JP2008260666A - Active material for sodium secondary battery, and method for producing the same - Google Patents

Active material for sodium secondary battery, and method for producing the same Download PDF

Info

Publication number
JP2008260666A
JP2008260666A JP2007106215A JP2007106215A JP2008260666A JP 2008260666 A JP2008260666 A JP 2008260666A JP 2007106215 A JP2007106215 A JP 2007106215A JP 2007106215 A JP2007106215 A JP 2007106215A JP 2008260666 A JP2008260666 A JP 2008260666A
Authority
JP
Japan
Prior art keywords
active material
namnpo
type
marisite
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007106215A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
Tomoyuki Shiratsuchi
友透 白土
Takayuki Doi
貴之 土井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2007106215A priority Critical patent/JP2008260666A/en
Publication of JP2008260666A publication Critical patent/JP2008260666A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide maricite type NaMn<SB>x</SB>M<SB>(1-x)</SB>PO<SB>4</SB>comprising elements abundant as resources and having a high operating voltage, and a method for producing the same; to provide an active material for a sodium secondary battery containing the same, and the battery. <P>SOLUTION: This active material for a sodium secondary battery contains the maricite type NaMn<SB>x</SB>M<SB>(1-x)</SB>PO<SB>4</SB>, where M is any of Fe, Co and Ni; and x satisfies 0≤x≤1. The battery uses the active material. Maricite type NaMnPO<SB>4</SB>as an example of the maricite type compounds has a symmetry of a Pnmb space group and lattice constants a, b and c are: 6.86 Å≤a≤7.00 Å; 8.98 Å≤b≤9.15 Å; and 5.04 Å≤c≤5.14 Å, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ナトリウム二次電池用活物質およびその製造方法に関し、より具体的には、マリサイト型NaMn(1−x)POおよびその製造方法、ならびにそれを含むナトリウム二次電池用活物質および電池に関する。 TECHNICAL FIELD The present invention relates to an active material for a sodium secondary battery and a method for producing the same, and more specifically, marisite-type NaMn x M (1-x) PO 4 and a method for producing the same, and a sodium secondary battery including the same. The present invention relates to an active material and a battery.

ポータブル電子機器等の二次電池として、非水電解質リチウムイオン二次電池が実用化されており、広く用いられている。リチウムイオンは、地球上に存在する固体中で酸化還元電位が最も低く、かつ最もイオン半径が小さいため、エネルギー密度の観点からは最も有利である。 As secondary batteries for portable electronic devices and the like, nonaqueous electrolyte lithium ion secondary batteries have been put into practical use and are widely used. Lithium ions are most advantageous from the viewpoint of energy density because they have the lowest redox potential and the smallest ionic radius among solids present on the earth.

しかし、リチウムは資源としての埋蔵量が少なく高価であるという問題があるため、資源として豊富な元素であるナトリウムイオンを用いた二次電池に関する研究開発が行われている。ナトリウムは、リチウムに次いで低い酸化還元電位を有しているため高起電力が期待でき、しかも地球上に豊富に存在するため、コストの面からも好ましい元素である。
こうした状況下で、資源として豊富なニッケルとの複合酸化物であるNaNiOが非水電解質二次電池用正極活物質として提案されている(例えば、非特許文献1参照)。しかし、NaNiOを正極活物質として用いた非水電解質二次電池は、作動電圧が低いという問題点を有している(例えば、特許文献1参照)。
However, since lithium has a problem that it has a small reserve amount as a resource and is expensive, research and development on secondary batteries using sodium ions, which are abundant elements as resources, are being carried out. Sodium has a low redox potential next to lithium, and thus can be expected to have a high electromotive force. Since sodium is abundant on the earth, it is a preferable element from the viewpoint of cost.
Under such circumstances, NaNiO 2 , which is a complex oxide with abundant nickel as a resource, has been proposed as a positive electrode active material for non-aqueous electrolyte secondary batteries (see, for example, Non-Patent Document 1). However, a nonaqueous electrolyte secondary battery using NaNiO 2 as a positive electrode active material has a problem that the operating voltage is low (see, for example, Patent Document 1).

特開2003−151549号公報JP 2003-151549 A デルマス(Delmas)他、「レヴュ・ドゥ・シミー・ミネラル(Revue de Chimie Minerale)」(フランス)、ゴーシエ・ヴィラー社(Gauthier−Villars)、1982年、第19巻、p.343Delmas et al., “Revue de Chimie Minerale” (France), Gautier-Villars, 1982, Vol. 19, p. 343

リチウムイオンの約1.3倍のイオン半径を有するナトリウムイオンを結晶構造内にインターカレーションさせるためには、リチウムイオン二次電池用正極活物質として用いられている層状化合物よりも空隙の大きな頂点共有構造を有する化合物や二次元拡散層を有する層状化合物が求められるが、実用上利用可能で、かつ希少な元素を用いないナトリウム二次電池用正極活物質は、現在のところ得られていない。 In order to intercalate sodium ions having an ionic radius about 1.3 times that of lithium ions into the crystal structure, the apex has a larger gap than the layered compound used as the positive electrode active material for lithium ion secondary batteries. Although a compound having a shared structure and a layered compound having a two-dimensional diffusion layer are required, a positive electrode active material for sodium secondary batteries that is practically usable and does not use rare elements has not been obtained at present.

本発明はかかる事情に鑑みてなされたもので、資源として豊富な元素からなり、高い作動電圧を有するマリサイト型NaMn(1−x)POおよびその製造方法、ならびにマリサイト型NaMn(1−x)POを含むナトリウム二次電池用活物質、正極、および電池を提供することを目的とする。 The present invention has been made in view of such circumstances, consist abundant element as a resource, maricite type NaMn x M (1-x) PO 4 and a method of manufacturing the same having a high operating voltage, and maricite type NaMn x M (1-x) active material for sodium secondary batteries containing PO 4, a positive electrode, and to provide a battery for the purpose.

前記目的に沿う第1の発明に係るマリサイト(maricite)型NaMnPOは、空間群Pnmbの対称性を有し、格子定数a、b、およびcがそれぞれ、6.86Å≦a≦7.00Å、8.98Å≦b≦9.15Å、5.04Å≦c≦5.14Åである。
天然に存在するNaMnPOとしては、空間群Pnamの対称性を有するナトロフィライト(natrophilite)等が知られているが、マリサイト型の結晶構造を有するNaMnPOは従来知られておらず、本発明に係るマリサイト型NaMnPOは、NaMnPOとしては新規な結晶構造を有するものである。
The mariticite type NaMnPO 4 according to the first invention that meets the above object has the symmetry of the space group Pnmb, and the lattice constants a, b, and c are respectively 6.86Å ≦ a ≦ 7.00Å. 8.98 Å ≦ b ≦ 9.15 Å, 5.04 Å ≦ c ≦ 5.14 Å.
NaMnPO 4 having a space group Pnam symmetry is known as a naturally occurring NaMnPO 4 , but NaMnPO 4 having a marisite crystal structure has not been known. The marisite-type NaMnPO 4 according to the invention has a novel crystal structure as NaMnPO 4 .

第2の発明に係るマリサイト型NaMnPOの製造方法は、Na源、Mn源、およびリン酸源を水中で混合後、水分を蒸発させ、得られた混合物を、大気中600〜1000℃で加熱することを特徴とする。 In the method for producing the marisite-type NaMnPO 4 according to the second invention, the Na source, the Mn source, and the phosphoric acid source are mixed in water, the water is evaporated, and the resulting mixture is heated at 600 to 1000 ° C. in the atmosphere. It is characterized by heating.

第3の発明に係るナトリウム二次電池用活物質は、マリサイト型NaMn(1−x)PO(式中、MはFe、Co、およびNiのいずれかで、xは0≦x≦1である)を含む。
第4の発明に係るナトリウム二次電池は、第3の発明に係るナトリウム二次電池用活物質を用いている。
The active material for a sodium secondary battery according to the third invention is a marisite type NaMn x M (1-x) PO 4 (wherein M is any one of Fe, Co and Ni, and x is 0 ≦ x ≦ 1).
The sodium secondary battery according to the fourth invention uses the active material for sodium secondary battery according to the third invention.

