JPH04370661A - Secondary battery with nonaqueous solvent - Google Patents

Secondary battery with nonaqueous solvent

Info

Publication number
JPH04370661A
JPH04370661A JP3174775A JP17477591A JPH04370661A JP H04370661 A JPH04370661 A JP H04370661A JP 3174775 A JP3174775 A JP 3174775A JP 17477591 A JP17477591 A JP 17477591A JP H04370661 A JPH04370661 A JP H04370661A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium
binder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3174775A
Other languages
Japanese (ja)
Inventor
Yoji Ishihara
石原 洋司
Yuji Mochizuki
裕二 望月
Hiroyoshi Nose
博義 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3174775A priority Critical patent/JPH04370661A/en
Publication of JPH04370661A publication Critical patent/JPH04370661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To accomplish a secondary battery with nonaqueous solvent, which excels in the charge/discharge cycle life and has a high rate of capacity maintenance. CONSTITUTION:A negative electrode 5 is formed from a carbonaceous material bearing Li or alkali metal containing Li as major component. and the power generating element of a non-aqueous solvent secondary battery 1 is constructed by laminating this negative electrode 5, a separator 6, and a positive electrode 7 using Li-containing composite oxide as pos. electrode active substance in the sequence as named fast in consolidation. This secondary battery uses polyacrylic acid or its salt and acrylonitrile butadiene rubber as a binder for the negative electrode 5.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、負極担持体として炭素
質材料を用いる非水溶媒二次電池に関し、とくにその改
良された負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery using a carbonaceous material as a negative electrode carrier, and more particularly to an improved negative electrode thereof.

【0002】0002

【従来の技術】近年、電子機器の発達に伴い、小形で軽
量、かつ、エネルギー密度が高く、さらに繰り返し充放
電が可能な二次電池の開発が要望されている。この種の
二次電池としては、負極活物質としてリチウム又はリチ
ウム合金を用い、正極活物質としてモリブデン、バナジ
ウム、チタン、ニオブなどの酸化物、硫化物、セレン化
物などを用いたものが知られている。
BACKGROUND OF THE INVENTION In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. This type of secondary battery is known to use lithium or lithium alloy as the negative electrode active material and oxides, sulfides, selenides, etc. of molybdenum, vanadium, titanium, niobium, etc. as the positive electrode active material. There is.

【0003】また最近では、高エネルギー密度を有する
マンガン酸化物のサイクル特性を改良・向上させたスピ
ネル型LiMn2 O4 や、他のリチウムマンガン酸
化物についての検討が活発に行われている。
Recently, spinel type LiMn2 O4 and other lithium manganese oxides, which have improved cycle characteristics of manganese oxides having high energy density, have been actively studied.

【0004】これらのリチウムマンガン酸化物、硫化物
又はセレン化物を正極活物質とし、リチウムを負極活物
質とする電池系においては、サイクルを繰り返すことに
よって負極活物質であるリチウムの溶解・析出反応が繰
り返され、やがてリチウム金属上に針状のリチウムデン
ドライト析出物を形成するという問題が生じる。そのた
め、電池系においては、正極活物質中で充放電を繰り返
すごとに徐々に進行する結晶構造の崩れとともに、負極
側におけるリチウムデンドライトの生成と、負極上に析
出したリチウムによる溶媒の分解反応によって電池寿命
は規定され、500サイクル以上の寿命と、長期間にわ
たる信頼性を有する電池の製造は非常に困難であった。
[0004] In a battery system in which lithium manganese oxide, sulfide or selenide is used as a positive electrode active material and lithium is used as a negative electrode active material, the dissolution/precipitation reaction of lithium, which is the negative electrode active material, occurs through repeated cycles. The problem is repeated and eventually forms needle-like lithium dendrite precipitates on the lithium metal. Therefore, in battery systems, as the crystal structure of the positive electrode active material gradually progresses with each repeated charge and discharge, the formation of lithium dendrites on the negative electrode side and the decomposition reaction of the solvent caused by the lithium precipitated on the negative electrode cause the battery to collapse. The lifespan is regulated, and it has been extremely difficult to manufacture batteries with a lifespan of 500 cycles or more and long-term reliability.

