JP3504195B2 - Lithium secondary battery positive electrode active material and lithium secondary battery - Google Patents

Lithium secondary battery positive electrode active material and lithium secondary battery

Info

Publication number
JP3504195B2
JP3504195B2 JP26139499A JP26139499A JP3504195B2 JP 3504195 B2 JP3504195 B2 JP 3504195B2 JP 26139499 A JP26139499 A JP 26139499A JP 26139499 A JP26139499 A JP 26139499A JP 3504195 B2 JP3504195 B2 JP 3504195B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26139499A
Other languages
Japanese (ja)
Other versions
JP2001085010A (en
Inventor
雅也 高橋
真一 鳶島
弘次 武井
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26139499A priority Critical patent/JP3504195B2/en
Publication of JP2001085010A publication Critical patent/JP2001085010A/en
Application granted granted Critical
Publication of JP3504195B2 publication Critical patent/JP3504195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池正極活
物質およびリチウム二次電池に関し、特に正極活物質の
改良に関わり、電池の放電容量の増加と充放電サイクル
特性の向上を目指すものである。
FIELD OF THE INVENTION The present invention relates to a positive electrode active for a lithium secondary battery.
The present invention relates to materials and lithium secondary batteries, and particularly to improvement of positive electrode active materials, and aims to increase discharge capacity and charge / discharge cycle characteristics of batteries.

【0002】[0002]

【従来の技術】リチウム金属、リチウム合金あるいはリ
チウムイオンを吸蔵、放出可能な物質を負極活物質とす
るリチウム二次電池は、高い電圧と優れた可逆性を特徴
としている。特に正極活物質としてリチウムと遷移金属
との複合酸化物を用い、負極活物質として炭素系材料を
用いたリチウムイオン二次電池は、従来の鉛二次電池や
ニッケル−カドミウム二次電池などに比べ軽量で容量も
大きいため携帯電話やノート型パーソナルコンピュータ
ーなどの電子機器に広く用いられている。
2. Description of the Related Art A lithium secondary battery using a negative electrode active material made of lithium metal, a lithium alloy, or a material capable of inserting and extracting lithium ions is characterized by high voltage and excellent reversibility. In particular, a lithium-ion secondary battery that uses a composite oxide of lithium and a transition metal as the positive electrode active material and a carbon-based material as the negative electrode active material is compared to conventional lead secondary batteries or nickel-cadmium secondary batteries. Because of its light weight and large capacity, it is widely used in electronic devices such as mobile phones and notebook personal computers.

【0003】現在一般に用いられているリチウムイオン
二次電池の正極活物質としては主にLiCoOが用い
られているが、LiCoOの原料であるコバルトは埋
蔵量が少なく、しかも限られた地域でしか産出しないた
め、価格の面からも原料の安定供給の面からもリチウム
イオン二次電池の正極活物質として好ましくない。
LiCoO 2 is mainly used as a positive electrode active material of a lithium ion secondary battery which is currently generally used, but cobalt, which is a raw material of LiCoO 2 , has a small reserve and is used in a limited area. Therefore, it is not preferable as a positive electrode active material for a lithium ion secondary battery in terms of price and stable supply of raw materials.

【0004】これに対して産出量が多く安価な鉄を原料
に用いたLiFePOがリチウム二次電池の正極材料
として動作することが特開平9−134725号などに
より明らかにされている。またLiFePOの鉄をコ
バルトで置換し電池電圧を制御することが特開平9−1
34724号に示されている。
On the other hand, it has been clarified by Japanese Laid-Open Patent Publication No. 9-134725 that LiFePO 4, which uses a large amount of iron and is inexpensive as a raw material, operates as a positive electrode material of a lithium secondary battery. Further, it is possible to replace the iron of LiFePO 4 with cobalt to control the battery voltage.
No. 34724.

【0005】[0005]

【発明が解決しようとする課題】しかし、LiFePO
は電池充放電時のリチウムの挿入脱離反応が遅く、電
池内への正極活物質の充填密度を高めるためにLiFe
PO粒子のサイズを大きくすると、ごく小さな電流で
しか満足な容量での充放電ができないという問題があ
る。
However, LiFePO
No. 4 has a slow lithium insertion / desorption reaction during battery charging / discharging, and LiFe is used to increase the packing density of the positive electrode active material in the battery.
When the size of the PO 4 particles is increased, there is a problem that charging / discharging with a satisfactory capacity can be performed only with an extremely small current.

【0006】また、LiFePOにコバルトを添加し
た場合、コバルトの酸化還元反応はリチウム金属の標準
電位に対して5V程度の高い電位で起るが、充電電圧が
4.3Vを越えると現在のリチウムイオン二次電池に使
用されている電解液では電解液自身の酸化分解が起り、
この様な高い電圧での充放電はサイクル特性を劣化させ
る恐れが強い。高い電圧でも安定な電解液の開発が進め
られているものの、現在のところ実用化されているもの
はなく、必要以上にコバルトを添加することはコストの
点からも電池の寿命の点からも好ましくない。
When cobalt is added to LiFePO 4 , the redox reaction of cobalt occurs at a potential as high as about 5 V with respect to the standard potential of lithium metal, but when the charging voltage exceeds 4.3 V, the current lithium is present. In the electrolytic solution used in the ion secondary battery, oxidative decomposition of the electrolytic solution itself occurs,
Charging / discharging at such a high voltage is likely to deteriorate cycle characteristics. Although stable electrolytes are being developed even at high voltage, none have been put to practical use at present and it is preferable to add more cobalt than necessary from the viewpoint of cost and battery life. Absent.

【0007】従って、本発明は、前述した従来の課題を
解決するためになされたものであり、その目的は、安価
で4V以下の電圧で充放電が可能なリン酸鉄リチウム系
材料を正極に用いたリチウム二次電池の、実用的な電流
での放電容量を高めることにある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and its object is to use a lithium iron phosphate-based material, which is inexpensive and can be charged and discharged at a voltage of 4 V or less, as a positive electrode. This is to increase the discharge capacity of the used lithium secondary battery at a practical current.