請求項1記載のマリサイト型NaMnPOは、マリサイト型の結晶構造を有しており、資源として豊富なNaおよびMnを用いて製造でき、高い作動電圧および高い容量を有するナトリウム二次電池用活物質として利用可能である。 The marisite-type NaMnPO 4 according to claim 1 has a marisite-type crystal structure, can be manufactured using abundant Na and Mn as resources, and has a high operating voltage and a high capacity. It can be used as an active material.

請求項2記載のマリサイト型NaMnPOの製造方法は、高い作動電圧および高い容量を有するナトリウム二次電池用活物質として利用可能なマリサイト型の結晶構造を有するNaMnPOを、化学量論的組成比の原料を用いて湿式合成することにより製造できる。 The method for producing the marisite-type NaMnPO 4 according to claim 2, wherein NaMnPO 4 having a marisite-type crystal structure that can be used as an active material for a sodium secondary battery having a high operating voltage and a high capacity is obtained in a stoichiometric manner. It can manufacture by carrying out wet synthesis using the raw material of a composition ratio.

請求項3記載のナトリウム二次電池用活物質は、優れた電極特性を有するナトリウム二次電池用正極を提供できる。
請求項4記載のナトリウム二次電池は、リチウムよりも安価なナトリウムを用いて、リチウム二次電池に遜色ない作動電圧および容量を有するナトリウム二次電池を提供できる。
The active material for a sodium secondary battery according to claim 3 can provide a positive electrode for a sodium secondary battery having excellent electrode characteristics.
The sodium secondary battery according to claim 4 can provide a sodium secondary battery having an operating voltage and capacity comparable to that of a lithium secondary battery using sodium that is less expensive than lithium.

本発明の第1の実施の形態に係るマリサイト型NaMnPOは、空間群Pnmbの対称性を有し、格子定数a、b、およびcがそれぞれ、6.86Å≦a≦7.00Å、8.98Å≦b≦9.15Å、5.04Å≦c≦5.14Åである。格子定数a、b、およびcは、粉末XRD(X線回折)を用いたリートベルト法等の任意の公知の方法を用いて決定される。 The marisite-type NaMnPO 4 according to the first embodiment of the present invention has the symmetry of the space group Pnmb, and the lattice constants a, b, and c are 6.86Å ≦ a ≦ 7.00Å, 8 .98 Å ≦ b ≦ 9.15 Å, 5.04 ≦≦ c ≦ 5.14 Å. The lattice constants a, b, and c are determined using any known method such as the Rietveld method using powder XRD (X-ray diffraction).

マリサイト型NaMnPOは、Na源である炭酸ナトリウム(NaCO)、Mn源であるMn粉末、およびリン酸源である五酸化二リン(P)を化学量論比で秤量し、水等の溶媒または分散媒中で反応させた後、溶媒または分散媒を蒸発させ、大気中で加熱することにより合成される。
反応時間は、室温で24〜72時間程度が好ましく、マグネチックスターラー、ボールミル等の任意の公知の手段により撹拌しながら行うことが好ましい。
水分の蒸発には、ロータリーエバポレータ等を用いた減圧蒸留、ドライスプレー法等の公知の手段により行われる。
Marisite-type NaMnPO 4 weighs sodium carbonate (Na 2 CO 3 ) as a Na source, Mn powder as a Mn source, and diphosphorus pentoxide (P 2 O 5 ) as a phosphate source in a stoichiometric ratio. Then, after reacting in a solvent or dispersion medium such as water, the solvent or dispersion medium is evaporated and heated in the atmosphere.
The reaction time is preferably about 24 to 72 hours at room temperature, and is preferably carried out with stirring by any known means such as a magnetic stirrer or a ball mill.
Water is evaporated by a known means such as vacuum distillation using a rotary evaporator or the like, a dry spray method or the like.

加熱温度は、600〜1000℃とし、好ましくは600〜800℃、より好ましくは600〜700℃である。反応を完全に進行させるためには、加熱温度が600℃以上である必要があり、一方、温度が1000℃を超えると、副生成物によりNaMnPOの純度が低下するため好ましくない。 The heating temperature is 600 to 1000 ° C, preferably 600 to 800 ° C, more preferably 600 to 700 ° C. In order to make the reaction proceed completely, the heating temperature needs to be 600 ° C. or higher. On the other hand, when the temperature exceeds 1000 ° C., the purity of NaMnPO 4 is lowered by the by-product, which is not preferable.

本発明の第2の実施の形態に係るナトリウム二次電池は、マリサイト型の結晶構造を有し、一般式NaMn(1−x)POで現される化合物を活物質(正極活物質)として含む。式中、MはFe、Co、およびNiのいずれか1、あるいは任意の2以上の組み合わせであり、xは0≦x≦1である。
一般式NaMn(1−x)POで表される化合物のうち、NaMnPO(一般式NaMn(1−x)POにおいて、x=1)の合成は、上述の湿式法により行われるが、その他の化合物の合成については、上述の湿式法で行ってもよく、Na源、M源(Mn源、Fe源、Ni源、Co源、およびこれらの混合物)、およびリン酸源を化学量論比で混合し、水を加えることなく焼成する従来の固相法で行ってもよい。
The sodium secondary battery according to the second embodiment of the present invention has a marisite crystal structure, and a compound represented by the general formula NaMn x M (1-x) PO 4 is an active material (positive electrode active). Substances). In the formula, M is any one of Fe, Co, and Ni, or any combination of two or more, and x is 0 ≦ x ≦ 1.
Among the general formula NaMn x M (1-x) PO 4 compound represented by, (in the general formula NaMn x M (1-x) PO 4, x = 1) NaMnPO 4 Synthesis of By the above wet method However, the synthesis of other compounds may be carried out by the wet method described above, and includes Na source, M source (Mn source, Fe source, Ni source, Co source, and mixtures thereof), and phosphate source. May be mixed by a stoichiometric ratio, and may be performed by a conventional solid phase method in which baking is performed without adding water.

例えば、マリサイト型NaFePOは、Na源、Fe源、およびリン酸源を化学量論比で秤量後、還元性雰囲気下で加熱することにより合成することができる。Na源としては、NaOH、NaCl、NaBr、NaCO等の任意のNa塩を用いることができるが、低融点で融材としても作用しうるNaCOが好ましい。
Fe源としては、Fe、Fe、金属鉄、Fe(CHCOO)、FeC等を用いることができる。
リン酸源としては、P、(NHHPO、NHPO等を用いることができる。
For example, marisite-type NaFePO 4 can be synthesized by weighing Na source, Fe source, and phosphate source in a stoichiometric ratio and then heating in a reducing atmosphere. The source of Na, NaOH, NaCl, NaBr, but may be any Na salt such as Na 2 CO 3, may also act as a melting material with low melting point Na 2 CO 3 are preferred.
As the Fe source, Fe 2 O 3 , Fe 3 O 4 , metallic iron, Fe (CH 3 COO) 2 , FeC 2 O 4 and the like can be used.
As the phosphoric acid source, P 2 O 5 , (NH 4 ) 2 HPO 4 , NH 4 H 2 PO 4 or the like can be used.

還元性雰囲気としては、窒素またはアルゴン雰囲気が通常用いられる。
加熱方法は特に限定されず、誘導加熱、マイクロウェーブによる加熱等の任意の加熱手段を用いることができる。加熱温度は、例えば、300〜600℃、加熱時間は、例えば、3〜10時間である。
A nitrogen or argon atmosphere is usually used as the reducing atmosphere.
The heating method is not particularly limited, and any heating means such as induction heating or microwave heating can be used. The heating temperature is, for example, 300 to 600 ° C., and the heating time is, for example, 3 to 10 hours.

