JPH04237970A - Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material - Google Patents

Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material

Info

Publication number
JPH04237970A
JPH04237970A JP3006153A JP615391A JPH04237970A JP H04237970 A JPH04237970 A JP H04237970A JP 3006153 A JP3006153 A JP 3006153A JP 615391 A JP615391 A JP 615391A JP H04237970 A JPH04237970 A JP H04237970A
Authority
JP
Japan
Prior art keywords
chemical formula
positive electrode
active material
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3006153A
Other languages
Japanese (ja)
Other versions
JP2517176B2 (en
Inventor
Sukeyuki Murai
村井 祐之
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3006153A priority Critical patent/JP2517176B2/en
Publication of JPH04237970A publication Critical patent/JPH04237970A/en
Application granted granted Critical
Publication of JP2517176B2 publication Critical patent/JP2517176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a secondary battery with high energy density and a long cycle life by improving a positive electrode active material expressed by the chemical formula LixMn204. CONSTITUTION:A material expressed by the chemical formula LixMn(2-y)ByO4 (0.85<=x<=1.15, 0.02<=y<=0.5) partially substituted with B for Mn in a positive electrode active material expressed by the chemical formula LixMn204 is used as the positive electrode active material. A molded positive electrode 1 is mounted on a case 2 in the figure. A porous polypropylene film as a separator 3 is mounted on the positive electrode 1. A lithium plate 4 as a negative electrode is pressed to a seal plate 5 fitted with a polypropylene gasket 6. A propylene carbonate solution solved with lithium perchlorate 1 mole/1 is used as a nonaqueous electrolyte.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非水電解液二次電池およ
びその正極活物質の製造法に関し、特にリチウム、リチ
ウム合金またはリチウムを吸蔵、放出することができる
リチウム化合物を負極とする非水電解液二次電池および
その正極活物質の製造法に関する。
[Industrial Application Field] The present invention relates to a method for producing a non-aqueous electrolyte secondary battery and its positive electrode active material, and particularly relates to a non-aqueous electrolyte secondary battery whose negative electrode is lithium, a lithium alloy, or a lithium compound capable of inserting and releasing lithium. This invention relates to an electrolyte secondary battery and a method for producing its positive electrode active material.

【0002】0002

【従来の技術】リチウム、リチウム合金またはリチウム
化合物を負極とする非水電解液二次電池は高電圧、高エ
ネルギー密度となることが期待され、実用化に向けて数
多くの研究が行なわれている。
[Prior Art] Nonaqueous electrolyte secondary batteries using lithium, lithium alloys, or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and numerous studies are being conducted toward their practical application. .

【0003】これまでに、この非水電解液二次電池の正
極活物質として(化2)に示す化学式の物質などが知ら
れている。また最近タックレイらによって(化3)に示
す化学式の物質が上記電池系の正極活物質になりうるこ
とが報告された。(マテリアル  リサーチ  ブレチ
ン  1983年18巻461−472ページ)
Up to now, substances having the chemical formula shown in (Chemical formula 2) have been known as positive electrode active materials for non-aqueous electrolyte secondary batteries. Furthermore, Tackley et al. recently reported that a substance having the chemical formula shown in (Chemical formula 3) can be used as a positive electrode active material for the above-mentioned battery system. (Material Research Bulletin, Vol. 18, 1983, pp. 461-472)

【00
04】
00
04]

【化2】[Case 2]

【0005】[0005]

【化3】[Chemical formula 3]

【0006】(化3)に示す化学式の物質の結晶構造は
スピネル型の立方晶であり、これを電池の正極材料に用
いた場合、電池の放電電圧は約4Vを示す。(化3)に
示す化学式の正極活物質のX値と開路電位の関係を図5
に示す。電位曲線は4.0V付近と2.8V付近に平坦
部をもち、2段となる。ここで、高エネルギー密度を得
るには、充放電の電圧範囲を4.5Vから3Vまでとし
、4.0V付近の電位平坦部を用いて、充放電サイクル
を行なう必要がある。しかし、この電位平坦部を用い、
x値を0.7以下になるまで充電し、x値が1になるま
で放電する場合、充放電のサイクル特性は悪く、50サ
イクル程度で放電容量は半分に低下した。
The crystal structure of the substance having the chemical formula (Chemical formula 3) is a spinel-type cubic crystal, and when this is used as a positive electrode material for a battery, the discharge voltage of the battery is approximately 4V. Figure 5 shows the relationship between the X value and the open circuit potential of the positive electrode active material with the chemical formula shown in (Chemical formula 3).
Shown below. The potential curve has flat parts near 4.0V and near 2.8V, resulting in two stages. Here, in order to obtain a high energy density, it is necessary to set the charging/discharging voltage range from 4.5 V to 3 V, and to perform charging/discharging cycles using a potential flat portion around 4.0 V. However, using this potential flat area,
When charging until the x value becomes 0.7 or less and discharging until the x value becomes 1, the charging/discharging cycle characteristics were poor, and the discharge capacity was reduced to half after about 50 cycles.

