JP2002069221A - Porous film and battery separator using it - Google Patents

Porous film and battery separator using it

Info

Publication number
JP2002069221A
JP2002069221A JP2001178251A JP2001178251A JP2002069221A JP 2002069221 A JP2002069221 A JP 2002069221A JP 2001178251 A JP2001178251 A JP 2001178251A JP 2001178251 A JP2001178251 A JP 2001178251A JP 2002069221 A JP2002069221 A JP 2002069221A
Authority
JP
Japan
Prior art keywords
porous film
weight
molecular weight
sheet
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001178251A
Other languages
Japanese (ja)
Other versions
JP5140896B2 (en
Inventor
Daijiro Hoshida
大次郎 星田
Tsutomu Takahashi
勉 高橋
Takeshi Yamada
武 山田
Yasuo Shinohara
泰雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001178251A priority Critical patent/JP5140896B2/en
Publication of JP2002069221A publication Critical patent/JP2002069221A/en
Application granted granted Critical
Publication of JP5140896B2 publication Critical patent/JP5140896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous film which is excellent in puncturing strength and can be produced in a simple and easy way, and to provide a battery separator and a battery using it. SOLUTION: The porous film is produced by kneading a high-molecular weight polyolefin having a weight-average molecular weight of 5×105 or higher, a thermoplastic resin having a weight-average molecular weight of 2×104 or lower, and fine particles, forming a sheet from the kneaded material, and stretching the sheet. The battery separator contains the porous film. The battery contains the separator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質フィルムお
よびそれを用いた電池用セパレータと電池に関する。
The present invention relates to a porous film, a battery separator using the same, and a battery.

【0002】[0002]

【従来の技術】ポリオレフィン多孔質フィルムは、衛生
材料、医療用材料、電池セパレータ等、多種用途に使用
されている。
2. Description of the Related Art Porous polyolefin films are used in a variety of applications such as sanitary materials, medical materials, and battery separators.

【0003】ポリオレフィン多孔質フィルムとして、ポ
リオレフィンに微粒子を配合したシートを延伸して得ら
れた多孔質フィルムが知られている。例えば、ポリオレ
フィン樹脂、微粒子及びトリグリセライドを混練、成形
して得られたシートを延伸して得られる多孔質フィルム
が開示されている(特開昭62−10141号公報)
が、例えばリチウムイオン二次電池等の電池用セパレー
タ等の突き刺し強度を要求される用途に用いる場合に
は、突き刺し強度が十分でないという問題があった。突
き刺し強度に優れたポリオレフィン多孔質フィルムとし
ては、例えば、高分子ポリエチレン樹脂と該樹脂と同重
量程度以上の大量の可塑剤を混練後、シート状に成形
し、該シートに含まれる可塑剤を除去した後延伸するこ
とにより得られる多孔質フィルムが開示されている(特
開平9−157423号公報)。しかしながら、この多
孔質フィルムの製造においてはシートを有機溶媒に浸漬
して大量の可塑剤を抽出する工程が必須であり、そのた
め、工程が多く煩雑であるという問題があった。
As a polyolefin porous film, a porous film obtained by stretching a sheet in which fine particles are mixed with polyolefin is known. For example, a porous film obtained by stretching a sheet obtained by kneading and molding a polyolefin resin, fine particles and triglyceride is disclosed (Japanese Patent Application Laid-Open No. 62-10141).
However, when used in applications requiring puncture strength, such as a battery separator for a lithium ion secondary battery, there is a problem that the puncture strength is not sufficient. As a polyolefin porous film having excellent piercing strength, for example, a high-molecular polyethylene resin and a large amount of plasticizer of the same weight or more as the resin are kneaded, then molded into a sheet, and the plasticizer contained in the sheet is removed. After that, a porous film obtained by stretching the film is disclosed (JP-A-9-157423). However, in the production of this porous film, a step of immersing the sheet in an organic solvent to extract a large amount of a plasticizer is essential, and therefore, there is a problem that the steps are complicated and complicated.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、突き
刺し強度に優れ、簡便に製造することが可能な多孔質フ
ィルム、それを用いてなる電池用セパレータおよび電池
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous film having excellent piercing strength and which can be easily manufactured, a battery separator and a battery using the porous film.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、高分子量のポリオ
レフィンと低分子量の熱可塑性樹脂と微粒子とを混練
し、シート状に成形した後、該シートを延伸して製造さ
れる多孔質フィルムが突き刺し強度に優れ、簡便に製造
することができることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, kneaded a high-molecular-weight polyolefin, a low-molecular-weight thermoplastic resin, and fine particles, and formed a sheet. Later, they found that a porous film produced by stretching the sheet had excellent piercing strength and could be easily produced, and reached the present invention.

【0006】すなわち、本発明は、以下の〔1〕〜
〔4〕に係るものである。 〔1〕重量平均分子量が5×105以上の高分子量ポリ
オレフィンと、重量平均分子量が2×104以下の熱可
塑性樹脂と、微粒子とを混練し、シート状に成形した
後、該シートを延伸してなる多孔質フィルム。 〔2〕上記〔1〕の多孔質フィルムと、耐熱樹脂からな
る多孔質フィルムとの積層構造である積層多孔質フィル
ム。 〔3〕上記〔1〕の多孔質フィルムまたは上記〔2〕の
積層多孔質フィルムを含む電池用セパレータ。 〔4〕上記〔3〕の電池用セパレータを含む電池。
That is, the present invention provides the following [1] to
This is related to [4]. [1] A high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, a thermoplastic resin having a weight average molecular weight of 2 × 10 4 or less, and fine particles are kneaded, formed into a sheet, and then stretched. A porous film made by: [2] A laminated porous film having a laminated structure of the porous film of the above [1] and a porous film made of a heat-resistant resin. [3] A battery separator including the porous film of [1] or the laminated porous film of [2]. [4] A battery including the battery separator of [3].

【0007】[0007]

【発明の実施の形態】本発明において使用される高分子
量ポリオレフィンは、重量平均分子量が5×105
上、好ましくは1×106〜15×106の範囲のもので
ある。重量平均分子量が5×105未満では、高強度の
多孔質フィルムが得られにくい。一方、上限は特に限定
的ではないが、15×106を越える場合にはシート状
に成形しにくい。高分子量ポリオレフィンとしては、例
えば、エチレン、プロピレン、1−ブテン、4−メチル
−1−ペンテン、1−ヘキセンなどを重合した高分子量
の単独重合体または共重合体が挙げられる。これらのう
ちエチレンを主体とする高分子量ポリエチレンが好まし
い。
DETAILED DESCRIPTION OF THE INVENTION The high molecular weight polyolefin used in the present invention has a weight average molecular weight of 5 × 10 5 or more, preferably 1 × 10 6 to 15 × 10 6 . If the weight average molecular weight is less than 5 × 10 5, it is difficult to obtain a high-strength porous film. On the other hand, the upper limit is not particularly limited, but if it exceeds 15 × 10 6 , it is difficult to form a sheet. Examples of the high molecular weight polyolefin include a high molecular weight homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Of these, high molecular weight polyethylene mainly composed of ethylene is preferred.

【0008】本発明において使用される熱可塑性樹脂
は、重量平均分子量が2×104以下であり、上記高分
子量ポリオレフィンと相溶性がある樹脂が好適に使用さ
れる。相溶性がある樹脂とは、高分子量ポリオレフィン
と該樹脂とを例えば7:3〜3:7の割合で混練機、例
えばラボプラストミル(東洋精機)等で200℃、90
r.p.m.にて10分間溶融混合した樹脂組成物のD
SC測定での融点のピークが一つとなる樹脂または両者
を上記の割合で溶融混合させた樹脂組成物を、プレス成
形、延伸加工しフィルムとした時に目視にて均質なフィ
ルムが得られる樹脂のことである。上記熱可塑性樹脂は
重量平均分子量が2×104以下、好ましくは1×104
以下の熱可塑性樹脂であり、より好ましくは重量平均分
子量が2×104以下のポリオレフィンである。ポリオ
レフィンとしては、例えば、ポリエチレン、ポリプロピ
レンなどが挙げられ、中でも、重量平均分子量が2×1
4以下のポリエチレンが、高分子量ポリオレフィンと
の相溶性に優れているので、より好ましく、使用する高
分子量ポリオレフィンと同等の分岐を持ち、具体的には
両者の密度差が±0.02g/cm3、好ましくは±
0.01g/cm3の範囲内のものが相溶性がさらに優
れているので、さらに好ましい。重量平均分子量が2×
104を超えると、高分子量ポリオレフィンとの相溶性
が低下する傾向がある。
The thermoplastic resin used in the present invention has a weight average molecular weight of 2 × 10 4 or less, and a resin compatible with the high molecular weight polyolefin is preferably used. A compatible resin is a mixture of a high molecular weight polyolefin and the resin in a kneading machine, for example, Labo Plastomill (Toyo Seiki), at a ratio of 7: 3 to 3: 7, for example, at 90 ° C. and 90 ° C.
r. p. m. Of resin composition melt-mixed for 10 minutes at
A resin from which a resin having a melting point peak in SC measurement or a resin composition obtained by melt-mixing both in the above ratio at the above ratio is press-formed and stretched to obtain a visually uniform film when formed into a film. It is. The thermoplastic resin has a weight average molecular weight of 2 × 10 4 or less, preferably 1 × 10 4.
The following thermoplastic resins, more preferably polyolefins having a weight average molecular weight of 2 × 10 4 or less. Examples of the polyolefin include polyethylene and polypropylene, and among them, the weight average molecular weight is 2 × 1
0 4 The following polyethylene, since the excellent compatibility with high molecular weight polyolefin, more preferably, has a high molecular weight polyolefin equal branch to be used, the density difference between them in particular is ± 0.02 g / cm 3 , preferably ±
Those having a range of 0.01 g / cm 3 are more preferable because they have more excellent compatibility. 2 × weight average molecular weight
If it exceeds 10 4 , the compatibility with the high molecular weight polyolefin tends to decrease.

【0009】なお、該高分子量ポリオレフィンおよび該
熱可塑性樹脂の量については、これらの重量の和に対し
該高分子量ポリオレフィンが30〜90重量%、該熱可
塑性樹脂が70〜10重量%の量であることが好まし
く、該高分子量ポリオレフィンが60〜80重量%、該
熱可塑性樹脂が40〜20重量%の量であることがより
好ましい。該高分子量ポリオレフィンが多すぎると多孔
質フィルムが均質とならなかったり、シート状への成形
が難しくなる傾向にあり、少なすぎると強度が発現しに
くい傾向にある。なお、相溶性が低下しない範囲、通
常、重量平均分子量が2×104以下の熱可塑性樹脂1
00重量部に対して、高分子量ポリオレフィンでもなく
重量平均分子量が2×104以下の熱可塑性樹脂でもな
い熱可塑性樹脂を70重量部以下で含んでいてもよい。
このような熱可塑性樹脂は、通常重量平均分子量が2×
10 4を超え、5×105未満のものであり、例えば線状
低分子量ポリエチレン等が挙げられる。
The high-molecular-weight polyolefin and the high-molecular-weight polyolefin
The amount of thermoplastic resin is based on the sum of these weights.
30 to 90% by weight of the high molecular weight polyolefin,
Preferably the plastic resin is in an amount of 70 to 10% by weight
60-80% by weight of the high molecular weight polyolefin,
More preferably, the amount of the thermoplastic resin is 40 to 20% by weight.
preferable. Too much high molecular weight polyolefin will cause porosity
Quality film is not uniform or formed into a sheet
Tends to be difficult, and too little may cause strength to develop.
There is a tendency. In addition, the range where compatibility does not decrease
Usually, the weight average molecular weight is 2 × 10FourThe following thermoplastic resin 1
Not a high molecular weight polyolefin for 00 parts by weight
Weight average molecular weight is 2 × 10FourEven the following thermoplastic resins
70 parts by weight or less of a thermoplastic resin.
Such a thermoplastic resin usually has a weight average molecular weight of 2 ×
10 FourExceeds 5 × 10FiveLess than, for example, linear
Low molecular weight polyethylene etc. are mentioned.

【0010】本発明で使用される高分子量ポリオレフィ
ン、熱可塑性樹脂その他の樹脂の重量平均分子量はGP
C測定により求められたポリスチレン換算の重量平均分
子量である。GPC測定は、例えば、溶媒としてo-ジク
ロルベンゼンを用い、140℃で行う。
The weight average molecular weight of the high molecular weight polyolefin, thermoplastic resin and other resins used in the present invention is GP
It is a weight average molecular weight in terms of polystyrene obtained by C measurement. The GPC measurement is performed, for example, at 140 ° C. using o-dichlorobenzene as a solvent.

【0011】本発明で使用される微粒子の平均粒径は通
常3μm以下、好ましくは1μm以下、さらに好ましく
は0.5μm以下である。平均粒径が大きすぎると、強
度が低くなる傾向にある。また、平均粒径は0.02μ
m以上であることが好ましい。平均粒径が小さ過ぎると
樹脂への充填が困難になるほか延伸による開孔が不十分
になる場合がある。なお、平均粒径は、空気中に分散さ
せた微粒子のレーザー散乱法により求められた粒度分布
から計算した1次粒径をいう。
The average particle diameter of the fine particles used in the present invention is usually 3 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less. If the average particle size is too large, the strength tends to decrease. The average particle size is 0.02μ.
m or more. If the average particle size is too small, it may be difficult to fill the resin and the opening may be insufficient due to stretching. The average particle size refers to a primary particle size calculated from a particle size distribution of fine particles dispersed in the air obtained by a laser scattering method.

【0012】本発明で使用される微粒子としては、一般
に充填剤と呼ばれる無機または有機の微粒子が用いられ
る。無機の微粒子として具体的には、炭酸カルシウム、
タルク、クレー、カオリン、シリカ、ハイドロタルサイ
ト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カ
ルシウム、硫酸マグネシウム、硫酸バリウム、水酸化ア
ルミニウム、水酸化マグネシウム、酸化カルシウム、酸
化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオ
ライト、ガラス粉、酸化亜鉛等が使用される。特にこれ
らの中でも粒径が細かいものが得られやすく、水分の少
ない、炭酸カルシウム、硫酸バリウムが好ましい。水分
が少ないと、非水電池セパレータとして用いた場合に、
電池性能への悪影響が少ない。有機の微粒子としては、
公知の樹脂粒子が使用され、該樹脂としてスチレン、ビ
ニルケトン、アクリロニトリル、メタクリル酸メチル、
メタクリル酸エチル、グリシジルメタクリレート、グリ
シジルアクリレート、アクリル酸メチル等の単独あるい
は2種類以上の重合体、メラミン、尿素等の重縮合樹脂
が好ましい。
As the fine particles used in the present invention, inorganic or organic fine particles generally called a filler are used. Specifically, as inorganic fine particles, calcium carbonate,
Talc, clay, kaolin, silica, hydrotalcite, diatomaceous earth, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, alumina, mica, Zeolite, glass powder, zinc oxide and the like are used. Among these, calcium carbonate and barium sulfate, which are easy to obtain fine particles and have low moisture content, are preferred. When the water content is low, when used as a non-aqueous battery separator,
There is little adverse effect on battery performance. As organic fine particles,
Known resin particles are used, as the resin, styrene, vinyl ketone, acrylonitrile, methyl methacrylate,
Either one or two or more polymers such as ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate, and polycondensation resins such as melamine and urea are preferable.

【0013】本発明に用いる微粒子は、シートを延伸し
た後、水洗して除去してもよい。本発明に用いる微粒子
としては、除去することが必要なときには、該微粒子の
種類に応じて中性、酸性、アルカリ性の水溶液で水洗に
より除去できることから、水溶性の微粒子が好ましい。
水溶性の微粒子としては上記の有機、無機微粒子の中で
中性、酸性、アルカリ性の水溶液に溶解しうるものであ
れば特に限定されないが、例えば、タルク、クレー、カ
オリン、珪藻土、炭酸カルシウム、炭酸マグネシウム、
炭酸バリウム、硫酸マグネシウム、酸化カルシウム、水
酸化マグネシウム、水酸化カルシウム、酸化亜鉛、シリ
カが挙げられ、炭酸カルシウムが好ましい。
The fine particles used in the present invention may be removed by washing with water after stretching the sheet. As the fine particles used in the present invention, water-soluble fine particles are preferable because they can be removed by washing with a neutral, acidic, or alkaline aqueous solution depending on the type of the fine particles when necessary.
The water-soluble fine particles are not particularly limited as long as they can be dissolved in the above-mentioned organic and inorganic fine particles in a neutral, acidic, or alkaline aqueous solution.For example, talc, clay, kaolin, diatomaceous earth, calcium carbonate, carbonate magnesium,
Examples include barium carbonate, magnesium sulfate, calcium oxide, magnesium hydroxide, calcium hydroxide, zinc oxide and silica, with calcium carbonate being preferred.

【0014】また、本発明に用いる微粒子は、高分子量
ポリオレフィンおよび熱可塑性樹脂との分散性向上のた
め、樹脂との界面剥離を促進させるため、または外部か
らの水分の吸収を防ぐために表面処理が施されたものが
好ましい。表面処理剤としては、例えば、ステアリン
酸、ラウリル酸等の高級脂肪酸またはそれらの金属塩を
挙げることができる。
The fine particles used in the present invention may be subjected to a surface treatment in order to improve the dispersibility with the high-molecular-weight polyolefin and the thermoplastic resin, to promote interfacial separation with the resin, or to prevent the absorption of moisture from the outside. What has been applied is preferred. Examples of the surface treatment agent include higher fatty acids such as stearic acid and lauric acid and metal salts thereof.

【0015】高分子量ポリオレフィンおよび熱可塑性樹
脂の合計100体積部に対する微粒子の配合割合として
は、微粒子の種類や表面処理の状態にもよるが、好まし
くは、15〜50体積部、より好ましくは25〜35体
積部である。配合割合が少な過ぎる場合には、延伸後の
開孔が不十分なときがあるため膜抵抗が高くなる場合が
ある。また、多すぎる場合には樹脂の連続性が断たれ、
延伸切れが発生しやすくなるほか、膜の強度が低下する
場合がある。
The mixing ratio of the fine particles to the total of 100 parts by volume of the high molecular weight polyolefin and the thermoplastic resin depends on the type of the fine particles and the state of the surface treatment, but is preferably 15 to 50 parts by volume, more preferably 25 to 50 parts by volume. 35 parts by volume. If the compounding ratio is too small, the opening after stretching may be insufficient, which may increase the film resistance. If too much, the continuity of the resin is cut off,
In addition to the occurrence of stretch breakage, the strength of the film may be reduced.

【0016】また、本発明の多孔質フィルムに使用する
樹脂には必要に応じて本発明の目的を損じない範囲で一
般に使用される添加剤(帯電防止剤、可塑剤、滑剤、酸
化防止剤、造核剤等)を加えてもよい。
The resin used in the porous film of the present invention may contain, if necessary, additives generally used within the range not impairing the object of the present invention (antistatic agent, plasticizer, lubricant, antioxidant, etc.). Nucleating agent).

【0017】本発明の多孔質フィルムの下記式(1)で
定義される膜抵抗の値は、多孔質フィルムの材質にもよ
るが、該フィルムを電池用セパレータとして単独で使用
する場合には5秒・μm2/100cc以下が好まし
い。
The value of the membrane resistance of the porous film of the present invention defined by the following formula (1) depends on the material of the porous film. However, when the film is used alone as a battery separator, it is 5%. sec · μm 2 / 100cc or less.

【0018】 膜抵抗(秒・μm2/100cc )=td2 (1) [式(1)中tは透気度[ガーレー値](秒/100c
c)を表わし、dは、孔径[バブルポイント法](μ
m)を表わす。]
[0018] The film resistance (sec · μm 2 / 100cc) = td 2 (1) [ Eq. (1) medium-t is the air permeability [Gurley Value (sec / 100c
c), and d is the pore diameter [bubble point method] (μ
m). ]

【0019】膜抵抗が小さいほどイオン透過性が良好で
あることを示す。イオン透過性が良好なセパレータを使
用すると、リチウムイオン電池のような二次電池におい
て重要な性質である負荷特性に優れた電池となる。負荷
特性が優れている電池とは大電流を流したときに取り出
せる電気容量が大きな電池のことである。なお、本発明
の多孔質フィルムは、必要に応じさらにポリオレフィ
ン、ポリウレタン等からなる多孔質層が積層されていて
もよい。
The smaller the membrane resistance, the better the ion permeability. The use of a separator having good ion permeability results in a battery having excellent load characteristics, which is an important property in a secondary battery such as a lithium ion battery. A battery having excellent load characteristics is a battery having a large electric capacity that can be taken out when a large current flows. In addition, the porous film of this invention may be further laminated | stacked with the porous layer which consists of polyolefin, polyurethane, etc. as needed.