また、Ni源としては、NiCl、NiO、金属Ni等を用いることができ、Co源としては、CoCl、CoO、金属Co等を用いることができる。あるいは、FeNiO、CoFe等の混合酸化物を用いてもよい。
金属元素Mとして、上述したMnおよびFe以外のものを単独で、あるいは他の元素と混合して用いる場合、好ましい加熱温度は、用いられる原料の組成および性状により変化するため一義的に決定することは困難であるが、一般に、原料となる固体が溶融する約200℃よりも高く、かつ副反応の影響が顕著になる約600℃よりも低い温度範囲内で適宜選択される。
同様に、好ましい反応時間についても、一般に、反応が十分に進行するのに必要な約1時間以上で、かつ結晶成長が進みすぎないようにするために約10時間以下である時間範囲内で適宜選択される。
In addition, NiCl 2 , NiO, metal Ni, or the like can be used as the Ni source, and CoCl 2 , CoO, metal Co, or the like can be used as the Co source. Alternatively, a mixed oxide such as Fe 2 NiO 4 or CoFe 2 O 4 may be used.
When a metal element M other than Mn and Fe described above is used alone or mixed with other elements, the preferred heating temperature is uniquely determined because it varies depending on the composition and properties of the raw materials used. In general, however, the temperature is appropriately selected within a temperature range higher than about 200 ° C. at which the solid as a raw material melts and lower than about 600 ° C. at which the influence of side reactions becomes significant.
Similarly, a preferable reaction time is generally appropriately within a time range of about 1 hour or more necessary for the reaction to sufficiently proceed and about 10 hours or less to prevent the crystal growth from proceeding excessively. Selected.

このようにして得られる活物質は、通常粉末状で用いればよく、その平均粒径は50nm〜10μm程度とすればよい。平均粒径は例えばレーザー回折式粒度分布測定装置で測定される値である。なお、正極活物質として所定の充放電特性が得られる限りは、上記正極活物質を単独で用いてもよいが、他の従来から知られている正極活物質との混合物であってもよい。 The active material thus obtained may be used usually in a powder form, and the average particle size may be about 50 nm to 10 μm. The average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus. In addition, as long as a predetermined charging / discharging characteristic is acquired as a positive electrode active material, the said positive electrode active material may be used independently, but the mixture with the other positive electrode active material known conventionally may be sufficient.

(1)正極の作製
正極の作製には、上記の活物質をそのまま用いてもよいが、電気伝導度を向上させるために、公知の導電材と複合体を形成させてもよい。導電体としては、アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等のカーボン系材料が挙げられるが、好ましくはアセチレンブラックである。
複合体の形成は、正極活物質と導電体を遊星ボールミル、ストーンミル等を用いて混合し、活物質の表面を導電体で被覆(カーボンコート)後、加熱(カルボサーマル処理)することにより行う。
カーボンコート処理は、粉末状の活物質および導電体であるカーボン系材料を、室温で8〜48時間、好ましくは20〜30時間混合することにより行う。
カルボサーマル処理における加熱温度は、用いられる活物質および導電体の性状および組成により異なるため一義的に決定することは困難であるが、好ましい加熱温度は、例えば、400〜700℃で、好ましい加熱時間は、例えば、1〜5時間である。
なお、炭素の燃焼による損耗を防止するため、加熱は還元性雰囲気下で行われる。
(1) Production of positive electrode For production of the positive electrode, the above active material may be used as it is, but in order to improve electrical conductivity, a known conductive material and a composite may be formed. Examples of the conductor include carbon-based materials such as acetylene black, carbon, graphite, natural graphite, artificial graphite, and needle coke, and acetylene black is preferable.
The composite is formed by mixing the positive electrode active material and the conductor using a planetary ball mill, stone mill, etc., and coating the surface of the active material with a conductor (carbon coating) and then heating (carbothermal treatment). .
The carbon coating treatment is performed by mixing a powdery active material and a carbon-based material as a conductor at room temperature for 8 to 48 hours, preferably 20 to 30 hours.
The heating temperature in the carbothermal treatment is difficult to determine uniquely because it varies depending on the properties and composition of the active material and conductor used. However, the preferable heating temperature is, for example, 400 to 700 ° C., and the preferable heating time. Is, for example, 1 to 5 hours.
In addition, in order to prevent wear and tear by carbon combustion, heating is performed in a reducing atmosphere.

炭素含量は、炭素源の添加量により制御することができる。炭素含量が少ないと導電性の改善効果が現れなくなるため2%以上とすることが好ましい。また、炭素含量が多くなりすぎると正極活物質の量が減少するため30%以下であることが好ましい。 The carbon content can be controlled by the amount of carbon source added. If the carbon content is low, the effect of improving the conductivity will not appear, so 2% or more is preferable. Moreover, since the quantity of a positive electrode active material will reduce when carbon content increases too much, it is preferable that it is 30% or less.

このようにして得られた正極活物質の粉末を、公知のバインダ(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。あるいは、例えば、上記混合粉末を有機溶剤(N−メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても正極を作製することができる。
正極の厚さは、通常1〜1000μm、好ましくは10〜300μm程度である。厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。なお、塗布および乾燥によって得られた正極は、活物質の充填密度を上げるためローラープレス等により圧密してもよい。
The positive electrode active material powder thus obtained was mixed with a known binder (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluorine rubber, After mixing with vinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc.), the obtained mixed powder may be pressure-formed on a support made of stainless steel or filled into a metal container. Alternatively, for example, the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. The positive electrode can also be produced by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper.
The thickness of the positive electrode is usually about 1 to 1000 μm, preferably about 10 to 300 μm. If it is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease. The positive electrode obtained by coating and drying may be consolidated by a roller press or the like in order to increase the packing density of the active material.

(2)負極の作製
負極の作製は公知の方法に従えばよい。負極活物質としては、ナトリウムを吸蔵および脱利することができる任意の材料を用いることができる。
例えば、負極活物質として、炭素材料等の粉末状の物質を用いる場合には、正極の製造に用いた上述の方法(1)と同様にして作製することができる。すなわち、粉末状の負極活物質を、必要に応じて公知のバインダ、さらに必要に応じて上記の公知の導電材と混合した後、この混合粉末をシート状に成形し、これをステンレス、銅等の導電体網(集電体)に圧着すればよい。また、例えば、上記混合粉末を公知の有機溶剤と混合して得られたスラリーを銅等の金属基板上に塗布することにより作製することもできる。
負極活物質として、スズ(Sn)またはゲルマニウム(Ge)の単体を用いる場合には、スパッタリング等の蒸着法を用いて、集電体上に堆積(例えば、0.2〜5μmの厚さに)させることができる。
あるいは、負極として金属ナトリウムを用いてもよい。
(2) Production of negative electrode Production of the negative electrode may be carried out by a known method. As the negative electrode active material, any material capable of inserting and extracting sodium can be used.
For example, when a powdery substance such as a carbon material is used as the negative electrode active material, the negative electrode active material can be produced in the same manner as the above-described method (1) used for the production of the positive electrode. That is, a powdered negative electrode active material is mixed with a known binder as necessary, and further with the aforementioned known conductive material as necessary, and then the mixed powder is formed into a sheet shape, which is made of stainless steel, copper, etc. What is necessary is just to crimp | bond to the electrical conductor network (current collector). For example, it can also produce by apply | coating the slurry obtained by mixing the said mixed powder with a well-known organic solvent on metal substrates, such as copper.
When tin (Sn) or germanium (Ge) is used alone as the negative electrode active material, it is deposited on the current collector (for example, to a thickness of 0.2 to 5 μm) using a vapor deposition method such as sputtering. Can be made.
Alternatively, metallic sodium may be used as the negative electrode.

(3)電解液
電解液は通常、電解質および溶媒を含む。電解液の溶媒としては、非水系であり、十分量の電解質を溶解でき、かつ作動電圧において電気分解を受けないものであれば特に制限されず、例えば、カーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。これらの代表的なものとしては、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等が挙げられる。これらは1種または2種以上で用いることができる。
(3) Electrolytic solution The electrolytic solution usually contains an electrolyte and a solvent. The solvent of the electrolytic solution is not particularly limited as long as it is non-aqueous, can dissolve a sufficient amount of electrolyte, and does not undergo electrolysis at the operating voltage. For example, carbonates, ethers, ketones, sulfolane System compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides, phosphate ester compounds, and the like can be used. Typical examples of these include 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ -Butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether , Sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, triethyl phosphate, etc. That. These can be used alone or in combination of two or more.