【0005】このような問題を回避するために、各種の
有機化合物を焼成した炭素質物にリチウム又はリチウム
を主体とするアルカリ金属を担持させて、負極を構成す
る二次電池が試みられている。このような負極を用いる
ことにより、リチウムデンドライトの析出が防止されて
サイクル特性が向上し、かつ、金属リチウムを使用して
いないため、安全性についても向上してきている。
[0005] In order to avoid such problems, attempts have been made to create a secondary battery in which a negative electrode is formed by supporting lithium or an alkali metal mainly composed of lithium on a carbonaceous material obtained by firing various organic compounds. By using such a negative electrode, the precipitation of lithium dendrites is prevented and cycle characteristics are improved, and since metallic lithium is not used, safety is also improved.

【0006】一方、正極にはこれらマンガン酸化物と異
なる反応形態である層状化合物のインターカレーション
又はドーピング現象を利用した電極活物質が注目を集め
ている。これらの電極活物質は、充電、放電反応時にお
いて複雑な化学反応を起こさないことから、極めて優れ
た充放電サイクル特性を有することが期待される。中で
も炭素質材料を負極担持体とし、正極活物質としてLi
CoO2 /LiNiO2 やTiS2 、MoS2 
を用いた電池系が提案されている。
On the other hand, for positive electrodes, electrode active materials that utilize the intercalation or doping phenomenon of layered compounds, which have a different reaction form from these manganese oxides, are attracting attention. Since these electrode active materials do not cause complex chemical reactions during charging and discharging reactions, they are expected to have extremely excellent charge-discharge cycle characteristics. Among them, a carbonaceous material is used as a negative electrode carrier and Li is used as a positive electrode active material.
CoO2 /LiNiO2, TiS2, MoS2
A battery system using this has been proposed.

【0007】しかし、炭素質材料を負極活物質とした場
合、TiS2 、MoS2 などの金属カルコゲン化合
物を正極活物質として用いると起電力が小さい(1.0
〜1.2V)。そこで、正極活物質としては、3.5V
程度の平均作動電圧を示すLiCoO2 、LiNiO
2 、LiCox Ni(1−x) O2 などが検討
されてきている。
However, when a carbonaceous material is used as the negative electrode active material and a metal chalcogen compound such as TiS2 or MoS2 is used as the positive electrode active material, the electromotive force is small (1.0
~1.2V). Therefore, as a positive electrode active material, 3.5V
LiCoO2, LiNiO exhibiting an average operating voltage of about
2, LiCox Ni(1-x)O2, etc. have been studied.

【0008】[0008]

【発明が解決しようとする課題】しかし、炭素質材料を
負極担持体として使用した電池は、充放電サイクル寿命
が短く、それゆえ、十分な容量とリサイクル数を確保す
ることができなかった。すなわち、電池電極の結着剤と
して従来から使用されているポリテトラフルオロエチレ
ンを用いると、充放電サイクルの進行とともに、リチウ
ムと結着剤であるポリテトラフルオロエチレンとが反応
してポリテトラフルオロエチレンが分解し、負極体の結
着能力を大幅に低下させる。その結果、集電体と負極担
持体との間の導電性が損なわれ、電池内部抵抗を大幅に
増加させる。また結着能力の低下による負極担持体の脱
落及び内部短絡などの問題があった。
[Problems to be Solved by the Invention] However, batteries using a carbonaceous material as a negative electrode carrier have a short charge/discharge cycle life, and therefore, it has not been possible to ensure sufficient capacity and a sufficient number of recycles. In other words, when polytetrafluoroethylene, which has traditionally been used as a binder for battery electrodes, is used, as the charge/discharge cycle progresses, lithium and the binder polytetrafluoroethylene react to form polytetrafluoroethylene. decomposes, significantly reducing the binding ability of the negative electrode body. As a result, the conductivity between the current collector and the negative electrode carrier is impaired, and the internal resistance of the battery is significantly increased. Further, there were problems such as falling off of the negative electrode carrier and internal short circuit due to a decrease in binding ability.

