JP3017847B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP3017847B2
JP3017847B2 JP3187096A JP18709691A JP3017847B2 JP 3017847 B2 JP3017847 B2 JP 3017847B2 JP 3187096 A JP3187096 A JP 3187096A JP 18709691 A JP18709691 A JP 18709691A JP 3017847 B2 JP3017847 B2 JP 3017847B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous solvent
secondary battery
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3187096A
Other languages
Japanese (ja)
Other versions
JPH04328260A (en
Inventor
卓美 内田
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3187096A priority Critical patent/JP3017847B2/en
Publication of JPH04328260A publication Critical patent/JPH04328260A/en
Application granted granted Critical
Publication of JP3017847B2 publication Critical patent/JP3017847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は負極担持体として炭素質
材料を用いる非水溶媒二次電池の正極活物質の改良に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode active material of a non-aqueous solvent secondary battery using a carbonaceous material as a negative electrode carrier.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、さらに繰返し充放電
可能な二次電池の開発が要望されている。この種の二次
電池としては、負極活物質としてリチウム又はリチウム
合金を用い、正極活物質としてモリブデン、バナジウ
ム、チタン、ニオブなどの酸化物、硫化物、セレン化物
などを用いたものが知られている。また最近では、高エ
ネルギー密度を有するマンガン酸化物のサイクル特性を
改良・向上させたスピンネル型LiMnや、他の
リチウムマンガン複合酸化物についての検討が活発にな
されている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be charged and discharged repeatedly. As this type of secondary battery, those using lithium or a lithium alloy as a negative electrode active material, and using oxides such as molybdenum, vanadium, titanium, and niobium, sulfides, and selenides as a positive electrode active material are known. I have. In recent years, studies have been actively conducted on spinel-type LiMn 2 O 4 having improved and improved cycle characteristics of a manganese oxide having a high energy density and other lithium manganese composite oxides.

【0003】これらのリチウムマンガン酸化物を正極活
物質とし、リチウムを負極活物質とする電池系において
は、サイクルを繰り返すことによって負極活物質である
リチウムの溶解・析出反応が繰り返され、やがてリチウ
ム基板上に針状のリチウムデンドライト析出物を形成す
るという問題が生じる。そのため、電池系においては、
正極活物質中で徐々に進行する結晶構造の崩れととも
に、負極側におけるデンドライトの生成と溶媒の分解反
応によって電池寿命は規定され、500サイクル以上の
寿命と長期間にわたる信頼性を有する電池の製造は非常
に困難である。
In a battery system using these lithium manganese oxide as a positive electrode active material and lithium as a negative electrode active material, a cycle of repeating the dissolution / precipitation reaction of lithium, which is a negative electrode active material, is repeated. The problem of forming needle-like lithium dendrite deposits on top arises. Therefore, in the battery system,
The battery life is regulated by the dendrite generation and the solvent decomposition reaction on the negative electrode side with the collapse of the crystal structure gradually progressing in the positive electrode active material, and the production of a battery having a life of 500 cycles or more and long-term reliability is required. Very difficult.

【0004】一方、これらマンガン酸化物と異なる反応
形態である層状化合物のインターカレーション又はドー
ピング現象を利用した電極活物質が注目を集めている。
これらの電極活物質は、充電、放電反応時において複雑
な化学反応を起こさないことから、極めて優れた充放電
サイクルを有することが期待される。中でも炭素質材料
を担持体とするものは注目を集めている。この炭素質材
料を負極担持体とし、正極活物質としてLiCoO
LiNiO系が提案されている。
On the other hand, an electrode active material utilizing intercalation or doping of a layered compound having a different reaction form from these manganese oxides has attracted attention.
Since these electrode active materials do not cause a complicated chemical reaction during charge and discharge reactions, they are expected to have an extremely excellent charge / discharge cycle. Above all, those using a carbonaceous material as a support have attracted attention. This carbonaceous material was used as a negative electrode carrier, and LiCoO 2 /
LiNiO 2 system has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、炭素質材料を
負極活物質とした場合、TiS、MoSなどの金属
カルコゲン化合物を正極活物質として用いると起電力が
小さく、またLiCoO、LiNiO等を正極活物
質とすると、作動電圧範囲が3.0〜4.3V程度と非
常に大きくなる。しかし、この活物質の充電曲線は4.
3Vまでほぼ直線的に上昇し、充電終止の検出、設定が
困難であり、過充電による電解液の分解、電極基材の溶
解が生じる可能性がある。
However, when a carbonaceous material is used as a negative electrode active material, when a metal chalcogen compound such as TiS 2 or MoS 2 is used as a positive electrode active material, the electromotive force is small, and LiCoO 2 , LiNiO 2 When the positive electrode active material is used as the positive electrode active material, the operating voltage range is as large as about 3.0 to 4.3 V. However, the charge curve of this active material is 4.
It rises almost linearly to 3 V, and it is difficult to detect and set the termination of charging, and there is a possibility that decomposition of the electrolytic solution and dissolution of the electrode base material due to overcharging may occur.

【0006】本発明はかかる問題点に対してなされたも
ので、炭素質負極活物質を用いた際の正極側における溶
媒の分解、基材の溶解を防止し、また正極中に電池の充
放電時に移動可能なLiイオンを含有する正極活物質を
得ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is intended to prevent decomposition of a solvent and dissolution of a base material on a positive electrode side when a carbonaceous negative electrode active material is used, and to charge and discharge a battery in a positive electrode. An object is to obtain a positive electrode active material containing a sometimes movable Li ion.

【0007】[0007]

【課題を解決するための手段】本発明に係る非水溶媒二
次電池は、炭素質材料を含む負極組成式LiM1-XX
2(但し、MはCo及びNiから選ばれる少なくとも
一種であり、原子比Xは0<X≦0.5を示す)で表さ
れるリチウム含有複合酸化物、導電剤及び結着剤からな
る正極合剤層と前記正極合剤層が担持される基板とを有
する正極を具備したことを特徴とするものである。
A non-aqueous solvent secondary battery according to the present invention comprises a negative electrode containing a carbonaceous material ; a composition formula of LiM 1-X V X
O 2 (where M is at least one selected from Co and Ni, and the atomic ratio X represents 0 <X ≦ 0.5), a lithium-containing composite oxide, a conductive agent and a binder.
And a substrate on which the positive electrode mixture layer is carried.
It is characterized in that comprising a; positive for.

【0008】本発明で用いられるLiM1−X
は一般的に次のような方法で合成される。すなわち、リ
チウムとCo,Niから選択される一種又は二種の炭酸
塩、硝酸塩、水酸化物などを出発原料として、さらにV
化合物としてバナジン酸アンモニウムを添加し、これら
を仕学量論比で混合し、加熱することによって得られ
る。なお出発原料としては炭酸塩が最も一般的である。
加熱処理温度は出発原料により多少異なるが、通常は6
00〜1000℃の温度範囲で、好ましくは600〜8
00℃である。また、バナジウムの添加量は0<X≦
0.5の範囲が好ましく、特に好ましくは0<X≦0.
1である。これはバナジウム添加量が0.5より多くな
ると、充電時にLi/Liに対し4.2V以上の高電
圧部分が多くなるとともに、電圧範囲3.0←→4.3
V間での可逆的充放電容量が少なくなってしまうためで
ある。
[0008] LiM 1-X V X O 2 used in the present invention
Is generally synthesized by the following method. That is, starting from one or two kinds of carbonates, nitrates, hydroxides and the like selected from lithium and Co and Ni,
It is obtained by adding ammonium vanadate as a compound, mixing them in a stoichiometric ratio and heating. Note that carbonate is the most common starting material.
The heating temperature varies slightly depending on the starting material, but is usually 6
In the temperature range of 00 to 1000 ° C, preferably 600 to 8
00 ° C. The amount of vanadium added is 0 <X ≦
0.5 is preferable, and particularly preferably 0 <X ≦ 0.
It is one. This is because if the added amount of vanadium is more than 0.5, the high voltage portion of 4.2 V or more with respect to Li + / Li increases during charging, and the voltage range is 3.0 ← → 4.3.
This is because the reversible charge / discharge capacity between V becomes small.

【0009】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質材料を用いる。この炭素質材料の原料となる有機
化合物としては、通常使用されているものであればとく
に限定されるものではなく、例えばフェノール樹脂、と
くにノボラック樹脂、ならびにポリアクリロニトリルな
どを用いることができる。またこの炭素質材料として
は、特願平1−283086号に示すような有機化合物
焼成体の特性を有するものが、とくに好ましい。
As the carbonaceous material as the negative electrode carrier, a carbonaceous material obtained by firing an organic compound is preferably used in order to improve battery characteristics. The organic compound serving as a raw material of the carbonaceous material is not particularly limited as long as it is a commonly used organic compound. For example, a phenol resin, particularly a novolak resin, and polyacrylonitrile can be used. As the carbonaceous material, a material having the characteristics of an organic compound fired body as shown in Japanese Patent Application No. 1-283086 is particularly preferable.

【0010】本発明の非水溶媒二次電池において、正極
及び負極を形成するために、結着剤を用いてもよい。結
着剤としては、例えばエチレン−プロピレン−環状ジエ
ンの三元共重合体、ポリテトラフルオロエチレン、ポリ
アクリル酸、ポリアクリル酸塩類などが挙げられる。
In the non-aqueous solvent secondary battery of the present invention, a binder may be used to form a positive electrode and a negative electrode. Examples of the binder include a terpolymer of ethylene-propylene-cyclic diene, polytetrafluoroethylene, polyacrylic acid, and polyacrylates.

【0011】本発明の非水溶媒二次電池に用いられる非
水電解液の電解質としては、LiPF、LiCl
、LiBF、LiCFSO等のリチウム塩な
どが挙げられる。同電解液の溶媒としては、プロピレン
カーボネート(PC)、エチレンカーボネート(E
C)、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、γ−ブチロラクトン、1・2−ジメトキシエタン
(DME)が挙げられる。これらの溶媒は1種又は2種
以上の混合物で用いることができ、とくに充放電サイク
ル寿命を長くする観点から、プロピレンカーボネートと
1・2−ジメトキシエタンとの混合溶媒、エチレンカー
ボネートと2−メチルテトラヒドロフランとの混合溶
媒、エチレンカーボネートと1・2−ジメトキシエタン
との混合溶媒、プロピレンカーボネートとエチレンカー
ボネートとの混合溶媒が望ましい。
The electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention includes LiPF 6 , LiCl
Lithium salts such as O 4 , LiBF 4 , and LiCF 3 SO 3 are exemplified. As the solvent for the electrolytic solution, propylene carbonate (PC), ethylene carbonate (E
C), tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1.2-dimethoxyethane (DME). These solvents can be used alone or in a mixture of two or more. In particular, from the viewpoint of extending the charge / discharge cycle life, a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, ethylene carbonate and 2-methyltetrahydrofuran. , A mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, and a mixed solvent of propylene carbonate and ethylene carbonate.

【0012】[0012]

【作用】本発明の正極活物質の充電曲線は、Li/L
iに対して3.9Vから4.1Vまでほぼ直線的に上昇
し、4.1Vから4.2Vへ急激に上がり、その後さら
に充電を行うとほぼ直線的に充電電圧が上昇する。それ
に対して従来のLiCoOの充電曲線は、3.9Vか
ら4.3Vまでほぼ直線的に上昇する形をとる。この様
に本発明の正極活物質は充電曲線が二段となり、そのた
め電池での充電終止の確認が4.1Vから4.2Vの時
点で容易に行なえ、電池の過充電対策が行なえるととも
に高電圧による溶媒の分解、基材の溶解をおさえること
ができる。
The charge curve of the cathode active material of the present invention is expressed by Li + / L
For i, the charge rises almost linearly from 3.9 V to 4.1 V, rises sharply from 4.1 V to 4.2 V, and when charging is further performed, the charge voltage rises almost linearly. On the other hand, the charging curve of the conventional LiCoO 2 rises almost linearly from 3.9V to 4.3V. As described above, the positive electrode active material of the present invention has a two-stage charging curve, which makes it possible to easily confirm the termination of charging in the battery from 4.1 V to 4.2 V, to take measures against overcharging of the battery, The decomposition of the solvent and the dissolution of the substrate due to the voltage can be suppressed.

【0013】[0013]

【実施例】以下、本発明を実施例及び比較例により、図
面を参照しつつ詳細に説明する。 実施例1:市販の炭酸リチウム、炭酸コバルト、バナジ
ン酸アンモニウムを、Li:Co:V=1:0.9:
0.1モル比で秤り取り、乳鉢において充分混合した。
この混合物をアルミナ製のルツボに入れ、電気炉におい
て800℃で6時間加熱処理を行った。得られた焼成物
は、冷却後再度粉砕し、同様に800℃で6時間加熱処
理を行い、その後、蒸留水で充分に洗浄し、未反応のア
ルカリ分を洗い流した。この生成物を粉末X線法で同定
したところ、図2のようになり、これはLioO2
折ピークと一致し、他の化合物例えばバナジウムブロン
ズ(リチウム・バナジウム化合物)は確認されなかっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings by way of examples and comparative examples. Example 1 Commercially available lithium carbonate, cobalt carbonate, and ammonium vanadate were prepared using Li: Co: V = 1: 0.9:
It was weighed out at a 0.1 molar ratio and mixed well in a mortar.
This mixture was placed in an alumina crucible and heat-treated at 800 ° C. for 6 hours in an electric furnace. The obtained fired product was cooled and pulverized again, and was similarly heated at 800 ° C. for 6 hours, and then sufficiently washed with distilled water to wash away unreacted alkali components. Was identified the product by powder X-ray method, it is shown in Figure 2, which is consistent with Li C oO 2 diffraction peaks, other compounds such as vanadium bronze (lithium vanadium compound) was not confirmed.

【0014】この生成物90重量%、導電材としてアセ
チレンブラック7重量%及び結着剤としてエチレン−プ
ロピレン−環状ジエンの三元共重合体3重量%を、ヘキ
サン中で混練してスラリー状の正極合剤を調製し、この
正極合剤を厚さ15μmのチタン基板上に塗布・風乾し
た後、加圧して一定厚にし、つづいて、200℃、10
時間の条件で加熱乾燥して、0.26mm厚の正極合剤
層を有する板状の正極を製造した。
90% by weight of this product, 7% by weight of acetylene black as a conductive material and 3% by weight of a terpolymer of ethylene-propylene-cyclic diene as a binder are kneaded in hexane to form a slurry-like positive electrode. A mixture was prepared, and this positive electrode mixture was applied on a titanium substrate having a thickness of 15 μm, air-dried, and then pressurized to a constant thickness.
By heating and drying under the condition of time, a plate-shaped positive electrode having a positive electrode mixture layer having a thickness of 0.26 mm was manufactured.

【0015】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気下で950℃で焼成した後、
さらに2,000℃に加熱して炭素化することによって
製造し、粉砕して平均粒径10μmの粉末とした。
On the other hand, the carbonaceous material as the negative electrode carrier is obtained by firing a novolak resin at 950 ° C. in a nitrogen atmosphere.
It was further manufactured by heating to 2,000 ° C. to carbonize and pulverized to a powder having an average particle size of 10 μm.

【0016】結着剤のエチレン−プロピレン−環状ジエ
ンの三元共重合体をヘキサンに溶解し、炭素質材料:結
着剤=97:3となるように分散させ、スラリー状の負
極合剤を調製した。このスラリーを厚さ10μmのステ
ンレス基板上に塗布・乾燥して、厚さ0.2mmの負極
合剤層を形成した。
A ternary copolymer of ethylene-propylene-cyclic diene as a binder is dissolved in hexane and dispersed so that the carbonaceous material: the binder = 97: 3. Prepared. This slurry was applied on a stainless steel substrate having a thickness of 10 μm and dried to form a negative electrode mixture layer having a thickness of 0.2 mm.

【0017】このようにして得られた正・負極を用い
て、図1に示すような単三(AA)サイズの非水溶媒二
次電池を組立てた。すなわち、非水溶媒二次電池1は、
底部に絶縁体2が配置され、負極端子を兼ねる有底円筒
状のステンレス容器3を有する。この容器3には、電極
群4が収納されている。この電極群4は、負極5、セパ
レータ6及び正極7をこの順序で積層した帯状物を、負
極5が外側に位置するように渦巻き状に巻回した構造に
なっている。前記のセパレータ6は、電解液を含浸した
ポリプロピレン性多孔質フィルムから形成されている。
該電解液は、プロピレンカーボネートと1・2ジメトキ
シエタンとの混合溶媒(体積比率50:50)に、電解
質として六フツ化リン酸リチウム(LiPF)を0.
5モル濃度含有する。容器3内で前記の電極群4の上方
には、中心を開口した絶縁板8が配置されている。前記
の容器3の上部開口部には、絶縁封口体9が、該容器3
に気密にかしめ固定されている。この絶縁封口板8の中
央開口部には、正極端子10が嵌合されている。この正
極端子10は、前記の正極7に正極リード11を介して
接続されている。なお、前記の負極5は、図示しない負
極リードを介して負極端子である前記の容器3に接続さ
れている。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of AA size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1
An insulator 2 is disposed at the bottom, and has a bottomed cylindrical stainless steel container 3 also serving as a negative electrode terminal. The container 3 contains an electrode group 4. The electrode group 4 has a structure in which a strip formed by laminating a negative electrode 5, a separator 6, and a positive electrode 7 in this order is spirally wound so that the negative electrode 5 is located outside. The separator 6 is formed of a polypropylene porous film impregnated with an electrolytic solution.
The electrolytic solution was prepared by adding lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane (volume ratio: 50:50).
Contains 5 molar concentration. Above the electrode group 4 in the container 3, an insulating plate 8 having an opening at the center is arranged. At the upper opening of the container 3, an insulating sealing body 9 is provided.
It is caulked tightly and fixed. A positive electrode terminal 10 is fitted into a central opening of the insulating sealing plate 8. The positive terminal 10 is connected to the positive electrode 7 via a positive electrode lead 11. The negative electrode 5 is connected to the container 3 as a negative terminal via a negative lead (not shown).

【0018】実施例2:市販の炭酸リチウム、炭酸コバ
ルト、炭酸ニッケル、バナジン酸アンモニウムを、L
i:Co:Ni:V=1.0:0.7:0.25:0.
05モル比で秤り取り乳鉢において充分混合した。後は
実施例1と同様な操作を行い同型電池を製造した。
Example 2 Commercially available lithium carbonate, cobalt carbonate, nickel carbonate and ammonium vanadate were prepared by adding L
i: Co: Ni: V = 1.0: 0.7: 0.25: 0.
The mixture was weighed at a molar ratio of 05 and mixed well in a mortar. Thereafter, the same operation as in Example 1 was performed to manufacture a battery of the same type.

【0019】比較例:炭酸リチウム、炭酸コバルトをL
i:Co=1:1で混合し、他は実施例と同様な操作を
行ない同型電池を製造した。
Comparative Example: Lithium carbonate and cobalt carbonate were L
i: Co = 1: 1 was mixed, and the other operations were performed in the same manner as in the example to produce the same type of battery.

【0020】この様にして作成した実施例1,2、比較
例の3種類の非水溶媒二次電池について、20℃の一定
温度100mA一定電流で、4.3Vまでの初期充電曲
線を図3に示す。図中Aは本実施例1の電池、Bは本実
施例2の電池、Cは比較例の電池の充電曲線である。図
3から明らかな様に、本実施例1、2の非水溶媒二次電
池は、電池電圧4.0V付近で急激に充電電圧が上昇す
るという特徴を有する。初期充電において4.0V付近
までは従来のLiCoOの充電曲線とほぼ同様であ
り、その後バナジウムを添加したことによる結晶構造の
歪みから生じるエネルギー上昇により、充電電圧が階段
状に上昇すると考えられる。そのため電池での充電終止
の検出が容易になり、溶媒の分解、基材の溶解等がおさ
えられる。
FIG. 3 shows the initial charging curves of the three types of non-aqueous solvent secondary batteries prepared in this manner, up to 4.3 V, at a constant temperature of 20 ° C. and a constant current of 100 mA. Shown in In the figure, A is the charging curve of the battery of Example 1, B is the battery of Example 2, and C is the charging curve of the battery of Comparative Example. As is clear from FIG. 3, the non-aqueous solvent secondary batteries of Examples 1 and 2 have a feature that the charging voltage sharply increases near a battery voltage of 4.0 V. In the initial charge, the charge curve is almost the same as that of the conventional LiCoO 2 up to around 4.0 V. It is considered that the charge voltage rises stepwise due to an increase in energy caused by distortion of the crystal structure due to the addition of vanadium. This makes it easier to detect the end of charging in the battery, and suppresses decomposition of the solvent, dissolution of the base material, and the like.

【0021】また、これら3種類の電池の放電容量維持
率のグラフを図4に示す。それぞれの電池の評価条件
は、実施例1、2の電池については100mA定電流
で、2.7Vから4.0Vの範囲を、また比較例の電池
については100mA定電流で3.0Vから4.3Vの
範囲で充放電を行った。図4から明らかなように、実施
例1、2はサクルに伴う容量劣下はほとんど変化なく、
良好なサイクル特性を有していることが判る。
FIG. 4 is a graph showing the discharge capacity retention rates of these three types of batteries. The evaluation conditions of each battery were as follows: the batteries of Examples 1 and 2 were in a range of 2.7 V to 4.0 V at a constant current of 100 mA, and the batteries of Comparative Examples were 3.0 V to 4.0 at a constant current of 100 mA. Charge / discharge was performed in the range of 3V. As is clear from FIG. 4, in Examples 1 and 2, the capacity deterioration due to the sakuru hardly changed.
It turns out that it has good cycle characteristics.

【0022】[0022]

【発明の効果】本発明の非水溶媒二次電池は、正極活物
質として組成式LiM1−XO2を用い、負極担持
体に炭素質材料を用いることによって、電池電圧として
2.5←→4.0V付近で優れた充放電可逆性を有し、
溶媒の分解を生じることなく用いることができる。また
さらに充電を行うと電圧が0.1V急激に上昇するとい
う現象を示し充電終止の検出が容易となる。
According to the non-aqueous solvent secondary battery of the present invention, the composition voltage LiM 1-X V X O 2 is used as the positive electrode active material and the carbon material is used for the negative electrode support. ← → Excellent charge / discharge reversibility around 4.0V,
It can be used without decomposing the solvent. Further, when charging is further performed, the voltage suddenly rises by 0.1 V, which makes it easier to detect the end of charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の非水溶媒二次電池の半載断
面図である。
FIG. 1 is a half-mounted sectional view of a non-aqueous solvent secondary battery according to Embodiment 1 of the present invention.

【図2】本発明の実施例1と比較例により製造された正
極活物質の粉末のX線回折図である。
FIG. 2 is an X-ray diffraction diagram of a powder of a positive electrode active material manufactured according to Example 1 of the present invention and a comparative example.

【図3】本発明の実施例1、2と比較例の非水溶媒二次
電池の充電曲線図である。
FIG. 3 is a charge curve diagram of non-aqueous solvent secondary batteries of Examples 1 and 2 of the present invention and a comparative example.

【図4】実施例1、2と比較例の非水溶媒二次電池の充
放電サイクル数に対する放電容量維持率の変化を示す特
性図である。
FIG. 4 is a characteristic diagram showing a change in a discharge capacity retention ratio with respect to the number of charge / discharge cycles of the nonaqueous solvent secondary batteries of Examples 1 and 2 and Comparative Example.

【符号の説明】[Explanation of symbols]

1 非水溶媒二次電池 4 電極群 7 正極 A 本発明実施例1 B 本発明実施例2 C 比較例 DESCRIPTION OF SYMBOLS 1 Non-aqueous solvent secondary battery 4 Electrode group 7 Positive electrode A Example 1 of this invention B Example 2 of this invention C Comparative example

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−256371(JP,A) 特開 平2−265167(JP,A) 特開 平1−265456(JP,A) 特開 昭62−90863(JP,A) 特開 平4−22066(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-256371 (JP, A) JP-A-2-265167 (JP, A) JP-A-1-265456 (JP, A) JP-A-62-256 90863 (JP, A) JP-A-4-22066 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素質材料を含む負極 組成式LiM1-XX2(但し、MはCo及びNiから
選ばれる少なくとも一種であり、原子比Xは0<X≦
0.5を示す)で表されるリチウム含有複合酸化物、導
電剤及び結着剤からなる正極合剤層と前記正極合剤層が
担持される基板とを有する正極;を具備したことを特徴
とする非水溶媒二次電池。
1. A negative electrode containing a carbonaceous material ; a composition formula LiM 1 -X V X O 2 (where M is at least one selected from Co and Ni, and an atomic ratio X is 0 <X ≦
0.5), a lithium-containing composite oxide represented by the following formula :
The positive electrode mixture layer comprising an electric agent and a binder and the positive electrode mixture layer
A non-aqueous solvent secondary battery , comprising : a positive electrode having a supported substrate ;
JP3187096A 1991-04-25 1991-04-25 Non-aqueous solvent secondary battery Expired - Fee Related JP3017847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3187096A JP3017847B2 (en) 1991-04-25 1991-04-25 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3187096A JP3017847B2 (en) 1991-04-25 1991-04-25 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH04328260A JPH04328260A (en) 1992-11-17
JP3017847B2 true JP3017847B2 (en) 2000-03-13

Family

ID=16200037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3187096A Expired - Fee Related JP3017847B2 (en) 1991-04-25 1991-04-25 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3017847B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566106B2 (en) * 1998-10-01 2004-09-15 日本碍子株式会社 Lithium secondary battery
JP6721954B2 (en) * 2015-07-27 2020-07-15 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte batteries

Also Published As

Publication number Publication date
JPH04328260A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
US5506075A (en) Non-aqueous electrolyte secondary battery and method of producing the same
EP0486950B1 (en) Nonaqueous electrolyte secondary battery
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JPH09330720A (en) Lithium battery
EP1935850A2 (en) Composition for negative electrodes and non-aqueous rechargeable battery prepared using Same
US6667131B1 (en) Electrochemical cell
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
US6656638B1 (en) Non-aqueous electrolyte battery having a lithium manganese oxide electrode
KR20040025600A (en) Anode material and battery using the same
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP3086297B2 (en) Non-aqueous solvent secondary battery
JP2004063270A (en) Manufacturing method of positive electrode active material, and manufacturing method of nonaqueous electrolyte battery
JP3017847B2 (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JPH06111822A (en) Lithium battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
US5766569A (en) Lithium manganese oxide compound and method of preparation
JPH04370661A (en) Secondary battery with nonaqueous solvent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees