JP3543437B2 - Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material - Google Patents

Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material Download PDF

Info

Publication number
JP3543437B2
JP3543437B2 JP20736095A JP20736095A JP3543437B2 JP 3543437 B2 JP3543437 B2 JP 3543437B2 JP 20736095 A JP20736095 A JP 20736095A JP 20736095 A JP20736095 A JP 20736095A JP 3543437 B2 JP3543437 B2 JP 3543437B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20736095A
Other languages
Japanese (ja)
Other versions
JPH0935715A (en
Inventor
尚之 加藤
佳克 山本
貴夫 韮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20736095A priority Critical patent/JP3543437B2/en
Publication of JPH0935715A publication Critical patent/JPH0935715A/en
Application granted granted Critical
Publication of JP3543437B2 publication Critical patent/JP3543437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用の正極活物質及びこの正極活物質を用いた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年の電子技術のめざましい進歩により、電子機器の高性能化、小型化、ポータブル化が進み、これら電子機器に使用される電池に対しても高エネルギーであることが求められるようになっている。
【0003】
従来より、電子機器に使用されている二次電池としてはニッケル・カドミウム電池や鉛電池等の水溶液系の二次電池が挙げられる。しかし、これら水溶液系の二次電池は、放電電位が低く、近年要求されるエネルギー密度の向上には十分に応えられないのが実情である。
【0004】
一方、最近、高エネルギー密度が得られる電池システムとして、金属リチウムやリチウム合金を負極活物質として使用するリチウム二次電池が注目され、盛んに研究が行われている。
【0005】
しかしながら、この二次電池においては、金属リチウムを負極活物質として用いた場合には、負極上でリチウムが溶解、析出する際に当該負極から金属リチウムがデンドライト状に結晶成長し、ついには正極に到達して内部ショートに至るといった可能性が高い。またリチウム合金を負極活物質として用いた場合には、やはり負極上でリチウムが溶解、析出することによって負極が微細化し、負極性能の劣化が招来される。いずれにしてもリチウム二次電池は、サイクル寿命、安全性、急速充電性能等において問題点が認識され、このことが実用化に対する大きな障害となっており、一部コイン型として実用化されているに過ぎない。
【0006】
そこで、このような問題点を解消するために、炭素質材料のようなリチウムイオンをドープ・脱ドープすることが可能な物質を負極活物質とする非水電解液二次電池(リチウムイオン二次電池)の研究開発が盛んに行われている。この非水電解液二次電池では、電池系内でリチウムが金属状態で存在しないため、負極から金属リチウムがデンドライト状に結晶成長するといったこともなく、良好なサイクル特性、安全性が得られることになる。
【0007】
また、このような非水電解液二次電池では、特に正極活物質として酸化還元電位の高いリチウム含有化合物を用いることにより、電池電圧が高くなり、エネルギー密度が高められる。さらに、自己放電がニッケル・カドミウム電池と比較して小さく、二次電池として非常に優れた性能を発揮する。このように炭素質材料を負極活物質とする非水電解液二次電池は、優れた特性を有することから例えば8m/mVTR、CDプレーヤー、ラップトップ・コンピューター、セルラーテレフォン等のポータブル用電子機器の電源として商品化が開始されている。
【0008】
ところで、二次電池が用いられるポータブル用電子機器においては、機能の多様化等に伴って消費電力が増大する傾向にある。このため、電源となる電池に対しても、エネルギー密度の向上とともに重負荷サイクル特性についてもさらなる改善が求められるようになっている。
【0009】
ここで、電池の重負荷サイクル特性は電極での反応面積に大きく依存する。すなわち、電池では、電極の反応面積が大きい場合に良好な重負荷サイクル特性が得られる。
【0010】
このような点から、リチウムイオン二次電池の電池形態として主に採用されている円筒型電池とコイン型電池を見ると、まず円筒型電池では、集電体となる帯状金属箔表面に電極合剤層が形成された薄膜状の正極と負極を、セパレータを介して複数層積層し、これを巻回して形成される巻回型電極体が用いられ、いわゆるジェリーロールタイプとされている。なお、電極合剤層とは、負極の場合では、炭素質材料の粉末と結着剤を有機溶媒に分散させた負極合剤スラリーを、集電体表面に塗布、乾燥させることで形成される層である。正極の場合では、リチウム含有化合物の粉末と結着剤及び導電剤を有機溶媒に分散させた正極合剤スラリーを、やはり集電体表面に塗布乾燥させることで形成される層である。
【0011】
このような薄膜状電極が複数積層された巻回電極体は、比較的反応面積が大きく得られ、急速充電が可能であるとともに長サイクル寿命が得られる。
【0012】
一方、コイン型電池では、電極合剤を電池缶形状に合わせて圧縮成型することで得られるペレット状の正極と負極が、セパレータを間に挟んで積層されたかたちで電池缶内に収納される。
【0013】
このようなペレット状の電極が積層された電池の場合、電極反応はセパレータに対向した正極,負極の表面から進行し易いものと考えられ、この表面から遠い部分程電極反応が遅くなる。このため、電極厚さが厚くなると、セパレータに対向した表面から遠い部分では、見かけ上の過電圧状態になり易く、活物質の劣化が進行する。このため、十分なサイクル特性や負荷特性等が得られない。
【0014】
コイン型電池の反応面積を増大させるために、電極を厚さ方向に分断し、間に集電体を介在させた電極構成も考えられている。しかしながら、この場合には、電池缶容積の一部を集電体が占めることになることから、その分電極合剤の充填率が低くなり、電池容量が小さくなるといった不都合がある。
【0015】
【発明が解決しようとする課題】
このようにこれまでの非水電解液二次電池では、電極形態によってその度合いは異なるが、電極の反応面積を確保しようとすると電極充填性が小さくなるといった問題があり、エネルギー密度を維持しながら重負荷特性を改善するのが非常に困難である。
【0016】
そこで、本発明は、このような従来の実情に鑑みて提案されたものであり、電極を構成したときに、高い電極充填性が得られるとともに広い反応面積が確保される非水電解質二次電池用の正極活物質及びこの正極活物質を用いた非水電解質二次電池を提供することを目的とする。
【0017】
【課題を解決するための手段】
上述したような目的を達成するために提案される本発明に係る非水電解質二次電池用の正極活物質は、LiCoO、LiNiO、LiMn、LiCo1−yy、LiNi1−y、LMn1−y(但し、Mは、Ti,V,Cr,Mn,Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,Bから選ばれる少なくとも1種の元素を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆した複合粒子である。
【0018】
なお、このようにして正極活物質を製造するに当たっては、芯粒子に微粒子が被覆した状態、すなわち複合粒子としての平均粒径r1とその芯粒子の平均粒径r2及び芯粒子の回りを被覆する微粒子の平均粒径r3が適正であることが重要である。
【0019】
すなわち、複合粒子自体の平均粒径r1とその芯粒子の平均粒径r2の比r1/r2が、1.01≦r1/r2≦2であることが望ましく、微粒子の平均粒径r3と芯粒子の平均粒径r2の比r3/r2が、r3/r2≦1/5であるとさらに好ましい。但し、ここで言う平均粒径とはメジアン径、すなわち積算分布の50%に対する粒子径である。
【0020】
また、生成された複合粒子は、その後熱処理を施すようにしても良い。
【0021】
また、本発明に係る非水電解質二次電池は、上述した正極活物質を正極に用いたものである。この非水電解質二次電池の負極は、リチウム金属、リチウム合金またはリチウムをドープ・脱ドープすることが可能な炭素材料を主体として構成される。
【0022】
【発明の実施の形態】
本発明の具体的な実施の形態について以下に説明する。
【0023】
本発明に係る正極活物質は、図1に示すような複合粒子36からなるものである。この複合粒子36は、LiCoO、LiNiO、LiMn、LiCo1−yy、LiNi1−y、LMn1−y(但し、Mは、Ti,V,Cr,Mn,Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,Bから選ばれる少なくとも1種の元素を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆したものである。
【0024】
リチウム含有化合物よりなる芯粒子34の表面に、リチウム含有化合物よりなる微粒子35を被覆させる方法としては、高速気流中衝撃法が挙げられる。高速気流中衝撃法とは、高速気流中に、粉体と微粒子とが均一に混合されたミクスチャーを分散し、衝撃操作を繰り返し行うことで、粉体に機械的熱的エネルギーを与えるようにしたものである。この作用によって粉体表面に微粒子が均一に付着した状態となり粉体が表面改質される。参考のため、微粒子によって被覆されていないLiCoO2芯粒子の走査顕微鏡写真を図2に、LiCoO2微粒子によって被覆された複合粒子の走査顕微鏡写真を図3に示す。この場合、芯粒子の平均粒径r2と微粒子の平均粒径r3の比r3/r2は0.05である。なお、芯粒子と微粒子とは、このように同じ種類のリチウム含有化合物であってもよく、異なる種類のリチウム含有化合物であってもよい。
【0025】
芯粒子表面を微粒子で被覆したリチウム含有化合物の複合粒子を正極活物質として用いると以下のような効果が得られる。
【0026】
すなわち、一般に粉体粒子の充填密度は、粒子径が大きくなるにつれて高くなる傾向が見られる。この傾向はリチウム含有化合物で正極を構成する場合にも当てはまり、粒子径の大きいリチウム含有化合物を用いる程、活物質充填性の高い正極が得られる。