【0009】また、結着剤としてエチレン−プロピレン
−環状ジエンの三元共重合体を用いたものが提案されて
いるが、負極担持体を覆うような結着形態をとるため、
電池内部抵抗を大幅に増加させ、大電流放電などの場合
、十分な特性を得ることができなかった。
[0009]Also, a binder using a ternary copolymer of ethylene-propylene-cyclic diene has been proposed, but since it takes the form of a binder that covers the negative electrode carrier,
This significantly increases the internal resistance of the battery, making it impossible to obtain sufficient characteristics when discharging large currents.

【0010】本発明はかかる問題点を改善するためにな
されたもので、充放電効率が高く、充放電サイクル寿命
に優れ、かつ高い容量維持率を示す非水溶媒二次電池を
提供しようとするものである。
[0010] The present invention was made to improve these problems, and aims to provide a nonaqueous solvent secondary battery that has high charge/discharge efficiency, excellent charge/discharge cycle life, and high capacity retention rate. It is something.

【0011】[0011]

【課題を解決するための手段】すなわち本発明の非水溶
媒二次電池は、リチウム又はリチウムを主体とするアル
カリ金属を担持した炭素質材料からなる負極体と、セパ
レータと、リチウム含有複合酸化物を正極活物質とする
正極体とを、この順序で一体的に積層してなる発電要素
を具備する非水溶媒二次電池において、該負極体の結着
剤として、ポリアクリル酸又はその塩ならびにアクリロ
ニトリル・ブタジエンゴムを用いることを特徴とする。
[Means for Solving the Problems] That is, the non-aqueous solvent secondary battery of the present invention comprises a negative electrode body made of a carbonaceous material supporting lithium or an alkali metal mainly composed of lithium, a separator, and a lithium-containing composite oxide. In a non-aqueous solvent secondary battery equipped with a power generation element formed by integrally laminating in this order a positive electrode body having a positive electrode active material, polyacrylic acid or its salt and It is characterized by using acrylonitrile-butadiene rubber.

【0012】本発明で用いられるリチウム含有複合酸化
物は、一般的に次のような方法で合成される。すなわち
、リチウムと、Co、Ni、Fe又はMnから選ばれる
1種又は2種以上の遷移金属の炭酸塩、硝酸塩、硫酸塩
、水酸化物などを出発原料として、これらを化学量論比
で混合し、焼成することによって得られる。なお、出発
原料としては炭酸塩が好ましい。焼成温度は出発原料に
より多少異なるが、通常は600〜1,000℃の温度
範囲で、好ましくは600〜800℃の範囲である。
The lithium-containing composite oxide used in the present invention is generally synthesized by the following method. That is, lithium and carbonate, nitrate, sulfate, hydroxide, etc. of one or more transition metals selected from Co, Ni, Fe, or Mn are used as starting materials, and these are mixed in a stoichiometric ratio. It is obtained by baking. Note that carbonate is preferred as the starting material. The firing temperature varies somewhat depending on the starting materials, but is usually in the range of 600 to 1,000°C, preferably in the range of 600 to 800°C.

【0013】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質材料を用いる。この炭素質材料の原料となる有機
化合物としては、通常使用されているものであれば特に
限定されるものではなく、フェノール樹脂、とくにノボ
ラック樹脂、ならびにポリアクリロニトリルなどを用い
ることができる。またこの炭素質材料としては、水素/
炭素の原子比が0.15未満であり、X線広角回折法に
よる(002)面の面間隔(d002 )が3.37Å
以上、及びc軸方向の結晶子の大きさ(Lc)が150
Å以下という結晶特性を有する有機化合物焼成体が、と
くに好ましい。
[0013] The carbonaceous material serving as the negative electrode carrier is preferably a carbonaceous material obtained by firing an organic compound in order to improve battery characteristics. The organic compound serving as a raw material for this carbonaceous material is not particularly limited as long as it is commonly used, and phenol resins, particularly novolac resins, polyacrylonitrile, and the like can be used. In addition, this carbonaceous material includes hydrogen/
The atomic ratio of carbon is less than 0.15, and the interplanar spacing (d002) of the (002) plane by X-ray wide-angle diffraction method is 3.37 Å.
above, and the crystallite size (Lc) in the c-axis direction is 150
A fired organic compound having crystal properties of Å or less is particularly preferred.