電解液としては、親油性の対イオンを有するものが電解液に対する溶解性の観点から好ましく、例えば、NaClO、NaPF、NaBF、CFSONa、NaAsF、NaB(C、CHSONa、CFSONa、NaN(SOCF、NaN(SO、NaC(SOCF、NaN(SOCF等を使用することができる。電解液に可溶であれば、NaCl、NaBr等を用いることもできる。 As the electrolytic solution, one having a lipophilic counter ion is preferable from the viewpoint of solubility in the electrolytic solution. For example, NaClO 4 , NaPF 6 , NaBF 4 , CF 3 SO 3 Na, NaAsF 6 , NaB (C 6 H 5 ) 4 , CH 3 SO 3 Na, CF 3 SO 3 Na, NaN (SO 2 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2 , NaC (SO 2 CF 3 ) 3 , NaN (SO 3 CF 3 2 ) etc. can be used. If soluble in the electrolyte, NaCl, NaBr, or the like can be used.

(4)ナトリウム二次電池の製造
ナトリウム二次電池の製造において、セパレータ、電池ケース他、構造材料等の要素についても従来公知の各種材料が使用でき、特に制限はない。例えば、正極と負極との間にセパレータを使用する場合は、微多孔性の高分子フィルムが用いられ、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子よりなるものが用いられる。セパレータの化学的および電気化学的安定性の点からポリオレフィン系高分子が好ましく、電池セパレータの目的の一つである自己閉塞温度の点からポリエチレン製であることが望ましい。
(4) Manufacture of a sodium secondary battery In manufacturing a sodium secondary battery, conventionally known various materials can be used for elements such as a separator, a battery case, and other structural materials, and there is no particular limitation. For example, when using a separator between the positive electrode and the negative electrode, a microporous polymer film is used, such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, etc. Those made of a polyolefin polymer are used. Polyolefin polymers are preferred in view of the chemical and electrochemical stability of the separator, and are preferably made of polyethylene in view of the self-occluding temperature, which is one of the purposes of the battery separator.

ポリエチレンセパレータの場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましく、その分子量の下限は好ましくは50万、さらに好ましくは100万、最も好ましくは150万である。他方分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱された時セパレータの孔が閉塞しない場合があるからである。電池は、これらの電池要素を用いて公知の方法に従って組み立てればよい。この場合、電池形状についても特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用することができる。 In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the pores of the separator may not close when heated because the fluidity is too low. What is necessary is just to assemble a battery according to a well-known method using these battery elements. In this case, the shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.

次に、本発明の作用効果を確認するために行った実施例について説明する。
実施例1:ナトリウム二次電池用活物質の調製
(1)マリサイト型NaFePOの合成およびそれを含む正極活物質(NaFePO/C)の調製
まず、マリサイト型NaFePOを合成するために、出発原料である炭酸ナトリウム(NaCO、和光純薬製、98%)、シュウ酸鉄二水和物(FeC・2HO、関東化学製、98.5%)、リン酸二水素アンモニウム(NHPO、和光純薬製、99%)をグローブボックス内にて化学量論比で秤量し、メノウ乳鉢を用いて十分混合した後、Ar雰囲気中にて400℃、5時間加熱処理を行った。その後、試料を再度メノウ乳鉢で十分にらいかいした後、Ar雰囲気中にて試料とアセチレンブラックが70:25の重量比になるようアセチレンブラックを加え、Ar雰囲気を維持したまま、遊星ミルにて200rpm、24時間カーボンコート処理を行った。その後、Ar雰囲気中にて550℃で5時間カルボサーマル処理を行い、NaFePO/Cを調製した。
Next, examples carried out for confirming the effects of the present invention will be described.
Example 1 Preparation of Active Material for Sodium Secondary Battery (1) Synthesis of Marisite Type NaFePO 4 and Preparation of Positive Electrode Active Material Containing It (NaFePO 4 / C) First, to synthesize marisite type NaFePO 4 , the starting material is a sodium carbonate (Na 2 CO 3, manufactured by Wako pure Chemical, 98%), iron oxalate dihydrate (FeC 2 O 4 · 2H 2 O, manufactured by Kanto Kagaku, 98.5%), phosphoric acid Ammonium dihydrogen (NH 4 H 2 PO 4 , Wako Pure Chemicals, 99%) was weighed in a stoichiometric ratio in a glove box, mixed well using an agate mortar, and then 400 ° C. in an Ar atmosphere. Heat treatment was performed for 5 hours. Then, after sufficiently removing the sample again with an agate mortar, acetylene black was added so that the weight ratio of the sample and acetylene black was 70:25 in an Ar atmosphere, and the planetary mill was maintained while maintaining the Ar atmosphere. Carbon coating treatment was performed at 200 rpm for 24 hours. Thereafter, carbothermal treatment was performed in an Ar atmosphere at 550 ° C. for 5 hours to prepare NaFePO 4 / C.

(2)マリサイト型NaMnPOの合成およびそれを含む正極活物質(NaMnPO/C)の調製
NaMnPOを合成するために、出発原料である炭酸ナトリウム、マンガン粉末(Mn、和光純薬製、98%)、五酸化二リン(P、和光純薬製、98%)をグローブボックス内にて化学量論比で秤量し、ドラフト内にて過剰な純水を加えた。その後、マグネットスターラーを用いて2日間攪拌し、反応させた。その後完全に反応させるために、ジルコニア製250ml容器(伊藤製作所製)中で、遊星ミルにて200rpm、24時間攪拌した。粉砕するためのボールには、ジルコニア製の1.5mmφ(40g)、3.0mmφ(60g)、10.0mmφ(5個)のボールを混合して使用した。遊星ミルによる攪拌により得られた溶液は真空エヴァポレーターにより乾燥させた。その後、メノウ乳鉢で十分にらいかいし、大気中にて350〜700℃、1時間加熱処理を行った。得られた粉末試料はアセチレンブラックと70:25の重量比にて秤量し、遊星ミルにて乾式で200rpm、24時間カーボンコート処理を行った。その後得られた炭素複合体試料をAr雰囲気中にて550℃、1時間カルボサーマル処理を行い、NaMnPO/Cを調製した。
(2) Synthesis of Marisite-type NaMnPO 4 and Preparation of Cathode Active Material Containing It (NaMnPO 4 / C) In order to synthesize NaMnPO 4 , sodium carbonate as a starting material, manganese powder (Mn, manufactured by Wako Pure Chemical Industries, Ltd., 98%) and diphosphorus pentoxide (P 2 O 5 , Wako Pure Chemical Industries, 98%) were weighed in a stoichiometric ratio in a glove box, and excess pure water was added in a fume hood. Then, it stirred for 2 days using the magnetic stirrer and made it react. Then, in order to make it react completely, it stirred at 200 rpm for 24 hours in the planetary mill in the 250 ml container (made by Ito Seisakusho) made from zirconia. As balls for pulverization, 1.5 mmφ (40 g), 3.0 mmφ (60 g), 10.0 mmφ (five) balls made of zirconia were mixed and used. The solution obtained by stirring with a planetary mill was dried by a vacuum evaporator. Thereafter, the agate mortar was sufficiently covered, and heat treatment was performed at 350 to 700 ° C. for 1 hour in the air. The obtained powder sample was weighed with acetylene black at a weight ratio of 70:25, and subjected to carbon coating treatment in a planetary mill by dry method at 200 rpm for 24 hours. Thereafter, the carbon composite sample obtained was subjected to carbothermal treatment at 550 ° C. for 1 hour in an Ar atmosphere to prepare NaMnPO 4 / C.

