JP2011054562A - Determination method of alkali metal-doped transition metal oxides - Google Patents

Determination method of alkali metal-doped transition metal oxides Download PDF

Info

Publication number
JP2011054562A
JP2011054562A JP2010173442A JP2010173442A JP2011054562A JP 2011054562 A JP2011054562 A JP 2011054562A JP 2010173442 A JP2010173442 A JP 2010173442A JP 2010173442 A JP2010173442 A JP 2010173442A JP 2011054562 A JP2011054562 A JP 2011054562A
Authority
JP
Japan
Prior art keywords
alkali metal
transition metal
metal oxide
sodium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010173442A
Other languages
Japanese (ja)
Inventor
Toshinao Shioya
俊直 塩屋
Maiko Sakai
舞子 坂井
Masaya Ishida
雅也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010173442A priority Critical patent/JP2011054562A/en
Publication of JP2011054562A publication Critical patent/JP2011054562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a determining method of alkali metal-doped transition metal oxides that can be employed as a positive electrode active material to provide a high capacity sodium secondary battery. <P>SOLUTION: The determining method of the alkali metal-doped transition metal oxides that can be employed as the positive electrode active material for the sodium secondary battery is provided wherein: a position of an atom in a crystal structure is decided, G (x, y, z) in following formula (1) is calculated; and a material is selected whose GCRIT is small, the GCRIT being the smallest G (x, y, z) in which, in the side of a region surrounded by the G (x, y, z) isosurface containing alkali atoms, at least three alkali metal atoms are contained. Here, following formula (2) represents a Bond Valence Sum, and combinations of l<SB>0</SB>and B are Bond Valence Parameters, (x, y, z) are position coordinates of the alkaline metal atom, and l<SB>j</SB>is a distance between an electron attracting atom in the vicinity of the alkali metal atom and the alkali metal atom. The formula (1) is expressed by an absolute value formula of G (x, y, z)=[1-H (x, y, z)], and the formula (2) is expressed by H (x, y, z)=Σ<SB>j</SB>exp [(l<SB>j</SB>-l<SB>o</SB>)/B]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルカリ金属複合遷移金属酸化物を正極活物質として用いた二次電池に用いられるアルカリ金属複合遷移金属酸化物を判別する方法に関する。   The present invention relates to a method for discriminating an alkali metal composite transition metal oxide used in a secondary battery using an alkali metal composite transition metal oxide as a positive electrode active material.

二次電池の正極活物質としてナトリウム複合遷移金属酸化物が研究されている。その研究において、二次電池の正極活物質として、より高い容量のナトリウム二次電池を与えるナトリウム複合遷移金属酸化物の候補を判別するために、ナトリウム複合遷移金属酸化物を正極活物質として用いた二次電池を製造して放電容量を実験で求めることが行われている。
そこで、高い容量のナトリウム二次電池を与える正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法が求められていた。
Sodium composite transition metal oxides have been studied as positive electrode active materials for secondary batteries. In that research, sodium composite transition metal oxide was used as the positive electrode active material to discriminate sodium composite transition metal oxide candidates that give higher capacity sodium secondary battery as the positive electrode active material of the secondary battery. It has been practiced to manufacture a secondary battery and obtain the discharge capacity by experiment.
Therefore, a method for discriminating an alkali metal composite transition metal oxide serving as a positive electrode active material that provides a high-capacity sodium secondary battery has been demanded.

物性を予測する方法の一つとして、酸化物超伝導体における超伝導転移温度Tcの向上を目的として、正孔濃度をBond Valence Sumを用いて計算した例が知られている(例えば、特許文献1参照。)が、Bond Valence Sumを用いてアルカリ金属複合遷移金属酸化物を判別する方法は知られていなかった。   As one of methods for predicting physical properties, there is known an example in which the hole concentration is calculated using Bond Valence Sum for the purpose of improving the superconducting transition temperature Tc in the oxide superconductor (for example, Patent Documents). However, a method for discriminating an alkali metal composite transition metal oxide using Bond Valence Sum has not been known.

特開平10−259022号公報Japanese Patent Laid-Open No. 10-259022

本発明の目的は、高い容量のナトリウム二次電池を与える正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法を提供することにある。   An object of the present invention is to provide a method for discriminating an alkali metal composite transition metal oxide serving as a positive electrode active material that provides a high-capacity sodium secondary battery.

本発明者は、上記の課題を解決すべく、ナトリウム二次電池用正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法について鋭意検討した結果、Bond Valence Sumを算出して用いることに思い至り、本発明を完成するに至った。   In order to solve the above problems, the present inventor has intensively studied a method for discriminating an alkali metal composite transition metal oxide serving as a positive electrode active material for a sodium secondary battery, and as a result, calculates and uses Bond Valence Sum. As a result, the present invention has been completed.

すなわち本発明は、下記の<1>〜<16>を提供する。
<1> ナトリウム二次電池用正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法であって、結晶構造中の原子の位置を定め、式(1)におけるG(x,y,z)を算出し、G(x,y,z)等値面で囲まれた領域のアルカリ金属原子を含む側にアルカリ金属原子が3個以上含まれる最小のG(x,y,z)であるGCRITが小さい物質を選ぶことを特徴とする判別方法。
(1)
(ここで、
はBond Valence Sumであり、lとBの組みはBond Valenceパラメータである。(x,y,z)はアルカリ金属原子の位置座標であり、lはアルカリ金属原子の近傍の電子吸引性の原子とアルカリ金属原子との距離である。)
<2> アルカリ金属がナトリウムである<1>記載の判別方法。
<3> GCRITが0.8より小さい物質を選ぶ<1>または<2>に記載の判別方法。
<4> コンピュータによって読み取り可能な記録媒体であって、<1>〜<3>のいずれかに記載の判別方法を実行するためのプログラムを格納した記録媒体。
<5> <1>〜<3>のいずれかに記載の判別方法を実行するためのプログラムを搭載した装置。
<6> 式(13)で示されるアルカリ金属複合遷移金属酸化物であって、<1>〜<3>のいずれかに記載の方法で判別した場合、GCRITが0.8より小さいアルカリ金属複合遷移金属酸化物。
abcPO4
(13)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、LはM以外の遷移金属から選択される一種以上の元素を表し、a、bおよびcは式0.5≦a≦1.5、0<b<1.5、0<c<1.5および0.5≦b+c≦1.5のすべてを満たす数値である。)
<7> 式(13)で示されるアルカリ金属複合遷移金属酸化物であって、MとOの平均結合距離(d1AVE)と、LとOの平均結合距離(d2AVE)の差(|d1AVE−d2AVE|)が0.05Åより大きい、<6>に記載のアルカリ金属複合遷移金属酸化物。
<8> Aが少なくともナトリウムを含む<6>または<7>に記載のアルカリ金属複合遷移金属酸化物。
<9> Aがナトリウムである<6>または<7>に記載のアルカリ金属複合遷移金属酸化物。
<10> Mが少なくとも鉄を含む<6>〜<9>のいずれかに記載のアルカリ金属複合遷移金属酸化物。
<11> Mが鉄である<6>〜<9>のいずれかに記載のアルカリ金属複合遷移金属酸化物。
<12> <6>〜<11>のいずれかに記載のアルカリ金属複合遷移金属酸化物を含むナトリウム二次電池用正極活物質。
<13> <12>記載の正極活物質を含有してなるナトリウム二次電池。
<14> 炭素質材料とバインダーとを含有してなる負極を有する<13>記載のナトリウム二次電池。
<15> セパレータを更に有する<13>または<14>に記載のナトリウム二次電池。
<16> セパレータが、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層多孔質フィルムを有するセパレータである<15>に記載のナトリウム二次電池。
That is, the present invention provides the following <1> to <16>.
<1> A method for discriminating an alkali metal composite transition metal oxide serving as a positive electrode active material for a sodium secondary battery, wherein the position of atoms in a crystal structure is determined, and G (x, y, z) in formula (1) G is the minimum G (x, y, z) in which three or more alkali metal atoms are included on the side including the alkali metal atoms in the region surrounded by the G (x, y, z) isosurface. A discrimination method characterized by selecting a substance having a small CRIT .
(1)
(here,
Is Bond Valence Sum, and the combination of l 0 and B is the Bond Valence parameter. (X, y, z) is the position coordinate of the alkali metal atom, and l j is the distance between the electron withdrawing atom near the alkali metal atom and the alkali metal atom. )
<2> The determination method according to <1>, wherein the alkali metal is sodium.
<3> The determination method according to <1> or <2>, wherein a substance having a G CRIT of less than 0.8 is selected.
<4> A computer-readable recording medium that stores a program for executing the determination method according to any one of <1> to <3>.
<5> An apparatus equipped with a program for executing the determination method according to any one of <1> to <3>.
<6> Alkali metal composite transition metal oxide represented by formula (13), wherein G CRIT is less than 0.8 when determined by the method according to any one of <1> to <3> Composite transition metal oxide.
A a M b L c PO 4
(13)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, and L represents one or more elements selected from transition metals other than M.) A, b and c are numerical values satisfying all of the formulas 0.5 ≦ a ≦ 1.5, 0 <b <1.5, 0 <c <1.5 and 0.5 ≦ b + c ≦ 1.5. is there.)
<7> An alkali metal composite transition metal oxide represented by the formula (13), wherein the difference between the average bond distance (d1 AVE ) between M and O (d1 AVE ) and the average bond distance (d2 AVE ) between L and O (| d1 AVE -d2 AVE |) is greater than 0.05 Å, an alkali metal composite transition metal oxide according to <6>.
<8> The alkali metal composite transition metal oxide according to <6> or <7>, in which A contains at least sodium.
<9> The alkali metal composite transition metal oxide according to <6> or <7>, wherein A is sodium.
<10> The alkali metal composite transition metal oxide according to any one of <6> to <9>, in which M contains at least iron.
<11> The alkali metal composite transition metal oxide according to any one of <6> to <9>, wherein M is iron.
<12> A positive electrode active material for a sodium secondary battery, comprising the alkali metal composite transition metal oxide according to any one of <6> to <11>.
<13> A sodium secondary battery comprising the positive electrode active material according to <12>.
<14> The sodium secondary battery according to <13>, having a negative electrode comprising a carbonaceous material and a binder.
<15> The sodium secondary battery according to <13> or <14>, further including a separator.
<16> The sodium secondary battery according to <15>, wherein the separator is a separator having a laminated porous film in which a heat-resistant porous layer containing a heat-resistant resin and a porous film containing a thermoplastic resin are laminated.

本発明によれば、アルカリ金属複合遷移金属酸化物を正極活物質として用いた二次電池を製造して放電容量を実験で求めることなく、簡便に高い容量のナトリウム二次電池を与えるナトリウム二次電池用正極活物質を判別することができる。また、その判別方法を用いて、高い容量のナトリウム二次電池を与える正極活物質を得ることもできる。したがって、開発速度を飛躍的に向上させることができるので、本発明は工業的に極めて有用である。   According to the present invention, a secondary battery using an alkali metal composite transition metal oxide as a positive electrode active material is manufactured, and a sodium secondary battery that easily provides a high-capacity sodium secondary battery can be obtained without experimentally determining a discharge capacity. The positive electrode active material for a battery can be identified. Moreover, the positive electrode active material which gives a high capacity | capacitance sodium secondary battery can also be obtained using the discrimination method. Therefore, since the development speed can be dramatically improved, the present invention is extremely useful industrially.