【0014】本発明において特徴的なことは、負極の結
着剤として、ポリアクリル酸又はその塩(以下、PAA
という)と、アクリロニトリル・ブタジエンゴム(以下
、NBRという)とを用いることである。
The characteristic feature of the present invention is that polyacrylic acid or its salt (hereinafter referred to as PAA) is used as a binder for the negative electrode.
) and acrylonitrile-butadiene rubber (hereinafter referred to as NBR).

【0015】本発明で用いられるPAAは、とくに限定
されるものではなく、ポリアクリル酸、そのナトリウム
塩、カリウム塩、アンモニウム塩、及びそれらの混合物
などを用いることができる。一般の市販品を用いること
ができるが、塩の形の、10〜30重量%の水溶液がと
くに好ましい。
The PAA used in the present invention is not particularly limited, and polyacrylic acid, its sodium salt, potassium salt, ammonium salt, and mixtures thereof can be used. Although common commercially available products can be used, a 10-30% by weight aqueous solution in salt form is particularly preferred.

【0016】NBRは、とくに限定されるものでなく、
重合率60〜95%、アクリロニトリル単位含有率が6
0%以下のものが好ましく、そのうち、カルボキシ変性
したものがとくに好ましい。一般の市販品を用いること
ができ、ラテックス状で用いることが好ましい。
[0016] NBR is not particularly limited,
Polymerization rate 60-95%, acrylonitrile unit content 6
Those with a content of 0% or less are preferable, and among them, carboxy-modified ones are particularly preferable. General commercially available products can be used, and it is preferable to use them in latex form.

【0017】なお、負極体における負極担持体の量は全
体の90重量%以上が好ましく、結着剤の量は0.5〜
5.0重量%が好ましい。そのうちPAAの量は0.5
〜3.0重量%が好ましく、1.0〜1.5重量%がさ
らに好ましい。NBRの量は1.0重量%以上、5.0
重量%未満が好ましく、2.0〜3.0重量%がさらに
好ましい。結着剤の量が5.0重量%を越えると、負極
の内部抵抗が増加し、電池の重負荷放電の能力を大幅に
低下させるので好ましくない。またPAAの量が3.0
重量%を越えると、増粘効果が大きくなり、後述するス
ラリー化が困難なため好ましくなく、NBRの量が5.
0重量%以上では、結着効果が大きくなり、電池の内部
抵抗を増加させる原因となるため、好ましくない。
[0017] The amount of the negative electrode carrier in the negative electrode body is preferably 90% by weight or more of the total weight, and the amount of the binder is 0.5 to 0.5% by weight.
5.0% by weight is preferred. Of these, the amount of PAA is 0.5
-3.0 weight% is preferable, and 1.0-1.5 weight% is more preferable. The amount of NBR is 1.0% by weight or more, 5.0% by weight
Less than % by weight is preferred, and 2.0-3.0% by weight is more preferred. If the amount of the binder exceeds 5.0% by weight, it is not preferable because the internal resistance of the negative electrode increases and the heavy load discharge capacity of the battery is significantly reduced. Also, the amount of PAA is 3.0
If it exceeds 5% by weight, it is not preferable because the thickening effect becomes large and it becomes difficult to form a slurry, which will be described later.
If it is 0% by weight or more, the binding effect becomes large and causes an increase in the internal resistance of the battery, which is not preferable.