【0008】[0008]

【課題を解決するための手段】この様な目的を達成する
ために本発明によるリチウム二次電池正極活物質は、一
般式LiFe1−yPO(0<z≦1)で与え
られるオリビン構造のリン酸化合物で、元素Xは該リン
酸化合物を構成している状態では、リチウム金属の標準
電位に対して3Vから4Vの電位領域で電気化学的に安
定な物質であり、なおかつyが0<y≦0.3である物
であって、前記リン酸化合物中の元素Xがマグネシウ
ム、亜鉛の少なくとも1種類であることを特徴とする。
In order to achieve such an object, the lithium secondary battery positive electrode active material according to the present invention has a general formula Li z Fe 1-y X y PO 4 (0 <z ≦ 1). In a given phosphate compound having an olivine structure, the element X is a substance that is electrochemically stable in a potential region of 3 V to 4 V with respect to the standard potential of lithium metal in a state of constituting the phosphate compound, Furthermore, y is a substance in which 0 <y ≦ 0.3, and the element X in the phosphoric acid compound is magnesium.
And at least one of zinc and zinc .

【0009】また、本発明によるリチウム二次電池は、
請求項1記載のリチウム二次電池正極活物質を正極活物
質として含み、リチウム金属、リチウム合金またはリチ
ウムイオンを吸蔵、放出可能な物質を負極活物質とし
て、さらにリチウムイオンが前記正極活物質や前記負極
活物質と電気化学反応をするための移動を行いうる物質
を電解質として含むことを特徴とする
The lithium secondary battery according to the present invention is
The lithium secondary battery positive electrode active material according to claim 1,
Quality, including lithium metal, lithium alloy or lithium
The negative electrode active material is a substance that can store and release um ions.
In addition, lithium ions are added to the positive electrode active material and the negative electrode.
A substance that can move to cause an electrochemical reaction with an active material
Is contained as an electrolyte .

【0010】本発明をさらに詳しく説明すると、本発明
によるリチウム二次電池の正極活物質は、一般式Li
Fe1−yPO(0<z≦1)で与えられるオリ
ビン構造のリン酸化合物で、元素Xは該リン酸化合物を
構成している状態では、リチウム金属の標準電位に対し
て3Vから4Vの電位領域で電気化学的に安定な物質で
あり、なおかつyが0<y≦0.3である物質である。
The present invention will be described in more detail. The positive active material of the lithium secondary battery according to the present invention has the general formula Li z.
Fe 1-y X y PO 4 (0 <z ≦ 1) is a phosphate compound having an olivine structure, and the element X is 3 V with respect to the standard potential of lithium metal in the state where the phosphate compound is formed. Is a substance that is electrochemically stable in a potential region of 4 V to 4 V, and y is 0 <y ≦ 0.3.

【0011】上述の様な一般的にリン酸鉄リチウムと呼
ばれている物質はLiFePO(z=1)で表され、
構造を保ったままでリチウムをこれ以上挿入することは
できない。この材料を電池の正極として用いた場合、充
電を行うとリチウムが正極から抜けて行き、組成はFe
POに近づき(zが小さくなる)、充電した電池を放
電すると、電解液中のリチウムが正極中に挿入され、組
成がLiFePO(z=1)に戻っていく。電池の放
電容量や作製を考えるとz=1の材料が最も好ましい
が、この様にzの値は連続的に変化するため、不定比な
組成であるz=0.9などの組成の物質でも、一般的な
定比の組成であるz=1のリン酸鉄リチウムと同等の機
構で動作する電池が作成可能である。このため、上記式
中、zは 0<z≦1で示される。
The above-mentioned substance generally called lithium iron phosphate is represented by LiFePO 4 (z = 1),
No more lithium can be inserted while maintaining the structure. When this material is used as the positive electrode of a battery, lithium escapes from the positive electrode when charging and the composition is Fe.
When approaching PO 4 (z becomes small) and discharging the charged battery, lithium in the electrolytic solution is inserted into the positive electrode, and the composition returns to LiFePO 4 (z = 1). Considering the discharge capacity and production of the battery, the material with z = 1 is the most preferable, but since the value of z changes continuously in this way, even a substance with a composition such as z = 0.9, which is a non-stoichiometric composition, can be used. A battery that operates with a mechanism equivalent to that of lithium iron phosphate with z = 1, which is a general stoichiometric composition, can be prepared. Therefore, in the above formula, z is represented by 0 <z ≦ 1.

【0012】LiFePOを正極材料に用いたリチウ
ム二次電池においては、その充電の際にリチウムが脱離
するとともに鉄イオンが2価から3価に変化する。リチ
ウムが脱離した結果、その部分の結晶構造(オリビン構
造 )が不安定になり部分的にリチウムの移動経路が塞
がれてしまい、更に内部にあるリチウムが脱離しにくく
なることが、LiFePOを正極材料に用いたリチウ
ム二次電池において実用的な充放電電流では十分な容量
が得られない原因と考えられる。
In a lithium secondary battery using LiFePO 4 as a positive electrode material, lithium is desorbed during charging and iron ions change from divalent to trivalent. Results lithium is eliminated, that portion of the crystal structure would be (olivine structure) partially moving path of lithium becomes unstable is blocked, may be difficult further away lithium in the interior are removed, LiFePO 4 This is considered to be the reason why a lithium secondary battery using as a positive electrode material cannot obtain a sufficient capacity at a practical charge / discharge current.

【0013】また、この構造の不安定さが充放電サイク
ルを繰り返すことによる放電容量の減少を引き起こすこ
とが考えられる。これに対して、リン酸化合物を構成し
ている状態でリチウム金属の標準電位に対して3Vから
4Vの電位領域で電気化学的に安定な亜鉛等の元素で一
部の鉄を置き換えると、充電を行っても亜鉛等の置換し
た元素は2価のままで酸化されず、置換した元素に隣接
するリチウムも脱離せずに結晶内に残る。このため、充
電を行っても置換を行った部分は結晶構造が変化しにく
く、リチウムの移動経路が確保されるために容量が増大
すると共にサイクル安定性を向上させるものと考えられ
る。
Further, it is considered that the instability of this structure causes a decrease in discharge capacity due to repeated charge / discharge cycles. On the other hand, when a part of iron is replaced with an element such as zinc which is electrochemically stable in the potential region of 3 V to 4 V with respect to the standard potential of lithium metal in the state that the phosphoric acid compound is constituted, charging is performed. Even if is performed, the substituted element such as zinc remains divalent and is not oxidized, and lithium adjacent to the substituted element remains in the crystal without being desorbed. Therefore, it is considered that the crystal structure of the replaced portion is unlikely to change even after charging, and the lithium migration path is secured, so that the capacity is increased and the cycle stability is improved.