本発明の実施例1と実施例2を説明する図である。It is a figure explaining Example 1 and Example 2 of this invention. Gの等値面(G=0.25)で囲まれた領域のナトリウム原子がある側に、3個のナトリウム原子が含まれていない場合を示す図である。It is a figure which shows the case where three sodium atoms are not contained in the side with the sodium atom of the area | region enclosed by the isosurface (G = 0.25) of G. Gの等値面(G=0.45)で囲まれた領域のナトリウム原子がある側に、3個のナトリウム原子が含まれる場合を示す図である。It is a figure which shows the case where three sodium atoms are contained in the side with the sodium atom of the area | region enclosed by the isosurface (G = 0.45) of G.

本発明の判別方法は、ナトリウム二次電池用正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法であって、結晶構造中の原子の位置を定め、式(1)におけるG(x,y,z)を算出し、G(x,y,z)等値面で囲まれた領域のアルカリ金属原子を含む側にアルカリ金属原子が3個以上含まれる最小のG(x,y,z)であるGCRITが小さい物質を選ぶことを特徴とする。
(1)
ここで、
はBond Valence Sumであり、lとBの組み合わせはBond Valenceパラメータである。lは、アルカリ金属原子の座標(x,y,z)とその近傍(〜3Å)の電子吸引性の原子(主に酸素であり場合によってはフッ素)とアルカリ金属原子との距離である。また、Bond Valenceの和は、通常多くても最も近い6個程度までで和をとる。
The discriminating method of the present invention is a discriminating method of an alkali metal composite transition metal oxide serving as a positive electrode active material for a sodium secondary battery, wherein the position of atoms in the crystal structure is determined, and G (x, y, z) is calculated, and the minimum G (x, y, z) in which three or more alkali metal atoms are included on the side including the alkali metal atoms in the region surrounded by the G (x, y, z) isosurface ) Is a material having a small G CRIT .
(1)
here,
Is Bond Valence Sum, and the combination of l 0 and B is the Bond Valence parameter. l j is the distance between the alkali metal atom coordinate (x, y, z) and the vicinity (˜3 原子) of the electron-withdrawing atom (mainly oxygen and sometimes fluorine) and the alkali metal atom. In addition, the sum of Bond Valence is usually taken up to the nearest six at most.

以下、本発明について詳細に説明する。
上記のとおり、
はBond Valence Sum(以下、BVSということがある。)である。
Hereinafter, the present invention will be described in detail.
As mentioned above,
Is Bond Valence Sum (hereinafter sometimes referred to as BVS).

BVSを計算するためには、まず、計算の対象となるアルカリ金属複合遷移金属酸化物の結晶の構造を定めることが必要である。
なお、アルカリ金属酸化物と遷移金属酸化物の複合酸化物がアルカリ金属複合遷移金属酸化物である。
In order to calculate BVS, first, it is necessary to determine the crystal structure of the alkali metal composite transition metal oxide to be calculated.
Note that a composite oxide of an alkali metal oxide and a transition metal oxide is an alkali metal composite transition metal oxide.

アルカリ金属複合遷移金属酸化物が既知のものであれば、BVSを計算するための結晶構造は、例えば、結晶データベースを用いて定めることができる。結晶データベースとしては、例えば、ICSK、ICSJ、JICST、ケンブリッジ結晶構造データベース(CSD)、無機結晶構造データベース(ICSD)、NIST結晶データベース(NCD)、PAULING FILEデータベース、PEARSONデータベースなどのデータベースを用いることができ、http://www.mindat.org/、http://www.webmineral.com/、http://un2sg4.unige.ch/athena/mineral/mineral.html、http://www.meinemineraliensammlung.de/、http://rruff.geo.arizona.edu/AMS/amcsd.php、http://database.iem.ac.ru/mincryst/index.phpなどから調べることもできるが、この限りではない。   If the alkali metal composite transition metal oxide is known, the crystal structure for calculating BVS can be determined using, for example, a crystal database. As the crystal database, for example, databases such as ICSK, ICSJ, JICST, Cambridge crystal structure database (CSD), inorganic crystal structure database (ICSD), NIST crystal database (NCD), PAULING FILE database, PEARSON database can be used. , Http://www.mindat.org/, http://www.webmineral.com/, http://un2sg4.unige.ch/athena/mineral/mineral.html, http://www.meinemineraliensammlung.de You can also check from /, http://rruff.geo.arizona.edu/AMS/amcsd.php, http://database.iem.ac.ru/mincryst/index.php, but this is not a limitation.

また、結晶データベースで得られた構造を、計算機で構造最適化して定めることもできる。構造最適化は、量子化学的手法、密度汎関数法、分子力学(MM)法、(古典)分子動力学(MD)法、量子(第一原理、ab initio)分子動力学(MD)法、モンテカルロ(MC)法、量子モンテカルロ(QMC)法などを用いて計算することができる。それらの計算は、AMBER(Assisted Model Building with Energy Refinement)、CHARMM(Chemistry at HARvard Molecular Mechanics)、GROMACS(Groningen Machine for Chemical Simulations)、NAMD、PEACH(Program for Energetic Analysis of bioCHemical molecules)、Gaussian、GAMESS(General Atomic and Molecular Electronic Structure System)、ADF、MOPAC、SIESTA(Spanish Initiative for Electronic Simulations with Thousands of Atoms)、VASP(Vienna Ab−initio Simulation Package)、DMol3、GULP(General Utility Lattice Program)、PHASE(ナノ材料第一原理計算パッケージ)、ABINITなどのソフトウェアを用いて行うこともできるが、この限りではない。   In addition, the structure obtained from the crystal database can be determined by optimizing the structure with a computer. Structural optimization includes quantum chemical methods, density functional methods, molecular mechanics (MM) methods, (classical) molecular dynamics (MD) methods, quantum (ab initio) molecular dynamics (MD) methods, The calculation can be performed using a Monte Carlo (MC) method, a quantum Monte Carlo (QMC) method, or the like. These calculations are, AMBER (Assisted Model Building with Energy Refinement), CHARMM (Chemistry at HARvard Molecular Mechanics), GROMACS (Groningen Machine for Chemical Simulations), NAMD, PEACH (Program for Energetic Analysis of bioCHemical molecules), Gaussian, GAMESS ( General Atomic and Molecular Electronic Structure System (ADF), MOPAC, SIESTA (Spanish Initiative for Electronic Simulation with Thousands of Atoms, VASP (Vienna Ab-initiation Simulation Package), DMol3, GULP (General Utility Lattice Program), PHASE (Nano-A) But this is not the case.

アルカリ金属複合遷移金属酸化物の構造が未知の場合でも、BVSを計算するための結晶構造は、例えば、次のように定めることができる。   Even when the structure of the alkali metal composite transition metal oxide is unknown, the crystal structure for calculating BVS can be determined, for example, as follows.

例えば、アルカリ金属複合遷移金属酸化物の単結晶X線回折、単結晶中性子回折、粉末X線回折、粉末中性子回折、電子線回折などの測定結果の解析から、結晶の構造を定めることができる。   For example, the structure of the crystal can be determined from analysis of measurement results such as single crystal X-ray diffraction, single crystal neutron diffraction, powder X-ray diffraction, powder neutron diffraction, and electron beam diffraction of alkali metal composite transition metal oxides.

単結晶X線回折、単結晶中性子回折、粉末X線回折、粉末中性子回折、電子線回折などの測定結果の解析から、格子定数、空間群などは定まっても、複数の遷移金属原子が同じ席(固溶席)を占有していて、原子位置が定まらないアルカリ金属複合遷移金属酸化物もある。固溶席があるアルカリ金属複合遷移金属酸化物の結晶構造は、例えば、十分大きなサイズの結晶の構造を用意し、固溶席に相当する原子位置に、遷移金属の席占有率を満たすように、ランダムに原子を配置することで定めることができる。   Even if the lattice constant, space group, etc. are determined from analysis of measurement results such as single crystal X-ray diffraction, single crystal neutron diffraction, powder X-ray diffraction, powder neutron diffraction, electron beam diffraction, etc. There are also alkali metal composite transition metal oxides that occupy (solid solution sites) and whose atomic positions are not fixed. The crystal structure of the alkali metal composite transition metal oxide with a solid solution site, for example, prepare a sufficiently large crystal structure so that the atomic position corresponding to the solid solution site satisfies the seat occupation ratio of the transition metal. This can be determined by randomly arranging atoms.

また、結晶構造が既知のアルカリ金属複合遷移金属酸化物(既知酸化物1)について、遷移金属(遷移金属1)の一部を、他の遷移金属(遷移金属2)で置換した構造は、次のように定めることができる。ここでは、層状岩塩型Li(Ni1/3Mn1/3Co1/3)O2(以後、酸化物1とよぶ)を例にして説明するが、対象となるアルカリ金属複合遷移金属酸化物はこの限りではない。 In addition, a structure in which a part of the transition metal (transition metal 1) is replaced with another transition metal (transition metal 2) in the alkali metal composite transition metal oxide (known oxide 1) having a known crystal structure is as follows. It can be determined as follows. Here, a layered rock salt type Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 (hereinafter referred to as oxide 1) will be described as an example, but the target alkali metal composite transition metal oxide is described. This is not the case.

酸化物1は、LiCoOのCoの一部をNi、Mnで置換した酸化物であり、LiCoOと同じ空間群に属する。Ni、MnはCo席(3b席)に置換される(ここでは、3a席の一部を占有するNiは無視して説明する)。そこで、LiCoOの結晶構造を用いて、3b席の原子位置に相当する場所を6個含む大きさの構造を用意する。6個の3b席に相当する場所に、Ni原子、Mn原子、Co原子を2個ずつ、ランダムに配置させる。6個の3a席に相当する場所にはLi原子、12個の6c席に相当する場所にはO原子を配置する。最後に、計算機による構造最適化から、格子定数や原子位置を定めることができる。 The oxide 1 is an oxide in which a part of Co in LiCoO 2 is substituted with Ni and Mn, and belongs to the same space group as LiCoO 2 . Ni and Mn are replaced with Co seats (3b seats) (here, Ni occupying a part of the 3a seats will be ignored). Therefore, using a crystal structure of LiCoO 2, a structure having a size including six locations corresponding to 3b-seat atomic positions is prepared. Two Ni atoms, Mn atoms, and two Co atoms are randomly arranged in a place corresponding to six 3b seats. Li atoms are arranged at locations corresponding to six 3a seats, and O atoms are arranged at locations corresponding to twelve 6c seats. Finally, lattice constants and atomic positions can be determined from computer structure optimization.

また、判別されるアルカリ金属複合遷移金属酸化物の組成(化合物を構成する原子の数の比)が、BVSを計算するための構造の組成と厳密に一致していなくても、判別することができる。具体的には、アルカリ金属複合遷移金属酸化物に含まれる2つの遷移金属の原子の数の比が80%:20%の場合、BVSを計算するための構造では、該比が75%:25%でも85%:15%でも判別することができる。   Further, even if the composition of the alkali metal composite transition metal oxide to be discriminated (ratio of the number of atoms constituting the compound) does not exactly match the composition of the structure for calculating BVS, it can be discriminated. it can. Specifically, when the ratio of the number of atoms of two transition metals contained in the alkali metal composite transition metal oxide is 80%: 20%, in the structure for calculating BVS, the ratio is 75%: 25 % Or 85%: 15%.

また、判別の対象となるアルカリ金属複合遷移金属酸化物は、単相でもよいし、2つ以上の相を含む混合物でもよい。2つ以上の相を含むような混合物である場合、最も重量比率の大きい相(相1)について判別すればよいが、相1以外のすべての相の重量比率の和が小さいほど判別精度が高くなる。   Further, the alkali metal composite transition metal oxide to be discriminated may be a single phase or a mixture containing two or more phases. In the case of a mixture containing two or more phases, the phase having the largest weight ratio (phase 1) may be discriminated. However, the smaller the sum of the weight ratios of all phases other than phase 1, the higher the discrimination accuracy. Become.

結晶構造を決定し、計算する範囲の格子空間を決定したら、BVSの計算は、例えば次の手順で行うことができる。
結晶構造の中には酸素がn個入っているので、n個それぞれに1〜n番の名前(ラベル)をつける。
Once the crystal structure is determined and the lattice space in the range to be calculated is determined, the BVS can be calculated by the following procedure, for example.
Since there are n oxygen atoms in the crystal structure, names 1 to n (labels) are attached to each of the n oxygen atoms.

i番目の酸素原子の座標をXO(i)とする。
計算する範囲の格子空間(超格子)をX方向にa個、Y方向にb個、Z方向にc個に区切り、合計a×b×c個の格子に区切り、ix、iy、iz番目の格子点の座標をXL(ix,iy,iz)とする。例えば、a=b=c=100程度とする。以下(ix,iy,iz)は表示せず「XL」と記載することがある。
Let the coordinate of the i-th oxygen atom be XO (i).
The lattice space (superlattice) of the range to be calculated is divided into a pieces in the X direction, b pieces in the Y direction, c pieces in the Z direction, and divided into a total of a × b × c lattices, and the ix, iy, and iz th Let the coordinates of the grid points be XL (ix, iy, iz). For example, a = b = c = about 100. Hereinafter, (ix, iy, iz) is not displayed and may be described as “XL”.

すべてのXL(ix,iy,iz)について、XO(i)との距離ABS(XL−XO(i))が近い順に、最大6個の酸素(6個の酸素原子のラベルをi1、i2、i3、i4、i5、i6とする。)を探し、XLとの距離(R1、R2、R3、R4、R5、R6)を調べる。その際、XLとの距離が2.8Åより大きくなる酸素は除外する。   For all XL (ix, iy, iz), a maximum of 6 oxygens (labeled 6 oxygen atoms as i1, i2, i, i2, i, i) in the order of the distance ABS (XL-XO (i)) to XO (i). i3, i4, i5, i6), and the distance (R1, R2, R3, R4, R5, R6) from XL is examined. At that time, oxygen whose distance from XL is larger than 2.8 cm is excluded.

座標(x,y,z)に対する式(1)のG(x,y,z)を求めるに際して、座標(x,y,z)=(ix,iy,iz)について実際に求める値をF(ix,iy,iz)とし、式(2)に従って、F(ix,iy,iz)を計算する。


(2)
When obtaining G (x, y, z) of the equation (1) for the coordinates (x, y, z), the value actually obtained for the coordinates (x, y, z) = (ix, iy, iz) is F ( ix, iy, iz), and F (ix, iy, iz) is calculated according to equation (2).


(2)

ここで、lとBの数値の組みはBond Valenceパラメータ(R.E.Brese and M.O’Keeffe,Acta Crystallogr.,Sect.B,47,192(1991)参照。)である。
とBの値は、例えば、http://www.ccp14.ac.uk/以下の、
ccp/web-mirrors/i_d_brown/bond_valence_param/bvparm2006.cifにパラメータが載っており、入手することができる。ABSは絶対値を示し、Σj mはすべてのXLについて合計することを示す。
Here, the combination of the numerical values of l 0 and B is the Bond Valence parameter (see RE Bresse and M. O'Keeffe, Acta Crystallogr., Sect. B, 47, 192 (1991)).
The values of l 0 and B are, for example, below http://www.ccp14.ac.uk/
The parameters are listed in ccp / web-mirrors / i_d_brown / bond_valence_param / bvparm2006.cif and can be obtained. ABS indicates an absolute value, and Σ j m indicates a sum for all XL.

例えば、その中のl0=1.5766Å、B=0.475Åを用いる。 For example, l 0 = 1.5766 mm and B = 0.475 mm are used.

式(2)を計算した段階で、各格子点でのBVSの計算が完了する。   At the stage where equation (2) is calculated, the calculation of BVS at each lattice point is completed.

次に、F(ix,iy,iz)=0.00から、F(ix,iy,iz)=0.50程度まで0.01程度の刻みで等値面を書いていく。その際、等値面内に含まれるアルカリ金属原子の個数を調べ、アルカリ金属原子が3個以上含まれるためのF(ix,iy,iz)の最小値FCRITを調べる。ここで得られるFCRITを、GCRITとみなす。
なお、等値面とは、F(ix,iy,iz)が同一の値である点を結んだ面であり、その曲面で囲まれた空間が等値面内である。
Next, the isosurface is written in increments of about 0.01 from F (ix, iy, iz) = 0.00 to F (ix, iy, iz) = 0.50. At that time, the number of alkali metal atoms contained in the isosurface is examined, and the minimum value F CRIT of F (ix, iy, iz) for containing three or more alkali metal atoms is examined. The F CRIT obtained here is regarded as G CRIT .
The isosurface is a surface connecting points where F (ix, iy, iz) has the same value, and the space surrounded by the curved surface is within the isosurface.

次に計算の対象となる物質や結晶構造を変化させ、そのFCRITを算出し、その値が小さいほど、当該アルカリ金属複合遷移金属酸化物を正極活物質として用いた二次電池の放電容量が大きいと予測する。 Next, the calculation target substance and crystal structure are changed, and the F CRIT is calculated. The smaller the value, the higher the discharge capacity of the secondary battery using the alkali metal composite transition metal oxide as the positive electrode active material. Expect big.

本発明の予測方法の対象となるアルカリ金属複合遷移金属酸化物としては、周期表の3族〜11族の遷移金属元素とアルカリ金属元素を含む複合酸化物が挙げられる。周期表の3族〜10族の遷移金属元素としては、具体的には、Ni、Co、Mn、Fe、Ti、Zr、Hf、V、Nb、Ta、Cr、Sc、Y、Cu、AgおよびMoが挙げられる。アルカリ金属元素としては、K、Naが好ましく、Naがより好ましい。本発明の、アルカリ金属複合遷移金属酸化物としては、Ni、Co、Mn、Feの1種以上が含まれるナトリウム複合遷移金属酸化物がさらに好ましい。
アルカリ金属複合遷移金属酸化物の酸化物とは、酸素が結合している化合物を意味しており、酸化金属のみならず、硫酸塩、燐酸塩、硝酸塩、珪酸塩も含まれる。
Examples of the alkali metal composite transition metal oxide to be subjected to the prediction method of the present invention include composite oxides containing a transition metal element of Group 3 to Group 11 of the periodic table and an alkali metal element. Specific examples of the transition metal elements of Groups 3 to 10 of the periodic table include Ni, Co, Mn, Fe, Ti, Zr, Hf, V, Nb, Ta, Cr, Sc, Y, Cu, Ag, and Mo is mentioned. As the alkali metal element, K and Na are preferable, and Na is more preferable. The alkali metal composite transition metal oxide of the present invention is more preferably a sodium composite transition metal oxide containing one or more of Ni, Co, Mn, and Fe.
An oxide of an alkali metal composite transition metal oxide means a compound to which oxygen is bonded, and includes not only a metal oxide but also a sulfate, phosphate, nitrate, and silicate.

本発明の予測方法の対象となるアルカリ金属複合遷移金属酸化物としては、例えば、NaFexMa(1-x)PO4、NaMnxMa(1-x)PO4、NaMnxMa(1-x)SiO4、Na2FexMa(1-x)SiO4(Maは、Ni、Co、Mo、CuおよびTiから選ばれる1種以上を表す)、NaMbPO4、Na2MbSiO4(Mbは、Ni、Mn、Co、Mo、Cu、FeおよびTiから選ばれる1種以上を表す。)などの化合物が具体的に挙げられる。なお、xは0より大きく1未満の数を表す。 Examples of the alkali metal composite transition metal oxide to be subjected to the prediction method of the present invention include NaFe x Ma (1-x) PO 4 , NaMn x Ma (1-x) PO 4 , and Na 2 Mn x Ma (1 -x) SiO 4, Na 2 Fe x Ma (1-x) SiO 4 (Ma represents Ni, Co, Mo, one or more selected from Cu and Ti), NaMbPO 4, Na 2 MbSiO 4 (Mb Represents one or more selected from Ni, Mn, Co, Mo, Cu, Fe, and Ti.). Note that x represents a number greater than 0 and less than 1.

本発明の判別方法によって判別されるアルカリ金属複合遷移金属酸化物としては、GCRITが0.8より小さいと判定されるアルカリ金属複合遷移金属酸化物が、高い容量のナトリウム二次電池を与える正極活物質となるアルカリ金属複合遷移金属酸化物であるので、好ましい。 As the alkali metal composite transition metal oxide discriminated by the discriminating method of the present invention, the alkali metal composite transition metal oxide whose G CRIT is judged to be smaller than 0.8 is a positive electrode that provides a high-capacity sodium secondary battery. Since it is an alkali metal composite transition metal oxide used as an active material, it is preferable.

具体的には、式(11)または(12)で示されるアルカリ金属複合遷移金属酸化物がより好ましい。

abPO4
(11)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、0.5≦a≦1.5、0.5≦b≦1.5である。)

pqSiO4
(12)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、1.5≦p≦2.5、0.5≦q≦1.5である。)
Specifically, an alkali metal composite transition metal oxide represented by the formula (11) or (12) is more preferable.

A a M b PO 4
(11)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, 0.5 ≦ a ≦ 1.5, 0.5 ≦ b ≦ 1.5.)

A p M q SiO 4
(12)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, and 1.5 ≦ p ≦ 2.5, 0.5 ≦ q ≦ 1.5.)