【0018】本発明の非水溶媒二次電池に用いられる非
水電解液の電解質としては、LiPF6 、LiClO
4 、LiBF4 、LiCF3 SO3 などのリチ
ウム塩などが挙げられる。該電解液の溶媒としては、プ
ロピレンカーボネート、エチレンカーボネート、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、γ−ブ
チロラクトン、1,2−ジメトキシエタンなどが挙げら
れる。これらの溶媒は1種又は2種以上の混合物で用い
ることができ、とくに充放電サイクル寿命を長くする観
点から、プロピレンカーボネートと1,2−ジメトキシ
エタンとの混合溶媒、エチレンカーボネートと2−メチ
ルテトラヒドロフランとの混合溶媒、エチレンカーボネ
ートと1,2−ジメトキシエタンとの混合溶媒、プロピ
レンカーボネートとエチレンカーボネートとの混合溶媒
が望ましい。
[0018] As the electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention, LiPF6, LiClO
4, LiBF4, LiCF3SO3, and other lithium salts. Examples of the solvent for the electrolytic solution include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and 1,2-dimethoxyethane. These solvents can be used singly or in a mixture of two or more, and from the viewpoint of prolonging the charge/discharge cycle life, mixed solvents of propylene carbonate and 1,2-dimethoxyethane, ethylene carbonate and 2-methyltetrahydrofuran are particularly preferred. A mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, a mixed solvent of propylene carbonate and ethylene carbonate are desirable.

【0019】[0019]

【発明の効果】本発明の非水溶媒二次電池は、負極担持
体に炭素質材料を用い、正極活物質としてリチウム含有
複合酸化物を用い、かつ負極体の結着剤としてPAAと
NBRを用いることによって、充放電サイクルの進行に
伴うリチウムと結着剤の反応や、それによる結合剤の分
解を防止することができる。その結果、充放電サイクル
を繰り返しても、集電体と負極担持体との間の導電性を
損なうことなく、それが原因で生じる負極担持体の脱落
及び内部短絡を防止することができる。
Effects of the Invention The non-aqueous solvent secondary battery of the present invention uses a carbonaceous material for the negative electrode carrier, a lithium-containing composite oxide as the positive electrode active material, and PAA and NBR as the binder for the negative electrode body. By using it, it is possible to prevent the reaction between lithium and the binder as the charge/discharge cycle progresses and the resulting decomposition of the binder. As a result, even if charge/discharge cycles are repeated, the conductivity between the current collector and the negative electrode carrier is not impaired, and the resulting drop-off of the negative electrode carrier and internal short circuit can be prevented.

【0020】本発明によって、容量維持率を向上し、か
つ充放電サイクル寿命が向上し、しかも電池性能が安定
な優れた非水溶媒二次電池を得ることができる。
According to the present invention, it is possible to obtain an excellent non-aqueous solvent secondary battery with improved capacity retention, improved charge/discharge cycle life, and stable battery performance.

【0021】[0021]

【実施例】以下、本発明を実施例及び比較例により、図
面を参照しつつ詳細に説明する。なお、本発明は実施例
によって限定されるものではない。
EXAMPLES The present invention will now be explained in detail by way of examples and comparative examples with reference to the drawings. Note that the present invention is not limited to the examples.

【0022】実施例 市販の炭酸リチウムと炭酸コバルトを、LiとCoのモ
ル比がLi/Co=1.10になるように秤量し、乳鉢
を用いて十分に混合した。この混合物をアルミナ製のル
ツボに入れ、電気炉により、800℃で6時間加熱処理
を行った。得られた焼成物を冷却後、再度粉砕し、同様
に800℃で6時間加熱処理を行った。その後、蒸留水
で十分に洗浄し、未反応のアルカリ分を洗い流した。生
成物は粉末X線法でLiCoO2 と確認された。この
生成物を90重量%、導電剤としてアセチレンブラック
を7重量%及び結着剤としてエチレン−プロピレン−環
状ジエンの三元共重合体3重量%をヘキサン中で混練し
てスラリー状の正極合剤を調製した。この正極合剤を厚
さ10μm のステンレス基板上に塗布・風乾した後、
加圧して一定の厚さにし、続いて、0.26mm厚の正
極合剤層を有する板状の正極を製造した。
Example Commercially available lithium carbonate and cobalt carbonate were weighed so that the molar ratio of Li and Co was Li/Co=1.10, and thoroughly mixed using a mortar. This mixture was placed in an alumina crucible and heat-treated at 800° C. for 6 hours in an electric furnace. After cooling the obtained baked product, it was ground again and similarly heat-treated at 800° C. for 6 hours. Thereafter, it was thoroughly washed with distilled water to wash away unreacted alkaline components. The product was confirmed to be LiCoO2 by powder X-ray method. 90% by weight of this product, 7% by weight of acetylene black as a conductive agent, and 3% by weight of an ethylene-propylene-cyclic diene terpolymer as a binder are kneaded in hexane to form a positive electrode mixture in the form of a slurry. was prepared. After applying this positive electrode mixture onto a 10 μm thick stainless steel substrate and air-drying it,
The mixture was pressurized to a constant thickness, and then a plate-shaped positive electrode having a positive electrode mixture layer with a thickness of 0.26 mm was manufactured.