(3)正極活物質のXRD測定、SEM観察
(1)および(2)で調製したNaFePOおよびNaMnPOの同定には、粉末X線回折装置(リガク製RINT2100HLR/PC)を用いた。測定は、10〜80°で2°/分で行った。また、(1)および(2)で調製したNaFePO/CおよびNaMnPO/Cの形態観察を行うためにFE−SEM(日本電子製JSM−6340F)測定を行った。
(3) A powder X-ray diffractometer (RINT2100HLR / PC manufactured by Rigaku) was used to identify NaFePO 4 and NaMnPO 4 prepared by XRD measurement and SEM observation (1) and (2) of the positive electrode active material. The measurement was performed at 10 ° to 80 ° at 2 ° / min. In addition, FE-SEM (JSM-6340F manufactured by JEOL Ltd.) measurement was performed to observe the morphology of NaFePO 4 / C and NaMnPO 4 / C prepared in (1) and (2).

(4)合成試料のXRD測定、SEM観察
図1にNaFePOのXRDプロファイルを示す。ほぼすべての回折ピークがマリサイト型NaFePO(ICDD 29−1216、空間群Pnmb)と一致した。25−30°付近に観測されるピークは、ICDD 29−1216に収録されたデータには記載されていないが、マリサイト型NaCoPO(ICDD 32−1070)では確認でき、NaCoPOと同構造と判断できる。いずれにしてもほぼ単相と言えるマリサイト型NaFePOを合成することができた。また、得られた試料の格子定数は、a=6.880(0)Å、b=8.980(8)Å、c=5.039(4)Åであり、文献値のa=6.867Å、b=8.989Å、c=5.049Åに対して良い一致を示した。
(4) XRD measurement and SEM observation of synthetic sample FIG. 1 shows the XRD profile of NaFePO 4 . Almost all diffraction peaks were consistent with marisite-type NaFePO 4 (ICDD 29-1216, space group Pnmb). Although the peak observed around 25-30 ° is not described in the data recorded in ICDD 29-1216, it can be confirmed in marisite type NaCoPO 4 (ICDD 32-1070), and has the same structure as NaCoPO 4. I can judge. In any case, it was possible to synthesize marisite-type NaFePO 4 which can be said to be almost a single phase. Moreover, the lattice constants of the obtained samples are a = 6.880 (0) =, b = 8.980 (8) Å, c = 5.039 (4) Å, and the literature value a = 6. Good agreement was shown for 867 Å, b = 8.989 Å, and c = 5.049 Å.

次に、図2に600℃で、1時間焼成したNaMnPOのXRDプロファイルを示す。NaMnPOに関しては、マリサイト型NaMnPOの報告例がなく厳密に同定することはできなかった。しかしNaFePO(ICDD 29−1216)の回折パターンを低角度側にシフトさせたプロファイルと酷似していたために、マリサイト型NaMnPOを合成できたと判断した。 Next, FIG. 2 shows an XRD profile of NaMnPO 4 baked at 600 ° C. for 1 hour. Regarding NaMnPO 4, there was no report of marisite type NaMnPO 4 , and it was not possible to strictly identify it. However, since it was very similar to the profile obtained by shifting the diffraction pattern of NaFePO 4 (ICDD 29-1216) to the low angle side, it was judged that marisite-type NaMnPO 4 could be synthesized.

また、図3に350〜700℃で焼成したNaMnPOのXRDプロファイルをそれぞれ示す。450℃焼成試料から35°付近にマリサイト型NaMnPOのメインピークが現れ始めるが、不純物ピークも見られた。一方、600℃以上で焼成した試料では、ほぼ単相のマリサイト型NaMnPOを得ることができた。オリビン型LiMnPOでは同様の遊星ミルを用いた湿式プロセスにより350℃という低温焼成により合成することができたが、マリサイト型NaMnPOでは、同様のプロセスを用いても350℃では単相合成には至らず、600℃以上での焼成が必要であることがわかった。 FIG. 3 shows XRD profiles of NaMnPO 4 baked at 350 to 700 ° C., respectively. The main peak of marisite-type NaMnPO 4 began to appear at around 35 ° from the 450 ° C. fired sample, but an impurity peak was also observed. On the other hand, in the sample fired at 600 ° C. or higher, almost single-phase marisite-type NaMnPO 4 could be obtained. The olivine type LiMnPO 4 could be synthesized by a low temperature firing of 350 ° C. by a wet process using the same planetary mill, but the marisite type NaMnPO 4 could be synthesized in a single phase at 350 ° C. even if the same process was used. Thus, it was found that firing at 600 ° C. or higher is necessary.

また、NaMnPOにカーボンコート処理およびカルボサーマル処理を行ったNaMnPO/CのXRDプロファイルを図4に示す。カルボサーマル処理後でもマリサイト型NaMnPOを維持できており、新たな不純物相は確認できなかった。 Further, FIG. 4 shows an XRD profile of NaMnPO 4 / C obtained by subjecting NaMnPO 4 to carbon coating and carbothermal treatment. Even after the carbothermal treatment, the marisite-type NaMnPO 4 could be maintained, and a new impurity phase could not be confirmed.

図5(a)に550℃で焼成したNaFePO/C試料、図5(b)に600℃で焼成したNaMnPO試料、図5(c)に550℃でカルボサーマル処理を行ったNaMnPO/C試料のSEM写真をそれぞれ示す。
NaFePO/Cの一次粒子径は100〜500nm程度であった。一方、NaMnPOの一次粒子径は、0.2〜1.0μmであり、同様の手法で合成したLiMnPOの粒子径と比較すると若干の粒子成長が確認された。これは、600℃と高温で焼成したことが原因である。さらに、カルボサーマル処理後のNaMnPO/Cの一次粒子径は50nm程度と非常に小さくなっていた。
Figure 5 NaFePO 4 / C sample was calcined at 550 ° C. (a), the FIG. 5 (b) to NaMnPO 4 samples were calcined at 600 ℃, NaMnPO was carbonitrile thermal treatment at 550 ° C. Figure 5 (c) 4 / The SEM photograph of C sample is shown, respectively.
The primary particle diameter of NaFePO 4 / C was about 100 to 500 nm. On the other hand, the primary particle diameter of NaMnPO 4 was 0.2 to 1.0 μm, and a slight particle growth was confirmed as compared with the particle diameter of LiMnPO 4 synthesized by the same method. This is caused by firing at a high temperature of 600 ° C. Furthermore, the primary particle diameter of NaMnPO 4 / C after carbothermal treatment was as very small as about 50 nm.

実施例2:コインセルの作成および充放電測定
(1)正極の作成
実施例1で調製した正極活物質(NaFePO/C、およびNaMnPO/C)と結着剤(PTFE、ダイキン製Polyflon(登録商標)Tfe F−201L)を95:5の重量比で秤量し、メノウ乳鉢を用いて15秒ほどらいかいした。さらにメノウ乳鉢で均一な厚さに伸ばした後、直径10mmのコルクボーラーを用いてディスク状のペレットとして打ち抜いた。この際、ペレットは、厚み250μm、重さ30mg程度になるよう調整した。
Example 2: Preparation of coin cell and charge / discharge measurement (1) Preparation of positive electrode The positive electrode active material (NaFePO 4 / C and NaMnPO 4 / C) prepared in Example 1 and a binder (PTFE, Polyflon (registered by Daikin)) (Trademark) Tfe F-201L) was weighed at a weight ratio of 95: 5, and was removed for 15 seconds using an agate mortar. Furthermore, after extending | stretching to uniform thickness with an agate mortar, it punched as a disk-shaped pellet using the cork borer of diameter 10mm. At this time, the pellet was adjusted to have a thickness of 250 μm and a weight of about 30 mg.

(2)コインセルの作製
負極として、直径1.5mm、厚さ0.15mmのナトリウム箔を用いた。セパレータとしては、直径22mm、厚さ0.02mmの多孔質ポリエチレンシートを用いた。また、非電解液には、1M NaClOプロピレンカーボネート溶液(富山薬品工業(株))を使用した。これらの構成要素を、ステンレス製の負極蓋、および内部にガスケットを有する正極容器中に組み込んで、図6に示すように、厚さ2mm、直径32mm(2032型)のコイン型セルを作製した。
(2) Production of Coin Cell A sodium foil having a diameter of 1.5 mm and a thickness of 0.15 mm was used as the negative electrode. As the separator, a porous polyethylene sheet having a diameter of 22 mm and a thickness of 0.02 mm was used. Moreover, 1M NaClO 4 propylene carbonate solution (Toyama Pharmaceutical Co., Ltd.) was used for the non-electrolytic solution. These components were incorporated into a positive electrode vessel having a stainless steel negative electrode lid and a gasket inside, and as shown in FIG. 6, a coin-type cell having a thickness of 2 mm and a diameter of 32 mm (2032 type) was produced.

(3)コインセルの充放電特性の評価
図7にNaFePOを正極活物質として作製したコインセルの擬似開回路電圧(Quasi−Open−Circuit−Voltage:QOCV)での充放電プロファイルを示す。今回、擬似開回路を測定するために、理論容量154mAh/gを40サイクルに分割し、1サイクルに0.025Naだけ充電(放電)を行い、充電(放電)と同じ時間だけ休止させるという手法を用いた。また、図8に同コインセルの閉回路電圧(Closed−Circuit−Voltage:CCV)での充放電プロファイルを示す。電圧範囲1.5〜4.0V、電流密度0.1mA/cmで行った。
まず、QOCV測定では、理論量の約60%のNaを挿入および脱離することができた。しかし、各サイクルでの過電圧が非常に大きく、分極も大きくNaイオンがかなり動きにくいことがわかる。一方、CCV測定では、4.0Vまででは十分に充電が行えなかったために、理論量の20%程度のNaの挿入および脱離しか行えなかった。
結晶構造が異なるが、オリビン型LiFePOの平均作動電位(3.4V vs.Li/Li)とLi(−3.045V vs.SHE)とNa(−2.714V vs.SHE)の標準電極電位の差を考慮すると、マリサイト型NaFePOの平均作動電位は、3.0V(vs.Na/Na)と予想できる。これらの充放電プロファイルを見ると、3.0V付近で一旦なだらかになっていることはわかるが、決して明瞭なプラトーではない。
(3) Evaluation of Charge / Discharge Characteristics of Coin Cell FIG. 7 shows a charge / discharge profile at a pseudo open circuit voltage (Quasi-Open-Circuit-Voltage: QOCV) of a coin cell produced using NaFePO 4 as a positive electrode active material. This time, in order to measure the pseudo-open circuit, a theoretical capacity of 154 mAh / g is divided into 40 cycles, 0.025Na is charged (discharged) in one cycle, and the method is paused for the same time as the charge (discharge). Using. FIG. 8 shows a charge / discharge profile at a closed circuit voltage (CCV) of the coin cell. The measurement was performed at a voltage range of 1.5 to 4.0 V and a current density of 0.1 mA / cm 2 .
First, in QOCV measurement, about 60% of the theoretical amount of Na could be inserted and desorbed. However, it can be seen that the overvoltage in each cycle is very large, the polarization is large, and Na ions hardly move. On the other hand, in the CCV measurement, since charging could not be sufficiently performed up to 4.0 V, only insertion and desorption of Na of about 20% of the theoretical amount could be performed.
Standard electrodes of olivine-type LiFePO 4 having an average operating potential (3.4 V vs. Li / Li + ), Li (−3.045 V vs. SHE), and Na (−2.714 V vs. SHE), although having different crystal structures Considering the potential difference, the average working potential of marisite-type NaFePO 4 can be expected to be 3.0 V (vs. Na / Na + ). Looking at these charge / discharge profiles, it can be seen that it has become gentle once around 3.0 V, but it is never a clear plateau.

次に、図9にNaMnPOを正極活物質として作製したコインセルのQOCVでの充放電プロファイルを示す。また、図10に同コインセルのCCVでの充放電プロファイルを示す。電圧範囲1.5〜4.0V、電流密度0.1mA/cmで行った。QOCV測定では、予想されるNaMnPOの平均作動電位3.7V(vs.Na/Na)より十分高い電位まで充電を行ったために、NaFePOより多い理論量の70%以上のNaを挿入および脱離することができた。
また、QOCV測定によりNaFePOよりも多くNaを挿入および脱離させることができているが、これは、合成方法が異なるために、単純にNaFePOよりNaMnPOが優れた正極材料であると結論付けることはできない。
Next, FIG. 9 shows a QOCV charge / discharge profile of a coin cell manufactured using NaMnPO 4 as a positive electrode active material. FIG. 10 shows a charge / discharge profile at CCV of the coin cell. The measurement was performed at a voltage range of 1.5 to 4.0 V and a current density of 0.1 mA / cm 2 . In the QOCV measurement, since charging was performed to a potential sufficiently higher than the expected average operation potential of NaMnPO 4 of 3.7 V (vs. Na / Na + ), more than 70% of Na of the theoretical amount more than NaFePO 4 was inserted and It was possible to desorb.
Further, it concluded although it is possible to NaFePO 4 many Na insertion and elimination than by QOCV measurement, which, for synthetic methods are different, is simply positive electrode material NaMnPO 4 is superior NaFePO 4 Cannot be attached.

一方、CCV測定では、4.0Vと0.3V程度しか電位的マージンを取らなかったことも一因となり、理論量の20%程度のNaしか挿入および脱離することができなかったが、3.7V付近になだらかなプラトーのような平坦部を確認することができた。図7〜図10の結果から、これらマリサイト型正極NaFePOおよびNaMnPOは、それぞれ、Fe2+/Fe3+、Mn2+/Mn3+のレドックス反応により充放電反応が起こっていると考えられる。 On the other hand, in the CCV measurement, only about 4.0 V and 0.3 V have a potential margin, and only about 20% of the theoretical amount of Na could be inserted and desorbed. A flat part like a gentle plateau was confirmed at around 7V. From the results of FIGS. 7 to 10, it is considered that the charge and discharge reaction of these marisite type positive electrodes NaFePO 4 and NaMnPO 4 is caused by the redox reaction of Fe 2+ / Fe 3+ and Mn 2+ / Mn 3+ , respectively.

また、図11および図12に、それぞれ各方向から見たマリサイト型NaFePOの結晶構造、および各方向から見たオリビン型LiFePOの結晶構造をそれぞれ示す。これらの図中では、NaイオンとLiイオンをそれぞれ一番大きな円で示しているが、ともに、FeO八面体とPO四面体から構成されていることがわかる。図12に示すように、オリビン型LiFePOでは、結晶構造中に1次元方向の拡散パスが確認できるが、図11に示すように、マリサイト型NaFePOでは、逆スピネル構造のようにOイオンとNaイオンが交互に配列されているために、1次元方向の拡散パスは存在していない。おそらく湾曲してNaイオンの拡散が起こるのであろうが、このことが大きな分極の原因とも考えられる。 11 and 12 show the crystal structure of marisite-type NaFePO 4 viewed from each direction and the crystal structure of olivine-type LiFePO 4 viewed from each direction, respectively. In these figures, Na ions and Li ions are respectively shown by the largest circles, but it is understood that both are composed of FeO 6 octahedron and PO 4 tetrahedron. As shown in FIG. 12, in the olivine-type LiFePO 4 , a one-dimensional diffusion path can be confirmed in the crystal structure. However, in the marisite-type NaFePO 4 , O ions are present as in the reverse spinel structure. Since Na ions and Na ions are alternately arranged, there is no one-dimensional diffusion path. Probably curved and Na ion diffusion occurs, which is also considered to be a cause of large polarization.

NaFePOのXRDプロファイルを示す説明図である。NaFePO is an explanatory diagram showing an XRD profile of 4. 600℃、1時間焼成したNaMnPOのXRDプロファイルを示す説明図である。600 ° C., is an explanatory diagram showing an XRD profile of NaMnPO 4 was baked for one hour. 350〜700℃で焼成したNaMnPOのXRDプロファイルを示す説明図である。350 to 700 is an explanatory diagram showing an XRD profile of the fired NaMnPO 4 at ° C.. NaMnPOにカーボンコート処理およびカルボサーマル処理を行ったNaMnPO/CのXRDプロファイルを示す説明図である。The NaMnPO 4 is an explanatory diagram showing an XRD profile of NaMnPO 4 / C was subjected to carbon coating treatment and carbo thermal processing. (a)は550℃で焼成したNaFePO/CのSEM写真、(b)は600℃で焼成したNaMnPOのSEM写真、(c)は550℃でカルボサーマル処理を行ったNaMnPO/CのSEM写真である。(A) SEM photograph of NaFePO 4 / C calcined at 550 ° C., (b) SEM photograph of NaMnPO 4 calcined at 600 ° C., (c) NaMnPO 4 / C subjected to carbothermal treatment at 550 ° C. It is a SEM photograph. ナトリウム二次電池用活物質の評価のために作製したコインセルの構造を示す概略図である。It is the schematic which shows the structure of the coin cell produced for evaluation of the active material for sodium secondary batteries. NaFePOを正極活物質として作製したコインセルの擬似開回路電圧(Quasi−Open−Circuit−Voltage:QOCV)での充放電プロファイルを示す説明図である。Pseudo open circuit voltage of the coin cells were prepared NaFePO 4 as the positive electrode active material: is an explanatory view showing a charge-discharge profile at (Quasi-Open-Circuit-Voltage QOCV). 同コインセルの閉回路電圧(Closed−Circuit−Voltage:CCV)での充放電プロファイルを示す説明図である。It is explanatory drawing which shows the charging / discharging profile in the closed circuit voltage (Closed-Circuit-Voltage: CCV) of the coin cell. NaMnPOを正極活物質として作製したコインセルのQOCVでの充放電プロファイルを示す説明図である。The NaMnPO 4 is an explanatory diagram showing charge-discharge profile at QOCV coin cells prepared as the positive electrode active material. 同コインセルのCCVでの充放電プロファイルを示す説明図である。It is explanatory drawing which shows the charging / discharging profile in CCV of the coin cell. 各方向から見たマリサイト型NaFePOの結晶構造を示す説明図である。Is an explanatory view showing the crystal structure of maricite type NaFePO 4 as viewed from each direction. 各方向から見たオリビン型LiFePOの結晶構造を示す説明図である。It is an explanatory view showing the crystal structure of olivine-type LiFePO 4 as viewed from each direction.

Claims (4)

空間群Pnmbの対称性を有し、格子定数a、b、およびcがそれぞれ、6.86Å≦a≦7.00Å、8.98Å≦b≦9.15Å、5.04Å≦c≦5.14Åであるマリサイト型NaMnPOIt has symmetry of the space group Pnmb, and the lattice constants a, b, and c are 6.86Å ≦ a ≦ 7.00Å, 8.98Å ≦ b ≦ 9.15Å, 5.04Å ≦ c ≦ 5.14Å, respectively. Marisite-type NaMnPO 4 . Na源、Mn源、およびリン酸源を水中で混合後、水分を蒸発させ、得られた混合物を、大気中600〜1000℃で加熱することを特徴とするマリサイト型NaMnPOの製造方法。 A method for producing marisite-type NaMnPO 4 , which comprises mixing a Na source, a Mn source, and a phosphoric acid source in water, evaporating water, and heating the resulting mixture at 600 to 1000 ° C. in the atmosphere. マリサイト型NaMn(1−x)PO(式中、MはFe、Co、およびNiのいずれかで、xは0≦x≦1である)を含むことを特徴とするナトリウム二次電池用活物質。 Sodium secondary characterized in that it contains marisite-type NaMn x M (1-x) PO 4 (wherein M is any of Fe, Co and Ni, and x is 0 ≦ x ≦ 1). Battery active material. 請求項3記載のナトリウム二次電池用活物質を含むことを特徴とするナトリウム二次電池。 A sodium secondary battery comprising the active material for a sodium secondary battery according to claim 3.
JP2007106215A 2007-04-13 2007-04-13 Active material for sodium secondary battery, and method for producing the same Pending JP2008260666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106215A JP2008260666A (en) 2007-04-13 2007-04-13 Active material for sodium secondary battery, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007106215A JP2008260666A (en) 2007-04-13 2007-04-13 Active material for sodium secondary battery, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008260666A true JP2008260666A (en) 2008-10-30

Family

ID=39983434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106215A Pending JP2008260666A (en) 2007-04-13 2007-04-13 Active material for sodium secondary battery, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008260666A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005097A1 (en) * 2008-07-09 2010-01-14 住友化学株式会社 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2010018473A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Method for producing transition metal phosphate
JP2010018472A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Transition metal phosphate, positive electrode for sodium secondary battery using it and secondary battery using the positive electrode
JP2010165674A (en) * 2008-12-18 2010-07-29 Equos Research Co Ltd Electrolyte for sodium ion battery
US20100323231A1 (en) * 2008-01-28 2010-12-23 Sumitomo Chemical Company, Limited Positive electrode active material, sodium secondary battery, and production method of olivine-type phosphate
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides
WO2011043482A1 (en) * 2009-10-08 2011-04-14 住友化学株式会社 Transition metal phosphate, and sodium secondary battery
WO2011078195A1 (en) * 2009-12-24 2011-06-30 住友化学株式会社 Method for producing electrode, method for producing electrode paste, and sodium secondary battery
JP2011134551A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Electrode active material, electrode, and sodium secondary battery
WO2012073919A1 (en) * 2010-11-29 2012-06-07 住友化学株式会社 Electrode mixture paste, electrode, and non-aqueous electrolyte rechargeable battery
KR101192355B1 (en) 2010-08-31 2012-10-18 경상대학교산학협력단 Sodium battery and the method manufacturing thereof
WO2013133369A1 (en) * 2012-03-09 2013-09-12 国立大学法人長岡技術科学大学 Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
JP2014086378A (en) * 2012-10-26 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014107160A (en) * 2012-11-28 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014107226A (en) * 2012-11-29 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014149943A (en) * 2013-01-31 2014-08-21 Kyocera Corp Active material and secondary battery using the same
KR20150013251A (en) * 2012-06-12 2015-02-04 도요타 지도샤(주) Positive electrode material for sodium batteries and method for producing same
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
EP2752925A4 (en) * 2011-08-29 2015-08-12 Toyota Motor Co Ltd Positive electrode active material for sodium batteries and method for producing same
CN106058212A (en) * 2016-08-03 2016-10-26 苏州大学 Composite cathode material of sodium-ion battery and preparation method of composite cathode material
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
KR20170063540A (en) 2014-09-26 2017-06-08 다이헤이요 세멘토 가부시키가이샤 Positive-electrode active material for secondary cell, and method for manufacturing same
KR20170129722A (en) 2015-03-24 2017-11-27 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
KR20170131406A (en) 2015-03-26 2017-11-29 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
US9997766B2 (en) 2009-07-10 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same
KR20210029850A (en) 2015-03-09 2021-03-16 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
KR20220112111A (en) * 2021-02-03 2022-08-10 전남대학교산학협력단 3-dimensional porous cathode material and method for manufacturing cathode material as sodium ion batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001500665A (en) * 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド Lithium-containing phosphate intercalating lithium and its use as positive or negative electrode material in lithium secondary batteries
JP2001085010A (en) * 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134725A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001500665A (en) * 1996-09-23 2001-01-16 バレンス テクノロヂー、インコーポレイテッド Lithium-containing phosphate intercalating lithium and its use as positive or negative electrode material in lithium secondary batteries
JP2001085010A (en) * 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013012541; J.MORING and E.KOSTINER: 'The Crystal Structure of NaMnPO4' Journal of Solid State Chemistry Vol.61, 198603, pp.379-383, Academic Press,Inc. *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100323231A1 (en) * 2008-01-28 2010-12-23 Sumitomo Chemical Company, Limited Positive electrode active material, sodium secondary battery, and production method of olivine-type phosphate
US8795894B2 (en) * 2008-01-28 2014-08-05 Sumitomo Chemical Company, Limited Positive electrode active material, sodium secondary battery, and production method of olivine-type phosphate
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2010018473A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Method for producing transition metal phosphate
JP2010018472A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Transition metal phosphate, positive electrode for sodium secondary battery using it and secondary battery using the positive electrode
WO2010005097A1 (en) * 2008-07-09 2010-01-14 住友化学株式会社 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
US8795889B2 (en) 2008-07-09 2014-08-05 Sumitomo Chemical Company, Limited Transition metal phosphate, production process thereof, positive electrode, and sodium secondary battery
JP2010165674A (en) * 2008-12-18 2010-07-29 Equos Research Co Ltd Electrolyte for sodium ion battery
US9997766B2 (en) 2009-07-10 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
US9809456B2 (en) 2009-08-07 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for positive electrode active material
CN102574687A (en) * 2009-10-08 2012-07-11 住友化学株式会社 Transition metal phosphate, and sodium secondary battery
WO2011043482A1 (en) * 2009-10-08 2011-04-14 住友化学株式会社 Transition metal phosphate, and sodium secondary battery
WO2011078195A1 (en) * 2009-12-24 2011-06-30 住友化学株式会社 Method for producing electrode, method for producing electrode paste, and sodium secondary battery
JP2011134551A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Electrode active material, electrode, and sodium secondary battery
JP2011134550A (en) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd Method of manufacturing electrode and electrode paste, and sodium secondary battery
CN102668192A (en) * 2009-12-24 2012-09-12 住友化学株式会社 Electrode active material, electrode, and sodium secondary battery
CN102714302A (en) * 2009-12-24 2012-10-03 住友化学株式会社 Method for producing electrode, method for producing electrode paste, and sodium secondary battery
US8715525B2 (en) 2010-06-30 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of electrode material
KR101192355B1 (en) 2010-08-31 2012-10-18 경상대학교산학협력단 Sodium battery and the method manufacturing thereof
WO2012073919A1 (en) * 2010-11-29 2012-06-07 住友化学株式会社 Electrode mixture paste, electrode, and non-aqueous electrolyte rechargeable battery
US9508986B2 (en) 2010-11-29 2016-11-29 Sumitomo Chemical Company, Limited Electrode mixture paste, electrode, and non-aqueous electrolyte rechargeable battery
KR101795845B1 (en) 2011-08-29 2017-11-08 도요타 지도샤(주) Positive electrode active material for sodium batteries and method for producing same
US9660253B2 (en) 2011-08-29 2017-05-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
EP2752925A4 (en) * 2011-08-29 2015-08-12 Toyota Motor Co Ltd Positive electrode active material for sodium batteries and method for producing same
CN104247103A (en) * 2012-03-09 2014-12-24 日本电气硝子株式会社 Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
KR20140142703A (en) 2012-03-09 2014-12-12 니폰 덴키 가라스 가부시키가이샤 Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
CN105836724A (en) * 2012-03-09 2016-08-10 日本电气硝子株式会社 Cathode active material for sodium ion secondary battery
KR101974848B1 (en) * 2012-03-09 2019-05-03 니폰 덴키 가라스 가부시키가이샤 Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
US10135068B2 (en) 2012-03-09 2018-11-20 Nippon Electric Glass Co., Ltd. Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
WO2013133369A1 (en) * 2012-03-09 2013-09-12 国立大学法人長岡技術科学大学 Cathode active material for sodium secondary battery and method for manufacturing the cathode active material for sodium secondary battery
TWI616019B (en) * 2012-03-09 2018-02-21 日本電氣硝子股份有限公司 Positive electrode active material for sodium ion secondary battery and method for producing positive electrode active material for sodium ion secondary battery
US9537146B2 (en) 2012-06-12 2017-01-03 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
KR101703405B1 (en) * 2012-06-12 2017-02-06 도요타 지도샤(주) Positive electrode material for sodium batteries and method for producing same
KR20150013251A (en) * 2012-06-12 2015-02-04 도요타 지도샤(주) Positive electrode material for sodium batteries and method for producing same
JP2014086378A (en) * 2012-10-26 2014-05-12 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014107160A (en) * 2012-11-28 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014107226A (en) * 2012-11-29 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
JP2014149943A (en) * 2013-01-31 2014-08-21 Kyocera Corp Active material and secondary battery using the same
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
US10461330B2 (en) 2014-09-26 2019-10-29 Taiheiyo Cement Corporation Positive-electrode active material for secondary cell, and method for manufacturing same
US11742485B2 (en) 2014-09-26 2023-08-29 Taiheiyo Cement Corporation Positive-electrode active material for secondary cell, and method for manufacturing the same
KR20170063540A (en) 2014-09-26 2017-06-08 다이헤이요 세멘토 가부시키가이샤 Positive-electrode active material for secondary cell, and method for manufacturing same
KR20210029850A (en) 2015-03-09 2021-03-16 다이헤이요 세멘토 가부시키가이샤 Positive electrode active substance for secondary cell and method for producing same
US11646405B2 (en) 2015-03-09 2023-05-09 Taiheiyo Cement Corporation Positive electrode active substance for secondary cell and method for producing same
US10601042B2 (en) 2015-03-24 2020-03-24 Taiheiyo Cement Corporation Secondary battery positive electrode active material and method for producing same
KR20170129722A (en) 2015-03-24 2017-11-27 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
US10964950B2 (en) 2015-03-26 2021-03-30 Taiheiyo Cement Corporation Secondary battery positive-electrode active material and method for producing same
KR20170131406A (en) 2015-03-26 2017-11-29 다이헤이요 세멘토 가부시키가이샤 Cathode active material for secondary battery and manufacturing method thereof
CN106058212A (en) * 2016-08-03 2016-10-26 苏州大学 Composite cathode material of sodium-ion battery and preparation method of composite cathode material
KR20220112111A (en) * 2021-02-03 2022-08-10 전남대학교산학협력단 3-dimensional porous cathode material and method for manufacturing cathode material as sodium ion batteries
KR20230054639A (en) * 2021-02-03 2023-04-25 전남대학교산학협력단 A method for manufacturing 3-dimensional porous cathode material as sodium ion batteries
KR102599656B1 (en) 2021-02-03 2023-11-07 전남대학교산학협력단 3-dimensional porous cathode material and method for manufacturing cathode material as sodium ion batteries
KR102712934B1 (en) 2021-02-03 2024-10-02 전남대학교산학협력단 A method for manufacturing 3-dimensional porous cathode material as sodium ion batteries

Similar Documents

Publication Publication Date Title
JP2008260666A (en) Active material for sodium secondary battery, and method for producing the same
JP6952247B2 (en) Positive electrode active material and battery
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
US7524529B2 (en) Method for making a lithium mixed metal compound having an olivine structure
CN108923044B (en) Compositions containing doped nickelate compounds
JP5540281B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5091517B2 (en) Fluoride cathode fabrication method
JP4595987B2 (en) Cathode active material
JP5303081B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery
CN110199419A (en) Positive active material and battery
US20070117014A1 (en) Positive electrode active material for lithium secondary battery and method for producing same
WO2010104137A1 (en) Process for producing lithium borate compound
JP7007537B2 (en) Positive electrode active material for potassium ion batteries, positive electrode for potassium ion batteries, and potassium ion batteries
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
WO2018123487A1 (en) Positive electrode active material for potassium-ion cell, positive electrode for potassium-ion cell, and potassium-ion cell
Huang et al. LiMgxMn2− xO4 (x≤ 0.10) cathode materials with high rate performance prepared by molten-salt combustion at low temperature
KR101352793B1 (en) Cathode Material for Secondary Battery and Manufacturing Method of the Same
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
WO1994028591A1 (en) Lithium secondary cell containing organic electrolyte, active material for positive electrode of lithium secondary cell, and method for manufacturing the active material
JP5900852B2 (en) Iron-containing composite phosphate fluoride, method for producing the same, and secondary battery using the same as a positive electrode active material
JP2012023006A (en) Anode material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the material
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
KR20100016515A (en) Method for the production of lithium-rich metal oxides
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2010123339A (en) Active material for lithium secondary battery, lithium secondary battery, and method for producing active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730