【0007】そこで(化3)に示す化学式の正極活物質
の改良がなされ、(化4)に示す化学式の物質を用いる
ことによりサイクル特性の向上が図られている。
[0007] Therefore, the positive electrode active material having the chemical formula shown in (Chemical formula 3) has been improved, and the cycle characteristics are improved by using a substance having the chemical formula shown in (Chemical formula 4).

【0008】[0008]

【化4】[C4]

【0009】[0009]

【発明が解決しょうとする課題】上記の正極活物質を用
いることにより充放電のサイクル特性の大幅な向上が実
現できる。しかしながら、例えば、(化5)に示す化学
式の正極活物質の理論容量は、約147mAh/gであ
る。
[Problems to be Solved by the Invention] By using the above-mentioned positive electrode active material, a significant improvement in charge/discharge cycle characteristics can be realized. However, for example, the theoretical capacity of the positive electrode active material having the chemical formula shown in (Chemical formula 5) is about 147 mAh/g.

【0010】0010

【化5】[C5]

【0011】したがって、この理論容量以上の高いエネ
ルギー密度を有する電池を作ることは不可能である。こ
のように従来より行なわれてきた上記(化3)に示す化
学式の物質の改良では、(化3)に示す化学式の物質を
正極活物質に用いた電池以上の充放電容量を有する電池
を作製することはできないという課題があった。本発明
はこのような課題を解決するもので、充放電容量が増加
し、かつ充放電のサイクル特性の良好な非水電解液二次
電池およびその正極活物質の製造法を提供することを目
的とする。
[0011] Therefore, it is impossible to produce a battery having a high energy density higher than this theoretical capacity. In this conventional improvement of the substance with the chemical formula shown in (Chemical formula 3) above, it is possible to create a battery that has a charge/discharge capacity higher than that of a battery using the chemical formula shown in (Chemical formula 3) as the positive electrode active material. The problem was that it could not be done. The present invention solves these problems, and aims to provide a nonaqueous electrolyte secondary battery with increased charge/discharge capacity and good charge/discharge cycle characteristics, and a method for producing its positive electrode active material. shall be.

【0012】0012

【課題を解決するための手段】この課題を解決するため
本発明の非水電解液二次電池およびその正極活物質の製
造法は、正極活物質として、(化6)に示す化学式のマ
ンガン複合酸化物を用い、さらに上記マンガン複合酸化
物を合成する際、500℃以上の温度で加熱処理して上
記正極活物質を製造するものである。
[Means for Solving the Problem] In order to solve this problem, the non-aqueous electrolyte secondary battery of the present invention and the method for producing its positive electrode active material include a manganese composite having the chemical formula shown in (Chemical formula 6) as the positive electrode active material. When synthesizing the manganese composite oxide using an oxide, the positive electrode active material is produced by heat treatment at a temperature of 500° C. or higher.

【0013】[0013]

【化6】[C6]

【0014】[0014]