【0027】
しかし、粒子径の単純に大きいリチウム含有化合物は、電極充填性は高くできるものの、その比表面積が小さいために、電極反応に寄与する有効反応面積が小さい。したがって、このような単に粒子径の大きいリチウム含有化合物を用いる正極では、負極と対向する面から遠い部分では過電圧状態になり易く、活物質の劣化が進行する。
【0028】
これに対して、芯粒子表面を微粒子で被覆したリチウム含有化合物の複合粒子は、同じ粒径の通常のリチウム含有化合物に比べて比表面積が大きい。このため、粒径を大きくすることで充填性を高めながら、電極反応に有効に寄与する反応面積も十分に確保される。したがって、この複合粉末を正極に用いると、高いエネルギーが得られると同時に重負荷特性,サイクル特性に優れた電池が実現することになる。
【0029】
なお、このような作用を効果的に得るには、芯粒子に微粒子が被覆した状態、すなわち複合粒子としての平均粒径r1とその芯粒子の平均粒径r2及び芯粒子の回りを被覆する微粒子の平均粒径r3が適正であることが重要である。
【0030】
すなわち、複合粒子の平均粒径r1と芯粒子の平均粒径r2の比r1/r2は、1.01≦r1/r2≦2であることが好ましい。r1/r2が1.01より小さい場合、すなわち微粒子によって形成される被覆層の占める割合が小さ過ぎる場合には、重負荷サイクル特性を十分に改善することができない。逆にr1/r2が2よりも大きい場合、すなわち微粒子によって形成される被覆層の占める割合が大き過ぎる場合には、重負荷サイクル特性が却って悪くなる。
【0031】
また、微粒子の平均粒径r3と芯粒子の平均粒径r2の比r3/r2は1/5以下であることが好ましい。r3/r2が1/5より大きい場合、すなわち芯粒子の粒径に対して微粒子の粒径が大き過ぎる場合には、芯粒子と微粒子の間に隙間が大きく空き、複合粒子構造が壊れる可能性が高い。
【0032】
このうち芯粒子の平均粒径r2は、具体的には3μm≦r2≦30μmであるのが取扱い上望ましい。
【0033】
なお、芯粒子表面を微粒子で被覆したリチウム複合酸化物の複合粉末には、さらに適度な温度で熱処理を施すようにしても良い。これにより、複合粉末の導電性等の特性が改善され、正極活物質としてさらに優れたものになる。
【0034】
本発明の非水電解液二次電池は、以上のようにして作製されるリチウム含有化合物を正極活物質として使用する。したがって、高い電極充填性が得られるとともに電極反応面積が十分に確保され、高いエネルギー密度が得られるとともに良好な重負荷サイクル特性が得られる。
【0035】
一方、電池の負極活物質としては、リチウムやリチウム合金、リチウムをドープ・脱ドープすることが可能な炭素材料が用いられる。この炭素材料としては、2000℃以下の比較的低い温度で焼成して得られる低結晶性炭素材料、あるいは結晶化しやすい原料を3000℃近くの高温で熱処理することで得られる人造黒鉛や天然黒鉛等の高結晶性炭素材料が用いられる。具体的には、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、黒鉛類、ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂などを適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等が挙げられる。特に、(002)面の面間隔が0.370nm以上、真比重が1.70g/cc未満であり、且つ空気気流中における示差熱分析で700℃以上に発熱ピークを有しないといった特性を有する炭素材料が好適である。
【0036】
また、電解液としては、リチウム塩を支持電解質とし、これを有機溶媒に溶解させた電解液が用いられる。
【0037】
有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、スルホラン、メチルスルホラン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等が使用可能である。
【0038】
支持電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、CH3SO3Li、CF3SO3Li、LiN(CF3SO22、LiC(CF3SO23、LiCl、LiBr等が挙げられる。
【0039】
【実施例】
本発明の実施例について実験結果に基づいて説明する。
【0040】
作製した電池の構成
後述の各実験例において作製した電池の構造を図4に示す。
【0041】
この非水電解液二次電池は、図4に示すように、負極集電体10に負極活物質を塗布してなる負極1と、正極集電体11に正極活物質を塗布してなる正極2とを、セパレータ3を介して巻回し、この巻回体を上下に絶縁体4を載置した状態で電池缶5に収納してなるものである。
【0042】
前記電池缶5には電池蓋7が封口ガスケット6を介してかしめることによって取付けられ、それぞれ負極リード12及び正極リード13を介して負極1あるいは正極2と電気的に接続され、電池の負極あるいは正極として機能するように構成されている。
【0043】
そして、本実施例の電池では、前記正極リード13は電流遮断機構を有する安全弁装置8に溶接されて取付けられ、この安全弁装置8を介して電池蓋7との電気的接続が図られている。
【0044】
このような構成を有する電池において、電池内部の圧力が上昇すると、前記安全弁装置8が押し上げられて変形する。すると、正極リード13が安全弁装置8と溶接された部分を残して切断され、電流が遮断される。
【0045】
実施例1
まず、次のようにして正極活物質を生成した。
【0046】
炭酸コバルトと炭酸リチウムを、Li/Co比=1となるように混合し、空気中、温度900℃で5時間焼成した。この焼成物についてX線回折測定を行った結果、JCPDSカードにおけるLiCoO2の回折パターンと良く一致していた。このLiCoO2を粉砕することで、平均粒径3.0μmの芯粒子と平均粒径0.1μmの微粒子を得た。そして、このLiCoO2芯粒子の表面に、LiCoO2微粒子を高速気流中衝撃法によって被覆し、LiCoO2の複合粒子を作製した。作製された複合粒子の平均粒径は5.9μmであった。なお、この平均粒径は、体積基準のメジアン径であり、レーザー回折粒度計(堀場製作所社製 商品名LA−50)で測定した。
【0047】
そして、このLiCoO2の複合粒子を正極活物質として以下のようにして正極を作製した。
【0048】
LiCoO2の複合粒子91重量%、導電剤としてグラファイト6重量%、ポリフッ化ビニリデン3重量%を混合して正極合剤を調製し、N−メチル−2−ピロリドンに分散させることで正極合剤スラリーを調製した。
【0049】
この正極合剤スラリーを正極集電体11となるアルミニウム箔の両面に塗布、乾燥した後、ローラープレス機で圧縮成型することで帯状正極2を作製した。
【0050】
次に、負極活物質を生成した。
【0051】
出発原料に石油ピッチを用い、これを酸素を含む官能基を10〜20%導入(酸素架橋)した後、不活性ガス中、温度1000℃で焼成した。その結果、ガラス状炭素材料に近い性質の難黒鉛化性炭素材料が得られた。
【0052】
この難黒鉛化性炭素材料を負極活物質として以下のようにして負極1を作製した。
【0053】
炭素材料90重量%、結着剤としてポリフッ化ビニリデン10重量%を混合して負極合剤を調製し、N−メチル−2−ピロリドンに分散させて負極合剤スラリーとした。
【0054】
そして、この負極合剤スラリーを、負極集電体10となる銅箔の両面に塗布、乾燥した後、ローラープレス機で圧縮成型することで帯状負極1を作製した。
【0055】
以上のようにして作製した帯状負極1と正極2を、セパレータとなる厚さ25μmの微多孔性ポリプロピレンフィルムを介して積層し、多数回巻回することで渦巻式電極体を作製した。
【0056】
次に、この渦巻式電極体をニッケル鍍金を施した鉄製の電池缶5に収納し、この渦巻式電極体の上下両面に絶縁板4を配置した。そして、正極2、負極1の集電を行うために、正極集電体11からアルミニウム製の正極リード13を導出して電流遮断装置を有する安全弁装置8に溶接し、負極集電体10からニッケル製の負極リード12を導出して電池缶5に溶接した。
【0057】
その後、電池缶5の中にプロピレンカーボネート50容量%とメチルエチルカーボネート50容量%の混合溶媒に、LiPF6を1モルなる濃度で溶解させた電解液を注入した。そして、アスファルトを塗布したガスケット6を介して電池蓋7と電池缶5をかしめることで固定し、直径18mm、高さ65mmの円筒型電池を作製した。
【0058】
実施例2
正極活物質を生成するに際して、芯粒子として平均粒径が15.1μmのLiCoO2を、微粒子として平均粒径が0.7μmのLiCoO2を用い、平均粒径が18.4μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。
【0059】
実施例3
正極活物質を生成するに際して、芯粒子として平均粒径が30.3μmのLiCoO2を、微粒子として平均粒径が3.0μmのLiCoO2を用い、平均粒径が34.0μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。
【0060】
実施例4
正極活物質を生成するに際して、芯粒子として平均粒径が30.3μmのLiCoO2を、微粒子として平均粒径が0.7μmのLiCoO2を用い、平均粒径が33.4μmの複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。
【0061】
比較例1
平均粒径が3.0μmのLiCoO2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。
【0062】
比較例2
平均粒径が15.1μmのLiCoO2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。
【0063】
比較例3
平均粒径が30.3μmのLiCoO2を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。
【0064】
このようにして作製した電池について、充電電圧4.20V、充電電流1000mA、充電時間2.5時間なる条件で充電を行い、放電電流1200mA、終止電圧2.75Vなる条件で放電を行うといった重負荷放電条件での充放電サイクルを繰り返し行い、初回の放電容量(初期放電容量)と200サイクル目の放電容量の比(容量維持率)を求めた。初期放電容量及び容量維持率の測定結果を表1に示す。
【0065】
【表1】

Figure 0003543437
【0066】
表1において、まず微粒子で被覆していないLiCoO2をそのまま正極活物質として用いた比較例1〜比較例3の電池を比べると、この場合、正極活物質の平均粒径が大きくなる程、重負荷放電条件下での容量維持率が劣化してくることがわかる。
【0067】