【0014】しかし、脱離しないリチウムは充放電に関
与しないため、この様な置換をあまり多く行うと電池の
容量が減少してしまう。発明者は種々の実験を行い、容
量増加の効果が見られる鉄元素の置換量が30%(0<
y≦0.3 )以下、好ましくは10%〜30%(0.
1≦y≦0.3 )、さらに好ましくは10〜20%
(0.1≦y≦0.2) である事を見いだした。
However, since lithium that is not desorbed does not participate in charging and discharging, if the amount of such substitution is too large, the capacity of the battery will decrease. The inventor conducted various experiments and found that the substitution amount of the iron element, which has the effect of increasing the capacity, was 30% (0 <
y ≦ 0.3) or less, preferably 10% to 30% (0.
1 ≦ y ≦ 0.3), more preferably 10 to 20%
It was found that (0.1 ≦ y ≦ 0.2).

【0015】なお、ここで述べたリチウム金属の標準電
位に対して3Vから4Vの電位領域で電気化学的に安定
な元素とは、まずアルカリ金属やアルカリ土類金属など
のように、リチウム金属の標準電位に対して3V未満の
電位で酸化還元が起り、それ以上高い電圧では安定な元
素や、あるいはコバルトやニッケルなどのようにリン酸
鉄リチウムの鉄と置換された状態では、リチウム金属の
標準電位に対して3V未満の電位で2価から金属に還元
され、3Vから4Vの電位領域では酸化還元が起らず、
4Vを越える電位で2価から3価に酸化されるような元
素をさす。
Incidentally, the element which is electrochemically stable in the potential region of 3 V to 4 V with respect to the standard potential of lithium metal described above is, first of all, an alkali metal, an alkaline earth metal or the like. Redox occurs at a potential of less than 3 V with respect to the standard potential, and at higher voltages, it is a stable element, or when it is replaced with iron in lithium iron phosphate, such as cobalt and nickel, the standard of lithium metal. At a potential lower than 3 V with respect to the potential, divalent metal is reduced, and redox does not occur in a potential region of 3 V to 4 V,
An element that is oxidized from divalent to trivalent at a potential exceeding 4V.

【0016】従って、置換する金属は、リン酸鉄リチウ
ムのオリビン構造を維持したまま鉄と置換するために
は、3Vから4Vの電位領域で2価のイオンであるのが
よい。本発明においては置換する元素としてはマグネシ
ム、亜を使用する
[0016] Thus, the metal to be replaced in order to replace the iron while maintaining an olivine structure lithium iron phosphate, and even divalent ions in 4V potential region from 3V
Good. As the element to be replaced in the present invention using magnesium <br/> c arm, the zinc.

【0017】[0017]

【実施例】以下に図面を参照して本発明の実施例をより
詳細に説明する。なお、本発明は以下の実施例のみに限
定されるものではない。
Embodiments of the present invention will now be described in more detail with reference to the drawings. The present invention is not limited to the following examples.

【0018】[0018]

【参考例1】図1は本発明によるリチウム二次電池の一
実施例による構成を示した電池断面図である。図中、1
は封口板、2は金属リチウム負極、3はガスケット、4
はセパレータ、5は正極ペレット、6は正極ケースを示
す。
Reference Example 1 FIG. 1 is a sectional view of a battery showing a structure according to an embodiment of a lithium secondary battery according to the present invention. 1 in the figure
Is a sealing plate, 2 is a metal lithium negative electrode, 3 is a gasket, 4
Is a separator, 5 is a positive electrode pellet, and 6 is a positive electrode case.

【0019】図1の正極ペレット5に含まれる正極活物
質であるLiFe0.7Co0.3POは下記の方法
で作製した。
LiFe 0.7 Co 0.3 PO 4, which is the positive electrode active material contained in the positive electrode pellet 5 of FIG. 1, was prepared by the following method.

【0020】まず原料である炭酸リチウム(LiCO
)とシュウ酸鉄2水和物(FeC・2HO)
と酢酸コバルト4水和物(Co(CHCOO)・4
O)とリン酸水素二アンモニウム((NH
PO)をモル比で0.5:0.7:0.3:1となる
ように混合して坩堝に入れ、アルゴン雰囲気下で800
℃で24時間焼成することにより作製した。得られた物
質のX線回折チャートを図2に示す。
First, the raw material lithium carbonate (Li 2 CO
3 ) and iron oxalate dihydrate (FeC 2 O 4 .2H 2 O)
And cobalt acetate tetrahydrate (Co (CH 3 COO) 2 · 4
H 2 O) and diammonium hydrogen phosphate ((NH 4 ) 2 H
PO 4 ) was mixed in a molar ratio of 0.5: 0.7: 0.3: 1 and put in a crucible, and the mixture was heated to 800 in an argon atmosphere.
It was prepared by firing at 24 ° C. for 24 hours. The X-ray diffraction chart of the obtained substance is shown in FIG.

【0021】報告されているLiFePOのX線回折
チャート(JCPDS 15−0760)とほぼ一致し
ており、オリビン構造を維持したまま鉄がコバルトによ
って置換されていることが分かる。この正極活物質70
重量%と導電剤であるアセチレンブラック25重量%及
び結着剤であるポリテトラフルオロエチレン5重量%を
混練し、粘土状の塊としたものを2軸ローラーで厚さ
0.6mm程度に圧延してからポンチで直径15mmの
円板状に打ち抜いて正極ペレット(5)を作製した。図
3に LiFePOのオリビン構造を示す。黒丸がリ
チウム原子を、八面体は6個の酸素で囲まれた鉄を、四
面体は4個の酸素で囲まれたリンをそれぞれ示してい
る。
It is almost in agreement with the reported X-ray diffraction chart of LiFePO 4 (JCPDS 15-0760), which shows that iron is replaced by cobalt while maintaining the olivine structure. This positive electrode active material 70
% By weight, 25% by weight of acetylene black as a conductive agent and 5% by weight of polytetrafluoroethylene as a binder were kneaded into a clay-like lump, which was rolled by a biaxial roller to a thickness of about 0.6 mm. After that, a punch was punched into a disk shape having a diameter of 15 mm to prepare a positive electrode pellet (5). FIG. 3 shows the olivine structure of LiFePO 4 . Black circles represent lithium atoms, octahedrons represent iron surrounded by 6 oxygens, and tetrahedra represent phosphorus surrounded by 4 oxygens.