【作用】(化3)に示す化学式の物質中のMnをMnよ
り軽い元素Bで置換することにより、活物質の理論容量
は増加する。そのため、活物質の利用率が変わらなけれ
ば、この活物質を用いた電池の充放電容量は増加する。 実際にこの活物質を用いた電池の充放電を行なったとこ
ろ、利用率は約90%に増加した。(化3)に示す化学
式の物質を用いた電池の利用率は約80%であるので、
(化3)に示す化学式の物質中のMnをBで置換するこ
とにより充放電容量は増大した。この利用率が増加した
ことについては詳細は不明であるが、MnをBに置換す
ることにより正極活物質結晶中への電気化学的なLiの
挿入、脱離が容易になったのではないかと考えている。 さらに、(化3)に示す化学式の物質中のMnをBで置
換することにより、サイクル特性についても向上させる
ことができた。これは、MnをBで置換することにより
、格子定数が小さくなり、結晶の安定性が増大し、充放
電サイクルによる結晶構造の破壊を防ぐことができたた
めであると考えている。
[Operation] The theoretical capacity of the active material is increased by replacing Mn in the substance of the chemical formula (Chemical formula 3) with element B, which is lighter than Mn. Therefore, if the utilization rate of the active material does not change, the charge/discharge capacity of a battery using this active material increases. When a battery using this active material was actually charged and discharged, the utilization rate increased to about 90%. Since the utilization rate of a battery using a substance with the chemical formula shown in (Chemical formula 3) is approximately 80%,
By substituting B for Mn in the substance having the chemical formula shown in (Chemical formula 3), the charge/discharge capacity was increased. Although the details of this increase in utilization rate are unknown, it is thought that replacing Mn with B may have facilitated the electrochemical insertion and desorption of Li into the positive electrode active material crystal. thinking. Furthermore, by substituting B for Mn in the substance having the chemical formula shown in (Chemical Formula 3), the cycle characteristics could also be improved. It is believed that this is because by substituting Mn with B, the lattice constant becomes smaller, the stability of the crystal increases, and destruction of the crystal structure due to charge/discharge cycles can be prevented.

【0015】[0015]

【実施例】以下本発明の一実施例の非水電解液二次電池
およびその正極活物質の製造法について図面に基づいて
説明する。
EXAMPLE A non-aqueous electrolyte secondary battery and a method for producing its positive electrode active material according to an example of the present invention will be described below with reference to the drawings.

【0016】(実施例1)本実施例では、正極活物質と
して(化3)に示す化学式の物質のMnの一部をBで置
換した(化6)に示す化学式の物質について検討した。
(Example 1) In this example, a material having the chemical formula shown in (Chemical formula 6) in which a part of Mn in the chemical formula shown in (Chemical formula 3) was replaced with B was investigated as a positive electrode active material.

【0017】(化3)に示す化学式の物質は以下の方法
で作製した。(化7)に示す化学式の物質が3モルに対
し(化8)に示す化学式の物質を4モルの割合でよく混
合したのち、混合物を大気中で900℃で10時間加熱
し、(化3)に示す化学式の物質正極活物質を得た。
A substance having the chemical formula shown in (Chemical formula 3) was prepared by the following method. After thoroughly mixing 3 moles of the substance with the chemical formula shown in (Chemical formula 7) and 4 moles of the substance with the chemical formula shown in (Chemical formula 8), the mixture was heated in the air at 900°C for 10 hours. ) A cathode active material having the chemical formula shown was obtained.

【0018】[0018]

【化7】[C7]

【0019】[0019]

【化8】[Chemical formula 8]

【0020】(化6)に示す化学式の物質は以下の方法
により作製した。(化7)に示す化学式の物質と(化9
)に示す化学式の物質と(化8)に示す化学式の物質を
用い、Liの原子数が1に対して、Mnの原子数が(2
−y)、Bの原子数がy(y=0.1,0.2,0.3
,0.5,0.8,1.0)となるように秤量、混合し
、大気中、900で10時間加熱して(化6)に示す化
学式の正極活物質(ただしy=0.1,0.2,0.3
,0.5,0.8,1.0)を得た。
A substance having the chemical formula shown in (Chemical formula 6) was prepared by the following method. A substance with the chemical formula shown in (Chemical formula 7) and (Chemical formula 9)
) and chemical formula (8), the number of Li atoms is 1 and the number of Mn atoms is (2).
-y), the number of atoms of B is y (y=0.1, 0.2, 0.3
. ,0.2,0.3
, 0.5, 0.8, 1.0) were obtained.

【0021】[0021]

【化9】[Chemical formula 9]

【0022】しかしこれらのうち、粉末X線回折により
、Bの置換量yが0.5をこえるものは、単一相として
得られなかった。
However, among these, by powder X-ray diffraction, it was not possible to obtain a single phase in which the B substitution amount y exceeded 0.5.