【0020】本発明の多孔質フィルムは、重量平均分子
量が5×105以上の高分子量ポリオレフィンと、重量
平均分子量が2×104以下の熱可塑性樹脂と、微粒子
と、必要に応じ、高分子量ポリオレフィンでも重量平均
分子量が2×104以下の熱可塑性樹脂でもない熱可塑
性樹脂とを混練し、シート状に成形した後、該シートを
延伸して製造される。なお、シートを延伸した後、微粒
子を、例えば水洗により除去して得られた多孔質フィル
ムも本発明の多項質フィルムに含まれる。本発明の多孔
質フィルムの製造方法としては、具体的には、例えば、
高分子量ポリオレフィンと熱可塑性樹脂からなる組成物
に、微粒子、必要に応じて脂肪酸エステル等の延伸助材
およびその他の添加剤をヘンシェルミキサー、スーパー
ミキサー、タンブラー型ミキサー等を用いて混合した
後、一軸または二軸スクリュー型押出機を用いて混練し
てペレット化する。次いで、そのペレットをTダイ等が
装着された押出成形機、円筒ダイが装着されたインフレ
ーション成形機等の公知の成形機を用いて溶融、シート
状に成形する。場合によっては、ペレット化せずに直接
成形機でシート状に成形することもできる。該シートを
ロール法、テンター法等の公知の方法により、通常、室
温以上、樹脂の軟化点未満の温度において、少なくとも
一軸方向に延伸を行い、樹脂と微粒子の界面剥離を起さ
せることにより多孔質フィルムを製造する。延伸は、一
段で行っても、多段階に分けてもよい。また、延伸した
後に、必要に応じて孔の形態を安定化するために熱固定
処理を行ってもよい。
The porous film of the present invention comprises a high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, a thermoplastic resin having a weight average molecular weight of 2 × 10 4 or less, fine particles, and, if necessary, a high molecular weight. It is manufactured by kneading a thermoplastic resin which is neither a polyolefin nor a thermoplastic resin having a weight average molecular weight of 2 × 10 4 or less, forms a sheet, and stretches the sheet. In addition, the porous film obtained by stretching the sheet and removing fine particles by, for example, washing with water is also included in the polynomial film of the present invention. As a method for producing the porous film of the present invention, specifically, for example,
After mixing fine particles, a stretching aid such as a fatty acid ester and other additives with a composition comprising a high molecular weight polyolefin and a thermoplastic resin using a Henschel mixer, a super mixer, a tumbler type mixer, etc. Alternatively, the mixture is kneaded using a twin screw extruder to form pellets. Next, the pellets are melted and formed into a sheet using a known molding machine such as an extrusion molding machine equipped with a T-die or the like, or an inflation molding machine equipped with a cylindrical die. In some cases, it can be directly formed into a sheet by a molding machine without pelletizing. The sheet is stretched at least uniaxially at a temperature not lower than the room temperature and lower than the softening point of the resin, by a known method such as a roll method and a tenter method, thereby causing an interface separation between the resin and the fine particles. Manufacture film. Stretching may be performed in one step or may be divided into multiple steps. After the stretching, a heat setting treatment may be performed as needed to stabilize the shape of the holes.

【0021】次に本発明の積層多孔質フィルムについて
説明する。本発明の積層多孔質フィルムは、本発明の多
孔質フィルムと、耐熱樹脂からなる多孔質フィルムとの
積層構造であることを特徴とする。該積層多孔質フィル
ムは、本発明の多孔質フィルムの特徴に加え、熱をかけ
たときの収縮が少ない。本発明の積層多孔質フィルム
は、必要に応じさらにポリオレフィン、ポリウレタン等
からなる多孔質層が積層されていてもよい。また、該耐
熱樹脂からなる多孔質フィルムは無機微粉末を含有して
いてもよい。無機微粉末の含有量は、耐熱樹脂100重
量部に対して1〜1500重量部、好ましくは5〜10
0重量部である。無機微粉末の粒径は該耐熱多孔質フィ
ルムの膜厚より小さいことが好ましく、一次粒子の平均
粒径が1.0μm以下が好ましく、0.5μm以下の粉
末であることがより好ましく、0.1μm以下であるこ
とがさらに好ましい。無機微粉末の種類は特に限定はさ
れないがアルミナ、シリカ、二酸化チタン、酸化ジルコ
ニウム 、または炭酸カルシウムが好ましい。これらの
無機微粉末は単独で用いてもよいし、2種以上を混合し
て用いることもできる。また、無機微粉末の含有量によ
って該耐熱多孔質フィルムの空隙率を制御し、イオン透
過性を向上させることが可能である。
Next, the laminated porous film of the present invention will be described. The laminated porous film of the present invention is characterized by having a laminated structure of the porous film of the present invention and a porous film made of a heat-resistant resin. The laminated porous film has little shrinkage when heated, in addition to the features of the porous film of the present invention. In the laminated porous film of the present invention, a porous layer made of polyolefin, polyurethane or the like may be further laminated as necessary. Further, the porous film made of the heat resistant resin may contain an inorganic fine powder. The content of the inorganic fine powder is 1 to 1500 parts by weight, preferably 5 to 10 parts by weight based on 100 parts by weight of the heat-resistant resin.
0 parts by weight. The particle size of the inorganic fine powder is preferably smaller than the thickness of the heat-resistant porous film, and the average particle size of the primary particles is preferably 1.0 μm or less, more preferably 0.5 μm or less, and preferably 0.1 μm or less. More preferably, it is 1 μm or less. The type of the inorganic fine powder is not particularly limited, but is preferably alumina, silica, titanium dioxide, zirconium oxide, or calcium carbonate. These inorganic fine powders may be used alone or in combination of two or more. In addition, the porosity of the heat-resistant porous film can be controlled by the content of the inorganic fine powder, and the ion permeability can be improved.

【0022】耐熱樹脂からなる多孔質フィルムを形成す
る耐熱樹脂としては、JIS K7207準拠の18.
6kg/cm2荷重時の測定における荷重たわみ温度が
100℃以上の樹脂から選ばれた少なくとも1種の耐熱
樹脂が好ましい。さらに過酷な使用による高温下でもよ
り安全であるために、本発明における耐熱樹脂は、該荷
重たわみ温度が200℃以上の樹脂から選ばれた少なく
とも1種の耐熱樹脂であることがより好ましい。
Examples of the heat-resistant resin for forming the porous film made of the heat-resistant resin include JIS K7207-compliant 18.
At least one heat-resistant resin selected from resins having a deflection temperature under load of 100 ° C. or higher when measured under a load of 6 kg / cm 2 is preferable. In order to be safer even at a high temperature due to severe use, the heat-resistant resin in the present invention is more preferably at least one heat-resistant resin selected from resins having a deflection temperature under load of 200 ° C. or higher.

【0023】該荷重たわみ温度が100℃以上の樹脂と
しては、ポリイミド、ポリアミドイミド、アラミド、ポ
リカーボネート、ポリアセタール、ポリサルホン、ポリ
フェニルサルファイド、ポリエーテルエーテルケトン、
芳香族ポリエステル、ポリエーテルサルホン、ポリエー
テルイミドなどが挙げられる。該荷重たわみ温度が20
0℃以上の樹脂としては、ポリイミド、ポリアミドイミ
ド、アラミド、ポリエーテルサルホン、ポリエーテルイ
ミドなどが挙げられる。さらに、該耐熱樹脂として、ポ
リイミド、ポリアミドイミドおよびアラミドからなる群
から選ぶことが特に好ましい。
The resin having a deflection temperature under load of 100 ° C. or higher includes polyimide, polyamideimide, aramid, polycarbonate, polyacetal, polysulfone, polyphenylsulfide, polyetheretherketone,
Aromatic polyester, polyethersulfone, polyetherimide and the like can be mentioned. The deflection temperature under load is 20
Examples of the resin at 0 ° C. or higher include polyimide, polyamideimide, aramid, polyethersulfone, and polyetherimide. Further, it is particularly preferable that the heat-resistant resin is selected from the group consisting of polyimide, polyamideimide and aramid.

【0024】また、本発明における耐熱樹脂としては、
限界酸素指数が20以上であることが好ましい。限界酸
素指数はガラス管中に入れられた試験片が燃え続けるこ
とのできる最低限の酸素濃度である。耐熱多孔質層とし
ては耐熱性以外に、高温時に正極材料より発生する酸素
を配慮すると難燃であることが好ましいからである。こ
のような樹脂の具体例として、前述の耐熱樹脂が挙げら
れる。
Further, the heat-resistant resin in the present invention includes:
The limiting oxygen index is preferably 20 or more. The limiting oxygen index is the minimum oxygen concentration at which a specimen placed in a glass tube can keep burning. This is because the heat-resistant porous layer is preferably flame-retardant in consideration of oxygen generated from the positive electrode material at a high temperature, in addition to heat resistance. Specific examples of such a resin include the above-described heat-resistant resin.

【0025】本発明の積層多孔質フィルムの製造方法と
しては、例えば、本発明の多孔質フィルムと耐熱樹脂か
らなる多孔質フィルムとを接着剤、熱融着等により張り
合わせる方法;本発明の多孔質フィルムを基体として、
耐熱樹脂からなる溶液を溶液状態で塗布し溶液層を形成
し、これから脱溶媒処理をして本発明の積層多孔質フィ
ルムとする方法などが挙げられる。
The method for producing the laminated porous film of the present invention includes, for example, a method of laminating the porous film of the present invention and a porous film made of a heat-resistant resin with an adhesive, heat fusion, or the like; Quality film as a substrate,
A method of applying a solution composed of a heat-resistant resin in a solution state to form a solution layer, followed by desolvation treatment to obtain a laminated porous film of the present invention, and the like.

【0026】後者の方法としては例えば、下記(a)〜
(e)の工程を含む方法により、本発明の積層多孔質フ
ィルムを製造することができる。 (a)耐熱樹脂と有機溶媒からなる溶液を調製する。無
機微粉末を含有させる時は、耐熱樹脂100重量部に対
し無機微粉末を1〜1500重量部分散した、スラリー
溶液を調製する。 (b)該溶液またはスラリー溶液を多孔質フィルムに塗
布して塗布膜を作成する。 (c)該塗布膜中で該耐熱樹脂を析出させる。 (d)該塗布膜から有機溶媒を除去する。 (e)該塗布膜を乾燥する。
As the latter method, for example, the following (a) to
The laminated porous film of the present invention can be produced by the method including the step (e). (A) A solution comprising a heat-resistant resin and an organic solvent is prepared. When the inorganic fine powder is contained, a slurry solution is prepared by dispersing the inorganic fine powder in an amount of 1 to 1500 parts by weight with respect to 100 parts by weight of the heat-resistant resin. (B) applying the solution or slurry solution to a porous film to form a coating film. (C) depositing the heat-resistant resin in the coating film. (D) removing the organic solvent from the coating film; (E) drying the coating film;

【0027】ここに、有機溶媒としては、通常、極性有
機溶媒を用いる。極性有機溶媒としては、例えば、N,
N’−ジメチルホルムアミド、N,N’−ジメチルアセ
トアミド、N−メチル−2−ピロリドン又はテトラメチ
ル尿素などが挙げられる。
Here, a polar organic solvent is usually used as the organic solvent. As the polar organic solvent, for example, N,
N'-dimethylformamide, N, N'-dimethylacetamide, N-methyl-2-pyrrolidone, tetramethylurea and the like can be mentioned.

【0028】多孔質フィルム上に耐熱樹脂を析出させる
方法としては、該多孔質フィルムを一定湿度に制御した
雰囲気中に放置して耐熱樹脂を析出させた後、該多孔質
フィルムを凝固液中に浸漬する方法があげられる。該凝
固液としては、水系溶液またはアルコール系溶液などを
用いればよく、特に限定されないが、極性有機溶媒溶媒
を含む水系溶液またはアルコール系溶液を使用するの
が、工業的には溶媒回収工程が簡素化されるので好まし
く、極性有機溶媒の水溶液がさらに好ましい。また、一
定湿度に制御した雰囲気中に放置して耐熱樹脂を析出さ
せることなく該多孔質フィルムを凝固液中に浸漬するこ
ともできる。さらに、一旦溶液から析出すると再溶解し
ない耐熱樹脂(例としてはアラミドが挙げられる)の場
合は、溶媒の一部または全部を蒸発させると同時に耐熱
樹脂を析出させ、つまり析出工程と次の溶媒除去工程を
同時に行うこともできる。
As a method of depositing the heat-resistant resin on the porous film, the porous film is left in an atmosphere controlled at a constant humidity to precipitate the heat-resistant resin, and then the porous film is placed in a coagulating liquid. The method of immersion is mentioned. As the coagulation liquid, an aqueous solution or an alcohol-based solution may be used, and is not particularly limited. An aqueous solution or an alcohol-based solution containing a polar organic solvent is used, but the solvent recovery step is industrially simplified. And an aqueous solution of a polar organic solvent is more preferable. Alternatively, the porous film can be immersed in a coagulation liquid without leaving a heat-resistant resin by leaving it in an atmosphere controlled at a constant humidity. Furthermore, in the case of a heat-resistant resin that does not redissolve once precipitated from a solution (for example, aramid), a part or all of the solvent is evaporated and the heat-resistant resin is simultaneously precipitated, that is, the precipitation step and the subsequent solvent removal The steps can be performed simultaneously.

【0029】極性有機溶媒を除去する方法としては、一
部または全部を蒸発させてもよいし、水、水系溶液、ま
たはアルコール系溶液など極性有機溶媒を溶解できる溶
媒で抽出除去してもよい。水を用いて除去する場合に
は、イオン交換水を用いることが好ましい。また極性有
機溶媒を一定濃度含む水溶液で洗浄した後に、更に水洗
することも、工業的に好ましい。
As a method for removing the polar organic solvent, a part or the whole may be evaporated, or the solvent may be extracted and removed with a solvent capable of dissolving the polar organic solvent such as water, an aqueous solution, or an alcohol solution. When removing with water, it is preferable to use ion-exchanged water. It is also industrially preferable to further wash with water after washing with an aqueous solution containing a certain concentration of a polar organic solvent.

【0030】極性有機溶媒を除去した後、乾燥を行う。
乾燥工程では、加熱により洗浄用の溶媒を蒸発させて除
去する。この時の乾燥温度は、多孔質フィルムの熱変形
温度以下であることが好ましい。
After removing the polar organic solvent, drying is performed.
In the drying step, the solvent for washing is evaporated and removed by heating. The drying temperature at this time is preferably equal to or lower than the heat deformation temperature of the porous film.

【0031】さらに、具体的に耐熱樹脂としてパラ配向
芳香族ポリアミド(以下、パラアラミドということがあ
る)を用いる場合について例示する。パラアラミドを用
いる場合には、例えば、アルカリ金属またはアルカリ土
類金属の塩化物を2〜10重量%溶解した極性有機溶媒
中で、パラ配向芳香族ジアミン1.00モルに対してパ
ラ配向芳香族ジカルボン酸ジハライド0.94〜0.9
9モルを添加して、温度−20℃〜50℃で縮合重合す
ることにより、パラアラミド濃度が1〜10%で、固有
粘度が通常1.0〜2.8dl/gであるパラアラミド
と有機溶媒とからなる溶液を作成する。この溶液を使用
して前述の製法で多孔質フィルムにパラアラミド多孔質
フィルムが積層された積層多孔質フィルムが製造でき
る。パラアラミドの場合には溶媒と該塩化物を除去する
のに、水、メタノールなどの凝固液と同じ溶媒で洗浄す
ることもできるが、溶媒の一部または全部を蒸発させる
と同時にポリマーを析出させた後、水洗などの方法で該
塩化物を除去してもよい。
Further, a case where a para-oriented aromatic polyamide (hereinafter sometimes referred to as para-aramid) is used as the heat-resistant resin will be specifically described. When para-aramid is used, for example, in a polar organic solvent in which 2 to 10% by weight of an alkali metal or alkaline earth metal chloride is dissolved, 1.00 mol of para-oriented aromatic diamine and para-oriented aromatic dicarboxylic acid are used. Acid dihalide 0.94 to 0.9
By adding 9 mol and performing condensation polymerization at a temperature of −20 ° C. to 50 ° C., a para-aramid concentration of 1 to 10% and an intrinsic viscosity of usually 1.0 to 2.8 dl / g and an organic solvent are used. A solution consisting of Using this solution, a laminated porous film in which a para-aramid porous film is laminated on a porous film can be produced by the above-mentioned production method. In the case of para-aramid, to remove the solvent and the chloride, it can be washed with the same solvent as a coagulating liquid such as water or methanol, but a part or all of the solvent was evaporated and a polymer was precipitated at the same time. Thereafter, the chloride may be removed by a method such as washing with water.

【0032】本発明の電池用セパレータは、上記多孔質
フィルムまたは積層多孔質フィルムを含むことを特徴と
する。電池用セパレータに使用する多孔質フィルムまた
は積層多孔質フィルムの上記膜抵抗は、イオン透過性の
観点から5以下であることが好ましい。なお、熱をかけ
たときの収縮が少ないので、安全性の向上の観点から、
上記積層多孔質フィルムを含むものが、好ましい。
The battery separator of the present invention is characterized by containing the above-mentioned porous film or laminated porous film. The above-mentioned membrane resistance of the porous film or the laminated porous film used for the battery separator is preferably 5 or less from the viewpoint of ion permeability. In addition, since shrinkage when applying heat is small, from the viewpoint of improving safety,
Those containing the above laminated porous film are preferred.

【0033】本発明の電池用セパレータが、本発明の多
孔質フィルムを含むものである場合、該多孔質フィルム
の空隙率は、30〜80体積%が好ましく、さらに好ま
しくは40〜70体積%である。該空隙率が30体積%
未満では電解液の保持量が少なくなる場合があり、80
%を超えると強度が不十分となり、またシャットダウン
機能が低下する場合がある。また、多孔質フィルムの厚
みは、5〜50μmが好ましく、より好ましくは10〜
50μmが好ましく、さらに好ましくは10〜30μm
である。該厚みが薄すぎると、シャットダウン機能が不
充分だったり、巻回時に電池が短絡する場合があり、厚
すぎると高電気容量化が達成できない場合がある。多孔
質フィルムの孔径としては0.1μm以下が好ましく、
0.08μm以下がより好ましい。孔径が小さくなるこ
とによって同じ透気度でも膜抵抗の値が小さな多孔質フ
ィルムとなる。
When the battery separator of the present invention contains the porous film of the present invention, the porosity of the porous film is preferably 30 to 80% by volume, more preferably 40 to 70% by volume. The porosity is 30% by volume
If it is less than 80%, the amount of retained electrolyte may decrease, and
%, The strength becomes insufficient and the shutdown function may be reduced. The thickness of the porous film is preferably 5 to 50 μm, more preferably 10 to 50 μm.
50 μm is preferred, and more preferably 10 to 30 μm
It is. If the thickness is too small, the shutdown function may be insufficient, or the battery may be short-circuited at the time of winding. If the thickness is too large, a high electric capacity may not be achieved. The pore size of the porous film is preferably 0.1 μm or less,
0.08 μm or less is more preferable. As the pore diameter becomes smaller, a porous film having a smaller value of membrane resistance is obtained even with the same air permeability.

【0034】本発明の電池用セパレータが、本発明の積
層多孔質フィルムを含むものである場合、該積層多孔質
フィルムのうち、多孔質フィルムの好ましい空隙率、孔
径は上記の多孔質フィルムと同様である。ただし膜厚に
ついては、積層多孔質フィルム全体として5〜50μm
が好ましく、より好ましくは、10〜50μm、さらに
好ましくは10〜30μmである。積層多孔質フィルム
のうち、耐熱樹脂からなる多孔質フィルムの空隙率は3
0〜80体積%が好ましく、さらに好ましくは40〜7
0体積%である。該空孔率が小さ過ぎると電解液の保持
量が少ない傾向にあり、大きすぎると耐熱樹脂からなる
多孔質フィルムの強度が不十分となる傾向にある。耐熱
多孔質フィルムの膜厚は0.5μm〜10μmが好まし
く、さらに好ましくは1μm〜5μmである。膜厚が薄
すぎると加熱時に耐熱多孔質フィルムが収縮を抑えきれ
ない傾向にあり、膜厚が厚すぎると電池とした際に負荷
特性が悪くなる傾向にある。
When the battery separator of the present invention includes the laminated porous film of the present invention, the porous film preferably has the same porosity and pore size as those of the above porous film. . However, regarding the film thickness, 5 to 50 μm as a whole of the laminated porous film
Is preferably, more preferably, 10 to 50 μm, and further preferably, 10 to 30 μm. Among the laminated porous films, the porosity of the porous film made of a heat-resistant resin is 3
It is preferably from 0 to 80% by volume, more preferably from 40 to 7% by volume.
0% by volume. If the porosity is too small, the holding amount of the electrolytic solution tends to be small. If the porosity is too large, the strength of the porous film made of a heat-resistant resin tends to be insufficient. The thickness of the heat-resistant porous film is preferably from 0.5 μm to 10 μm, more preferably from 1 μm to 5 μm. If the film thickness is too small, the heat-resistant porous film tends to be unable to suppress the shrinkage during heating, and if the film thickness is too large, the load characteristics tend to be poor when the battery is used.

【0035】本発明の電池は、本発明の電池用セパレー
タを含むことを特徴とする。以下に、本発明の電池がリ
チウム電池などの非水電解液二次電池の場合を例とし
て、電池用セパレータ以外の構成要素について説明する
が、これらに限定されるものではない。
The battery of the present invention is characterized by including the battery separator of the present invention. Hereinafter, components other than the battery separator will be described by taking, as an example, a case where the battery of the present invention is a nonaqueous electrolyte secondary battery such as a lithium battery, but is not limited thereto.

【0036】非水電解質溶液としては、例えばリチウム
塩を有機溶媒に溶解させた非水電解質溶液を用いること
ができる。リチウム塩としては、LiClO4、LiP
6、LiAsF6、LiSbF6、LiBF4、LiCF
3SO3、LiN(SO2CF32、LiC(SO2
33、Li210Cl10、低級脂肪族カルボン酸リチ
ウム塩、LiAlCl4などのうち1種または2種以上
の混合物が挙げられる。リチウム塩として、これらの中
でもフッ素を含むLiPF6、LiAsF6、LiSbF
6、LiBF4、LiCF3SO3、LiN(CF3SO2
2、およびLiC(CF3SO23からなる群から選ばれ
た少なくとも1種を含むものを用いることが好ましい。
As the non-aqueous electrolyte solution, for example, a non-aqueous electrolyte solution obtained by dissolving a lithium salt in an organic solvent can be used. LiClO 4 , LiP
F 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF
3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 C
One or a mixture of two or more of F 3 ) 3 , Li 2 B 10 Cl 10 , a lithium salt of a lower aliphatic carboxylic acid, LiAlCl 4, and the like. As the lithium salt, LiPF 6 containing fluorine Among these, LiAsF 6, LiSbF
6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 )
It is preferable to use one containing at least one selected from the group consisting of Li 2 and LiC (CF 3 SO 2 ) 3 .

【0037】非水電解質溶液で用いる有機溶媒として
は、例えばプロピレンカーボネート、エチレンカーボネ
ート、ジメチルカーボネート、ジエチルカーボネート、
エチルメチルカーボネート、4−トリフルオロメチル−
1,3−ジオキソラン−2−オン、1,2−ジ(メトキ
シカルボニルオキシ)エタンなどのカーボネート類;
1,2−ジメトキシエタン、1,3−ジメトキシプロパ
ン、ペンタフルオロプロピルメチルエーテル、2,2,
3,3−テトラフルオロプロピルジフルオロメチルエー
テル、テトラヒドロフラン、2−メチルテトラヒドロフ
ランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−
ブチロラクトンなどのエステル類;アセトニトリル、ブ
チロニトリルなどのニトリル類;N,N−ジメチルホル
ムアミド、N,N−ジメチルアセトアミドなどのアミド
類;3−メチル−2−オキサゾリドンなどのカーバメー
ト類;スルホラン、ジメチルスルホキシド、1,3−プ
ロパンサルトンなどの含硫黄化合物、または上記の有機
溶媒にフッ素置換基を導入したものを用いることができ
るが、通常はこれらのうちの2種以上を混合して用い
る。
As the organic solvent used in the non-aqueous electrolyte solution, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate,
Ethyl methyl carbonate, 4-trifluoromethyl-
Carbonates such as 1,3-dioxolan-2-one, 1,2-di (methoxycarbonyloxy) ethane;
1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2
Ethers such as 3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; methyl formate, methyl acetate, γ-
Esters such as butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethylsulfoxide; A sulfur-containing compound such as 1,3-propane sultone or a compound obtained by introducing a fluorine substituent into the above-mentioned organic solvent can be used. Usually, a mixture of two or more of these compounds is used.

【0038】これらの中でもカーボネート類を含む混合
溶媒が好ましく、環状カーボネートと非環状カーボネー
ト、または環状カーボネートとエーテル類の混合溶媒が
さらに好ましい。環状カーボネートと非環状カーボネー
トの混合溶媒としては、動作温度範囲が広く、負荷特性
に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等
の黒鉛材料を用いた場合でも難分解性であるという点
で、エチレンカーボネート、ジメチルカーボネートおよ
びエチルメチルカーボネートを含む混合溶媒が好まし
い。正極シートは、通常、正極活物質、導電材および結
着剤を含む合剤を集電体上に担持したものを用いる。具
体的には、該正極活物質として、リチウムイオンをドー
プ・脱ドープ可能な材料を含み、導電材として炭素質材
料を含み、結着剤として熱可塑性樹脂などを含むものを
用いることができる。該リチウムイオンをドープ・脱ド
ープ可能な材料としては、V、Mn、Fe、Co、Ni
などの遷移金属を少なくとも1種含むリチウム複合酸化
物が挙げられる。中でも好ましくは、平均放電電位が高
いという点で、ニッケル酸リチウム、コバルト酸リチウ
ムなどのα−NaFeO2型構造を母体とする層状リチ
ウム複合酸化物、リチウムマンガンスピネルなどのスピ
ネル型構造を母体とするリチウム複合酸化物が挙げられ
る。
Among these, a mixed solvent containing a carbonate is preferable, and a mixed solvent of a cyclic carbonate and an acyclic carbonate, or a mixed solvent of a cyclic carbonate and an ether is more preferable. The mixed solvent of cyclic carbonate and acyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as a negative electrode active material. And a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferred. As the positive electrode sheet, a sheet in which a mixture containing a positive electrode active material, a conductive material, and a binder is usually carried on a current collector is used. Specifically, a material containing a material capable of doping and undoping lithium ions, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder can be used as the positive electrode active material. Materials capable of doping / dedoping lithium ions include V, Mn, Fe, Co, Ni
And a lithium composite oxide containing at least one transition metal. Among them, preferably, since the average discharge potential is high, lithium nickel oxide, a layered lithium composite oxide based on α-NaFeO 2 type structure such as lithium cobaltate, and lithium based on spinel type structure such as lithium manganese spinel are preferable. A composite oxide is exemplified.

【0039】該リチウム複合酸化物は、種々の添加元素
を含んでもよく、特にTi、V、Cr、Mn、Fe、C
o、Cu、Ag、Mg、Al、Ga、InおよびSnか
らなる群から選ばれた少なくとも1種の金属のモル数と
ニッケル酸リチウム中のNiのモル数との和に対して、
前記の少なくとも1種の金属が0.1〜20モル%であ
るように該金属を含む複合ニッケル酸リチウムを用いる
と、高容量での使用におけるサイクル性が向上するので
好ましい。
The lithium composite oxide may contain various additional elements, particularly Ti, V, Cr, Mn, Fe, C
o, the sum of the number of moles of at least one metal selected from the group consisting of Cu, Ag, Mg, Al, Ga, In, and Sn and the number of moles of Ni in lithium nickelate,
It is preferable to use a composite lithium nickelate containing the metal such that the content of the at least one metal is 0.1 to 20 mol%, since the cyclability in high capacity use is improved.

【0040】該結着剤としての熱可塑性樹脂としては、
ポリビニリデンフロライド、ビニリデンフロライドの共
重合体、ポリテトラフルオロエチレン、テトラフルオロ
エチレン−ヘキサフロロプロピレンの共重合体、テトラ
フルオロエチレン−パーフルオロアルキルビニルエーテ
ルの共重合体、エチレン−テトラフルオロエチレンの共
重合体、ビニリデンフロライド−ヘキサフルオロプロピ
レン−テトラフルオロエチレンの共重合体、熱可塑性ポ
リイミド、ポリエチレン、ポリプロピレンなどが挙げら
れる。
As the thermoplastic resin as the binder,
Polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, ethylene-tetrafluoroethylene copolymer Examples include a polymer, a copolymer of vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene, thermoplastic polyimide, polyethylene, and polypropylene.

【0041】該導電剤としての炭素質材料としては、天
然黒鉛、人造黒鉛、コークス類、カーボンブラックなど
が挙げられる。導電材として、それぞれ単独で用いても
よいし、例えば人造黒鉛とカーボンブラックとを混合し
て用いるといった複合導電材系を選択してもよい。
Examples of the carbonaceous material as the conductive agent include natural graphite, artificial graphite, coke, and carbon black. As the conductive material, each may be used alone, or for example, a composite conductive material system in which artificial graphite and carbon black are used in combination may be selected.

【0042】負極シートとしては、例えばリチウムイオ
ンをドープ・脱ドーブ可能な材料、リチウム金属または
リチウム合金などを用いることができる。リチウムイオ
ンをドープ・脱ドープ可能な材料としては、天然黒鉛、
人造黒鉛、コークス類、カーボンブラック、熱分解炭素
類、炭素繊維、有機高分子化合物焼成体などの炭素質材
料、正極よりも低い電位でリチウムイオンのドープ・脱
ドープを行う酸化物、硫化物等のカルコゲン化合物が挙
げられる。炭素質材料として、電位平坦性が高く、また
平均放電電位が低いため正極と組み合わせた場合大きな
エネルギー密度が得られるという点で、天然黒鉛、人造
黒鉛等の黒鉛材料を主成分とする炭素質材料が好まし
い。
As the negative electrode sheet, for example, a material capable of doping / de-doping with lithium ions, lithium metal or lithium alloy can be used. Materials that can be doped / dedoped with lithium ions include natural graphite,
Carbonaceous materials such as artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds, oxides and sulfides that dope and dedope lithium ions at a lower potential than the positive electrode Chalcogen compounds. As a carbonaceous material, a carbonaceous material mainly composed of a graphite material such as natural graphite and artificial graphite, in that a high energy density can be obtained when combined with a positive electrode because the potential flatness is high and the average discharge potential is low. Is preferred.

【0043】負極集電体としては、Cu、Ni、ステン
レスなどを用いることができるが、特にリチウム二次電
池においてはリチウムと合金を作り難く、かつ薄膜に加
工しやすいという点でCuが好ましい。該負極集電体に
負極活物質を含む合剤を担持させる方法としては、加圧
成型する方法、または溶媒などを用いてペースト化し集
電体上に塗布乾燥後プレスするなどして圧着する方法が
挙げられる。
As the negative electrode current collector, Cu, Ni, stainless steel, or the like can be used. In particular, in a lithium secondary battery, Cu is preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or a method of pasting using a solvent or the like, applying a paste on the current collector, drying and pressing, or the like, is used. Is mentioned.

【0044】なお、本発明の電池の形状は、特に限定さ
れるものではなく、ペーパー型、コイン型、円筒型、角
形などのいずれであってもよい。
The shape of the battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, and the like.

【0045】[0045]

【実施例】以下に実施例、比較例を挙げて本発明をより
具体的に説明するが、本発明は以下の実施例に限定され
るものではない。なお、実施例および参考例において多
孔質フィルムの物性等は以下の方法で測定した。 (1)透気度:JISP8117に規定される方法。 (2)平均孔径:ASTM F316−86に準拠。 (3)膜厚:JISK7130に準拠。 (4)突き刺し強度:多孔質フィルムを12mmΦのワッ
シャで固定した所にピンを200mm/minで突き刺
したときの最大応力(gf)を突き刺し強度とした。な
お、このピンの形状はピン径1mmΦ、先端0.5Rの
ものを使用した。 (5)多孔質フィルムおよび積層多孔質フィルムの収縮
率:多孔質フィルムをテフロン(登録商標)板の間に挟
み、任意の温度(t)で10分間放置した。次式により
収縮率を求めた。 収縮率(%)=(L25−Lt)/L25}×100 (L25は25℃でのセパレータのTD方向の長さ、Lt
はt℃に10分間放置した後のセパレータのTD方向の
長さ) (5)パラアラミドの固有粘度:次の測定方法によるもの
と定義する。96〜98%硫酸100mlにパラアラミ
ド重合体0.5gを溶解した溶液および96〜98%硫
酸について、それぞれ毛細管粘度計により30℃にて流
動時間を測定し、求められた流動時間の比から次式によ
り固有粘度を求めた。 固有粘度=ln(T/T0)/C 〔単位:dl/g〕 ここでTおよびT0は、それぞれパラアラミド硫酸溶液
および硫酸の流動時間であり、Cは、パラアラミド硫酸
溶液中のパラアラミド濃度(dl/g)を示す。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples. In Examples and Reference Examples, the physical properties of the porous film were measured by the following methods. (1) Air permeability: a method specified in JISP8117. (2) Average pore size: based on ASTM F316-86. (3) Film thickness: based on JIS K7130. (4) Puncture strength: The maximum stress (gf) when a pin was pierced at 200 mm / min at a place where the porous film was fixed with a washer of 12 mmφ was defined as the pierce strength. The shape of the pin used was a pin having a diameter of 1 mmΦ and a tip of 0.5R. (5) Shrinkage ratio of porous film and laminated porous film: The porous film was sandwiched between Teflon (registered trademark) plates and left at an arbitrary temperature (t) for 10 minutes. The shrinkage was determined by the following equation. Shrinkage (%) = (L 25 −L t ) / L 25 } × 100 (L 25 is the length in the TD direction of the separator at 25 ° C., L t
Is the length of the separator in the TD direction after standing at t ° C. for 10 minutes.) (5) Intrinsic viscosity of para-aramid: Defined by the following measuring method. For a solution in which 0.5 g of the para-aramid polymer was dissolved in 100 ml of 96-98% sulfuric acid and for a 96-98% sulfuric acid, the flow time was measured at 30 ° C. using a capillary viscometer. Was used to determine the intrinsic viscosity. Intrinsic viscosity = ln (T / T 0 ) / C [unit: dl / g] where T and T 0 are the flow times of the para-aramid sulfate solution and sulfuric acid, respectively, and C is the concentration of para-aramid in the para-aramid sulfate solution ( dl / g).

【0046】実施例1 <多孔質フィルムの製造>混練はラボプラストミル(東
洋精機製作所)を用いて行った。超高分子量ポリエチレ
ン粉末70重量部(ハイゼックスミリオン340M、三
井化学社製、重量平均分子量300万、密度0.93)、ポ
リエチレンワックス粉末(ハイワックス110P、三井
化学社製、重量平均分子量1000、密度0.92)30重
量部、酸化防止剤 (Irg1010、住友化学社製)
0.05重量部を粉末のまま混合した後、ラボプラスト
ミルにて200℃で10分間混練し均一な混練物として
とりだした。この時のブレードの回転速度は60rpm
であった。次にラボプラストミルにこの混練物を70体
積部投入し、融解した後に炭酸カルシウム((スターピ
ゴットA15、白石カルシウム社製、平均粒径0.15
μm)を30体積部投入し、200℃で5分間混練し
た。得られた混練物を200℃に設定した熱プレスで厚
さ60〜70μmのシート状に加工したのち、冷却プレ
スで固化させた。そして得られたシートを適当なサイズ
(約8cm×5cm)に切断し、オートグラフ(AGS
−G, 島津製作所)で一軸延伸を行い開孔させ多孔質
フィルムとした。なお延伸は100℃、延伸速度50m
m/minで行った。次に、得られた多孔質フィルムを
塩酸/エタノール溶液(塩酸:エタノール=1:1)に
浸し炭酸カルシウムを溶解させた。溶解後、多孔質フィ
ルムはエタノールで洗い60℃で減圧乾燥した。得られ
た多孔質フィルムの物性を表1に、収縮率を表2に示
す。同様にして作製した該超高分子量ポリエチレンと該
ポリエチレンワックス粉末の1:1の混練物を200℃
に設定した熱プレスで厚さ60〜70μmのシート状に
加工したのち、冷却プレスで固化させ、そして得られた
シートを適当なサイズに切断、オートグラフで100℃
にて一軸延伸を行ったところ、均質なフィルムが得られ
両者は相溶していることが確認された。
Example 1 <Manufacture of porous film> Kneading was performed using a Labo Plastomill (Toyo Seiki Seisakusho). Ultra high molecular weight polyethylene powder 70 parts by weight (HIZEX Million 340M, manufactured by Mitsui Chemicals, Inc., weight average molecular weight 3,000,000, density 0.93), polyethylene wax powder (Hi Wax 110P, manufactured by Mitsui Chemicals, weight average molecular weight 1000, density 0.92) 30 Parts by weight, antioxidant (Irg1010, manufactured by Sumitomo Chemical Co., Ltd.)
After mixing 0.05 parts by weight of the powder as it was, the mixture was kneaded at 200 ° C. for 10 minutes with a Labo Plastomill to take out a uniform kneaded product. The rotation speed of the blade at this time is 60 rpm
Met. Next, 70 parts by volume of this kneaded material was put into a Labo Plastomill, and after melting, calcium carbonate ((Star Pigot A15, manufactured by Shiraishi Calcium Co., average particle size 0.15
μm) was added and kneaded at 200 ° C. for 5 minutes. The obtained kneaded material was processed into a sheet having a thickness of 60 to 70 μm by a hot press set at 200 ° C., and then solidified by a cooling press. Then, the obtained sheet is cut into an appropriate size (about 8 cm × 5 cm), and an autograph (AGS)
-G, Shimadzu Corp.) and uniaxially stretched to form holes to form a porous film. The stretching was performed at 100 ° C. and the stretching speed was 50 m.
m / min. Next, the obtained porous film was immersed in a hydrochloric acid / ethanol solution (hydrochloric acid: ethanol = 1: 1) to dissolve calcium carbonate. After dissolution, the porous film was washed with ethanol and dried at 60 ° C. under reduced pressure. Table 1 shows the physical properties of the obtained porous film, and Table 2 shows the shrinkage ratio. A 1: 1 kneaded mixture of the ultrahigh molecular weight polyethylene and the polyethylene wax powder produced in the same manner was prepared at 200 ° C.
After processing into a sheet having a thickness of 60 to 70 μm with a hot press set at, the sheet is solidified with a cooling press, and the obtained sheet is cut into an appropriate size.
When the film was uniaxially stretched at, a homogeneous film was obtained, and it was confirmed that both films were compatible.

【0047】実施例2 <パラアラミド溶液の合成>撹拌翼、温度計、窒素流入
管及び粉体添加口を有する5リットル(l)のセパラブ
ルフラスコを使用してポリ(パラフェニレンテレフタル
アミド)(以下、PPTAと略す)の合成を行った。フ
ラスコを十分乾燥し,N−メチル−2−ピロリドン(以
下、NMPと略す)4200gを仕込み、200℃で2
時間乾燥した塩化カルシウム272.65gを添加して
100℃に昇温した。塩化カルシウムが完全に溶解した
後室温に戻して、パラフェニレンジアミン(以下、PP
Dと略す)132.91gと添加し完全に溶解させた。
この溶液を20±2℃に保ったまま、テレフタル酸ジク
ロライド(以下、TPCと略す)243.32gを10
分割して約5分おきに添加した。その後溶液を20±2
℃に保ったまま1時間熟成し、気泡を抜くため減圧下3
0分撹拌した。得られた重合液は光学的異方性を示し
た。一部をサンプリングして水で再沈してポリマーとし
て取り出し、得られたPPTAの固有粘度を測定したと
ころ1.97dl/gであった。次に、この重合液10
0gを、攪拌翼、温度計、窒素流入管および液体添加口
を有する500mlのセパラブルフラスコに秤取し、N
MP溶液を徐々に添加した。最終的に、PPTA濃度が
2.0重量%のPPTA溶液を調製し、これをA液とし
た。 <パラアラミド溶液の塗布>多孔質フィルムとしては、
実施例1のポリエチレン製多孔質フィルムを使用した。
テスター産業株式会社製バーコーター(クリアランス2
00μm)により、ガラス上に置いた多孔膜フィルムに
耐熱樹脂溶液であるA液の膜状物を塗工し、この状態で
30℃、65%の恒温恒湿槽に約3分間保持したとこ
ろ、PPTAが析出し、白濁した膜状物が得られた。該
膜状物を30%NMP/水溶液に5分間浸漬した。浸積後、
析出した膜状物をガラス板から剥離した。イオン交換水
を流しながら充分に水洗した後、水中より湿潤した膜状
物を取り出し、遊離水をふき取った。この膜状物をナイ
ロン布に挟み、さらにアラミド製フェルトに挟んだ。膜
状物をナイロン布とアラミド製フェルトに挟んだ状態
で、アルミ板を乗せ、その上にナイロンフィルムを被
せ、ナイロンフィルムとアルミ板とをガムでシールし
て、減圧のための導管をつけた。全体を熱オーブンに入
れ60℃で減圧しながら膜状物を乾燥して積層多孔質フ
ィルムを得た。該フィルムの物性を表1に、収縮率を表2
に示した。
Example 2 <Synthesis of para-aramid solution> Using a 5-liter (l) separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a powder addition port, poly (paraphenylene terephthalamide) (hereinafter , Abbreviated as PPTA). The flask was sufficiently dried, and 4200 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) was charged.
272.65 g of calcium chloride dried over time was added, and the temperature was raised to 100 ° C. After the calcium chloride was completely dissolved, the temperature was returned to room temperature, and paraphenylenediamine (hereinafter referred to as PP) was added.
132.91 g) and completely dissolved.
While keeping this solution at 20 ± 2 ° C., 243.32 g of terephthalic acid dichloride (hereinafter abbreviated as TPC) was added to 10
Add in portions about every 5 minutes. The solution is then
Aged for 1 hour while maintaining the temperature at ℃ 3
Stirred for 0 minutes. The obtained polymerization liquid showed optical anisotropy. A part was sampled, reprecipitated with water, taken out as a polymer, and the intrinsic viscosity of the obtained PPTA was measured to be 1.97 dl / g. Next, the polymerization solution 10
0 g was weighed into a 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inlet tube and a liquid addition port.
The MP solution was added slowly. Finally, a PPTA solution having a PPTA concentration of 2.0% by weight was prepared and used as solution A. <Application of para-aramid solution> As the porous film,
The polyethylene porous film of Example 1 was used.
Bar coater (clearance 2) manufactured by Tester Sangyo Co., Ltd.
(00 μm), a film-form material of liquid A as a heat-resistant resin solution was applied to a porous film placed on glass, and kept in this state at a constant temperature and humidity of 30 ° C. and 65% for about 3 minutes. PPTA was precipitated, and a cloudy film was obtained. The film was immersed in a 30% NMP / water solution for 5 minutes. After immersion,
The deposited film was peeled from the glass plate. After sufficiently washing with flowing ion-exchanged water, a wet film was taken out of the water and free water was wiped off. This film was sandwiched between nylon cloths, and further sandwiched between aramid felts. An aluminum plate was placed with the film sandwiched between nylon cloth and aramid felt, a nylon film was placed on it, the nylon film and the aluminum plate were sealed with gum, and a conduit for decompression was attached. . The whole was put into a hot oven and dried under reduced pressure at 60 ° C. to obtain a laminated porous film. Table 1 shows the physical properties of the film, and Table 2 shows the shrinkage ratio.
It was shown to.

【0048】比較例1 ラボプラストミルを200℃に昇温し、直鎖状低密度ポ
リエチレン(LLDPE)(FS240A、重量平均分
子量11万、住友化学社製)を82重量部、低密度ポリ
エチレン(LDPE)(F208−1、重量平均分子量
8万、住友化学社製)を18重量部投入し、これらポリ
エチレン(PEsと略す)が融解した後にPEs70体
積部に対して、ハイドロタルサイト(DHT−4A、平
均粒径0.4μm、協和化学工業社製)30体積部、つ
いで酸化防止剤を0.1重量部(上記PEsの合計を1
00重量部とする。)投入し、100rpmで5分間混
練した。得られた混練物は200℃に設定した熱プレス
で厚さ60〜70μmのシート状に加工したのち、冷却
プレスで固化させた。そして得られたシートを適当なサ
イズに切断し、オートグラフで一軸延伸を行い開孔させ
微多孔膜とした。なお延伸は30℃、延伸速度50mm
/minで行った。得られた多孔質フィルムの物性を表
1に示した。
Comparative Example 1 Raboplast mill was heated to 200 ° C., and 82 parts by weight of linear low density polyethylene (LLDPE) (FS240A, weight average molecular weight 110,000, manufactured by Sumitomo Chemical Co., Ltd.) was prepared. ) (F208-1, weight average molecular weight 80,000, manufactured by Sumitomo Chemical Co., Ltd.), and 18 parts by weight of these polyethylenes (abbreviated as PEs) were melted. After 70 parts by volume of PEs were added, hydrotalcite (DHT-4A, 30 parts by volume with an average particle size of 0.4 μm, manufactured by Kyowa Chemical Industry Co., Ltd., and 0.1 part by weight of an antioxidant (the total of the PEs is 1
00 parts by weight. ), And kneaded at 100 rpm for 5 minutes. The obtained kneaded material was processed into a sheet having a thickness of 60 to 70 μm by a hot press set at 200 ° C., and then solidified by a cooling press. Then, the obtained sheet was cut into an appropriate size, uniaxially stretched by an autograph, and opened to form a microporous film. The stretching was performed at 30 ° C. and at a stretching speed of 50 mm.
/ Min. Table 1 shows the physical properties of the obtained porous film.

【0049】比較例2 ラボプラストミルを200℃に昇温しポリプロピレン
(FS2011D、重量平均分子量41万、住友化学
(社製)を70体積部投入し、ポリプロピレン融解後に
ハイドロタルサイト(DHT−4A、平均粒径0.4μ
m、協和化学工業社製)30体積部、ついで酸化防止剤
を0.05重量部(ポリプロピレン70重量部基準)投
入し、100rpmで5分間混練した。得られた混練物
は200℃に設定した熱プレスで厚さ60〜70μmの
シート状に加工したのち、冷却プレスで固化させた。そ
して得られたシートを適当なサイズに切断し、オートグ
ラフで一軸延伸を行い開孔させ微多孔膜とした。なお延
伸は140℃、延伸速度50mm/minで行った。得
られた多孔質フィルムの物性を表1に示した。
Comparative Example 2 The temperature of the Labo Plastomill was raised to 200 ° C., 70 parts by volume of polypropylene (FS2011D, weight average molecular weight: 410,000, manufactured by Sumitomo Chemical Co., Ltd.) was added, and after melting the polypropylene, hydrotalcite (DHT-4A, Average particle size 0.4μ
m, manufactured by Kyowa Chemical Industry Co., Ltd.), 30 parts by weight of an antioxidant (based on 70 parts by weight of polypropylene), and kneading at 100 rpm for 5 minutes. The obtained kneaded material was processed into a sheet having a thickness of 60 to 70 μm by a hot press set at 200 ° C., and then solidified by a cooling press. Then, the obtained sheet was cut into an appropriate size, uniaxially stretched by an autograph, and opened to form a microporous film. The stretching was performed at 140 ° C. and a stretching speed of 50 mm / min. Table 1 shows the physical properties of the obtained porous film.

【0050】比較例3 超高分子量ポリエチレン粉末49重量部(ハイゼックス
ミリオン340M、三井化学社製、重量平均分子量30
0万)、メタロセン系LLDPE(SP4060、三井
化学社製、重量平均分子量7万)34重量部、メタロセ
ン系LDPE(G808、住友化学社製、重量平均分子
量5万5千)17重量部、酸化防止剤(Irg101
0、住友化学社製)0.05重量部を、ラボプラストミ
ルにて200℃で10分間混練し混練物としてとりだし
た。この樹脂組成物を200℃に設定した熱プレスで厚
さ60〜70μmのシート状に加工したのち、冷却プレ
スで固化させ、そして得られたシートを適当なサイズに
切断し、オートグラフで100℃にて一軸延伸を行った
ところ、得られたシートには粉末の超高分子量ポリエチ
レンが相溶せずに粉末状で残っていることが目視で観察
され、混練物は相溶していないことが確認された。次に
ラボプラストミルにこの混練物を70体積部投入し、融
解した後に炭酸カルシウム((スターピゴットA15、
白石カルシウム社製、平均粒径0.15μm)を30体
積部投入し、200℃で5分間混練した。得られた混練
物は200℃に設定した熱プレスで厚さ60〜70μm
のシート状に加工したのち、冷却プレスで固化させた。
そして得られたシートを適当なサイズに切断し、オート
グラフで一軸延伸を行い開孔させ多孔質フィルムとし
た。なお延伸は100℃、延伸速度50mm/minで
行った。次に、得られた多孔質フィルムを塩酸/エタノ
ール溶液(塩酸:エタノール=1:1)に浸し炭酸カル
シウムを溶解させた。溶解後、多孔質フィルムはエタノ
ールで洗い60℃で減圧乾燥した。得られた該多孔質フ
ィルムの物性を表1に示した。
Comparative Example 3 49 parts by weight of ultra high molecular weight polyethylene powder (HIZEX Million 340M, manufactured by Mitsui Chemicals, Inc., weight average molecular weight 30
30,000), 34 parts by weight of metallocene-based LLDPE (SP4060, manufactured by Mitsui Chemicals, Inc., weight-average molecular weight 70,000), 17 parts by weight of metallocene-based LDPE (G808, manufactured by Sumitomo Chemical Co., Ltd., weight-average molecular weight 55,000), antioxidant Agent (Irg101
0, manufactured by Sumitomo Chemical Co., Ltd.) was kneaded with a Labo Plastomill at 200 ° C. for 10 minutes and taken out as a kneaded material. This resin composition is processed into a sheet having a thickness of 60 to 70 μm by a hot press set at 200 ° C., then solidified by a cooling press, and the obtained sheet is cut into an appropriate size. When uniaxial stretching was performed at, it was visually observed that the powdered ultra-high-molecular-weight polyethylene remained in the powder form without being compatible with the obtained sheet, and that the kneaded material was not compatible. confirmed. Next, 70 parts by volume of the kneaded material was put into a Labo Plastomill, and after melting, calcium carbonate ((Star Pigot A15,
30 parts by volume of Shiraishi Calcium Co., Ltd., average particle size 0.15 μm) were charged and kneaded at 200 ° C. for 5 minutes. The obtained kneaded material is a hot press set at 200 ° C. and has a thickness of 60 to 70 μm.
And then solidified by a cooling press.
Then, the obtained sheet was cut into an appropriate size, uniaxially stretched by an autograph, and opened to form a porous film. The stretching was performed at 100 ° C. and a stretching speed of 50 mm / min. Next, the obtained porous film was immersed in a hydrochloric acid / ethanol solution (hydrochloric acid: ethanol = 1: 1) to dissolve calcium carbonate. After dissolution, the porous film was washed with ethanol and dried at 60 ° C. under reduced pressure. Table 1 shows the physical properties of the obtained porous film.

【0051】比較例4 超高分子量ポリエチレン粉末70重量部(ハイゼックス
ミリオン340M、三井化学社製、重量平均分子量30
0万)、ポリエチレンワックス粉末(ハイワックス11
0P、三井化学社製、重量平均分子量1000)30重
量部、酸化防止剤 (Irg1010、住友化学社製)
0.05重量部を均一に混合した後、ラボプラストミル
にて200℃で10分間混練し均一な混練物としてとり
だした。得られた混練物は200℃に設定した熱プレス
で厚さ60〜70μmのシート状に加工したのち、冷却
プレスで固化させた。そして得られたシートを適当なサ
イズに切断し、オートグラフで一軸延伸を行った。なお
延伸は100℃、延伸速度50mm/minで行った。
このフィルムは多孔質フィルムとはならなかった。
Comparative Example 4 Ultra high molecular weight polyethylene powder 70 parts by weight (HIZEX Million 340M, manufactured by Mitsui Chemicals, Inc., weight average molecular weight 30)
100,000), polyethylene wax powder (high wax 11)
0P, manufactured by Mitsui Chemicals, Inc., weight average molecular weight 1000) 30 parts by weight, antioxidant (Irg1010, manufactured by Sumitomo Chemical Co., Ltd.)
After uniformly mixing 0.05 parts by weight, the mixture was kneaded with a Labo Plastomill at 200 ° C. for 10 minutes to take out a uniform kneaded product. The obtained kneaded material was processed into a sheet having a thickness of 60 to 70 μm by a hot press set at 200 ° C., and then solidified by a cooling press. Then, the obtained sheet was cut into an appropriate size and uniaxially stretched by an autograph. The stretching was performed at 100 ° C. and a stretching speed of 50 mm / min.
This film did not become a porous film.

【0052】比較例5 超高分子量ポリエチレン粉末70体積部(ハイゼックス
ミリオン340M、三井化学社製、重量平均分子量30
0万、密度0.93)、酸化防止剤 (Irg1010、住
友化学社製)0.05重量部を粉末のまま均一に混合し
た後、ラボプラストミルにて200℃で10分間混練し
た。その後、炭酸カルシウム((スターピゴットA1
5、白石カルシウム社製、平均粒径0.15μm)を3
0体積部投入し、200℃で5分間混練した。得られた
混練物を200℃に設定した熱プレスで厚さ60〜70
μmのシート状に加工し、冷却プレスで固化させたとこ
ろ充分な予熱を行っていてもきれいな薄膜シートは得ら
れなかった。
Comparative Example 5 Ultra high molecular weight polyethylene powder 70 parts by volume (HIZEX Million 340M, manufactured by Mitsui Chemicals, Inc., weight average molecular weight 30)
The mixture was uniformly mixed with 0.05 part by weight of an antioxidant (Irg1010, manufactured by Sumitomo Chemical Co., Ltd.) as a powder, and kneaded at 200 ° C. for 10 minutes using a Labo Plastomill. Then, calcium carbonate ((Star Piggot A1
5. Shiraishi calcium company, average particle size 0.15μm)
0 parts by volume were charged and kneaded at 200 ° C. for 5 minutes. The obtained kneaded product was heated to a thickness of 60 to 70 with a hot press set at 200 ° C.
When processed into a sheet having a thickness of μm and solidified by a cooling press, a clean thin film sheet could not be obtained even with sufficient preheating.