【0022】次にステンレス製の封口板1上に金属リチ
ウムの負極2を加圧配置したものをポリプロピレン製ガ
スケット3の凹部に挿入し、負極の上にポリプロピレン
製で微孔性のセパレータ4、正極ペレット5をこの順序
に配置し、電解液として、エチレンカーボネートとジメ
チルカーボネートの等積混合溶媒にLiPFを1mo
l/dm濃度に溶解した電解液を適量注入して含浸さ
せた後に、ステンレス製の正極ケース6を被せてかしめ
ることにより、厚さ2mm、直径23mmのコイン型電
池を作製した。作製した電池の充放電特性を充電終止電
圧4.0V、放電終止電圧3.0V、1mA定電流とい
う条件で充放電を行って評価した。
Next, a metallic lithium negative electrode 2 placed under pressure on a stainless steel sealing plate 1 was inserted into the recess of a polypropylene gasket 3, and a polypropylene microporous separator 4 and a positive electrode were placed on the negative electrode. The pellets 5 are arranged in this order, and 1 mol of LiPF 6 is added as an electrolytic solution to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
A proper amount of an electrolytic solution dissolved in a concentration of 1 / dm 3 was injected and impregnated, and then a positive electrode case 6 made of stainless steel was covered and caulked to manufacture a coin type battery having a thickness of 2 mm and a diameter of 23 mm. The charging / discharging characteristics of the manufactured battery were evaluated by charging / discharging under the conditions of a final charge voltage of 4.0 V, a final discharge voltage of 3.0 V, and a constant current of 1 mA.

【0023】図4に10サイクル目の充放電曲線を示
す。放電電位は、既に知られている置換を行っていない
リン酸鉄リチウムを正極に、リチウム金属を負極に用い
た電池の電圧とほぼ同一であり、鉄イオンの酸化還元に
より充放電が行われていることが分かる。放電容量は1
サイクル目から10サイクル目にかけていくらか増加し
その後はほぼ一定の容量を示した。
FIG. 4 shows a charge / discharge curve at the 10th cycle. The discharge potential is almost the same as the voltage of a battery in which lithium iron phosphate, which has not been substituted, is used as the positive electrode and lithium metal is used as the negative electrode, which is already known. I know that Discharge capacity is 1
It increased somewhat from the 10th cycle to the 10th cycle, and showed a substantially constant capacity thereafter.

【0024】また、50サイクル目の容量は5.6mA
hであった。初期50サイクルのサイクル回数と放電容
量の関係を図5に示す。また元素Xによる鉄の置換量y
と50サイクル目の放電容量の関係を図6に示す。さら
に電池の正極活物質組成式、置換量yと50サイクル目
の放電容量を表1に示す。
The capacity at the 50th cycle is 5.6 mA.
It was h. The relationship between the number of cycles of the initial 50 cycles and the discharge capacity is shown in FIG. Also, the substitution amount y of iron by the element X
FIG. 6 shows the relationship between the discharge capacity at the 50th cycle and the discharge capacity at the 50th cycle. Further, Table 1 shows the composition formula of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle.

【0025】[0025]

【比較例1】元素Xを含まない正極活物質であるLiF
ePOを下記の方法で作製した。まず原料である炭酸
リチウム(LiCO)とシュウ酸鉄2水和物(Fe
・2HO)とリン酸水素二アンモニウム
((NHHPO)をモル比で0.5:1:1と
なるように混合して坩堝に入れ、アルゴン雰囲気下で8
00℃で24時間焼成することにより作製した。
Comparative Example 1 LiF which is a positive electrode active material containing no element X
ePO 4 was prepared by the following method. First, lithium carbonate (Li 2 CO 3 ) as a raw material and iron oxalate dihydrate (Fe
C 2 O 4 .2H 2 O) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were mixed in a molar ratio of 0.5: 1: 1 and put into a crucible, and the mixture was placed under an argon atmosphere. 8
It was produced by firing at 00 ° C. for 24 hours.

【0026】得られた正極活物質を用いて参考例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。参考例1と同一の条件で充放電特性を評価したとこ
ろ、1サイクル目の放電容量は参考例1に示した電池よ
り高かったものの、5サイクル目から放電容量が参考例
1に示した電池に比べて低くなり、50サイクル目では
参考例1に示した電池の84%に相当する4.7mAh
の容量しか得られなかった。
Using the obtained positive electrode active material, a positive electrode pellet and a coin type battery were produced by the same method as in Reference Example 1. Evaluation of the charge-discharge characteristics under the same conditions as in Reference Example 1, although the discharge capacity at the first cycle was higher than that of the battery described in Reference Example 1, the battery discharge capacity shown in Reference Example 1 from 5 cycle It is lower than that in the 50th cycle
4.7 mAh corresponding to 84% of the battery shown in Reference Example 1
Only the capacity of was obtained.

【0027】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ参考例1の値と併せて示す。
The relationship between the number of cycles of the initial 50 cycles and the discharge capacity is shown in FIG.
The relationship of the discharge capacity at the 0th cycle is shown in FIG. 6, and the composition formula of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle are shown in Table 1 together with the values of Reference Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【参考例2】正極ペレットに含まれる正極活物質である
LiFe0.8Co0.2POを下記の方法で作製し
た。まず原料である炭酸リチウム(LiCO)とシ
ュウ酸鉄2水和物(FeC・2HO)と酢酸コ
バルト4水和物(Co(CHCOO)・4HO)
とリン酸水素二アンモニウム((NHHPO
をモル比で0.5:0.8:0.2:1となるように混
合して坩堝に入れ、アルゴン雰囲気下で800℃で24
時間焼成することにより作製した。
Reference Example 2 LiFe 0.8 Co 0.2 PO 4 , which is the positive electrode active material contained in the positive electrode pellet, was produced by the following method. A first raw material of lithium carbonate (Li 2 CO 3) and iron oxalate dihydrate (FeC 2 O 4 · 2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 · 4H 2 O)
And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 )
Were mixed in a crucible at a molar ratio of 0.5: 0.8: 0.2: 1 and placed in an argon atmosphere at 800 ° C. for 24 hours.
It was produced by firing for a time.