また、式(13)または(14)で示されるアルカリ金属複合遷移金属酸化物も、より好ましい。

abcPO4
(13)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、LはM以外の遷移金属から選択される一種以上の元素を表し、a、bおよびcは、式0.5≦a≦1.5、0<b<1.5、0<c<1.5および0.5≦b+c≦1.5のすべてを満たす数値である。)

pqrSiO4
(14)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、LはM以外の遷移金属から選択される一種以上の元素を表し、p、qおよびrは式1.5≦p≦2.5、0<q<1.5、0<r<1.5および0.5≦q+r≦1.5のすべてを満たす数値である。)
An alkali metal composite transition metal oxide represented by the formula (13) or (14) is also more preferable.

A a M b L c PO 4
(13)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, and L represents one or more elements selected from transition metals other than M.) A, b and c are numerical values satisfying all of the formulas 0.5 ≦ a ≦ 1.5, 0 <b <1.5, 0 <c <1.5 and 0.5 ≦ b + c ≦ 1.5 .)

A p M q L r SiO 4
(14)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, and L represents one or more elements selected from transition metals other than M.) P, q and r are numerical values satisfying all of the formulas 1.5 ≦ p ≦ 2.5, 0 <q <1.5, 0 <r <1.5 and 0.5 ≦ q + r ≦ 1.5. is there.)

上記式(11)、(12)、(13)または(14)で示されるアルカリ金属複合遷移金属酸化物の中でも、式(13)または(14)で示されるアルカリ金属複合遷移金属酸化物がさらに好ましく、式(13)で示されるアルカリ金属複合遷移金属酸化物が、さらにより好ましい。   Among the alkali metal composite transition metal oxides represented by the above formula (11), (12), (13) or (14), the alkali metal composite transition metal oxide represented by the formula (13) or (14) Preferably, an alkali metal composite transition metal oxide represented by the formula (13) is even more preferable.

また、GCRITは、例えば、結晶の格子定数を変化させることや、結晶中の原子位置を変えることで小さくできる。格子定数や結晶中の原子位置の変化は、遷移金属M1を含むアルカリ金属複合遷移金属酸化物において、M1の一部を、酸素との結合距離が異なる元素(M2)で置換することで実現される場合がある。M1の酸素との結合距離(d(M1−O))と、M2の酸素との結合距離(d(M2−O))の差(|d(M2−O)−d(M2−O)|)は、格子定数や、結晶中の原子位置に変化をあたえる。一般に、|d(M2−O)−d(M2−O)|が大きい元素ほど、このような構造変化をさせる効果は大きく、|d(M2−O)−d(M2−O)|が0.05Åより大きければ、構造を変化させる効果があらわれる。 G CRIT can be reduced by, for example, changing the lattice constant of the crystal or changing the atomic position in the crystal. The change in lattice constant and atomic position in the crystal is realized by substituting a part of M1 with an element (M2) having a different bond distance to oxygen in an alkali metal composite transition metal oxide containing transition metal M1. There is a case. The difference (| d (M2-O) -d (M2-O)) between the bond distance (d (M1-O)) of M1 with oxygen and the bond distance (d (M2-O)) of oxygen with M2 ) Gives changes to lattice constants and atomic positions in the crystal. In general, the larger the | d (M2-O) -d (M2-O) |, the greater the effect of such a structural change, and | d (M2-O) -d (M2-O) | If it is larger than .05 mm, the effect of changing the structure appears.

本発明の判別方法によって判別されるアルカリ金属複合遷移金属酸化物としては、GCRITが0.8より小さいと判定され、さらに、式(13)において、M、Lと酸素の平均結合距離MとOの平均結合距離d1AVEと、LとOの平均結合距離d2AVEの差である|d1AVE−d2AVE|が0.05Åより大きいアルカリ金属複合遷移金属酸化物が好ましい。ここで、遷移金属M(L)と酸素の平均結合距離とは、遷移金属M(L)を中心とした半径2.8Åの球をつくり、その球に含まれる酸素とM(L)の距離の平均である。 As an alkali metal composite transition metal oxide discriminated by the discriminating method of the present invention, G CRIT is judged to be smaller than 0.8, and in formula (13), the average bond distance M of M, L and oxygen is An alkali metal composite transition metal oxide in which | d1 AVE −d2 AVE | which is the difference between the average bond distance d1 AVE of O and the average bond distance d2 AVE of L and O is larger than 0.05Å is preferable. Here, the average bond distance between the transition metal M (L) and oxygen is a distance between the oxygen contained in the sphere and M (L), which forms a sphere having a radius of 2.8 mm centered on the transition metal M (L). Is the average.

結晶中での平均結合距離は、例えば、XAFS(X−ray Absorption Fine Structure)測定のEXAFS(Extended X−ray absorption Fine Structure)解析で求めることができる。また例えば、X線回折、中性子の粉末回折測定の原子対相関関数(Pair Distribution Function)を用いた解析から得ることができる。 The average bond distance in the crystal can be determined by, for example, EXAFS (Extended X-ray Absorption Fine Structure) analysis of XAFS (X-ray Absorption Fine Structure) measurement. Further, for example, it can be obtained from an analysis using an atom pair correlation function of X-ray diffraction or neutron powder diffraction measurement (Pair Distribution Function).

実験的に得られなくても、例えば計算機で構造最適化した結晶構造から得られる結合距離を用いることもできる。   Even if it is not obtained experimentally, for example, a bond distance obtained from a crystal structure optimized by a computer can be used.

上記式(11)、(12)、(13)または(14)において、Aが少なくともナトリウムを含む場合が高い容量のナトリウム二次電池を与える正極活物質となるアルカリ金属複合遷移金属酸化物であるので好ましく、Aがナトリウムである場合がさらに好ましい。また、Mが少なくとも鉄を含む場合が好ましく、Mが鉄であるものがさらに好ましい。   In the above formula (11), (12), (13) or (14), when A contains at least sodium, it is an alkali metal composite transition metal oxide serving as a positive electrode active material that provides a high-capacity sodium secondary battery. Therefore, the case where A is sodium is more preferable. Moreover, the case where M contains iron at least is preferable, and the case where M is iron is more preferable.

本発明のアルカリ金属複合遷移金属酸化物は、焼成により本発明のアルカリ金属複合遷移金属酸化物となり得る組成を有する金属含有化合物の混合物を焼成することによって製造できる。具体的には、対応する金属元素を含有する金属含有化合物を所定の組成となるように秤量し混合した後に、得られた混合物を焼成することによって製造できる。例えば、好ましい化合物の一つであるNa:Mn:Ni:P=1:0.9:0.1:1で表される原子数比を有するアルカリ金属複合遷移金属酸化物は、Na2CO3、MnO2およびNiOおよびH3PO4の各原料化合物を、Na:Mn:Ni:Pのモル比が1:0.9:0.1:1となるように秤量し、それらを混合し、得られた混合物を焼成することによって製造できる。 The alkali metal composite transition metal oxide of the present invention can be produced by firing a mixture of metal-containing compounds having a composition that can be converted into the alkali metal composite transition metal oxide of the present invention by firing. Specifically, the metal-containing compound containing the corresponding metal element can be produced by weighing and mixing so as to have a predetermined composition, and then firing the resulting mixture. For example, an alkali metal composite transition metal oxide having an atomic ratio represented by Na: Mn: Ni: P = 1: 0.9: 0.1: 1, which is one of preferable compounds, is Na 2 CO 3. , Each raw material compound of MnO 2 and NiO and H 3 PO 4 are weighed so that the molar ratio of Na: Mn: Ni: P is 1: 0.9: 0.1: 1, and they are mixed, It can manufacture by baking the obtained mixture.

本発明のアルカリ金属複合遷移金属酸化物を製造するために用いることができる上記金属含有化合物としては、酸化物、ならびに高温で分解および/または酸化したときに酸化物になり得る化合物、例えば水酸化物、炭酸塩、硝酸塩、ハロゲン化物、シュウ酸塩を用いることができる。   Examples of the metal-containing compound that can be used to produce the alkali metal composite transition metal oxide of the present invention include oxides and compounds that can be converted to oxides when decomposed and / or oxidized at high temperatures, such as hydroxylated compounds. Products, carbonates, nitrates, halides, and oxalates can be used.

上記金属含有化合物の混合には、ボールミル、V型混合機、攪拌機等の、工業的に通常用いられている装置を用いることができる。このときの混合は、乾式混合、湿式混合のいずれによってもよい。また晶析法によって、所定の組成の金属含有化合物の混合物を得てもよい。   For the mixing of the metal-containing compounds, industrially used apparatuses such as a ball mill, a V-type mixer, and a stirrer can be used. The mixing at this time may be either dry mixing or wet mixing. Further, a mixture of metal-containing compounds having a predetermined composition may be obtained by a crystallization method.

上記の金属含有化合物の混合物を、例えば600℃〜1600℃の温度範囲にて0.5時間〜100時間にわたって保持して焼成することによって、本発明の複合金属酸化物が得られる。   The composite metal oxide of the present invention is obtained by holding and firing the mixture of the above metal-containing compounds in a temperature range of 600 ° C. to 1600 ° C. for 0.5 hours to 100 hours, for example.

本発明のアルカリ金属複合遷移金属酸化物は、単独で、または被覆などの表面処理を施すなどして、電極活物質として用いることができる。本発明の電極活物質は、本発明のアルカリ金属複合遷移金属酸化物からなる。本発明の電極活物質を有する電極を、ナトリウム二次電池の正極として用いれば、得られるナトリウム二次電池は、従来に比し、充放電を繰り返したときの放電容量が大きい。また、本発明により、得られるナトリウム二次電池の内部抵抗を小さくし、充放電のときの過電圧を小さくすることもできる。充放電時の過電圧を小さくすることができれば、二次電池の大電流放電特性をより高めることができる。また、二次電池を過充電したときの電池の安定性を向上させることもできる。   The alkali metal composite transition metal oxide of the present invention can be used as an electrode active material either alone or after being subjected to a surface treatment such as coating. The electrode active material of the present invention comprises the alkali metal composite transition metal oxide of the present invention. If the electrode which has the electrode active material of this invention is used as a positive electrode of a sodium secondary battery, the sodium secondary battery obtained will have a large discharge capacity when it repeats charging / discharging compared with the past. In addition, according to the present invention, the internal resistance of the obtained sodium secondary battery can be reduced, and the overvoltage during charging and discharging can be reduced. If the overvoltage at the time of charging / discharging can be made small, the large current discharge characteristic of a secondary battery can be improved more. In addition, the stability of the battery when the secondary battery is overcharged can be improved.

本発明の電極は、本発明の電極活物質を含有してなる。本発明の電極は、本発明の電極活物質、導電材およびバインダーを含む電極合剤を、電極集電体に担持させて製造することができる。以下、ナトリウム二次電池を例に挙げてその製造方法を説明する。   The electrode of the present invention contains the electrode active material of the present invention. The electrode of the present invention can be produced by supporting an electrode mixture containing the electrode active material of the present invention, a conductive material and a binder on an electrode current collector. Hereinafter, the manufacturing method will be described by taking a sodium secondary battery as an example.