【0023】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気中、950℃で焼成した後、
さらに、2,000℃に加熱して炭素化し、粉砕して平
均粒径10μm の粉末とすることによって得た。
On the other hand, the carbonaceous material serving as the negative electrode carrier is prepared by baking a novolak resin at 950°C in a nitrogen atmosphere.
Further, it was heated to 2,000°C to carbonize it and pulverized to obtain a powder with an average particle size of 10 μm.

【0024】負極の結着剤としては、PAAとNBRを
用いた。すなわちPAAは、アンモニアで中和してアン
モニウム塩としたもの、NBRはアクリロニトリルを3
0〜40重量%含有したものを使用した。PAAはあら
かじめ蒸留水に溶解させ、NBRは水に分散させて、上
記の炭素質材料と結着剤の合計との割合が重量比で96
:4、また結着剤中、PAAとNBRの割合が重量比で
1:2となるように炭素質材料に分散させて、スラリー
状の負極合剤を製造した。
PAA and NBR were used as the binder for the negative electrode. In other words, PAA is made by neutralizing with ammonia to make ammonium salt, and NBR is made by neutralizing acrylonitrile with 3
The content of 0 to 40% by weight was used. PAA is dissolved in distilled water in advance, NBR is dispersed in water, and the ratio of the total of the above carbonaceous material and binder is 96% by weight.
:4, and in the binder, PAA and NBR were dispersed in a carbonaceous material so that the ratio by weight was 1:2 to produce a slurry-like negative electrode mixture.

【0025】この負極合剤を厚さ10μm のステンレ
ス基板上に塗布・乾燥して、厚さ0.2mmの負極合剤
層を有する板上の負極を製造した。
This negative electrode mixture was coated on a stainless steel substrate with a thickness of 10 μm and dried to produce a negative electrode on a plate having a negative electrode mixture layer with a thickness of 0.2 mm.

【0026】このようにして得られた正・負極を用いて
、図1に示すような単三(AA)サイズの非水溶媒二次
電池を組み立てた。すなわち、非水溶媒二次電池1は、
底部に絶縁体2が配置され、負極端子を兼ねる有底円筒
状のステンレス容器3を有する。この容器3には、電極
群4が収納されている。この電極群4は、負極5、セパ
レータ6及び正極7をこの順序で積層した帯状物を、負
極5が外側に位置するように渦巻き状に巻回した構造に
なっている。前記のセパレータ6は、電解液を含浸した
ポリプロピレン製多孔質フィルムから形成されている。 各電解液は、プロピレンカーボネートと1,2−ジメト
キシエタンとの混合溶媒(体積比率50:50)に、電
解質として六フッ化リン酸リチウム(LiPF6)を0
.5モル濃度含有する。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of AA size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1 is
It has a bottomed cylindrical stainless steel container 3 with an insulator 2 disposed at the bottom and serving also as a negative electrode terminal. This container 3 houses an electrode group 4. This electrode group 4 has a structure in which a band-like material in which a negative electrode 5, a separator 6, and a positive electrode 7 are laminated in this order is spirally wound so that the negative electrode 5 is located on the outside. The separator 6 is formed from a polypropylene porous film impregnated with an electrolytic solution. Each electrolytic solution was made by adding lithium hexafluorophosphate (LiPF6) as an electrolyte to a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (volume ratio 50:50).
.. Contains 5 molar concentrations.

【0027】容器3内で前記の電極群4の上方には、中
心を開口した絶縁板8が配置されている。前記の容器3
の上部開口部には、絶縁封口体9が、容器3に気密にか
しめ固定されている。この絶縁板8の中央開口部には、
正極端子10が嵌合されている。この正極端子10は、
前記の正極7に正極リード11を介して接続されている
。なお、前記の負極5は、図示しない負極リードを介し
て負極端子である前記の容器3に接続されている。
An insulating plate 8 with an open center is arranged above the electrode group 4 in the container 3. Said container 3
An insulating sealing body 9 is hermetically caulked and fixed to the container 3 at the upper opening of the container 3 . In the central opening of this insulating plate 8,
The positive electrode terminal 10 is fitted. This positive electrode terminal 10 is
It is connected to the above-mentioned positive electrode 7 via a positive electrode lead 11. Note that the negative electrode 5 is connected to the container 3, which is a negative electrode terminal, via a negative electrode lead (not shown).

【0028】比較例1 負極の結着剤にポリテトラフルオロエチレンを用いた以
外は実施例と同様にして、非水溶媒二次電池を組み立て
た。
Comparative Example 1 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that polytetrafluoroethylene was used as the binder for the negative electrode.

【0029】比較例2 負極の結着剤にエチレン−プロピレン−環状ジエンの三
元共重合体を用いた以外は実施例と同様な構成の非水溶
媒二次電池を組み立てた。
Comparative Example 2 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that an ethylene-propylene-cyclic diene ternary copolymer was used as the negative electrode binder.

【0030】このようにして組み立てた実施例、比較例
1、2の3種類の非水溶媒二次電池について、20℃の
一定温度、100mAの一定電流で4.3Vから3.0
Vまでの電圧範囲の充放電評価を行った。その結果を図
2に示す。図2のAは本発明による実施例の電池、Bは
比較例1の電池、Cは比較例2の電池の放電容量維持率
曲線である。
Regarding the three types of non-aqueous solvent secondary batteries of Example, Comparative Examples 1 and 2 assembled in this way, voltage from 4.3 V to 3.0 V at a constant temperature of 20° C. and a constant current of 100 mA.
Charging and discharging evaluation was performed in the voltage range up to V. The results are shown in FIG. In FIG. 2, A is a discharge capacity retention rate curve of a battery of an example according to the present invention, B is a battery of Comparative Example 1, and C is a discharge capacity retention rate curve of a battery of Comparative Example 2.

【0031】図2から明らかなように、実施例の非水溶
媒二次電池は、比較例の電池に比べて、充放電サイクル
を繰り返し行っても高い容量維持率を示し、優れた性能
を有している。さらに、評価を終了した電池を分解して
負極電極の表面状態を観察すると、比較例1の電池の電
極は、炭素材が基板より脱落し易い状態になっており、
これはリチウムと結着剤が反応して結着剤が分解したた
めと考えられる。また、比較例2の電池は、電極表面に
かなりのリチウムが析出していた。
As is clear from FIG. 2, the nonaqueous solvent secondary battery of the example exhibits a higher capacity retention rate even after repeated charge/discharge cycles than the battery of the comparative example, and has excellent performance. are doing. Furthermore, when the battery that had been evaluated was disassembled and the surface condition of the negative electrode was observed, the electrode of the battery of Comparative Example 1 was in a state where the carbon material easily fell off from the substrate.
This is considered to be because the lithium and the binder reacted and the binder decomposed. Furthermore, in the battery of Comparative Example 2, a considerable amount of lithium was deposited on the electrode surface.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の非水溶媒二次電池を示す一部断面図で
ある。
FIG. 1 is a partial cross-sectional view showing a non-aqueous solvent secondary battery of an example.

【図2】実施例及び比較例の非水溶媒二次電池における
充放電サイクル数に対する放電容量維持率の変化を示す
特性図である。
FIG. 2 is a characteristic diagram showing changes in discharge capacity retention rate with respect to the number of charge/discharge cycles in non-aqueous solvent secondary batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1    非水溶媒二次電池 2    絶縁体 3    ステンレス容器 4    電極群 5    負極 6    セパレータ 7    正極 8    絶縁板 9    絶縁封口板 10  正極端子 11  正極リード 1 Non-aqueous solvent secondary battery 2 Insulator 3 Stainless steel container 4 Electrode group 5 Negative electrode 6 Separator 7 Positive electrode 8 Insulating board 9 Insulating sealing board 10 Positive terminal 11 Positive electrode lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  リチウム又はリチウムを主体とするア
ルカリ金属を担持した炭素質材料からなる負極体と、セ
パレータと、リチウム含有複合酸化物を正極活物質とす
る正極体とを、この順序で一体的に積層してなる発電要
素を具備する非水溶媒二次電池において、該負極体の結
着剤として、ポリアクリル酸又はその塩ならびにアクリ
ロニトリル・ブタジエンゴムを用いることを特徴とする
非水溶媒二次電池。
[Claim 1] A negative electrode body made of a carbonaceous material supporting lithium or an alkali metal mainly composed of lithium, a separator, and a positive electrode body having a lithium-containing composite oxide as a positive electrode active material are integrated in this order. A non-aqueous solvent secondary battery comprising a power generation element laminated with polyacrylic acid or a salt thereof and acrylonitrile-butadiene rubber as a binder for the negative electrode body. battery.
JP3174775A 1991-06-20 1991-06-20 Secondary battery with nonaqueous solvent Pending JPH04370661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174775A JPH04370661A (en) 1991-06-20 1991-06-20 Secondary battery with nonaqueous solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174775A JPH04370661A (en) 1991-06-20 1991-06-20 Secondary battery with nonaqueous solvent

Publications (1)

Publication Number Publication Date
JPH04370661A true JPH04370661A (en) 1992-12-24

Family

ID=15984454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174775A Pending JPH04370661A (en) 1991-06-20 1991-06-20 Secondary battery with nonaqueous solvent

Country Status (1)

Country Link
JP (1) JPH04370661A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
EP0817296A1 (en) * 1996-07-05 1998-01-07 Saft Electrode for rechargeable electrochemical generator with liquid organic electrolyte and process for producing the same
EP1009057A1 (en) * 1998-12-10 2000-06-14 Alcatel Lithium containing rechargeable electrochemical generator for use at low temperature
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
JP2010129296A (en) * 2008-11-26 2010-06-10 Sony Corp Non-aqueous electrolyte secondary battery
JP2016106354A (en) * 2013-03-27 2016-06-16 Jsr株式会社 Binder composition for power storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
EP0817296A1 (en) * 1996-07-05 1998-01-07 Saft Electrode for rechargeable electrochemical generator with liquid organic electrolyte and process for producing the same
FR2750800A1 (en) * 1996-07-05 1998-01-09 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR ELECTRODE WITH ORGANIC LIQUID ELECTROLYTE AND MANUFACTURING METHOD THEREOF
EP1009057A1 (en) * 1998-12-10 2000-06-14 Alcatel Lithium containing rechargeable electrochemical generator for use at low temperature
FR2787243A1 (en) * 1998-12-10 2000-06-16 Cit Alcatel LITHIUM RECHARGEABLE ELECTROCHEMICAL GENERATOR FOR USE AT LOW TEMPERATURE
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
JP2010129296A (en) * 2008-11-26 2010-06-10 Sony Corp Non-aqueous electrolyte secondary battery
JP2016106354A (en) * 2013-03-27 2016-06-16 Jsr株式会社 Binder composition for power storage device

Similar Documents

Publication Publication Date Title
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP5232631B2 (en) Non-aqueous electrolyte battery
US5478675A (en) Secondary battery
JPH097638A (en) Nonaqueous electrolytic secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
CN1198022A (en) Non aqueous electrolyte secondary batteries
JP3016627B2 (en) Non-aqueous solvent secondary battery
JPH10162823A (en) Non-aqueous secondary battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP4496688B2 (en) Secondary battery
CN110800136B (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising same
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JPH04370661A (en) Secondary battery with nonaqueous solvent
JPH04345759A (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH05225982A (en) Nonaqueous solvent secondary battery
JP3017847B2 (en) Non-aqueous solvent secondary battery