これに対して、微粒子で被覆したLiCoO2を正極活物質として用いた実施例1〜実施例4を比べると、正極活物質の平均粒径が34.0μmである実施例3の電池や正極活物質の平均粒径が33.4μmである実施例4の電池でも重負荷放電条件下において十分な容量維持率が得られている。
【0068】
このことから、微粒子で被覆されたLiCoO2は、平均粒径が大きいものであっても電池に良好な重負荷サイクル特性を付与でき、電極充填性と重負荷放電特性の両立を可能にするものであることがわかった。
【0069】
実施例5
次のようにして正極活物質を生成した。
【0070】
酸化コバルト,酸化ニッケル及び水酸化リチウムをLi/Ni/Co比=1/0.8/0.2となるように混合し、酸素存在雰囲気下、温度750℃で5時間焼成することで、LiNi0.8Co0.22を生成した。
【0071】
このLiNi0.8Co0.22を粉砕することで、平均粒径15.1μmの芯粒子を得た。そして、このLiNi0.8Co0.22の芯粒子の表面に、平均粒径が0.7μmのLiCoO2の微粒子を高速気流中衝撃法によって被覆し、LiNi0.8Co0.22とLiCoO2の複合粒子を作製した。なお、この複合粒子の平均粒径は18.6μmであった。
【0072】
このようにして生成された複合粒子を正極活物質として用いること以外は実施例1と同様にして円筒型電池を作製した。
【0073】
実施例6
次のようにして正極活物質を生成した。
【0074】
二酸化マンガン1モルと炭酸リチウム0.25モルを混合し、空気中、温度850℃で5時間焼成することで、LiMn24を生成した。
【0075】
このLiMn24を粉砕することで、平均粒径15.1μmの芯粒子を得た。そして、このLiMn24の芯粒子の表面に、平均粒径が0.7μmのLiCoO2の微粒子を、高速気流中衝撃法によって被覆し、LiMn24とLiCoO2の複合粒子を作製した。なお、複合粒子の平均粒径は18.5μmであった。
【0076】
このようにして生成された複合粒子を正極活物質として用いること以外は実施例1と同様にして円筒型電池を作製した。
【0077】
比較例4
平均粒径が15.1μmのLiNi0.8Co0.22を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。
【0078】
比較例5
平均粒径が15.1μmのLiMn24を正極活物質として用いたこと以外は実施例1と同様にして円筒型電池を作製した。
【0079】
以上のようにして作製された電池について、上述と同様にして、重負荷放電条件での初期放電容量,200サイクル目放電容量を測定し、容量維持率を求めた。その結果を表2に示す。
【0080】
【表2】
Figure 0003543437
【0081】
表2からわかるように、微粒子で被覆されたLiNi0.8Co0.22あるいはLiMn24を正極活物質として用いた実施例5,実施例6の電池は、微粒子を被覆させていないLiNi0.8Co0.22あるいはLiMn24をそのまま正極活物質として用いた比較例4,比較例5とそれぞれ比較して、いずれも大きな初期容量が得られ、容量維持率が高い値になっている。
【0082】
このことから、LiCoO2に限らず、LiNi0.8Co0.22,LiMn24についても、微粒子で被覆することは、正極としての性能を高める上で有効であることがわかった。
【0083】
複合粒子の平均粒径r 1 ,芯粒子の平均粒径r 2 及び微粒子の平均粒径r 3 の検討
正極活物質を生成するに際して、芯粒子,微粒子として表3に示す平均粒径のLiCoO2を用いて、同表に示す平均粒径の複合粒子を生成したこと以外は実施例1と同様にして円筒型電池を作製した。
【0084】
そして、作製された電池について、上述と同様にして重負荷放電条件での初期放電容量,200サイクル目放電容量を測定し、容量維持率を求めた。その結果を表3に示す。
【0085】
【表3】
Figure 0003543437
【0086】
表3に示すように、複合粒子の平均粒径r1と芯粒子の平均粒径r2の比r1/r2が1.01未満である実験例6の電池やこの値が2を越える実験例7の電池は、他に比べて容量維持率が低い値になっている。このことから、r1/r2は1.01≦r1/r2≦2の範囲内にあるのが望ましいことがわかる。
【0087】
また、r1/r2がこの範囲内であっても、微粒子の平均粒径r3と芯粒子の平均粒径r2の比r3/r2が1/5を越える実験例5の電池も、十分な容量維持率であるとは言えない。
【0088】
したがって、複合粒子を生成するに際しては、r1/r2が1.01≦r1/r2≦2の範囲内になり、またr3/r2が1/5以下となるように、芯粒子及び微粒子の平均粒径や高速気流中衝撃法の条件を設定することが好ましいことがわかる。
【0089】
なお、本実施例においては、LiCoO2、LiNi0.8CO0.22、LiMn24をリチウム含有化合物として用いたが、この他、LixCoO2、LixNiO2、LixMn24、LixCo1-yy2、LixNi1-yMyO2、LixMn1-yy2(但し、MはTi,V,Cr,Mn,Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,Bから選ばれた少なくとも一種を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物を用いた場合でも同様の効果が得られることは実験により確認されている。
【0090】
また、本実施例では、正極活物質を円筒型電池に適用したが、角型、扁平型、コイン型、ボタン型の電池に適用した場合でも同様の効果が発揮されるのは勿論である。
【0091】
【発明の効果】
上述したように、本発明に係る正極活物質を用いることにより、正極での電極充填性を高めながら大きな反応面積を確保することができ、エネルギーが高く、重負荷サイクル特性に優れた二次電池を得ることができる。
【図面の簡単な説明】
【図1】芯粒子表面に複合粉末が被覆した状態を示す模式図である。
【図2】LiCoO2芯粒子の粒子構造を示す走査顕微鏡写真である。
【図3】LiCoO2複合粉末の粒子構造を示す走査顕微鏡写真である。
【図4】本発明を適用した非水電解液二次電池の1構成例を示す縦断面図である。
【符号の説明】
34 芯粒子
35 微粒子
36 複合粉末[0001]
TECHNICAL FIELD OF THE INVENTION
The present inventionFor non-aqueous electrolyte secondary batteriesPositive electrode active material andUsing this positive electrode active materialThe present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
2. Description of the Related Art With the remarkable progress of electronic technology in recent years, electronic devices have been improved in performance, downsized, and portable, and batteries used in these electronic devices have been required to have high energy.
[0003]
Conventionally, aqueous secondary batteries such as nickel-cadmium batteries and lead batteries have been used as secondary batteries used in electronic devices. However, these aqueous secondary batteries have a low discharge potential and cannot sufficiently meet the recently required improvement in energy density.
[0004]
On the other hand, recently, as a battery system capable of obtaining a high energy density, a lithium secondary battery using lithium metal or a lithium alloy as a negative electrode active material has attracted attention and has been actively studied.
[0005]
However, in this secondary battery, when metal lithium is used as a negative electrode active material, when lithium dissolves and precipitates on the negative electrode, metal lithium grows in a dendritic form from the negative electrode, and finally forms a positive electrode. There is a high possibility that it will reach and cause an internal short. Further, when a lithium alloy is used as the negative electrode active material, lithium is dissolved and precipitated on the negative electrode, so that the negative electrode becomes finer and the performance of the negative electrode deteriorates. In any case, lithium secondary batteries are recognized as having problems in cycle life, safety, rapid charging performance, and the like, and this is a major obstacle to practical application, and some lithium secondary batteries are practically used as coin type. It's just
[0006]
In order to solve such a problem, a non-aqueous electrolyte secondary battery (a lithium ion secondary battery) using a material capable of doping and undoping lithium ions, such as a carbonaceous material, as a negative electrode active material. Research and development of batteries. In this non-aqueous electrolyte secondary battery, since lithium does not exist in a metallic state in the battery system, good cycle characteristics and safety can be obtained without lithium dendrite crystal growth from the negative electrode. become.
[0007]
In addition, in such a nonaqueous electrolyte secondary battery, particularly by using a lithium-containing compound having a high oxidation-reduction potential as the positive electrode active material, the battery voltage is increased and the energy density is increased. Further, the self-discharge is smaller than that of the nickel-cadmium battery, so that the secondary battery exhibits extremely excellent performance. As described above, the nonaqueous electrolyte secondary battery using a carbonaceous material as a negative electrode active material has excellent characteristics. Therefore, for example, 8 m / m VTRs, CD players, laptop computers, cellular telephones, and other portable electronic devices. Commercialization has started as a power source.
[0008]
Meanwhile, in portable electronic devices using secondary batteries, power consumption tends to increase with diversification of functions and the like. For this reason, there is a demand for a battery serving as a power supply to further improve the heavy load cycle characteristics as well as the energy density.
[0009]
Here, the heavy duty cycle characteristics of the battery largely depend on the reaction area at the electrode. That is, in the battery, when the reaction area of the electrode is large, good heavy duty cycle characteristics can be obtained.
[0010]
From such a point of view, when looking at the cylindrical battery and the coin battery which are mainly adopted as the battery form of the lithium ion secondary battery, first, in the cylindrical battery, the electrode is attached to the surface of the band-shaped metal foil serving as the current collector. A wound electrode body formed by laminating a plurality of thin-film positive electrodes and negative electrodes on which an agent layer is formed with a separator interposed therebetween, and winding this is used, and is a so-called jelly roll type. Note that, in the case of the negative electrode, the electrode mixture layer is formed by applying a negative electrode mixture slurry in which a powder of a carbonaceous material and a binder are dispersed in an organic solvent to the surface of the current collector and drying the slurry. Layer. In the case of the positive electrode, it is a layer formed by applying and drying a positive electrode mixture slurry in which a lithium-containing compound powder, a binder and a conductive agent are dispersed in an organic solvent, on the surface of the current collector.
[0011]
A wound electrode body in which a plurality of such thin-film electrodes are stacked has a relatively large reaction area, is capable of quick charging, and has a long cycle life.
[0012]
On the other hand, in a coin-type battery, a pellet-shaped positive electrode and a negative electrode obtained by compression-molding an electrode mixture according to the shape of a battery can are housed in the battery can in a stacked state with a separator interposed therebetween. .
[0013]
In the case of a battery in which such pellet-shaped electrodes are laminated, it is considered that the electrode reaction easily proceeds from the surfaces of the positive electrode and the negative electrode facing the separator, and the electrode reaction becomes slower as the distance from the surface increases. For this reason, when the electrode thickness is increased, a portion far from the surface facing the separator is likely to be in an apparent overvoltage state, and the active material is deteriorated. For this reason, sufficient cycle characteristics and load characteristics cannot be obtained.
[0014]
In order to increase the reaction area of the coin-type battery, an electrode configuration in which the electrode is divided in the thickness direction and a current collector is interposed therebetween has been considered. However, in this case, since the current collector occupies a part of the capacity of the battery can, there is an inconvenience that the filling rate of the electrode mixture decreases accordingly and the battery capacity decreases.
[0015]
[Problems to be solved by the invention]
As described above, in the conventional nonaqueous electrolyte secondary batteries, the degree differs depending on the electrode form, but there is a problem that the electrode filling property is reduced when trying to secure the reaction area of the electrode, and while maintaining the energy density. It is very difficult to improve heavy load characteristics.
[0016]
Therefore, the present invention has been proposed in view of such a conventional situation. When an electrode is formed, a high electrode filling property is obtained and a wide reaction area is secured.Positive electrode active material for non-aqueous electrolyte secondary battery and using this positive electrode active materialAn object is to provide a non-aqueous electrolyte secondary battery.
[0017]
[Means for Solving the Problems]
To achieve the above objectivesFor non-aqueous electrolyte secondary batteries according to the proposed inventionThe positive electrode active material is LixCoO2, LixNiO2, LixMn2O4, LixCo1-yMyO2, LixNi1-yMyO2, LxMn1-yMyO2(However, M represents at least one element selected from Ti, V, Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, and B, and x is 0 <x ≦ 1. 2, y is 0 <y <1), and the surface of a core particle composed of any one of the lithium-containing compounds represented byComposite particlesIt is.
[0018]
In producing the positive electrode active material in this manner, the core particles are coated with fine particles, that is, the average particle diameter r as the composite particles1And the average particle size r of the core particlesTwoAnd the average particle diameter r of the fine particles covering around the core particlesThreeIt is important that is appropriate.
[0019]
That is, the average particle diameter r of the composite particles themselves1And the average particle size r of the core particlesTwoThe ratio r1/ RTwoIs 1.01 ≦ r1/ RTwo≤2, and the average particle diameter r of the fine particlesThreeAnd the average particle diameter r of the core particlesTwoThe ratio rThree/ RTwoIs rThree/ RTwoIt is more preferred that ≦ 1 /. Here, the average particle size is a median size, that is, a particle size with respect to 50% of the integrated distribution.
[0020]
The generated composite particles may be subjected to a heat treatment thereafter.
[0021]
In addition, the present inventionPertain toNon-aqueous electrolyte secondary batteries areThe positive electrode active material described above is used for the positive electrode. The negative electrode of this non-aqueous electrolyte secondary battery isIt is mainly composed of a lithium metal, a lithium alloy or a carbon material capable of doping and undoping lithium.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
A specific embodiment of the present invention will be described below.
[0023]
The present inventionPertain toThe positive electrode active material isIt is composed of composite particles 36 as shown in FIG. The composite particles 36LixCoO2, LixNiO2, LixMn2O4, LixCo1-yMyO2, LixNi1-yMyO2, LxMn1-yMyO2(However, M represents at least one element selected from Ti, V, Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, and B, and x is 0 <x ≦ 1. 2, y is 0 <y <1), and the surface of a core particle composed of any of the lithium-containing compounds represented by the following formula is coated with fine particles composed of any of these lithium-containing compounds.It was done.
[0024]
As a method for coating the surface of the core particles 34 made of the lithium-containing compound with the fine particles 35 made of the lithium-containing compound, there is a high-speed airflow impact method. With the high-speed airflow impact method, a mixture in which powder and fine particles are uniformly mixed is dispersed in a high-speed airflow, and mechanical energy is given to the powder by repeating the impact operation. Things. By this action, fine particles are uniformly attached to the surface of the powder, and the surface of the powder is reformed. For reference, LiCoO not coated with fine particlesTwoFIG. 2 shows a scanning micrograph of the core particles.TwoFIG. 3 shows a scanning micrograph of the composite particles coated with the fine particles. In this case, the average particle diameter r of the core particlesTwoAnd the average particle diameter r of the fine particlesThreeThe ratio rThree/ RTwoIs 0.05. The core particles and the fine particles may be the same kind of lithium-containing compound as described above, or may be different kinds of lithium-containing compounds.
[0025]
When the composite particles of the lithium-containing compound in which the core particle surface is coated with the fine particles are used as the positive electrode active material, the following effects can be obtained.
[0026]
That is, generally, the packing density of the powder particles tends to increase as the particle diameter increases. This tendency also applies to the case where the positive electrode is composed of a lithium-containing compound, and the use of a lithium-containing compound having a larger particle diameter leads to a positive electrode having a higher active material filling property.
[0027]
However, although a lithium-containing compound having a simply large particle diameter can have high electrode filling properties, its effective surface area contributing to an electrode reaction is small due to its small specific surface area. Therefore, in a positive electrode using a lithium-containing compound having only such a large particle diameter, a portion far from the surface facing the negative electrode is likely to be in an overvoltage state, and the active material is deteriorated.
[0028]
On the other hand, the composite particles of the lithium-containing compound in which the surface of the core particle is coated with the fine particles have a larger specific surface area than a normal lithium-containing compound having the same particle size. For this reason, the reaction area which effectively contributes to the electrode reaction is sufficiently secured while increasing the filling property by increasing the particle size. Therefore, when this composite powder is used for the positive electrode, a battery having high energy and excellent heavy load characteristics and cycle characteristics can be realized at the same time.
[0029]
In order to obtain such an effect effectively, the core particles are coated with the fine particles, that is, the average particle diameter r as the composite particles.1And the average particle size r of the core particlesTwoAnd the average particle diameter r of the fine particles covering around the core particlesThreeIt is important that is appropriate.
[0030]
That is, the average particle size r of the composite particles1And the average particle diameter r of the core particlesTwoThe ratio r1/ RTwoIs 1.01 ≦ r1/ RTwoIt is preferred that ≦ 2. r1/ RTwoIs smaller than 1.01, that is, when the proportion of the coating layer formed by the fine particles is too small, the heavy duty cycle characteristics cannot be sufficiently improved. Conversely r1/ RTwoIs larger than 2, that is, when the proportion of the coating layer formed by the fine particles is too large, the heavy duty cycle characteristics are rather poor.
[0031]
Also, the average particle diameter r of the fine particlesThreeAnd the average particle diameter r of the core particlesTwoThe ratio rThree/ RTwoIs preferably 1/5 or less. rThree/ RTwoIs larger than 1/5, that is, when the particle size of the fine particles is too large relative to the particle size of the core particles, a large gap is left between the core particles and the fine particles, and there is a high possibility that the composite particle structure is broken.
[0032]
The average particle size r of the core particles isTwoIs specifically 3 μm ≦ rTwo≦ 30 μm is desirable for handling.
[0033]
The lithium composite oxide composite powder having the core particle surface coated with fine particles may be subjected to a heat treatment at a more appropriate temperature. Thereby, the properties such as conductivity of the composite powder are improved, and the composite powder becomes more excellent as a positive electrode active material.
[0034]
The nonaqueous electrolyte secondary battery of the present invention uses the lithium-containing compound produced as described above as a positive electrode active material. Therefore, a high electrode filling property is obtained, a sufficient electrode reaction area is secured, a high energy density is obtained, and good heavy load cycle characteristics are obtained.
[0035]
On the other hand, as the negative electrode active material of the battery, lithium, a lithium alloy, or a carbon material capable of doping / dedoping lithium is used. Examples of the carbon material include a low-crystalline carbon material obtained by calcining at a relatively low temperature of 2000 ° C. or less, and artificial graphite and natural graphite obtained by heat-treating a raw material that easily crystallizes at a high temperature of about 3000 ° C. Is used. Specifically, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired bodies (furan resin, etc.) ), Carbon fiber, activated carbon and the like. In particular, carbon having a characteristic that the spacing between (002) planes is 0.370 nm or more, the true specific gravity is less than 1.70 g / cc, and that it has no exothermic peak at 700 ° C. or more in differential thermal analysis in an air stream. Materials are preferred.
[0036]
Further, as the electrolytic solution, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used.
[0037]
Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, and 4-methyl-1,3. -Dioxolan, sulfolane, methylsulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate and the like can be used.
[0038]
LiClO is used as a supporting electrolyte.Four, LiAsF6, LiPF6, LiBFFour, LiB (C6HFive)Four, CHThreeSOThreeLi, CFThreeSOThreeLi, LiN (CFThreeSOTwo)Two, LiC (CFThreeSOTwo)Three, LiCl, LiBr and the like.
[0039]
【Example】
Examples of the present invention will be described based on experimental results.
[0040]
Configuration of fabricated battery
FIG. 4 shows the structure of the battery manufactured in each of the experimental examples described later.
[0041]
As shown in FIG. 4, the nonaqueous electrolyte secondary battery has a negative electrode 1 formed by applying a negative electrode active material to a negative electrode current collector 10 and a positive electrode formed by applying a positive electrode active material to a positive electrode current collector 11. 2 is wound through a separator 3 and the wound body is housed in a battery can 5 with an insulator 4 placed on top and bottom.
[0042]
A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 12 and a positive electrode lead 13, respectively. It is configured to function as a positive electrode.
[0043]
In the battery of the present embodiment, the positive electrode lead 13 is welded and attached to a safety valve device 8 having a current cutoff mechanism, and an electrical connection with the battery lid 7 is achieved through the safety valve device 8.
[0044]
In a battery having such a configuration, when the pressure inside the battery increases, the safety valve device 8 is pushed up and deformed. Then, the positive electrode lead 13 is cut leaving a portion welded to the safety valve device 8, and the current is cut off.
[0045]
Example 1
First, a positive electrode active material was produced as follows.
[0046]
Cobalt carbonate and lithium carbonate were mixed so that the Li / Co ratio = 1, and fired in air at 900 ° C. for 5 hours. As a result of X-ray diffraction measurement of the fired product, it was found that LiCoOTwoWell matched the diffraction pattern. This LiCoOTwoWas ground to obtain core particles having an average particle size of 3.0 μm and fine particles having an average particle size of 0.1 μm. And this LiCoOTwoLiCoO on the surface of the core particlesTwoThe particles are coated by a high-speed air-flow impact method, and LiCoOTwoWas prepared. The average particle size of the produced composite particles was 5.9 μm. The average particle diameter is a volume-based median diameter, and was measured with a laser diffraction particle size analyzer (trade name LA-50, manufactured by Horiba, Ltd.).
[0047]
And this LiCoOTwoUsing the composite particles as a positive electrode active material, a positive electrode was produced as follows.
[0048]
LiCoOTwo91% by weight of composite particles, 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride are mixed to prepare a positive electrode mixture, and the mixture is dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture slurry. did.
[0049]
The positive electrode mixture slurry was applied to both sides of an aluminum foil serving as the positive electrode current collector 11, dried, and then compression-molded with a roller press to produce a belt-shaped positive electrode 2.
[0050]
Next, a negative electrode active material was produced.
[0051]
A petroleum pitch was used as a starting material, and after introducing 10 to 20% of a functional group containing oxygen (oxygen crosslinking), the mixture was fired in an inert gas at a temperature of 1000C. As a result, a non-graphitizable carbon material having properties close to those of a glassy carbon material was obtained.
[0052]
The negative electrode 1 was produced as follows using this non-graphitizable carbon material as a negative electrode active material.
[0053]
A negative electrode mixture was prepared by mixing 90% by weight of a carbon material and 10% by weight of polyvinylidene fluoride as a binder, and dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode mixture slurry.
[0054]
Then, the negative electrode mixture slurry was applied to both surfaces of a copper foil serving as the negative electrode current collector 10, dried, and then compression-molded with a roller press to produce a band-shaped negative electrode 1.
[0055]
The strip-shaped negative electrode 1 and the positive electrode 2 manufactured as described above were laminated via a microporous polypropylene film having a thickness of 25 μm as a separator, and were wound many times to obtain a spiral electrode body.
[0056]
Next, the spiral electrode body was housed in an iron battery can 5 plated with nickel, and insulating plates 4 were arranged on both upper and lower surfaces of the spiral electrode body. Then, in order to collect the current of the positive electrode 2 and the negative electrode 1, the positive electrode lead 13 made of aluminum is led out from the positive electrode current collector 11 and welded to the safety valve device 8 having a current interrupting device, and nickel is collected from the negative electrode current collector 10. The negative electrode lead 12 made of was made and was welded to the battery can 5.
[0057]
Then, LiPF was mixed in the battery can 5 with a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of methyl ethyl carbonate.6Was dissolved at a concentration of 1 mol. Then, the battery lid 7 and the battery can 5 were fixed by caulking via the gasket 6 coated with asphalt, thereby producing a cylindrical battery having a diameter of 18 mm and a height of 65 mm.
[0058]
Example 2
When producing the positive electrode active material, LiCoO having an average particle size of 15.1 μm is used as a core particle.TwoAs LiCoO having an average particle diameter of 0.7 μm as fine particles.TwoAnd a cylindrical battery was produced in the same manner as in Example 1 except that composite particles having an average particle size of 18.4 μm were produced.
[0059]
Example 3
In producing the positive electrode active material, LiCoO having an average particle diameter of 30.3 μm is used as a core particle.TwoAs LiCoO having an average particle size of 3.0 μm as fine particles.TwoAnd a cylindrical battery was produced in the same manner as in Example 1 except that composite particles having an average particle size of 34.0 μm were produced.
[0060]
Example 4
In producing the positive electrode active material, LiCoO having an average particle diameter of 30.3 μm is used as a core particle.TwoAs LiCoO having an average particle diameter of 0.7 μm as fine particles.TwoAnd a cylindrical battery was produced in the same manner as in Example 1 except that composite particles having an average particle size of 33.4 μm were produced.
[0061]
Comparative Example 1
LiCoO having an average particle size of 3.0 μmTwoA cylindrical battery was produced in the same manner as in Example 1, except that was used as a positive electrode active material.
[0062]
Comparative Example 2
LiCoO with an average particle size of 15.1 μmTwoA cylindrical battery was produced in the same manner as in Example 1, except that was used as a positive electrode active material.
[0063]
Comparative Example 3
LiCoO having an average particle size of 30.3 μmTwoA cylindrical battery was produced in the same manner as in Example 1, except that was used as a positive electrode active material.
[0064]
A heavy load is applied to the battery manufactured in this manner, under the condition that the charging voltage is 4.20 V, the charging current is 1000 mA, the charging time is 2.5 hours, and the discharging is 1200 mA and the final voltage is 2.75 V. The charge / discharge cycle under the discharge conditions was repeated, and the ratio (capacity retention) between the initial discharge capacity (initial discharge capacity) and the 200th cycle discharge capacity was determined. Table 1 shows the measurement results of the initial discharge capacity and the capacity retention ratio.
[0065]
[Table 1]
Figure 0003543437
[0066]
In Table 1, first, LiCoO not coated with fine particles was used.TwoCompared with the batteries of Comparative Examples 1 to 3 using the same as the positive electrode active material, in this case, as the average particle size of the positive electrode active material increases, the capacity retention under heavy load discharge conditions deteriorates. You can see it coming.
[0067]
In contrast, LiCoO coated with fine particlesTwoCompared with Examples 1 to 4 in which was used as the positive electrode active material, the battery of Example 3 in which the average particle size of the positive electrode active material was 34.0 μm and the average particle size of the positive electrode active material were 33.4 μm. Even in the battery of Example 4, a sufficient capacity retention ratio was obtained under heavy load discharge conditions.
[0068]
Thus, LiCoO coated with fine particlesTwoIt has been found that can provide good heavy load cycle characteristics to the battery even if the average particle size is large, and make it possible to achieve both electrode filling properties and heavy load discharge characteristics.
[0069]
Example 5
A positive electrode active material was produced as follows.
[0070]
Cobalt oxide, nickel oxide and lithium hydroxide are mixed so that the Li / Ni / Co ratio = 1 / 0.8 / 0.2, and calcined at 750 ° C. for 5 hours in an oxygen-containing atmosphere to obtain LiNi.0.8Co0.2OTwoGenerated.
[0071]
This LiNi0.8Co0.2OTwoWas ground to obtain core particles having an average particle size of 15.1 μm. And this LiNi0.8Co0.2OTwoLiCoO having an average particle size of 0.7 μmTwoFine particles are coated by a high-speed air impact method, and LiNi0.8Co0.2OTwoAnd LiCoOTwoWas prepared. The average particle size of the composite particles was 18.6 μm.
[0072]
A cylindrical battery was produced in the same manner as in Example 1, except that the composite particles thus produced were used as a positive electrode active material.
[0073]
Example 6
A positive electrode active material was produced as follows.
[0074]
1 mol of manganese dioxide and 0.25 mol of lithium carbonate are mixed, and calcined in air at a temperature of 850 ° C. for 5 hours to obtain LiMn.TwoOFourGenerated.
[0075]
This LiMnTwoOFourWas ground to obtain core particles having an average particle size of 15.1 μm. And this LiMnTwoOFourLiCoO having an average particle size of 0.7 μmTwoIs coated by a high-velocity air impact method, and LiMnTwoOFourAnd LiCoOTwoWas prepared. The average particle size of the composite particles was 18.5 μm.
[0076]
A cylindrical battery was produced in the same manner as in Example 1, except that the composite particles thus produced were used as a positive electrode active material.
[0077]
Comparative Example 4
LiNi with an average particle size of 15.1 μm0.8Co0.2OTwoA cylindrical battery was produced in the same manner as in Example 1, except that was used as a positive electrode active material.
[0078]
Comparative Example 5
LiMn having an average particle size of 15.1 μmTwoOFourA cylindrical battery was produced in the same manner as in Example 1, except that was used as a positive electrode active material.
[0079]
With respect to the battery manufactured as described above, the initial discharge capacity under the heavy load discharge condition and the discharge capacity at the 200th cycle were measured in the same manner as described above, and the capacity retention rate was obtained. Table 2 shows the results.
[0080]
[Table 2]
Figure 0003543437
[0081]
As can be seen from Table 2, LiNi coated with fine particles0.8Co0.2OTwoOr LiMnTwoOFourThe batteries of Examples 5 and 6 in which LiNi was used as the positive electrode active material were LiNi not coated with fine particles.0.8Co0.2OTwoOr LiMnTwoOFourOf Comparative Example 4 and Comparative Example 5, each of which was used as a positive electrode active material as it was, a large initial capacity was obtained, and the capacity retention ratio was a high value.
[0082]
From this, LiCoOTwoNot limited to LiNi0.8Co0.2OTwo, LiMnTwoOFourAlso, it was found that coating with fine particles was effective in enhancing the performance as a positive electrode.
[0083]
Average particle size r of composite particles 1 , Average particle size r of core particles Two And the average particle diameter r of the fine particles Three Examination of
In producing the positive electrode active material, LiCoO 2 having an average particle diameter shown in Table 3 as core particles and fine particles was used.TwoWas used to produce a cylindrical battery in the same manner as in Example 1 except that composite particles having an average particle size shown in the same table were produced.
[0084]
Then, the initial discharge capacity under the heavy load discharge condition and the discharge capacity at the 200th cycle were measured in the same manner as described above, and the capacity retention rate was obtained. Table 3 shows the results.
[0085]
[Table 3]
Figure 0003543437
[0086]
As shown in Table 3, the average particle size r of the composite particles1And the average particle diameter r of the core particlesTwoThe ratio r1/ RTwoIs less than 1.01, and the battery of Experimental Example 7 in which this value exceeds 2 has a lower capacity retention ratio than the others. From this, r1/ RTwoIs 1.01 ≦ r1/ RTwoIt can be seen that it is desirable to be within the range of ≦ 2.
[0087]
Also, r1/ RTwoIs within this range, the average particle diameter r of the fine particlesThreeAnd the average particle diameter r of the core particlesTwoThe ratio rThree/ RTwoThe battery of Experimental Example 5 in which the ratio exceeds 1/5 cannot be said to have a sufficient capacity retention rate.
[0088]
Therefore, when producing composite particles, r1/ RTwoIs 1.01 ≦ r1/ RTwo≦ 2 and rThree/ RTwoIt can be seen that it is preferable to set the average particle diameter of the core particles and the fine particles and the conditions of the high-speed impact in a gas stream so that the ratio becomes 1/5 or less.
[0089]
In this embodiment, LiCoOTwo, LiNi0.8CO0.2OTwo, LiMnTwoOFourWas used as a lithium-containing compound.xCoOTwo, LixNiOTwo, LixMnTwoOFour, LixCo1-yMyOTwo, LixNi1-yMyOTwo, LixMn1-yMyOTwo(However, M represents at least one selected from Ti, V, Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, and B, x is 0 <x ≦ 1.2, y Has been confirmed by experiments that the same effect can be obtained even when a lithium-containing compound represented by 0 <y <1 is used.
[0090]
Further, in this embodiment, the positive electrode active material is applied to a cylindrical battery. However, the same effect can be naturally obtained when the positive electrode active material is applied to a square, flat, coin, or button battery.
[0091]
【The invention's effect】
As described above, by using the positive electrode active material according to the present invention,A secondary battery that can secure a large reaction area while increasing the electrode filling property of the positive electrode, has high energy, and has excellent heavy load cycle characteristicsObtainable.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state in which a composite powder is coated on a core particle surface.
FIG. 2 LiCoOTwo4 is a scanning micrograph showing a particle structure of a core particle.
FIG. 3 LiCoOTwo4 is a scanning micrograph showing the particle structure of a composite powder.
FIG. 4 is a longitudinal sectional view showing one configuration example of a nonaqueous electrolyte secondary battery to which the present invention is applied.
[Explanation of symbols]
34 core particles
35 fine particles
36 Composite powder

Claims (4)

LiCoO、LiNiO、LiMn、LiCo1−yy、LiNi1−y、LMn1−y(但し、Mは、Ti,V,Cr,Mn,Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,Bから選ばれる少なくとも1種の元素を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆した複合粒子であることを特徴とする非水電解質二次電池用の正極活物質。 Li x CoO 2, Li x NiO 2, Li x Mn 2 O 4, Li x Co 1-y M y O 2, Li x Ni 1-y M y O 2, L x Mn 1-y M y O 2 ( Here, M represents at least one element selected from Ti, V, Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Mo, Bi, and B, and x is 0 <x ≦ 1.2. , Y is 0 <y <1), wherein the composite particles are obtained by coating the surface of a core particle composed of any of the lithium-containing compounds represented by the following formula with fine particles composed of any of these lithium-containing compounds. Positive electrode active material for non-aqueous electrolyte secondary batteries . 当該正極活物質の平均粒径r上記芯粒子の平均粒径rの比r/rが、1.01≦r/r≦2であることを特徴とする請求項1記載の非水電解質二次電池用の正極活物質。Claim the ratio r 1 / r 2 of the average particle diameter r 2 of the mean particle size r 1 and the core particles of the positive electrode active material, characterized in that it is a 1.01 ≦ r 1 / r 2 ≦ 2 1 The positive electrode active material for a nonaqueous electrolyte secondary battery according to the above . 上記微粒子の平均粒径rと上記芯粒子の平均粒径rの比r/rが、1/5以下であることを特徴とする請求項2記載の非水電解質二次電池用の正極活物質。The ratio r 3 / r 2 having an average particle diameter r 2 of the average particle diameter r 3 and the core particles of the fine particles is, for a non-aqueous electrolyte secondary battery according to claim 2, wherein a is 1/5 or less of the positive electrode active material. リチウム金属、リチウム合金またはリチウムをドープ・脱ドープすることが可能な炭素材料を負極活物質とする負極、リチウム含有化合物を正極活物質とする正極及び非水電解液を有してなる非水電解液二次電池において、
上記正極活物質は、LiCoO、LiNiO、LiMn、LiCo1−yy、LiNi1−y、LMn1−y(但し、Mは、Ti,V,Cr,Mn,Fe,Al,Co,Ni,Cu,Zn,Mo,Bi,Bから選ばれる少なくとも1種の元素を表し、xは0<x≦1.2、yは0<y<1である)で表されるリチウム含有化合物のいずれかよりなる芯粒子の表面を、これらリチウム含有化合物のいずれかよりなる微粒子で被覆した複合粒子であることを特徴とする非水電解液二次電池。
Non-aqueous electrolysis comprising a negative electrode using a lithium metal, lithium alloy or a carbon material capable of doping / dedoping lithium as a negative electrode active material, a positive electrode using a lithium-containing compound as a positive electrode active material, and a non-aqueous electrolyte In liquid secondary batteries,
The positive electrode active material, Li x CoO 2, Li x NiO 2, Li x Mn 2 O 4, Li x Co 1-y M y O 2, Li x Ni 1-y M y O 2, L x Mn 1- y M y O 2 (where M represents at least one element selected from Ti, V, Cr, Mn, Fe, Al, Co, Ni, Cu, Zn, Mo, Bi and B, and x is 0 <X ≦ 1.2, y is 0 <y <1) Composite particles obtained by coating the surface of a core particle made of any one of lithium-containing compounds with fine particles made of any of these lithium-containing compounds non-aqueous electrolyte secondary battery, characterized in that it.
JP20736095A 1995-07-24 1995-07-24 Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material Expired - Lifetime JP3543437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20736095A JP3543437B2 (en) 1995-07-24 1995-07-24 Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20736095A JP3543437B2 (en) 1995-07-24 1995-07-24 Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material

Publications (2)

Publication Number Publication Date
JPH0935715A JPH0935715A (en) 1997-02-07
JP3543437B2 true JP3543437B2 (en) 2004-07-14

Family

ID=16538450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20736095A Expired - Lifetime JP3543437B2 (en) 1995-07-24 1995-07-24 Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material

Country Status (1)

Country Link
JP (1) JP3543437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582161B2 (en) * 1995-08-11 2004-10-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
WO1999005734A1 (en) * 1997-07-25 1999-02-04 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
JP2000223157A (en) * 1999-01-28 2000-08-11 Sanyo Electric Co Ltd Lithium secondary battery
DE10014884A1 (en) * 2000-03-24 2001-09-27 Merck Patent Gmbh Coated lithium mixed oxide particles and a process for their production
JP4683509B2 (en) * 2000-08-28 2011-05-18 日本化学工業株式会社 Lithium manganese composite oxide composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4404179B2 (en) 2001-12-06 2010-01-27 ソニー株式会社 Positive electrode active material and secondary battery using the same
JP4248190B2 (en) * 2002-04-09 2009-04-02 株式会社東芝 Cathode active material and non-aqueous electrolyte battery
NZ520452A (en) * 2002-10-31 2005-03-24 Lg Chemical Ltd Anion containing mixed hydroxide and lithium transition metal oxide with gradient of metal composition
US7314684B2 (en) * 2003-03-14 2008-01-01 U Chicago Argonne Llc Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries
JP4061648B2 (en) * 2003-04-11 2008-03-19 ソニー株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7294435B2 (en) 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CA2552375C (en) 2003-12-31 2015-01-27 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP4552475B2 (en) * 2004-03-24 2010-09-29 Tdk株式会社 Composite particle for electrode, electrode and electrochemical element, and method for producing composite particle for electrode, method for producing electrode, and method for producing electrochemical element
EP1831943B1 (en) 2004-12-31 2014-12-10 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Method for preparing double-layer cathode active materials for lithium secondary batteries
CN1855587B (en) 2005-04-28 2010-05-05 比亚迪股份有限公司 Battery anode preparation method and preparation method of lithium ion batteries using the battery anode
JP4824349B2 (en) * 2005-06-16 2011-11-30 パナソニック株式会社 Lithium ion secondary battery
JP5153060B2 (en) 2005-06-16 2013-02-27 パナソニック株式会社 Lithium ion secondary battery
JP5260821B2 (en) 2005-07-11 2013-08-14 パナソニック株式会社 Lithium ion secondary battery
JP5040282B2 (en) * 2006-03-06 2012-10-03 ソニー株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US7906239B2 (en) 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
CN101405899B (en) * 2006-03-20 2012-04-04 株式会社Lg化学 Cathode materials for lithium battery having higher performance
CN102306768B (en) * 2006-03-20 2015-04-15 株式会社Lg化学 Method for preparation of stoichiometric lithium cobalt oxide
JP4586991B2 (en) * 2006-03-24 2010-11-24 ソニー株式会社 Positive electrode active material, method for producing the same, and secondary battery
JP5224081B2 (en) * 2006-04-19 2013-07-03 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR101403828B1 (en) * 2007-03-05 2014-06-03 도다 고교 가부시끼가이샤 Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5023912B2 (en) * 2007-09-19 2012-09-12 トヨタ自動車株式会社 Method for producing positive electrode active material
JP4930466B2 (en) * 2008-07-14 2012-05-16 パナソニック株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5568886B2 (en) * 2009-05-07 2014-08-13 ソニー株式会社 Active material, battery and method for producing electrode
JP5526636B2 (en) 2009-07-24 2014-06-18 ソニー株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP5483413B2 (en) * 2009-09-10 2014-05-07 Necエナジーデバイス株式会社 Lithium ion secondary battery
TW201115813A (en) * 2009-10-16 2011-05-01 Sunyen Co Ltd Active material of compound electrode of lithium battery and method of fabricating the same
WO2013038918A1 (en) 2011-09-12 2013-03-21 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
KR101411226B1 (en) * 2012-04-03 2014-06-23 삼성정밀화학 주식회사 Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
CN107004856B (en) 2014-12-18 2021-06-04 陶氏环球技术有限责任公司 Lithium ion battery with improved thermal stability
JP2018116903A (en) * 2017-01-20 2018-07-26 Tdk株式会社 Cathode active material, cathode using the same and lithium ion secondary battery
JP6857752B1 (en) * 2020-01-09 2021-04-14 住友化学株式会社 Method for producing lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery and lithium metal composite oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode

Also Published As

Publication number Publication date
JPH0935715A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
JP3543437B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JP7191342B2 (en) Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR101170162B1 (en) Positive electrode active material and non-aqueous electrolyte secondary cell
JP4524881B2 (en) Nonaqueous electrolyte secondary battery
EP0713256B1 (en) Lithium secondary battery and process for preparing negative-electrode active material for use in the same
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
JP5268315B2 (en) Non-aqueous electrolyte battery active material and non-aqueous electrolyte battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP2003303585A (en) Battery
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2003317705A (en) Battery
JP3451763B2 (en) Manufacturing method of positive electrode active material
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JP4284232B2 (en) Nonaqueous electrolyte secondary battery
JP2024127969A (en) Positive electrode active material, positive electrode, and lithium secondary battery including the same
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPH1131513A (en) Nonaqueous electrolyte secondary battery
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4163410B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US6482546B1 (en) Rechargeable lithium battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term