導電材としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素材料などが挙げられる。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、ポリフッ化ビニリデン(以下「PVDF」ということがある。)、ポリテトラフルオロエチレン、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ならびにポリエチレン、ポリプロピレンなどのポリオレフィン樹脂等が挙げることができる。電極集電体としては、Al、Ni、ステンレスなどを用いることができる。   Examples of the conductive material include carbon materials such as natural graphite, artificial graphite, cokes, and carbon black. Examples of the binder include thermoplastic resins. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as “PVDF”), polytetrafluoroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoride. Fluorine resins such as vinylidene copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; and polyolefin resins such as polyethylene and polypropylene . As the electrode current collector, Al, Ni, stainless steel or the like can be used.

電極集電体に電極合剤を担持させる方法としては、加圧成型する方法、または有機溶媒などを用いてペースト化し、電極集電体上に塗工し、乾燥後プレスするなどして固着する方法が挙げられる。ペースト化する場合、電極活物質、導電材、バインダー、有機溶媒からなるスラリーを作製する。有機溶媒としては、N,N−ジメチルアミノプロピリアミン、ジエチルトリアミン等のアミン系;エチレンオキシド、テトラヒドロフラン等のエーテル系;メチルエチルケトン等のケトン系;酢酸メチル等のエステル系;ジメチルアセトアミド、N−メチル−2−ピロリドン等の非プロトン性極性溶媒等が挙げられる。電極合剤を電極集電体へ塗工する方法としては、例えばスリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法、静電スプレー法等が挙げられる。   As a method of supporting the electrode mixture on the electrode current collector, it is fixed by press molding or pasting using an organic solvent, coating on the electrode current collector, drying and pressing. A method is mentioned. In the case of forming a paste, a slurry made of an electrode active material, a conductive material, a binder, and an organic solvent is prepared. Examples of organic solvents include amines such as N, N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; dimethylacetamide and N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone. Examples of the method of coating the electrode mixture on the electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.

本発明のナトリウム二次電池は、本発明の電極を、正極として有する。本発明のナトリウム二次電池は例えば、本発明の電極(正極)、セパレータおよび負極集電体に負極合剤が担持されてなる負極、をこの順に積層および巻回することによって電極群を得、この電極群を電池ケース内に収納し、電解質および有機溶媒を含有する電解液を電極群に含浸させることによって、製造することができる。   The sodium secondary battery of the present invention has the electrode of the present invention as a positive electrode. The sodium secondary battery of the present invention, for example, obtains an electrode group by laminating and winding the electrode (positive electrode) of the present invention, a separator and a negative electrode in which a negative electrode mixture is supported on a negative electrode current collector in this order, The electrode group is housed in a battery case, and can be manufactured by impregnating the electrode group with an electrolytic solution containing an electrolyte and an organic solvent.

ここでこの電極群の形状としては例えば、この電極群を巻回の軸と垂直方向に切断したときの断面が、円、楕円、長円、長方形、角がとれたような長方形等となるような形状を挙げることができる。また、電池の形状としては、例えば、ペーパー型、コイン型、円筒型、角型などの形状を挙げることができる。   Here, as the shape of the electrode group, for example, a cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, an ellipse, a rectangle, a rectangle with rounded corners, or the like. Can be mentioned. In addition, examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.

本発明のナトリウム二次電池で用いることができる負極としては、負極活物質を含む負極合剤を負極集電体に担持したもの、ナトリウム金属またはナトリウム合金などのナトリウムイオンを吸蔵・脱離可能な電極を用いることができる。負極活物質としては、ナトリウムイオンを吸蔵・脱離することのできる天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素材料が挙げられる。本発明のナトリウム二次電池で用いる負極としては、炭素質材料とバインダーとを含有してなる負極が好ましい。   As a negative electrode that can be used in the sodium secondary battery of the present invention, a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, and sodium ions such as sodium metal or sodium alloy can be occluded / desorbed. An electrode can be used. Examples of the negative electrode active material include carbon materials such as natural graphite, artificial graphite, coke, carbon black, pyrolytic carbon, carbon fiber, and organic polymer compound fired body capable of absorbing and desorbing sodium ions. . The negative electrode used in the sodium secondary battery of the present invention is preferably a negative electrode containing a carbonaceous material and a binder.

また、負極活物質としては、正極よりも低い電位でナトリウムイオンを吸蔵・脱離することのできる酸化物、硫化物等のカルコゲン化合物を用いることもできる。   Further, as the negative electrode active material, chalcogen compounds such as oxides and sulfides that can occlude and desorb sodium ions at a lower potential than the positive electrode can also be used.

負極合剤は、必要に応じて、バインダー、導電材を含有してもよい。したがって本発明のナトリウム二次電池の負極は、負極活物質およびバインダーの混合物を含有してなっていてよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVDF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン、ポリプロピレンなどを挙げることができる。   The negative electrode mixture may contain a binder and a conductive material as necessary. Therefore, the negative electrode of the sodium secondary battery of the present invention may contain a mixture of a negative electrode active material and a binder. Examples of the binder include a thermoplastic resin, and specific examples include PVDF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.

負極集電体の材料としては、Cu、Ni、ステンレスなどの金属を挙げることができ、ナトリウムと合金を作り難い点、薄膜に加工しやすいという点で、Cuが好ましい。負極集電体に負極合剤を担持させる方法は、上記の場合と同様であり、加圧成型する方法、溶媒などを用いてペースト化して負極集電体上に塗工し、乾燥後にプレスするなどして固着する方法等が挙げられる。   Examples of the material for the negative electrode current collector include metals such as Cu, Ni, and stainless steel. Cu is preferable because it is difficult to form an alloy with sodium and it is easy to process into a thin film. The method of supporting the negative electrode mixture on the negative electrode current collector is the same as the above case. The method of pressure molding, pasting with a solvent, etc., coating on the negative electrode current collector, and pressing after drying For example, a method of fixing by, for example.

本発明のナトリウム二次電池で用いることができるセパレータとしては例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質フィルム、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いた単層または積層セパレータとしてもよい。セパレータとしては、例えば特開2000−30686号公報、特開平10−324758号公報等に記載のセパレータを挙げることができる。セパレータの厚みは、電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄いほど好ましい。セパレータの厚みは一般に、5〜200μm程度が好ましく、より好ましくは5〜40μm程度である。   Examples of the separator that can be used in the sodium secondary battery of the present invention include porous films, nonwoven fabrics, woven fabrics, and the like made of materials such as polyolefin resins such as polyethylene and polypropylene, fluororesins, and nitrogen-containing aromatic polymers. A material having a form can be used. Moreover, it is good also as a single layer or laminated separator which used 2 or more types of these materials. Examples of the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like. The thickness of the separator is preferably as thin as possible as long as the mechanical strength is maintained in that the volume energy density of the battery is increased and the internal resistance is reduced. In general, the thickness of the separator is preferably about 5 to 200 μm, more preferably about 5 to 40 μm.

セパレータは、好ましくは、熱可塑性樹脂を含有する多孔質フィルムを有する。二次電池において、セパレータは、正極と負極の間に配置され、正極−負極間の短絡等が原因で電池内に異常電流が流れた際に、電流を遮断して、過大電流が流れることを阻止する(シャットダウンする)役割を果たすことが好ましい。ここで、シャットダウンは、通常の使用温度を越えた場合に、セパレータにおける多孔質フィルムの微細孔を閉塞することによりなされる。そしてセパレータは、シャットダウンした後、ある程度の高温まで電池内の温度が上昇しても、その温度により破膜することなく、シャットダウンした状態を維持すること、換言すれば、耐熱性が高いことが好ましい。かかるセパレータとして、耐熱多孔層と多孔質フィルムとが積層されてなる積層フィルムなどの耐熱材料を有する多孔質フィルム、好ましくは、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層フィルムを挙げることができ、このような耐熱材料を有する多孔質フィルムをセパレータとして用いることにより、本発明の二次電池の熱破膜をより防ぐことが可能となる。ここで、耐熱多孔層は、多孔質フィルムの両面に積層されていてもよい。   The separator preferably has a porous film containing a thermoplastic resin. In a secondary battery, the separator is placed between the positive electrode and the negative electrode, and when an abnormal current flows in the battery due to a short circuit between the positive electrode and the negative electrode, the current is interrupted and an excessive current flows. It preferably plays the role of blocking (shuts down). Here, the shutdown is performed by closing the micropores of the porous film in the separator when the normal use temperature is exceeded. And even if the temperature of the separator rises to a certain high temperature after shutting down, the separator is preferably maintained in the shut-down state without being broken by the temperature, in other words, preferably has high heat resistance. . As such a separator, a porous film having a heat-resistant material such as a laminated film in which a heat-resistant porous layer and a porous film are laminated, preferably a heat-resistant porous layer containing a heat-resistant resin and a porous film containing a thermoplastic resin Can be mentioned, and by using a porous film having such a heat-resistant material as a separator, it is possible to further prevent thermal breakage of the secondary battery of the present invention. Here, the heat-resistant porous layer may be laminated on both surfaces of the porous film.

耐熱多孔層に含有される耐熱樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリサルホン、ポリフェニレンサルファイド、ポリエーテルケトン、芳香族ポリエステル、ポリエーテルサルホン、ポリエーテルイミドを挙げることができ、耐熱性をより高める観点で、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルホン、ポリエーテルイミドが好ましく、ポリアミド、ポリイミド、ポリアミドイミドがより好ましい。   Examples of the heat-resistant resin contained in the heat-resistant porous layer include polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyether ketone, aromatic polyester, polyether sulfone, and polyetherimide. From the viewpoint of further improving heat resistance, polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferable, and polyamide, polyimide, and polyamideimide are more preferable.

本発明のナトリウム二次電池で用いることができる電解液において、電解質としては、NaClO4、NaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3、NaN(SO2CF32、低級脂肪族カルボン酸ナトリウム塩、NaAlCl4などが挙げられ、これらの2種以上の混合物を使用してもよい。これらの中でもフッ素を含むNaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3およびNaN(SO2CF32からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。 In the electrolyte solution that can be used in the sodium secondary battery of the present invention, electrolytes include NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower Examples thereof include aliphatic carboxylic acid sodium salt and NaAlCl 4, and a mixture of two or more of these may be used. Among these, it is preferable to use those containing at least one selected from the group consisting of NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 and NaN (SO 2 CF 3 ) 2 containing fluorine.

本発明のナトリウム二次電池で用いることができる電解液において、有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、イソプロピルメチルカーボネート、ビニレンカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物;または上記の有機溶媒にさらにフッ素置換基を導入したものを用いることができる。通常は有機溶媒として、これらのうちの二種以上を混合して用いる。   In the electrolyte solution that can be used in the sodium secondary battery of the present invention, examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4-trifluoromethyl. Carbonates such as -1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2 , 3,3-tetrafluoropropyldifluoromethyl ether, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as tolyl and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethyl sulfoxide and 1,3-propane sultone Sulfur-containing compounds such as those described above; or those obtained by further introducing a fluorine substituent into the above organic solvent can be used. Usually, two or more of these are mixed and used as the organic solvent.

次に本発明を実施例によってさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
(正極活物質1:Na(Fe0.8Cu0.2)PO4の合成)
炭酸ナトリウム(Na2CO3)、シュウ酸鉄二水和物(FeC24・2H2O)、酸化銅(CuO)およびリン酸水素二アンモニウム((NH42HPO4)を、ナトリウム(Na):鉄(Fe):銅(Cu):リン(P)のモル比が1:0.8:0.2:1になる量で秤量した後で、メノウ乳鉢で20分間にわたって混合した。得られた未焼成試料をアルミナ製るつぼに入れ、窒素ガスを2リットル/分の流量で通気しながら、450℃の電気炉で10時間にわたって仮焼成を行った。
Example 1
(Positive electrode active material 1: Synthesis of Na (Fe 0.8 Cu 0.2 ) PO 4 )
Sodium carbonate (Na 2 CO 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), copper oxide (CuO) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) After weighing in an amount such that the molar ratio of Na): iron (Fe): copper (Cu): phosphorus (P) was 1: 0.8: 0.2: 1, the mixture was mixed in an agate mortar for 20 minutes. The obtained unfired sample was put into an alumina crucible, and pre-baked for 10 hours in an electric furnace at 450 ° C. while aeration of nitrogen gas at a flow rate of 2 liters / minute.

この仮焼成後の試料を、メノウ乳鉢で20分間にわたって粉砕した。その後、再び窒素ガスを2リットル/分の流量で通気しながら、800℃の電気炉で24時間にわたって本
焼成を行い、さらにボールミルにより粉砕を行って、正極活物質1を合成した。
The sample after this preliminary calcination was pulverized in an agate mortar for 20 minutes. Thereafter, while firing again at a flow rate of 2 liters / minute, main firing was performed in an electric furnace at 800 ° C. for 24 hours, and pulverization was performed with a ball mill to synthesize positive electrode active material 1.

(実施例2)
(正極活物質1の判別)
正極活物質1の結晶の構造は未知であった。NaFePO4のFe原子の一部をCu原子で置換した活物質1の場合、CuはFe席に固溶すると考えられるので、次のような手順で結晶構造中の原子の位置を定めた。
(Example 2)
(Distinction of positive electrode active material 1)
The crystal structure of the positive electrode active material 1 was unknown. In the case of the active material 1 in which a part of Fe atoms of NaFePO 4 is substituted with Cu atoms, since Cu is considered to be dissolved in the Fe site, the position of the atoms in the crystal structure was determined by the following procedure.

ICSDデータベースでNaFePOの結晶構造を検索して、ID85671の結晶構造(表1)の構造(構造1、図1)を用意した。その単位格子には、4個のFeが含まれるが、分率座標が(0.5,0.5,0.5)にあるFe原子をCu原子に置き換えた結晶構造(構造2、図1)をつくった。その構造を初期構造として、第一原理計算による構造最適化計算を行った。構造最適化については、Vienna Ab−initio Simulation Package(VASP)のヴァージョン4.6を使用し、空間群P1として計算した。計算では次に挙げるパラメータを採用した。 The crystal structure of NaFePO 4 was searched from the ICSD database, and the structure (structure 1, FIG. 1) of the crystal structure of ID85671 (Table 1) was prepared. The unit cell contains 4 Fe, but a crystal structure (Structure 2, FIG. 1) in which an Fe atom at a fractional coordinate (0.5, 0.5, 0.5) is replaced with a Cu atom. ) Was made. The structure optimization calculation by the first principle calculation was performed with the structure as the initial structure. The structure optimization was calculated as the space group P1 using version 4.6 of the Vienna Ab-initio Simulation Package (VASP). The following parameters were adopted in the calculation.

空間群:PNMA
格子定数:a=8.99Å、b=6.862Å、c=5.047Å
α=β=γ=90°
Space group: PNMA
Lattice constants: a = 8.99Å, b = 6.862Å, c = 5.047Å
α = β = γ = 90 °

構造最適化の計算では、原子座標、セル体積、セルの形のすべてを同時に動かして行った。すべての原子に働く力が0.02eV/Åより小さくなったときに、最適な構造になったとした。エネルギーカットオフは500eV、波数空間のメッシュは、0.5/Å、GGA-PBE PAW、MagnetismはSpin-polarizedで計算した。
これによって、構造3(表2に詳細を示す。)が得られた。
















In the calculation of structural optimization, atomic coordinates, cell volume, and cell shape were all moved simultaneously. When the force acting on all the atoms became smaller than 0.02 eV / Å, the optimum structure was obtained. The energy cut-off was 500 eV, the wave number space mesh was 0.5 / G, GGA-PBE PAW, and Magnetism were calculated with Spin-polarized.
This gave structure 3 (details are given in Table 2).
















格子定数:a=9.0264Å、b=6.950Å、c=5.121Å
α=93.4°、β=90.3°、γ=90.2°
空間群:P1
Lattice constants: a = 9.0264 Å, b = 6.950 c, c = 5.121 Å
α = 93.4 °, β = 90.3 °, γ = 90.2 °
Space group: P1

構造3について、以下の方法に従ってG(x,y,z)を計算した。
構造3を単位格子とした2a×2b×4cの大きさの構造(構造4)をつくり、まずはそのなかに含まれる256個の酸素座標の抽出を行った。ここで、それら256個の酸素原子に、1、2、3という順番に256までラベル付けを行い、j番目の酸素原子の座標をXO(j)とした。表3〜9に、256個の酸素原子の座標XO(j)を、x=18.038Å、y=13.749Å、z=20.183Åの直交格子を単位格子としたときの分率座標で示した。これ以降の計算では、相対距離だけが必要なので、ここでは、分率座標(0,0,0)を相対座標原点(0,0,0)とした。よって、これ以降の計算は、ここでの原点の取り方には依存しない。
For structure 3, G (x, y, z) was calculated according to the following method.
A structure (structure 4) having a size of 2a × 2b × 4c with the structure 3 as a unit cell was produced. First, 256 oxygen coordinates contained therein were extracted. Here, these 256 oxygen atoms were labeled up to 256 in the order of 1, 2, and 3, and the coordinates of the j-th oxygen atom were XO (j). Tables 3 to 9 show the coordinates XO (j) of 256 oxygen atoms as fractional coordinates when an orthogonal lattice of x = 18.038Å, y = 13.749Å and z = 20.183Å is a unit cell. Indicated. In subsequent calculations, only the relative distance is required, and therefore, the fractional coordinate (0, 0, 0) is used as the relative coordinate origin (0, 0, 0). Therefore, the subsequent calculations do not depend on the origin setting here.




























構造4を100×100×100の直交格子に切り、ix、iy、iz番目の格子点の座標をXL(ix,iy,iz)とした。
次に、各XL(ix,iy,iz)において、XLとの距離ABS(XL−XO)が近い順に、最大6個の酸素原子(ラベルj1、j2、j3、j4、j5、j6)を探し、XLとの距離(R1、R2、R3、R4、R5、R6)を調べた。その際、XLとの距離が2.8Åより大きくなる酸素原子は除外した。
The structure 4 was cut into a 100 × 100 × 100 orthogonal lattice, and the coordinates of the ix, iy, and iz-th lattice points were XL (ix, iy, iz).
Next, in each XL (ix, iy, iz), a maximum of six oxygen atoms (labels j1, j2, j3, j4, j5, j6) are searched in the order of the closest distance ABS to the XL (XL-XO). , XL distances (R1, R2, R3, R4, R5, R6) were examined. At that time, oxygen atoms whose distance to XL was larger than 2.8 cm were excluded.

式(2)に従って、F(ix,iy,iz)を計算した。
(2)
F (ix, iy, iz) was calculated according to equation (2).
(2)

とBの組みは、Bond Valenceパラメータと呼ばれるパラメータであり、http://www.ccp14.ac.uk/以下の、ccp/web-mirrors/i_d_brown/bond_valence_param/bvparm2006.cifなどから得ることができる。
1価のナトリウム原子に対するパラメータはいくつかあるが、その中のl=1.5766Å、B=0.475Åを用いて、式(2)に従ってFの値を計算した。
The combination of l 0 and B is a parameter called Bond Valence parameter, and can be obtained from ccp / web-mirrors / i_d_brown / bond_valence_param / bvparm2006.cif below http://www.ccp14.ac.uk/ it can.
Although there are several parameters for monovalent sodium atom, the value of F was calculated according to the equation (2) using l 0 = 1.57667 and B = 0.475Å among them.

次に、F(ix,iy,iz)の等値面を、F(ix,iy,iz)=0.00から、F(ix,iy,iz)=0.50まで0.01刻みで、可視化していった。このとき、F(ix,iy,iz)の等値面表示の上に、構造4のナトリウム原子の座標も見えるようにしておいた。可視化はMicroAVS4.0を用いた。
F(ix,iy,iz)=0.00の等値面では、等値面で囲まれる領域のナトリウム原子を含む側に3個以上のナトリウム原子が含まれていなかった。そこで、F(ix,iy,iz)を0.00から0.01ずつ増やしながら、等値面を描いていったところ、F(ix,iy,iz)=0.25にしても、等値面で囲まれる領域のナトリウム原子を含む側に3個以上のナトリウム原子が含まれていなかった(図2)。しかし、F(ix,iy,iz)=0.40の等値面を表示したときに、F(ix,iy,iz)=0.47の等値面で囲まれる領域のナトリウム原子を含む側に3個のナトリウム原子が含まれるようになった(図3)。F(ix,iy,iz)=0.50まで0.01ずつ増やしながら、F(ix,iy,iz)の等値面を描いていくと、F(ix,iy,iz)等値面で囲まれる領域のナトリウム原子を含む側にナトリウム原子は3個含まれていた。
Next, the isosurface of F (ix, iy, iz) is changed from F (ix, iy, iz) = 0.00 to F (ix, iy, iz) = 0.50 in steps of 0.01. Visualization started. At this time, the coordinates of the sodium atom of the structure 4 were made visible on the isosurface display of F (ix, iy, iz). For visualization, MicroAVS4.0 was used.
On the isosurface of F (ix, iy, iz) = 0.00, 3 or more sodium atoms were not included on the side including the sodium atoms in the region surrounded by the isosurface. Therefore, when an isosurface was drawn while increasing F (ix, iy, iz) from 0.01 to 0.01, even if F (ix, iy, iz) = 0.25 Three or more sodium atoms were not contained on the side containing the sodium atoms in the region surrounded by the surface (FIG. 2). However, when the isosurface of F (ix, iy, iz) = 0.40 is displayed, the side including the sodium atom in the region surrounded by the isosurface of F (ix, iy, iz) = 0.47 3 contained 3 sodium atoms (FIG. 3). When an isosurface of F (ix, iy, iz) is drawn while increasing by 0.01 to F (ix, iy, iz) = 0.50, an F (ix, iy, iz) isosurface is obtained. Three sodium atoms were contained on the side of the enclosed region containing sodium atoms.