【0023】次に、電池の製造法および充放電条件につ
いて説明する。正極活物質と導電剤としてのアセチレン
ブラックおよび結着剤としてのポリ4弗化エチレン樹脂
を重量比で7:2:1の割合で混合して正極合剤とした
。正極合剤0.1グラムを直径17.5mmに1トン/
cm2でプレス成型して、正極とした。製造した電池の
断面図を図4に示す。成型した正極1をケース2に置く
。正極1の上にセパレータ3として、多孔性ポリプロピ
レンフィルムを置いた。負極として直径17.5mm、
厚さ0.3mmのリチウム板4を、ポリプロピレン製ガ
スケット6を付けた封口板5に圧着した。非水電解質と
して、1モル/lの過塩素酸リチウムを溶解したプロピ
レンカーボネート溶液を用い、これをセパレータ3上お
よび負極4上に加えた。その後電池を封口した。正極活
物質として(化10)に示す化学式の物質を用いたコイ
ン型電池をA、(化11)に示す化学式の物質を用いた
ものをB、そして(化12)に示す化学式の物質を用い
たコイン型電池をCとした
Next, the manufacturing method and charging/discharging conditions of the battery will be explained. A positive electrode mixture was prepared by mixing the positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene resin as a binder in a weight ratio of 7:2:1. 1 ton/1 ton of positive electrode mixture 0.1 g to a diameter of 17.5 mm
The positive electrode was press-molded with a size of cm2. A cross-sectional view of the manufactured battery is shown in FIG. Place the molded positive electrode 1 in the case 2. A porous polypropylene film was placed on the positive electrode 1 as a separator 3. Diameter 17.5mm as negative electrode,
A lithium plate 4 having a thickness of 0.3 mm was crimped onto a sealing plate 5 to which a polypropylene gasket 6 was attached. A propylene carbonate solution in which 1 mol/l of lithium perchlorate was dissolved was used as a non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. After that, the battery was sealed. A is a coin-type battery using a substance with the chemical formula shown in (Chemical Formula 10) as a positive electrode active material, B is a coin type battery using a substance with the chemical formula shown in (Chemical Formula 11), and B is a coin type battery using a substance with the chemical formula shown in (Chemical Formula 12). The coin type battery that was used was designated as C.

【0024】。[0024].

【化10】[Chemical formula 10]

【0025】[0025]

【化11】[Chemical formula 11]

【0026】[0026]

【化12】[Chemical formula 12]

【0027】また比較例として(化3)に示す化学式の
物質を正極活物質として用いたコイン型電池をDとする
。これら電池を、30℃、4mAの定電流で4.5Vま
で充電し、3.0Vまで放電し、この充電、放電を行な
った。
Further, as a comparative example, a coin-type battery D uses a substance having the chemical formula shown in (Chemical formula 3) as a positive electrode active material. These batteries were charged and discharged at 30° C. with a constant current of 4 mA to 4.5 V and discharged to 3.0 V.

【0028】B(ボロン)の置換量yと電池の初期容量
の関係を図1に示した。初期容量は、置換量yの増加と
ともに増大し、置換量yが0.5を境界にして減少した
。また、置換量yが0.5をこえる場合、正極活物質は
単一相でないため、初期容量は小さい。すなわち、B(
ボロン)の置換量yは0.5以下であることが望ましい
FIG. 1 shows the relationship between the B (boron) substitution amount y and the initial capacity of the battery. The initial capacity increased as the substitution amount y increased, and decreased when the substitution amount y reached a boundary of 0.5. Further, when the substitution amount y exceeds 0.5, the positive electrode active material is not a single phase, and therefore the initial capacity is small. That is, B(
It is desirable that the substitution amount y of boron) is 0.5 or less.

【0029】次に、これらの電池の充放電サイクル特性
の結果を図2に示した。比較例である電池Dにくらべ、
A、B、Cの電池はともにサイクル特性が向上している
。また、サイクル特性はMnの置換量が最も多いCの電
池が最も良好であった。
Next, the results of the charge/discharge cycle characteristics of these batteries are shown in FIG. Compared to battery D, which is a comparative example,
Batteries A, B, and C all have improved cycle characteristics. In addition, the cycle characteristics were the best for the battery C, which had the largest amount of Mn substitution.

【0030】また、本実施例で、電池の負極材料として
金属リチウムを用いているが、負極材料として、リチウ
ム合金またはリチウムを吸蔵、放出することができるリ
チウム化合物を用いた場合も同様の結果を得ている。
In addition, although metallic lithium is used as the negative electrode material of the battery in this example, similar results can be obtained if a lithium alloy or a lithium compound capable of intercalating and releasing lithium is used as the negative electrode material. It has gained.