【0030】得られた正極活物質を用いて参考例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。参考例1と同一の条件で充放電特性を評価したとこ
ろ放電容量が2サイクル目から比較例1に示した電池に
比べて高くなり、50サイクル目では比較例1に示した
電池の1.43倍にあたる6.7mAhの容量が得られ
た。
Using the obtained positive electrode active material, a positive electrode pellet and a coin type battery were produced by the same method as in Reference Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the second cycle, and 1.43 of the battery shown in Comparative Example 1 was found at the 50th cycle. A doubled capacity of 6.7 mAh was obtained.

【0031】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ参考例1及び比較例1の特性と併
せて示す。
The relationship between the number of cycles of the initial 50 cycles and the discharge capacity is shown in FIG.
The relationship of the discharge capacity at the 0th cycle is shown in FIG. 6, the composition formula of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle are shown in Table 1, together with the characteristics of Reference Example 1 and Comparative Example 1, respectively. Show.

【0032】[0032]

【参考例3】正極ペレットに含まれる正極活物質である
LiFe0.9Co0.1POを下記の方法で作製し
た。まず原料である炭酸リチウム(LiCO)とシ
ュウ酸鉄2水和物(FeC・2HO)と酢酸コ
バルト4水和物(Co(CHCOO)・4HO)
とリン酸水素二アンモニウム((NHHPO
をモル比で0.5:0.9:0.1:1となるように混
合して坩堝に入れ、アルゴン雰囲気下で800℃で24
時間焼成することにより作製した。
Reference Example 3 LiFe 0.9 Co 0.1 PO 4 , which is the positive electrode active material contained in the positive electrode pellet, was produced by the following method. A first raw material of lithium carbonate (Li 2 CO 3) and iron oxalate dihydrate (FeC 2 O 4 · 2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 · 4H 2 O)
And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 )
Were mixed in a crucible at a molar ratio of 0.5: 0.9: 0.1: 1 and placed in an argon atmosphere at 800 ° C. for 24 hours.
It was produced by firing for a time.

【0033】得られた正極活物質を用いて参考例1と同
一の方法によりコイン型電池を作製した。参考例1と同
一の条件で充放電特性を評価したところ放電容量が5サ
イクル目から比較例1に示した電池に比べて高くなり、
50サイクル目では比較例1に示した電池の1.04倍
に相当する4.9mAhの容量が得られた。
A coin type battery was produced by the same method as in Reference Example 1 using the obtained positive electrode active material. When the charge and discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the 5th cycle,
At the 50th cycle, a capacity of 4.9 mAh corresponding to 1.04 times that of the battery shown in Comparative Example 1 was obtained.

【0034】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1にそれぞれ参考例1、2及び比較例1の特性と
併せて示す。
The relationship between the number of cycles of the initial 50 cycles and the discharge capacity is shown in FIG.
The relationship of the discharge capacity at the 0th cycle is shown in FIG. 6, and the composition formula of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle are shown in Table 1 together with the characteristics of Reference Examples 1 and 2 and Comparative Example 1, respectively. Indicate.

【0035】[0035]

【比較例2】正極ペレットに含まれる正極活物質である
LiFe0.6Co0.4POを下記の方法で作製し
た。まず原料である炭酸リチウム(LiCO)とシ
ュウ酸鉄2水和物(FeC・2HO)と酢酸コ
バルト4水和物(Co(CHCOO)・4HO)
とリン酸水素二アンモニウム((NHHPO
をモル比で0.5:0.6:0.4:1となるように混
合して坩堝に入れ、アルゴン雰囲気下で800℃で24
時間焼成することにより作製した。
Comparative Example 2 LiFe 0.6 Co 0.4 PO 4 , which is the positive electrode active material contained in the positive electrode pellet, was produced by the following method. A first raw material of lithium carbonate (Li 2 CO 3) and iron oxalate dihydrate (FeC 2 O 4 · 2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 · 4H 2 O)
And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 )
Were mixed in a crucible at a molar ratio of 0.5: 0.6: 0.4: 1 and placed in an argon atmosphere at 800 ° C. for 24 hours.
It was produced by firing for a time.

【0036】得られた正極活物質を用いて参考例1と同
一の方法によりコイン型電池を作製した。参考例1と同
一の条件で充放電特性を評価したところ放電容量が1サ
イクル目から50サイクル目まで常に比較例1に示した
電池に比べて低くなり、50サイクル目では比較例1に
示した電池の0.91倍に当たる4.3mAhの容量し
か示さなかった。
A coin type battery was produced by the same method as in Reference Example 1 using the obtained positive electrode active material. When the charge and discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was always lower than that of the battery shown in Comparative Example 1 from the first cycle to the 50th cycle, and the discharge capacity was shown in Comparative Example 1 at the 50th cycle. It only showed a capacity of 4.3 mAh, which is 0.91 times that of the battery.

【0037】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイグル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ参考例1から3及び比較例1の特
性と併せて示す。
The relationship between the number of cycles of the initial 50 cycles and the discharge capacity is shown in FIG.
The relationship between the discharge capacity at the 0th cycle and the composition of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle are shown in Table 1, and the characteristics of Reference Examples 1 to 3 and Comparative Example 1, respectively. Shown together.

【0038】[0038]

【実施例1】正極ペレットに含まれる正極活物質である
LiFe0.8Zn0.2POを下記の方法で作製し
た。まず原料である水酸化リチウム1水和物(LiOH
・HO)とシュウ酸鉄2水和物(FeC・2H
O)と酢酸亜鉛2水和物(Zn(CHCOO)
2HO)とリン酸水素二アンモニウム((NH
HPO)をモル比で1:0.8:0.2:1となるよ
うに混合して坩堝に入れ、アルゴン雰囲気下で800℃
で24時間焼成することにより作製した。
Example 1 LiFe 0.8 Zn 0.2 PO 4 , which is a positive electrode active material contained in a positive electrode pellet, was produced by the following method. First, the raw material lithium hydroxide monohydrate (LiOH
· H 2 O) and iron oxalate dihydrate (FeC 2 O 4 · 2H
2 O) and zinc acetate dihydrate (Zn (CH 3 COO) 2 ·
2H 2 O) and diammonium hydrogen phosphate ((NH 4 ) 2
HPO 4 ) was mixed in a molar ratio of 1: 0.8: 0.2: 1 and put in a crucible, and the temperature was 800 ° C. under an argon atmosphere.
It was prepared by firing for 24 hours.

【0039】得られた正極活物質を用いて参考例1と同
一の方法によりコイン型電池を作製した。参考例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
参考例2をやや上回るサイクル回数依存性を示した。ま
た、50サイクル目では比較例1に示した電池の1.4
9倍に相当する7.0mAhの容量が得られた。
A coin-type battery was manufactured by using the obtained positive electrode active material in the same manner as in Reference Example 1. When the charge and discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
The cycle number dependency slightly higher than that of Reference Example 2 was shown. In addition, at the 50th cycle, 1.4% of the battery shown in Comparative Example 1 was used.
A capacity of 7.0 mAh corresponding to 9 times was obtained.

【0040】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また、電池の正極活物質組成式、置
換量yと50サイクル目の放電容量を表1に、それぞれ
参考例1から3及び比較例1、2の特性と併せて示す。
The relationship between the number of cycles in the initial 50 cycles and the discharge capacity is shown in FIG. 5, and the composition formula of the positive electrode active material of the battery, the substitution amount y and the discharge capacity at the 50th cycle are shown in Table 1.
The characteristics of Reference Examples 1 to 3 and Comparative Examples 1 and 2 are shown together.

【0041】[0041]

【実施例2】正極ペレットに含まれる正極活物質である
LiFe0.85Mg0.15POを下記の方法で作
製した。まず原料である水酸化リチウム1水和物(Li
OH・HO)とシュウ酸鉄2水和物(FeC
2HO)と酸化マグネシウム(MgO)とリン酸水素
二アンモニウム((NHHPO)をモル比で
1:0.85:0.15:1となるように混合して坩堝
に入れ、アルゴン雰囲気下で800℃で24時間焼成す
ることにより作製した。
Example 2 LiFe 0.85 Mg 0.15 PO 4 , which is the positive electrode active material contained in the positive electrode pellet, was produced by the following method. First, the raw material lithium hydroxide monohydrate (Li
OH · H 2 O) and iron oxalate dihydrate (FeC 2 O 4 ·
2H 2 O), magnesium oxide (MgO) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were mixed in a molar ratio of 1: 0.85: 0.15: 1 and put in a crucible. It was manufactured by baking at 800 ° C. for 24 hours in an argon atmosphere.

【0042】得られた正極活物質を用いて参考例1と同
一の方法によりコイン型電池を作製した。参考例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
参考例2とほぼ同様なサイクル回数依存性を示した。
A coin type battery was produced by the same method as in Reference Example 1 using the obtained positive electrode active material. When the charge and discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
Approximately the same cycle number dependence as in Reference Example 2 was shown.

【0043】50サイクル目では比較例1に示した電池
の1.45倍に当たる6.8mAhの容量が得られた。
実施例に示した電池の正極活物質組成式、置換量yと
50サイクル目の放電容量を表1に、実施例1、参考例
1から及び比較例1、2の特性と併せて示す。
At the 50th cycle, a capacity of 6.8 mAh, which is 1.45 times that of the battery shown in Comparative Example 1, was obtained.
The composition formula of the positive electrode active material, the substitution amount y, and the discharge capacity at the 50th cycle of the battery shown in Example 2 are shown in Table 1 together with the characteristics of Example 1, Reference Examples 1 to 3 and Comparative Examples 1 and 2. .

【0044】[0044]

【参考例4】正極ペレットに含まれる正極活物質である
LiFe0.8Ni0.2POを下記の方法で作製し
た。まず原料である水酸化リチウム1水和物(LiOH
・HO)と酢酸鉄((CHCOO)Fe)と酸化
ニッケル(NiO)とリン酸水素二アンモニウム((N
HPO)をモル比で1:0.8:0.2:1
となるように混合して坩堝に入れ、アルゴン雰囲気下で
800℃で24時間焼成することにより作製した。
Reference Example 4 LiFe 0.8 Ni 0.2 PO 4 , which is the positive electrode active material contained in the positive electrode pellet, was produced by the following method. First, the raw material lithium hydroxide monohydrate (LiOH
· H 2 O) and iron acetate ((CH 3 COO) 2 Fe ) and nickel oxide (NiO) and diammonium hydrogenphosphate ((N
H 4 ) 2 HPO 4 ) in a molar ratio of 1: 0.8: 0.2: 1
It was prepared by mixing the above so as to be put into a crucible and firing at 800 ° C. for 24 hours in an argon atmosphere.

【0045】得られた正極活物質を用いて参考例1と同
一の方法によりコイン型電池を作製した。参考例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
参考例2をやや下回るサイクル回数依存性を示した。ま
た、50サイクル目では比較例1に示した電池の1.3
8倍に相当する6.5mAhの容量が得られた。参考例
に示した電池の正極活物質組成式、置換量yと50サ
イクル目の放電容量を表1に、実施例1,2参考例1か
及び比較例1、2の特性と併せて示す。
Using the positive electrode active material thus obtained, a coin-type battery was manufactured by the same method as in Reference Example 1. When the charge and discharge characteristics were evaluated under the same conditions as in Reference Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
The number of cycles was slightly lower than that of Reference Example 2. Further, at the 50th cycle, 1.3% of the battery shown in Comparative Example 1 was used.
A capacity of 6.5 mAh corresponding to 8 times was obtained. Reference example
The positive electrode active material composition formula of battery shown in 4, the discharge capacity of the substitution amount y and the 50th cycle in Table 1, the characteristics of Examples 1 and 2 Example 1 or <br/> et 3 and Comparative Examples 1 and 2 Shown together with.

【0046】なお、前述した実施例において、正極とし
てはペレット状に整形したものを用いたが、N−メチル
−2−ピロリドンの様な溶媒に正極活物質とポリフッ化
ビニリデンの様なバインダを加えてスラリーを作製し、
それを金属箔上に薄く塗布乾燥した塗布電極の様な形状
でも構わない。
In the above-mentioned examples, the positive electrode formed into a pellet shape was used. However, a positive electrode active material and a binder such as polyvinylidene fluoride were added to a solvent such as N-methyl-2-pyrrolidone. To make a slurry,
It may have a shape such as a coating electrode in which it is thinly coated on a metal foil and dried.

【0047】また、負極材料としてはリチウム金属を用
いたが、他にリチウム合金、黒鉛やコークスなどの炭素
系材料、タングステン酸化物、ニオブ酸化物、バナジウ
ム酸化物、スズ酸化物などの金属酸化物、リチウムマン
ガン窒化物やリチウムコバルト窒化物、リチウム鉄窒化
物などのリチウム遷移金属複合窒化物、硫化鉄や硫化モ
リブデン等の金属カルコゲナイトなどでも構わない。
Although lithium metal was used as the negative electrode material, other lithium-based materials, carbon-based materials such as graphite and coke, and metal oxides such as tungsten oxide, niobium oxide, vanadium oxide, and tin oxide. A lithium transition metal composite nitride such as lithium manganese nitride, lithium cobalt nitride, or lithium iron nitride, or metal chalcogenite such as iron sulfide or molybdenum sulfide may be used.

【0048】さらに電解液としてはエチレンカーボネー
トとジメチルカーボネートの等積混合溶媒にLiPF
を1mol/dm濃度に溶解した電解液を用いたが、
従来の非水系リチウム二次電池と同様なものも使用可能
である。
Further, as the electrolytic solution, LiPF 6 was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
Was used as an electrolytic solution in which was dissolved at a concentration of 1 mol / dm 3 .
The same non-aqueous lithium secondary battery as the conventional one can be used.

【0049】例えば溶媒としてはジメトキシエタン、2
−メチルテトラヒドロフラン、エチレンカーボネート、
メチルホルメート、ジメチルスルホキシド、プロピレン
カーボネート、アセトニトリル、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネート
などを単独で、あるいは2種類以上を混合して使用する
ことが可能である。
For example, the solvent is dimethoxyethane, 2
-Methyltetrahydrofuran, ethylene carbonate,
It is possible to use methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, etc. alone or in combination of two or more.

【0050】また、溶質としては実施例において用いた
LiPF以外にも、例えば、LiClO、LiBF
、LiAsF、LiCFSO等でも構わない。
更に、ポリマー電解質、固体電解質、常温溶融塩等も使
用可能である。また、セパレータや電池ケース等の構造
材料等の他の要素についても従来公知の各種材料が使用
可能である。さらに電池形状についても実施例において
はボタン型としたが、特に制限されるものではなく、円
筒型、角型等の形状でもかまわない。
As the solute, other than LiPF 6 used in the examples, for example, LiClO 4 and LiBF 6 are used.
4 , LiAsF 6 , LiCF 3 SO 3 or the like may be used.
Further, a polymer electrolyte, a solid electrolyte, a room temperature molten salt and the like can also be used. In addition, conventionally known various materials can be used for other elements such as a structural material such as a separator and a battery case. Further, although the battery shape is a button shape in the embodiment, it is not particularly limited and may be a cylindrical shape, a rectangular shape or the like.

【0051】[0051]

【発明の効果】以上説明したように、本発明によるリチ
ウム二次電池によれば、正極活物質として、リン酸鉄リ
チウム中の鉄を、リン酸化合物を構成している状態では
リチウム金属の標準電位に対して3Vから4Vの電位領
域で電気化学的に安定な物質により30%以下の割合で
置き換えた化合物を用いることにより、無置換のリン酸
鉄リチウムに比べて電解液の分解による電池寿命の低下
が起りにくい4V以下での充放電において放竃容量やサ
イクル特性を向上させることができた。従って経済的に
優れてなおかつ電池特性の良好なリチウム二次電池の実
現が可能となった。
As described above, according to the lithium secondary battery of the present invention, iron in lithium iron phosphate is used as the positive electrode active material, and when the phosphoric acid compound is formed, the standard lithium metal is used. Battery life due to decomposition of electrolytic solution compared with unsubstituted lithium iron phosphate by using a compound in which a substance that is electrochemically stable in an electric potential region of 3 V to 4 V with respect to the electric potential is substituted at a ratio of 30% or less It was possible to improve the discharge capacity and the cycle characteristics in charge and discharge at 4 V or less, where the decrease of the discharge does not easily occur. Therefore, it is possible to realize a lithium secondary battery which is economically excellent and has good battery characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるリチウム二次電池の一実施例によ
る構成を示した断面図。
FIG. 1 is a cross-sectional view showing the configuration of an embodiment of a lithium secondary battery according to the present invention.

【図2】本発明のリチウム二次電池の参考例1において
正極活物質として用いたLiFe0.7Co0.3PO
のX線回折パターンを示した図。
FIG. 2 shows LiFe 0.7 Co 0.3 PO used as a positive electrode active material in Reference Example 1 of the lithium secondary battery of the present invention.
The figure which showed the X-ray-diffraction pattern of 4 .

【図3】LiFePOのオリビン構造を示す図。FIG. 3 is a diagram showing an olivine structure of LiFePO 4 .

【図4】本発明のリチウム二次電池の参考例1における
電池の充放電曲線を示した図。
FIG. 4 is a diagram showing a charge / discharge curve of a battery in Reference Example 1 of the lithium secondary battery of the present invention.

【図5】本発明のリチウム二次電池の参考例1〜3、実
施例1におけるサイクル回数と放電容量の関係を比較例
1、2における関係と併せて示した図。
FIG. 5: Reference examples 1 to 3 of the lithium secondary battery of the present invention
The figure which showed the relationship between the number of cycles and discharge capacity in Example 1 together with the relationship in Comparative Examples 1 and 2.

【図6】本発明のリチウム二次電池の参考例1〜3にお
ける元素Xによる鉄の置換量yと放電容量の関係を比較
例1、2における関係と併せて示した図。
FIG. 6 is a diagram showing the relationship between the amount y of iron replaced by element X and the discharge capacity in Reference Examples 1 to 3 of the lithium secondary battery of the present invention together with the relationship in Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 封口板 2 金属リチウム負極 3 ガスケット 4 セパレータ 5 正極ペレット 6 正極ケース 1 Seal plate 2 Metal lithium negative electrode 3 gasket 4 separator 5 Positive electrode pellet 6 Positive case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日本電信電話株式会社内 (56)参考文献 特開 平9−134724(JP,A) 特開 平9−134725(JP,A) 国際公開00/060679(WO,A1) 国際公開00/060680(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Youji Sakurai 2-3-1, Otemachi, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (56) Reference JP-A-9-134724 (JP, A) Hei 9-134725 (JP, A) International publication 00/060679 (WO, A1) International publication 00/060680 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式LiFe1−yPO(0
<z≦1)で与えられるオリビン構造のリン酸化合物
で、元素Xは該リン酸化合物を構成している状態では、
リチウム金属の標準電位に対して3Vから4Vの電位領
域で電気化学的に安定な物質であり、なおかつyが0<
y≦0.3である物質であって、前記リン酸化合物中の
元素Xがマグネシウム、亜鉛の少なくとも1種類である
ことを特徴とするリチウム二次電池正極活物質
1. The general formula Li z Fe 1-y X y PO 4 (0
In a phosphoric acid compound having an olivine structure given by <z ≦ 1), the element X is in the state of constituting the phosphoric acid compound,
It is a substance that is electrochemically stable in the potential region of 3 V to 4 V with respect to the standard potential of lithium metal, and y is 0 <
a substance in which y ≦ 0.3, in the phosphoric acid compound,
Element X is at least one of magnesium and zinc
A positive electrode active material for a lithium secondary battery, comprising:
【請求項2】 請求項1記載のリチウム二次電池正極活
物質を正極活物質として含み、リチウム金属、リチウム
合金またはリチウムイオンを吸蔵、放出可能な物質を負
極活物質として、さらにリチウムイオンが前記正極活物
質や前記負極活物質と電気化学反応をするための移動を
行いうる物質を電解質として含むことを特徴とするリチ
ウム二次電池。
2. The positive electrode active material of the lithium secondary battery according to claim 1.
Including substances as positive electrode active materials, lithium metal, lithium
Negative materials that can store and release alloys or lithium ions
As a polar active material, lithium ions are further added to the positive electrode active material.
Quality and transfer for electrochemical reaction with the negative electrode active material.
Lithium characterized by containing a substance capable of conducting as an electrolyte
Um secondary battery.
JP26139499A 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery Expired - Lifetime JP3504195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26139499A JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26139499A JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001085010A JP2001085010A (en) 2001-03-30
JP3504195B2 true JP3504195B2 (en) 2004-03-08

Family

ID=17361264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26139499A Expired - Lifetime JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3504195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955733B2 (en) 1996-04-23 2011-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US7001690B2 (en) 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6777132B2 (en) 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
US6387568B1 (en) 2000-04-27 2002-05-14 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US8057769B2 (en) 2000-04-27 2011-11-15 Valence Technology, Inc. Method for making phosphate-based electrode active materials
JP2002117845A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium iron complex oxide for lithium secondary battery positive electrode active material
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
CA2750707A1 (en) * 2001-04-06 2002-12-05 Valence Technology, Inc. Sodium ion batteries
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US6815122B2 (en) * 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
US20030190527A1 (en) * 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
US7422823B2 (en) 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
JP2006511038A (en) 2002-12-19 2006-03-30 ヴァレンス テクノロジー インコーポレーテッド Electrode active material and method for producing the same
JP2005158673A (en) * 2003-10-31 2005-06-16 Toyota Motor Corp Electrode active material, manufacturing method therefor and non-aqueous secondary battery
JP4876414B2 (en) * 2005-03-23 2012-02-15 株式会社豊田中央研究所 Method for producing active material and lithium secondary battery
CA2681114A1 (en) * 2007-03-19 2008-03-19 Umicore Room temperature single phase li insertion/extraction material for use in li-based battery
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same
JP5446036B2 (en) * 2008-05-22 2014-03-19 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
US8431271B2 (en) 2008-05-22 2013-04-30 Gs Yuasa International Ltd. Positive active material for lithium secondary battery and lithium secondary battery
JP5445912B2 (en) * 2008-05-30 2014-03-19 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5262318B2 (en) * 2008-06-09 2013-08-14 株式会社Gsユアサ Positive electrode active material for lithium secondary battery and lithium secondary battery.
JP5407232B2 (en) * 2008-09-09 2014-02-05 住友金属鉱山株式会社 Positive electrode active material for secondary battery, method for producing the same, and secondary battery using the same
JP5376894B2 (en) 2008-10-20 2013-12-25 古河電池株式会社 Multi-component phosphoric acid lithium compound particles having an olivine structure, a method for producing the same, and a lithium secondary battery using the same as a positive electrode material
ES2541202T3 (en) 2008-10-22 2015-07-16 Lg Chem, Ltd. Lithium iron phosphate having an olivine type structure, and method of preparation thereof
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955733B2 (en) 1996-04-23 2011-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7960058B2 (en) 1996-04-23 2011-06-14 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7964308B2 (en) 1996-04-23 2011-06-21 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7972728B2 (en) 1996-04-23 2011-07-05 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US7998617B2 (en) 1996-04-23 2011-08-16 HYDRO-QUéBEC Cathode materials for secondary (rechargeable) lithium batteries
US8067117B2 (en) 1996-04-23 2011-11-29 HYDRO-QUéBEC Cathode materials for secondary (rechargeable) lithium batteries
US8282691B2 (en) 1996-04-23 2012-10-09 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US8785043B2 (en) 1996-04-23 2014-07-22 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries
US9362562B2 (en) 1996-04-23 2016-06-07 Hydro-Quebec Cathode materials for secondary (rechargeable) lithium batteries

Also Published As

Publication number Publication date
JP2001085010A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP5068459B2 (en) Lithium secondary battery
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
EP1684370B1 (en) Electrode active material and use thereof
JP5682040B2 (en) Pyrophosphate compound and method for producing the same
EP0743692B1 (en) A material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material
US8603367B2 (en) Manganese phosphates and related electrode active materials
JP4804686B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JPH09134724A (en) Non-aqueous electrolyte secondary battery
KR20010098878A (en) Positive electrode active material and non-aqueous electrolyte cell
KR20190059115A (en) Irreversible Additive Comprised in Cathode Material for Lithium Secondary Battery, Preparing Method thereof, and Cathode Material Comprising the Same
JP5002098B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JPH10162823A (en) Non-aqueous secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
KR20160093854A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9269955B2 (en) Manganese phosphates and related electrode active materials
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JPH10125309A (en) Nonaqueous secondary battery
JPH0935714A (en) Lithium secondary battery
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP3130531B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031209

R151 Written notification of patent or utility model registration

Ref document number: 3504195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term