構造3について、Fe原子とO原子の平均結合距離d(Fe−O)AVEは、2.2Å、Cu原子とO原子の平均結合距離d(Cu−O)AVEは、2.3Åで、|d(Fe−O)AVE−d(Cu−O)AVE|>0.05Åであった。
そこで、Na(FeCu)PO4はアルカリ金属二次電池用正極活物質として好適であり、高い容量のアルカリ金属二次電池を与えると判別した。
For structure 3, the average bond distance d (Fe—O) AVE of Fe and O atoms is 2.2 Å, the average bond distance d (Cu—O) AVE of Cu and O atoms is 2.3 、 2, and | d (Fe—O) AVE −d (Cu—O) AVE |> 0.05%.
Therefore, it was determined that Na (FeCu) PO 4 is suitable as a positive electrode active material for an alkali metal secondary battery and gives a high capacity alkali metal secondary battery.

(実施例3)
(正極活物質1を含む正極の作製)
正極活物質1、導電材としてのアセチレンブラック(電気化学工業株式会社製)、およびバインダーとしてのPVDF(株式会社クレハ製、Poly Vinylidine DiFluoride Polyflon)を、正極活物質1:導電材:バインダー=80:15:5(重量比)の組成となるようにそれぞれ秤量した。その後、まず正極活物質とアセチレンブラックをメノウ乳鉢で十分に混合し、この混合物に、N−メチル−2−ピロリドン(NMP:東京化成工業株式会社製)を適量加え、さらにPVDFを加えて引き続き均一になるように混合して、スラリー化した。得られたスラリーを、集電体である厚さ40μmのアルミ箔上に、アプリケータを用いて100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって電極シートを得た。この電極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、正極シートを得た。
(Example 3)
(Preparation of positive electrode including positive electrode active material 1)
Positive electrode active material 1, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, and PVDF (manufactured by Kureha Co., Ltd., Poly Vinylide Polyfluoride) as a binder, positive electrode active material 1: conductive material: binder = 80: Each was weighed to have a composition of 15: 5 (weight ratio). Thereafter, the positive electrode active material and acetylene black are first thoroughly mixed in an agate mortar, and an appropriate amount of N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Chemical Industry Co., Ltd.) is added to this mixture, followed by further addition of PVDF and uniform. Were mixed to form a slurry. The obtained slurry is applied to an aluminum foil having a thickness of 40 μm, which is a current collector, with a thickness of 100 μm using an applicator, and this is put into a dryer and sufficiently dried while removing NMP. As a result, an electrode sheet was obtained. This electrode sheet was punched to a diameter of 1.5 cm with an electrode punching machine, and then sufficiently pressed with a hand press to obtain a positive electrode sheet.

(試験電池の作製)
コインセル(宝泉株式会社製)の下側の窪みに、アルミ箔を下に向けて正極シートを置き、そして電解液としての1MのNaClO/PC(プロピレンカーボネート)、セパレータとしてのポリプロピレン多孔質フィルム(厚み20μm)、および負極としての金属ナトリウム(アルドリッチ社製)を組み合わせて、試験電池を作製した。なお、試験電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
(Production of test battery)
A positive electrode sheet is placed in a dent on the lower side of a coin cell (manufactured by Hosen Co., Ltd.) with the aluminum foil facing down, and 1M NaClO 4 / PC (propylene carbonate) as an electrolyte and a polypropylene porous film as a separator A test battery was prepared by combining (thickness 20 μm) and metallic sodium (manufactured by Aldrich) as a negative electrode. The test battery was assembled in a glove box in an argon atmosphere.

(充放電試験)
上記で得られた正極活物質1をナトリウム二次電池用の正極活物質として用いて、試験電池を作製し、定電流充放電試験を実施した。
(Charge / discharge test)
Using the positive electrode active material 1 obtained above as a positive electrode active material for a sodium secondary battery, a test battery was prepared and a constant current charge / discharge test was performed.

充電は、レストポテンシャルから4.2Vまで0.05Cレート(20時間で完全充電する速度)でCC(コンスタントカレント:定電流)充電を行った。放電は、0.05CレートでCC放電を行い、電圧1.5Vでカットオフした。結果は、2サイクル目の充電容量は83mAh/g,放電容量は74mAh/gでその後のサイクルも維持した。
従って、Na(Fe0.8Cu0.2)PO4はナトリウム二次電池用正極活物質として好適であり、高い容量を有し、サイクル特性にも優れたナトリウム二次電池を与えることがわかった。
Charging was performed by CC (Constant Current) at a 0.05 C rate (rate of complete charging in 20 hours) from rest potential to 4.2 V. As for the discharge, CC discharge was performed at a 0.05 C rate and cut off at a voltage of 1.5 V. As a result, the charge capacity in the second cycle was 83 mAh / g, the discharge capacity was 74 mAh / g, and the subsequent cycles were also maintained.
Therefore, it was found that Na (Fe 0.8 Cu 0.2 ) PO 4 is suitable as a positive electrode active material for sodium secondary batteries, has a high capacity, and provides a sodium secondary battery excellent in cycle characteristics.

(実施例4)
(NaFePO4の判別)
構造1を初期構造として、実施例2と同じ条件で第一原理計算による構造最適化計算を行って、構造5を得た。その構造を単位格子として、2a×2b×4cの大きさの構造6を得た。構造6について、実施例2と同じ手順で計算を行い、F(ix,iy,iz)を得た。得られたF(ix,iy,iz)について、0.00から0.01ずつ増やしながら、等値面を描いていくと、F(ix,iy,iz)<0.81のときには、F(ix,iy,iz)の等値面で囲まれる領域のナトリウム原子を含む側に3個以上のナトリウム原子が含まれることはなかった。F(ix,iy,iz)=0.81の等値面を描くと、その等値面で囲まれた領域のナトリウム原子がある側には、3個のナトリウム原子が含まれていた。
従って、構造5の化合物はナトリウム二次電池用正極活物質として好適ではなく、高い容量のナトリウム二次電池を与えないと判別した。
Example 4
(Determination of NaFePO 4 )
Using structure 1 as the initial structure, structure optimization calculation by first principle calculation was performed under the same conditions as in Example 2, and structure 5 was obtained. Using this structure as a unit cell, a structure 6 having a size of 2a × 2b × 4c was obtained. For structure 6, calculation was performed in the same procedure as in Example 2 to obtain F (ix, iy, iz). With respect to the obtained F (ix, iy, iz), when an isosurface is drawn while increasing from 0.00 to 0.01, when F (ix, iy, iz) <0.81, F (ix, iy, iz) ix, iy, iz) In the region surrounded by the isosurface, no more than 3 sodium atoms were contained on the side containing sodium atoms. When an isosurface of F (ix, iy, iz) = 0.81 was drawn, three sodium atoms were included on the side of the region surrounded by the isosurface with the sodium atoms.
Therefore, it was determined that the compound of structure 5 is not suitable as a positive electrode active material for sodium secondary batteries and does not give a high-capacity sodium secondary battery.

(実施例5)
(正極活物質1の判別2)
正極活物質1の結晶の構造は未知であった。NaFePO4のFe原子の一部をCu原子で置換する活物質1の場合、CuがNa席に固溶すると仮定して、実施例2とは異なる結晶構造中の原子の位置を定めた。
ICSDデータベースでNaFePOの結晶構造を検索して、ID85671の結晶構造(表1)の構造(構造1、図1)を用意した。その単位格子には、4個のNa原子が含まれるが、分率座標が(0.1504,0.25,0.5296)にあるNa原子をCu原子に置き換えた結晶構造をつくった。その構造を初期構造として、第一原理計算による構造最適化計算を行った。構造最適化については、Vienna Ab−initio Simulation Package(VASP)のヴァージョン4.6を使用し、空間群P1として、実施例2と同様の計算をした。
構造最適化の計算では、原子座標、セル体積、セルの形のすべてを同時に動かして行った。すべての原子に働く力が0.02eV/Åより小さくなったときに、最適な構造になったとした。エネルギーカットオフは500eV、波数空間のメッシュは、0.5/Å、GGA-PBE PAW、MagnetismはSpin-polarizedで計算した。
これによって、構造7が得られた。
(Example 5)
(Discrimination 2 of positive electrode active material 1)
The crystal structure of the positive electrode active material 1 was unknown. In the case of the active material 1 in which a part of Fe atoms of NaFePO 4 is substituted with Cu atoms, the positions of atoms in the crystal structure different from that in Example 2 are determined on the assumption that Cu is dissolved in the Na site.
The crystal structure of NaFePO 4 was searched from the ICSD database, and the structure (structure 1, FIG. 1) of the crystal structure of ID85671 (Table 1) was prepared. The unit cell contains four Na atoms, but a crystal structure was formed in which Na atoms at fractional coordinates (0.1504, 0.25, 0.5296) were replaced with Cu atoms. The structure optimization calculation by the first principle calculation was performed with the structure as the initial structure. For structural optimization, the same calculation as in Example 2 was performed for the space group P1 using version 4.6 of the Vienna Ab-initio Simulation Package (VASP).
In the calculation of structural optimization, atomic coordinates, cell volume, and cell shape were all moved simultaneously. When the force acting on all the atoms became smaller than 0.02 eV / Å, the optimum structure was obtained. The energy cut-off was 500 eV, the wave number space mesh was 0.5 / G, GGA-PBE PAW, and Magnetism were calculated with Spin-polarized.
This resulted in structure 7.

構造7について、以下の方法に従ってG(x,y,z)を計算した。
構造7を単位格子として、2a×2b×4cの大きさの構造8を得た。構造8について、実施例2と同じ手順で計算を行い、F(ix,iy,iz)を得た。
得られたF(ix,iy,iz)について等値面表示をすると、F(ix,iy,iz)=0.50の等値面で囲まれる領域のナトリウム原子を含む側には、3個のナトリウム原子が含まれていた。
構造8について、Fe原子とO原子の平均結合距離d(Fe−O)AVEは、2.11Å、CuとOの平均結合距離d(Cu−O)AVEは、2.23Åで、|d(Fe−O)AVE−d(Cu−O)AVE|>0.05Åであった。
そこで、Na(FeCu)PO4はアルカリ金属二次電池用正極活物質として好適であり、高い容量のアルカリ金属二次電池を与えると判別した。
For structure 7, G (x, y, z) was calculated according to the following method.
Using structure 7 as a unit cell, structure 8 having a size of 2a × 2b × 4c was obtained. For structure 8, calculation was performed in the same procedure as in Example 2 to obtain F (ix, iy, iz).
When the isosurface display is performed for the obtained F (ix, iy, iz), there are three on the side containing the sodium atom in the region surrounded by the isosurface of F (ix, iy, iz) = 0.50. Of sodium atoms.
For structure 8, the average bond distance d (Fe—O) AVE of Fe and O atoms is 2.11 Å, the average bond distance d (Cu—O) AVE of Cu and O is 2.23 、, | d ( Fe-O) AVE- d (Cu-O) AVE |> 0.05%.
Therefore, it was determined that Na (FeCu) PO 4 is suitable as a positive electrode active material for an alkali metal secondary battery and gives a high capacity alkali metal secondary battery.