【0031】(実施例2)次に(化6)に示す化学式の
正極活物質の製法について検討した。ここでは、y=0
.2の正極活物質をもちいて、詳細に説明する。
(Example 2) Next, a method for producing a positive electrode active material having the chemical formula shown in (Chemical formula 6) was studied. Here, y=0
.. This will be explained in detail using the positive electrode active material No. 2.

【0032】(化6)に示すy=0.2の化学式の物質
は以下の方法により作製した。(化7)と(化9)と(
化8)に示す化学式の物質を用い、Liの原子数が1に
対して、Mnの原子数が1.8、B(ボロン)の原子数
が0.2となるように秤量、混合し、大気中で加熱温度
を変えて10時間加熱して(化6)に示すy=0.2の
化学式の正極活物質を作製した。これらの活物質を用い
て実施例1と同様の方法でコイン型電池を作製した。 これらの電池の充放電試験を、30℃、4mAの定電流
、電圧範囲4.5Vから3.0Vの条件で行なった。
A substance having the chemical formula of y=0.2 shown in (Chemical formula 6) was prepared by the following method. (Chem. 7) and (C.9) and (
Using a substance with the chemical formula shown in Chemical formula 8), weigh and mix so that the number of Li atoms is 1, the number of Mn atoms is 1.8, and the number of B (boron) atoms is 0.2, The mixture was heated in the atmosphere for 10 hours at different heating temperatures to produce a positive electrode active material having a chemical formula of y=0.2 shown in (Chemical formula 6). A coin-type battery was produced using these active materials in the same manner as in Example 1. A charge/discharge test of these batteries was conducted under the conditions of 30° C., constant current of 4 mA, and voltage range of 4.5 V to 3.0 V.

【0033】図3にこれら電池の初期放電容量と加熱温
度の関係を示した。加熱温度は500℃を境界値として
500℃以上の温度では初期放電容量が大きく、500
℃以上で加熱する事が望ましい。
FIG. 3 shows the relationship between the initial discharge capacity and heating temperature of these batteries. The heating temperature has a boundary value of 500°C, and at temperatures above 500°C, the initial discharge capacity is large;
It is desirable to heat at temperatures above ℃.

【0034】また、炭酸リチウムの代わりに、水酸化リ
チウム、硝酸リチウムなどのリチウム化合物を用いた場
合も、(化8)に示す化学式の物質の代わりに、(化1
3)に示す化学式の物質、硝酸マンガンのようなMn化
合物を、用いた場合も同様の結果を得た。
[0034] Also, when a lithium compound such as lithium hydroxide or lithium nitrate is used instead of lithium carbonate, (chemical formula 1) is used instead of the chemical formula shown in (chemical formula 8).
Similar results were obtained when a substance having the chemical formula shown in 3), a Mn compound such as manganese nitrate, was used.

【0035】[0035]

【化13】[Chemical formula 13]

【0036】[0036]

【発明の効果】以上の実施例の説明で明らかなように、
本発明の非水電解液二次電池およびその正極活物質の製
造法によれば、負極にリチウム、リチウム合金またはリ
チウムを吸蔵、放出することができるリチウム化合物を
、電解液にリチウム塩を含む非水電解液を用い、正極活
物質として(化6)に示す化学式の物質を用い、充放電
容量が増加し、かつ充放電のサイクル特性が良好な非水
電解液二次電池を提供することができ、産業上の意義は
大きい。
[Effects of the Invention] As is clear from the above description of the embodiments,
According to the method for producing a non-aqueous electrolyte secondary battery and its positive electrode active material of the present invention, lithium, lithium alloy, or a lithium compound capable of inserting and releasing lithium is added to the negative electrode, and a non-aqueous electrolyte containing a lithium salt is added to the electrolyte. It is possible to provide a non-aqueous electrolyte secondary battery which uses an aqueous electrolyte and a substance having the chemical formula shown in (Chemical formula 6) as a positive electrode active material, has an increased charge/discharge capacity, and has good charge/discharge cycle characteristics. This is of great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1(化6)に示す化学式の物質
中のy値と電池の初期容量の関係をプロットしたグラフ
[Figure 1] A graph plotting the relationship between the y value in the substance with the chemical formula shown in Example 1 (Chemical Formula 6) of the present invention and the initial capacity of the battery.

【図2】本発明の実施例1の充放電のサイクル特性を示
したグラフ
FIG. 2 is a graph showing the charging/discharging cycle characteristics of Example 1 of the present invention.

【図3】本発明の実施例2の活物質合成時の加熱温度と
初期容量の関係をプロットしたグラフ
[Fig. 3] A graph plotting the relationship between heating temperature and initial capacity during active material synthesis of Example 2 of the present invention.

【図4】本発明の実施例1および2で試験に用いたコイ
ン型電池の縦断面図
[Fig. 4] A vertical cross-sectional view of the coin-shaped battery used in the tests in Examples 1 and 2 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負極にリチウム、リチウム合金またはリチ
ウムを吸蔵、放出することができるリチウム化合物を、
電解液にリチウム塩を含む非水電解液を用い、正極活物
質として(化1)に示す化学式で表わされる物質を用い
る非水電解液二次電池。 【化1】
Claim 1: A negative electrode containing lithium, a lithium alloy, or a lithium compound capable of intercalating and deintercalating lithium;
A non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a lithium salt as an electrolyte and using a substance represented by the chemical formula (Chemical formula 1) as a positive electrode active material. [Chemical formula 1]
【請求項2】正極活物質の合成において、Li化合物、
Mn化合物とB化合物を500℃以上の温度で加熱する
請求項1記載の非水電解液二次電池の正極活物質の製造
法。
[Claim 2] In the synthesis of a positive electrode active material, a Li compound,
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the Mn compound and the B compound are heated at a temperature of 500° C. or higher.
JP3006153A 1991-01-23 1991-01-23 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof Expired - Fee Related JP2517176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006153A JP2517176B2 (en) 1991-01-23 1991-01-23 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006153A JP2517176B2 (en) 1991-01-23 1991-01-23 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Publications (2)

Publication Number Publication Date
JPH04237970A true JPH04237970A (en) 1992-08-26
JP2517176B2 JP2517176B2 (en) 1996-07-24

Family

ID=11630587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006153A Expired - Fee Related JP2517176B2 (en) 1991-01-23 1991-01-23 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof

Country Status (1)

Country Link
JP (1) JP2517176B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578395A (en) * 1994-03-08 1996-11-26 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6461770B1 (en) 1999-08-04 2002-10-08 Sanyo Electric Co., Ltd. Lithium battery comprising a positive electrode material of lithium-manganese complex oxide containing boron and phosphorus
US6696200B1 (en) 1999-08-04 2004-02-24 Sanyo Electric Co., Ltd. Lithium battery with boron-containing electrode
US6699618B2 (en) 2000-04-26 2004-03-02 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell
US9172090B2 (en) 2010-05-07 2015-10-27 Massachusetts Institute Of Technoloy Electrochemical device comprising lithium manganese borate compounds

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578395A (en) * 1994-03-08 1996-11-26 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
US6461770B1 (en) 1999-08-04 2002-10-08 Sanyo Electric Co., Ltd. Lithium battery comprising a positive electrode material of lithium-manganese complex oxide containing boron and phosphorus
US6696200B1 (en) 1999-08-04 2004-02-24 Sanyo Electric Co., Ltd. Lithium battery with boron-containing electrode
US6699618B2 (en) 2000-04-26 2004-03-02 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell
US6890456B2 (en) 2000-04-26 2005-05-10 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell
US7090822B2 (en) 2000-04-26 2006-08-15 Showa Denko K.K. Cathode electroactive material, production method therefor and secondary cell
US9172090B2 (en) 2010-05-07 2015-10-27 Massachusetts Institute Of Technoloy Electrochemical device comprising lithium manganese borate compounds

Also Published As

Publication number Publication date
JP2517176B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US5490320A (en) Method of making a positive electrode for lithium secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2004178835A (en) Nonaqueous electrolyte secondary battery
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JP3446639B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
JPH06333562A (en) Lithium battery
US5641465A (en) Lithium maganese oxide compound and method of preparation
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2004175609A (en) Lithium cobaltate used for positive electrode of lithium ion battery, its manufacturing process and lithium ion battery
JPH10188977A (en) Lithium secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
GB2276155A (en) Lithium manganese oxide
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP2022512443A (en) Positive electrode active material for lithium secondary batteries and lithium secondary batteries containing them
JP2835138B2 (en) Non-aqueous solvent secondary battery
US5766569A (en) Lithium manganese oxide compound and method of preparation
JP4244427B2 (en) Non-aqueous electrolyte battery
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode
JPH04123769A (en) Nonaqueous solvent secondary battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees