寿命を有する優れた非水溶媒二次電池を得る
ことができた。
[Effects of the Invention] The non-aqueous solvent secondary battery of the present invention is made by doping spinel-type LiMnx 04 as a positive electrode active material with lithium by immersing it in an aqueous lithium salt solution, evaporating water, and then heating and baking it. The method is characterized in that the obtained L l 1 *z M n 204 is used and carbon is used as the negative electrode active material. Li ions doped into the positive electrode reversibly move in and out between the negative and positive electrodes as the battery is charged and discharged, and the battery voltage at this time is approximately 2.0-3.7μ, so the oxidation potential is low and Li Good ion charging and discharging efficiency. In addition, low-viscosity solvents can be used without decomposition, and the carbonaceous material used as the negative electrode has almost no capacity deterioration due to charging and discharging.
The lithium-manganese composite oxide used as the positive electrode has also been improved so that its crystal structure is less likely to collapse. Therefore, according to the present invention, it was possible to obtain an excellent non-aqueous solvent secondary battery having long-term reliability and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の非水溶媒二次電池を示す一部断面図
、第2図は実施例1.2及び比較例の非水溶媒二次電池
における充放電サイクル数に対する放電容量の変化を示
す特性図である。 1・・・非水溶媒二次電池、2・・・絶縁体、3・・・
ステンレス容器、4・・・電極群、5・・・負極、6・
セパレータ、7・・・正極、8・・・絶縁板、9・・・
絶縁封口板、lO・・・正極端子、11・・・正極リー
ド。 A、B、C・・・下記の電池の放電容量維持率曲線A:
実施例I B:実施例2 C:比較例
Figure 1 is a partial cross-sectional view showing the nonaqueous solvent secondary battery of Example 1, and Figure 2 is the change in discharge capacity with respect to the number of charge/discharge cycles in the nonaqueous solvent secondary batteries of Example 1.2 and Comparative Example. FIG. 1... Non-aqueous solvent secondary battery, 2... Insulator, 3...
Stainless steel container, 4... Electrode group, 5... Negative electrode, 6...
Separator, 7... Positive electrode, 8... Insulating plate, 9...
Insulating sealing plate, lO...positive electrode terminal, 11...positive electrode lead. A, B, C... Discharge capacity retention rate curve A of the following battery:
Example I B: Example 2 C: Comparative example

Claims (1)

【特許請求の範囲】  正極活物質としてスピネル型のLiMn_2O_4に
リチウムをドープして得られる式 Li_1_+_xMn_2O_4 (式中、xは0.5≦x≦1の範囲の数を表す)で示さ
れるリチウムドープリチウムマンガン複合酸化物を用い
、負極担持体として炭素質材料を用いることを特徴とす
る非水溶媒二次電池。
[Claims] Lithium-doped lithium represented by the formula Li_1_+_xMn_2O_4 (wherein x represents a number in the range of 0.5≦x≦1) obtained by doping spinel-type LiMn_2O_4 with lithium as a positive electrode active material. A non-aqueous solvent secondary battery characterized by using a manganese composite oxide and using a carbonaceous material as a negative electrode carrier.
JP2241146A 1990-09-13 1990-09-13 Nonaqueous solvent secondary battery Pending JPH04123769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241146A JPH04123769A (en) 1990-09-13 1990-09-13 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241146A JPH04123769A (en) 1990-09-13 1990-09-13 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH04123769A true JPH04123769A (en) 1992-04-23

Family

ID=17069954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241146A Pending JPH04123769A (en) 1990-09-13 1990-09-13 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH04123769A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510709A (en) * 1991-09-21 1994-12-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Motor-driven hand-held machine tool
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
JP2014056692A (en) * 2012-09-12 2014-03-27 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN113517439A (en) * 2020-06-30 2021-10-19 高点(深圳)科技有限公司 Doped lithium manganate and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510709A (en) * 1991-09-21 1994-12-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Motor-driven hand-held machine tool
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
JP2014056692A (en) * 2012-09-12 2014-03-27 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN113517439A (en) * 2020-06-30 2021-10-19 高点(深圳)科技有限公司 Doped lithium manganate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5601952A (en) Lithium-Manganese oxide electrode for a rechargeable lithium battery
JP3502118B2 (en) Method for producing lithium secondary battery and negative electrode thereof
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US5951919A (en) Method of preparing cathode material for lithium ion cell
JPH04342966A (en) Secondary battery with non-aqueous solvent
EP1935850A2 (en) Composition for negative electrodes and non-aqueous rechargeable battery prepared using Same
JP3062304B2 (en) Non-aqueous solvent secondary battery
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
JP2000348722A (en) Nonaqueous electrolyte battery
JPH0536411A (en) Nonaqueous solvent secondary battery
JP2000251887A (en) Nonaqueous electrolyte battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3086297B2 (en) Non-aqueous solvent secondary battery
US8137842B2 (en) Battery cathodes
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
JPH04123769A (en) Nonaqueous solvent secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JPH06111822A (en) Lithium battery
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP2000067869A (en) Non-aqueous electrolyte secondary battery