Claims (16)

ナトリウム二次電池用正極活物質となるアルカリ金属複合遷移金属酸化物の判別方法であって、結晶構造中の原子の位置を定め、式(1)におけるG(x,y,z)を算出し、G(x,y,z)等値面で囲まれた領域のアルカリ金属原子を含む側にアルカリ金属原子が3個以上含まれる最小のG(x,y,z)であるGCRITが小さい物質を選ぶことを特徴とする判別方法。
(1)
(ここで、
はBond Valence Sumであり、lとBの組みはBond Valenceパラメータである。(x,y,z)はアルカリ金属原子の位置座標であり、lはアルカリ金属原子の近傍の電子吸引性の原子とアルカリ金属原子との距離である。)
A method for discriminating an alkali metal composite transition metal oxide serving as a positive electrode active material for a sodium secondary battery, wherein the position of an atom in a crystal structure is determined, and G (x, y, z) in equation (1) is calculated. G CRIT which is the minimum G (x, y, z) containing three or more alkali metal atoms on the side containing the alkali metal atoms in the region surrounded by the G (x, y, z) isosurface is small. A discrimination method characterized by selecting a substance.
(1)
(here,
Is Bond Valence Sum, and the combination of l 0 and B is the Bond Valence parameter. (X, y, z) is the position coordinate of the alkali metal atom, and l j is the distance between the electron withdrawing atom near the alkali metal atom and the alkali metal atom. )
CRITが0.8より小さい物質を選ぶ請求項1に記載の判別方法。 The discrimination method according to claim 1, wherein a substance having a G CRIT of less than 0.8 is selected. アルカリ金属がナトリウムである請求項1または2に記載の判別方法。   The discrimination method according to claim 1 or 2, wherein the alkali metal is sodium. コンピュータによって読み取り可能な記録媒体であって、請求項1〜3のいずれかに記載の判別方法を実行するためのプログラムを格納した記録媒体。   A recording medium readable by a computer and storing a program for executing the determination method according to claim 1. 請求項1〜3のいずれかに記載の判別方法を実行するためのプログラムを搭載した装置。   The apparatus which mounts the program for performing the determination method in any one of Claims 1-3. 式(13)で示されるアルカリ金属複合遷移金属酸化物であって、請求項1〜3のいずれかに記載の方法で判別した場合、GCRITが0.8より小さいアルカリ金属複合遷移金属酸化物。
abcPO4
(13)
(ここで、Aはアルカリ金属から選択される一種以上の元素を表し、Mは遷移金属から選択される一種以上の元素を表し、LはM以外の遷移金属から選択される一種以上の元素を表し、a、bおよびcは式0.5≦a≦1.5、0<b<1.5、0<c<1.5および0.5≦b+c≦1.5のすべてを満たす数値である。)
An alkali metal composite transition metal oxide represented by the formula (13), wherein when determined by the method according to claim 1, an alkali metal composite transition metal oxide having a G CRIT of less than 0.8 .
A a M b L c PO 4
(13)
(Here, A represents one or more elements selected from alkali metals, M represents one or more elements selected from transition metals, and L represents one or more elements selected from transition metals other than M.) A, b and c are numerical values satisfying all of the formulas 0.5 ≦ a ≦ 1.5, 0 <b <1.5, 0 <c <1.5 and 0.5 ≦ b + c ≦ 1.5. is there.)
式(13)で示されるアルカリ金属複合遷移金属酸化物であって、MとOの平均結合距離(d1AVE)と、LとOの平均結合距離(d2AVE)の差(|d1AVE−d2AVE|)が0.05Åより大きい請求項6に記載のアルカリ金属複合遷移金属酸化物。 An alkali metal composite transition metal oxide represented by the formula (13), wherein the difference between the average bond distance (d1 AVE ) between M and O (d1 AVE ) and the average bond distance (d2 AVE ) between L and O (| d1 AVE −d2) The alkali metal composite transition metal oxide according to claim 6, wherein AVE |) is greater than 0.05. Aが少なくともナトリウムを含む請求項6または7に記載のアルカリ金属複合遷移金属酸化物。   The alkali metal complex transition metal oxide according to claim 6 or 7, wherein A contains at least sodium. Aがナトリウムである請求項6または7に記載のアルカリ金属複合遷移金属酸化物。   The alkali metal complex transition metal oxide according to claim 6 or 7, wherein A is sodium. Mが少なくとも鉄を含む請求項6〜9のいずれかに記載のアルカリ金属複合遷移金属酸化物。   The alkali metal composite transition metal oxide according to any one of claims 6 to 9, wherein M contains at least iron. Mが鉄である請求項6〜9のいずれかに記載のアルカリ金属複合遷移金属酸化物。   M is iron, The alkali metal complex transition metal oxide in any one of Claims 6-9. 請求項6〜11いずれかに記載のアルカリ金属複合遷移金属酸化物を含むナトリウム二次電池用正極活物質。   The positive electrode active material for sodium secondary batteries containing the alkali metal composite transition metal oxide in any one of Claims 6-11. 請求項12記載の正極活物質を含有してなるナトリウム二次電池。   A sodium secondary battery comprising the positive electrode active material according to claim 12. 炭素質材料とバインダーとを含有してなる負極を有する請求項13記載のナトリウム二次電池。   The sodium secondary battery according to claim 13, comprising a negative electrode containing a carbonaceous material and a binder. セパレータを更に有する請求項13または14に記載のナトリウム二次電池。   The sodium secondary battery according to claim 13 or 14, further comprising a separator. セパレータが、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層多孔質フィルムを有するセパレータである請求項15に記載のナトリウム二次電池。   The sodium secondary battery according to claim 15, wherein the separator is a separator having a laminated porous film in which a heat-resistant porous layer containing a heat-resistant resin and a porous film containing a thermoplastic resin are laminated.
JP2010173442A 2009-08-04 2010-08-02 Determination method of alkali metal-doped transition metal oxides Pending JP2011054562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173442A JP2011054562A (en) 2009-08-04 2010-08-02 Determination method of alkali metal-doped transition metal oxides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009181342 2009-08-04
JP2010173442A JP2011054562A (en) 2009-08-04 2010-08-02 Determination method of alkali metal-doped transition metal oxides

Publications (1)

Publication Number Publication Date
JP2011054562A true JP2011054562A (en) 2011-03-17

Family

ID=43943327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173442A Pending JP2011054562A (en) 2009-08-04 2010-08-02 Determination method of alkali metal-doped transition metal oxides

Country Status (1)

Country Link
JP (1) JP2011054562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031331A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Positive electrode active material for sodium batteries and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001085010A (en) * 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
JP2001307732A (en) * 2000-04-25 2001-11-02 Sony Corp Positive active material and nonaqueous electrolyte battery
JP2001307731A (en) * 2000-04-25 2001-11-02 Sony Corp Positive active material and nonaqueous electrolyte battery
JP2002069221A (en) * 2000-06-14 2002-03-08 Sumitomo Chem Co Ltd Porous film and battery separator using it
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP2005519451A (en) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal phosphate and electrode active material related thereto
JP2008535182A (en) * 2005-03-28 2008-08-28 ヴァレンス テクノロジー インコーポレーテッド Secondary electrochemical cell
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2001085010A (en) * 1999-09-16 2001-03-30 Nippon Telegr & Teleph Corp <Ntt> Lithium secondary battery
JP2001307732A (en) * 2000-04-25 2001-11-02 Sony Corp Positive active material and nonaqueous electrolyte battery
JP2001307731A (en) * 2000-04-25 2001-11-02 Sony Corp Positive active material and nonaqueous electrolyte battery
JP2002069221A (en) * 2000-06-14 2002-03-08 Sumitomo Chem Co Ltd Porous film and battery separator using it
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP2005519451A (en) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal phosphate and electrode active material related thereto
JP2008535182A (en) * 2005-03-28 2008-08-28 ヴァレンス テクノロジー インコーポレーテッド Secondary electrochemical cell
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.MORING AND E.KOSTINER: "The Crystal Structure of NaMnPO4", JOURNAL OF SOLID STATE CHEMISTRY, vol. 61, JPN6013012541, March 1986 (1986-03-01), pages 379 - 383, XP024191759, ISSN: 0002837038, DOI: 10.1016/0022-4596(86)90046-0 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031331A1 (en) * 2011-08-29 2013-03-07 トヨタ自動車株式会社 Positive electrode active material for sodium batteries and method for producing same
JP5673836B2 (en) * 2011-08-29 2015-02-18 トヨタ自動車株式会社 Cathode active material for sodium battery and method for producing the same
JPWO2013031331A1 (en) * 2011-08-29 2015-03-23 トヨタ自動車株式会社 Cathode active material for sodium battery and method for producing the same
AU2012303284B2 (en) * 2011-08-29 2015-07-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium batteries and method for producing same

Similar Documents

Publication Publication Date Title
Huang et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials
US11626616B2 (en) Sulfide solid electrolyte
Risthaus et al. P3 Na0. 9Ni0. 5Mn0. 5O2 cathode material for sodium ion batteries
Liao et al. Synthesis of KVPO4F/carbon porous single crystalline nanoplates for high-rate potassium-ion batteries
US8709655B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
Wang et al. An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/Li4Ti5O12 full-cell
Huang et al. Capacity loss mechanism of the Li4Ti5O12 microsphere anode of lithium-ion batteries at high temperature and rate cycling conditions
KR20150041188A (en) Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
JP2009129741A (en) Sodium ion secondary battery and negative electrode active material using for the same
Fu et al. Hollow porous hierarchical-structured 0.5 Li2MnO3· 0.5 LiMn0. 4Co0. 3Ni0. 3O2 as a high-performance cathode material for lithium-ion batteries
Shah et al. State of the art and future research needs for multiscale analysis of Li-ion cells
Luo et al. Countering the Segregation of Transition‐Metal Ions in LiMn1/3Co1/3Ni1/3O2 Cathode for Ultralong Life and High‐Energy Li‐Ion Batteries
Zhang et al. Novel template-free synthesis of hollow@ porous TiO 2 superior anode materials for lithium ion battery
Zhang et al. Modified cathode-electrolyte interphase toward high-performance batteries
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
Yu et al. A highly conductive and stable hybrid solid electrolyte for high voltage lithium metal batteries
Pişkin et al. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials
He et al. Enhanced dynamic phase stability and suppressed Mn dissolution in low-tortuosity spinel LMO electrode
Zhang et al. Amorphous Oxyhalide Matters for Achieving Lithium Superionic Conduction
Qiu et al. Improving Na+ diffusion and performance of P2-type layered Na0. 6Li0. 07Mn0. 66Co0. 17Ni0. 17O2 by expanding the interplanar spacing
JP2011054562A (en) Determination method of alkali metal-doped transition metal oxides
CN111354943A (en) Use of fluorinated oxalate materials and products comprising fluorinated oxalate materials, methods of making and uses thereof
US11664526B2 (en) Anionic redox active lithium iron oxide based cathode materials for rechargeable lithium ion batteries
KR20130055668A (en) Powder for negative electrode material of lithium-ion secondary battery, as well as negative electrode of lithium-ion secondary battery, negative electrode of capacitor, lithium-ion secondary battery, and capacltor using same
Singhal et al. Spinel LiMn2− xNixO4 cathode materials for high energy density lithium ion rechargeable batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021