【0053】[0053]

【表1】多孔質フィルムと積層多孔質フィルムの物性 [Table 1] Physical properties of porous film and laminated porous film

【0054】[0054]

【表2】多孔質フィルムと複合多孔質フィルムの収縮率 [Table 2] Shrinkage of porous film and composite porous film

【0055】[0055]

【発明の効果】本発明の多孔質フィルムは、簡便に製造
することが可能で、突き刺し強度に優れ、電池用セパレ
ータ、特にリチウムイオン二次電池用セパレータとして
好適に使用できる。
The porous film of the present invention can be easily manufactured, has excellent piercing strength, and can be suitably used as a battery separator, particularly a lithium ion secondary battery separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 武 大阪府高槻市塚原2丁目10番1号 住化プ ラステック株式会社内 (72)発明者 篠原 泰雄 茨城県つくば市北原6 住友化学工業株式 会社内 Fターム(参考) 4F074 AA17 AA24 AA26 AC17 AC19 AC20 AC21 AC26 AC30 AC32 AC34 AC36 AE06 AG01 CA02 CA04 CA07 CB02 CB03 CB13 CB22 DA03 DA10 DA20 DA31 DA49 4J002 BB03W BB03X BB12X BB16X DE076 DE086 DE106 DE136 DE146 DE236 DE286 DG046 DG056 DJ016 DJ036 DJ046 DJ056 DL006 GF00 GQ00 5H021 BB04 BB05 BB13 CC04 CC08 EE04 EE23 EE31 HH00 HH01 HH03 HH07 HH09 5H029 AJ12 AK03 AL04 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 DJ04 DJ13 DJ16 EJ12 HJ00 HJ01 HJ05 HJ11 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Yamada 2-10-1 Tsukahara, Takatsuki-shi, Osaka Sumika Plastics Tech Co., Ltd. (72) Inventor Yasuo Shinohara 6 Kitahara, Tsukuba-shi, Ibaraki Sumitomo Chemical Co., Ltd. F-term (reference) 4F074 AA17 AA24 AA26 AC17 AC19 AC20 AC21 AC26 AC30 AC32 AC34 AC36 AE06 AG01 CA02 CA04 CA07 CB02 CB03 CB13 CB22 DA03 DA10 DA20 DA31 DA49 4J002 BB03W BB03X BB12X BB16DE0 DG DE046DE076 DJ056 DL006 GF00 GQ00 5H021 BB04 BB05 BB13 CC04 CC08 EE04 EE23 EE31 HH00 HH01 HH03 HH07 HH09 5H029 AJ12 AK03 AL04 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 DJ04 DJ13 DJ16 EJ12 HJ00 HJH

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】重量平均分子量が5×105以上の高分子
量ポリオレフィンと、重量平均分子量が2×104以下
の熱可塑性樹脂と、微粒子とを混練し、シート状に成形
した後、該シートを延伸してなることを特徴とする多孔
質フィルム。
1. A high-molecular-weight polyolefin having a weight-average molecular weight of 5 × 10 5 or more, a thermoplastic resin having a weight-average molecular weight of 2 × 10 4 or less, and fine particles are kneaded to form a sheet. A porous film characterized by being stretched.
【請求項2】微粒子の平均粒径が3μm以下であること
を特徴とする請求項1記載の多孔質フィルム。
2. The porous film according to claim 1, wherein the average particle size of the fine particles is 3 μm or less.
【請求項3】高分子量ポリオレフィンおよび熱可塑性樹
脂の重量の和に対し高分子量ポリオレフィンが30〜9
0重量%の割合であることを特徴とする請求項1または
2記載の多孔質フィルム。
3. The high molecular weight polyolefin and the thermoplastic resin are added in an amount of 30 to 9 based on the total weight of the thermoplastic resin.
The porous film according to claim 1 or 2, wherein the proportion is 0% by weight.
【請求項4】熱可塑性樹脂がポリエチレンであることを
特徴とする請求項1〜3のいずれかに記載の多孔質フィ
ルム。
4. The porous film according to claim 1, wherein the thermoplastic resin is polyethylene.
【請求項5】微粒子が水溶性の微粒子であることを特徴
とする請求項1〜4のいずれかに記載の多孔質フィル
ム。
5. The porous film according to claim 1, wherein the fine particles are water-soluble fine particles.
【請求項6】シートを延伸した後、水洗して微粒子を除
去してなることを特徴とする請求項5記載の多孔質フィ
ルム。
6. The porous film according to claim 5, wherein after the sheet is stretched, the sheet is washed with water to remove fine particles.
【請求項7】多孔質フィルムの下記式(1)で定義され
る膜抵抗が、5秒・μm2/100cc以下であること
を特徴とする請求項1〜6のいずれかに記載の多孔質フ
ィルム。 膜抵抗(秒・μm2/100cc )=td2 (1) [式(1)中tは透気度[ガーレー値](秒/100c
c)を表わし、 dは、孔径[バブルポイント法](μm)を表わす。]
7. A porous membrane resistance defined by the following formula (1) of the film, porous according to claim 1, characterized in that more than 5 seconds · μm 2 / 100cc the film. Film resistance (sec · μm 2 / 100cc) = td 2 (1) [ Formula (1) Medium t is the air permeability [Gurley Value (sec / 100c
d) represents the pore size [bubble point method] (μm). ]
【請求項8】請求項1〜7記載の多孔質フィルムと、耐
熱樹脂からなる多孔質フィルムとの積層構造であること
を特徴とする積層多孔質フィルム。
8. A laminated porous film having a laminated structure of the porous film according to claim 1 and a porous film made of a heat-resistant resin.
【請求項9】請求項1〜7のいずれかに記載の多孔質フ
ィルムまたは請求項8記載の積層多孔質フィルムを含む
ことを特徴とする電池用セパレータ。
9. A battery separator comprising the porous film according to claim 1 or the laminated porous film according to claim 8.
【請求項10】請求項9記載の電池用セパレータを含む
ことを特徴とする電池。
10. A battery comprising the battery separator according to claim 9.
JP2001178251A 2000-06-14 2001-06-13 Porous film and battery separator using the same Expired - Fee Related JP5140896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178251A JP5140896B2 (en) 2000-06-14 2001-06-13 Porous film and battery separator using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-178006 2000-06-14
JP2000178006 2000-06-14
JP2000178006 2000-06-14
JP2001178251A JP5140896B2 (en) 2000-06-14 2001-06-13 Porous film and battery separator using the same

Publications (2)

Publication Number Publication Date
JP2002069221A true JP2002069221A (en) 2002-03-08
JP5140896B2 JP5140896B2 (en) 2013-02-13

Family

ID=26593898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178251A Expired - Fee Related JP5140896B2 (en) 2000-06-14 2001-06-13 Porous film and battery separator using the same

Country Status (1)

Country Link
JP (1) JP5140896B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197172A (en) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
JP2005281669A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, method for producing the same and lithium ion secondary battery using the same
WO2006025323A1 (en) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corporation Microporous polyolefin film and separator for storage cell
JP2006100120A (en) * 2004-09-29 2006-04-13 Nitto Denko Corp Manufacturing method of porous membrane
JP2006104278A (en) * 2004-10-04 2006-04-20 Sumitomo Chemical Co Ltd Resin composition containing inorganic fine particle
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
JP2006307163A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Sheet comprising polyolefin resin composition, porous film, and separator for electric battery
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2006344506A (en) * 2005-06-09 2006-12-21 Tomoegawa Paper Co Ltd Separator for electronic components
WO2006137540A1 (en) * 2005-06-24 2006-12-28 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
JP2007115479A (en) * 2005-10-19 2007-05-10 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007273443A (en) * 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp Multilayered porous membrane and its manufacturing method
JP2007294437A (en) * 2006-03-29 2007-11-08 Hitachi Maxell Ltd Separator for electrochemical cell, and lithium secondary battery
WO2008062895A1 (en) * 2006-11-21 2008-05-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material and positive electrode active material
WO2008149895A1 (en) * 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
EP2065432A1 (en) * 2006-09-20 2009-06-03 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
WO2009099058A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
WO2009099061A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
WO2009104810A1 (en) 2008-02-20 2009-08-27 住友化学株式会社 Porous film, multilayer porous film comprising the same, and separator
JP2009209037A (en) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd Composite metal oxide and sodium secondary battery
WO2010024304A1 (en) * 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
JP2010092879A (en) * 2009-12-18 2010-04-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
EP2214235A1 (en) * 2007-10-30 2010-08-04 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
WO2010090340A1 (en) 2009-02-06 2010-08-12 住友化学株式会社 Resin composition, sheet, and porous film
JP2010195898A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Polyolefin-based resin composition, method for producing porous film by using the composition, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
WO2010104202A1 (en) * 2009-03-13 2010-09-16 住友化学株式会社 Composite metal oxide, electrode, and sodium secondary battery
EP2242132A1 (en) * 2008-02-04 2010-10-20 Sumitomo Chemical Company, Limited Sodium rechargeable battery
WO2011016571A1 (en) 2009-08-06 2011-02-10 住友化学株式会社 Porous film, separator for batteries, and battery
JP2011032446A (en) * 2009-08-06 2011-02-17 Sumitomo Chemical Co Ltd Porous film, battery separator, and battery
JP2011032445A (en) * 2009-08-06 2011-02-17 Sumitomo Chemical Co Ltd Porous film, battery separator, and battery
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides
JP2012169286A (en) * 2012-04-20 2012-09-06 Mitsubishi Plastics Inc Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2012521615A (en) * 2009-03-19 2012-09-13 アムテック リサーチ インターナショナル エルエルシー Self-supporting, heat-resistant microporous film for use in energy storage devices
WO2013099539A1 (en) * 2011-12-26 2013-07-04 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film, polyolefin microporous film roll, method for producing polyolefin microporous film or polyolefin microporous film roll, and separator for batteries using polyolefin microporous film or polyolefin microporous film roll
KR101384916B1 (en) * 2006-09-26 2014-04-11 스미또모 가가꾸 가부시끼가이샤 Multilayer porous film and separator for nonaqueous electrolyte secondary battery
WO2014104687A1 (en) * 2012-12-24 2014-07-03 뉴로엘리싯 주식회사 Method for manufacturing organic-inorganic porous separator for secondary battery, and organic-inorganic porous separator manufactured therefrom
KR101660209B1 (en) 2015-11-30 2016-09-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101660210B1 (en) 2015-11-30 2016-10-10 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101688370B1 (en) 2015-11-30 2016-12-20 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery
US10062890B2 (en) 2013-10-28 2018-08-28 Sumitomo Chemical Company, Limited Laminated porous film, non-aqueous electrolyte secondary battery separator, and non-aqueous electrolyte secondary battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US10573867B2 (en) 2015-11-30 2020-02-25 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell
JPH0631844A (en) * 1992-07-21 1994-02-08 Unitika Ltd Waterproof and moisture-permeable sheet material
JPH106453A (en) * 1996-06-21 1998-01-13 Sumitomo Chem Co Ltd Paraaramid porous film and cell separator using the same
JPH1160792A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Corp Porous film of polyethylene resin and its production
JPH11106535A (en) * 1997-10-08 1999-04-20 Nitto Denko Corp Polyolefin porous membrane and its manufacture and battery separator therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell
JPH0631844A (en) * 1992-07-21 1994-02-08 Unitika Ltd Waterproof and moisture-permeable sheet material
JPH106453A (en) * 1996-06-21 1998-01-13 Sumitomo Chem Co Ltd Paraaramid porous film and cell separator using the same
JPH1160792A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Corp Porous film of polyethylene resin and its production
JPH11106535A (en) * 1997-10-08 1999-04-20 Nitto Denko Corp Polyolefin porous membrane and its manufacture and battery separator therefrom

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197172A (en) * 2001-12-26 2003-07-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003317794A (en) * 2002-04-22 2003-11-07 Kawasaki Heavy Ind Ltd Fiber cell and its manufacturing method
JP2003340221A (en) * 2002-05-28 2003-12-02 Sumitomo Chem Co Ltd Filter medium for microfilter
JP2004139933A (en) * 2002-10-21 2004-05-13 Mitsubishi Plastics Ind Ltd Separator and battery using the same
JP4658442B2 (en) * 2002-10-21 2011-03-23 三菱樹脂株式会社 Separator and battery using the same
JP4591010B2 (en) * 2004-03-03 2010-12-01 東洋紡績株式会社 Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP2005281669A (en) * 2004-03-03 2005-10-13 Toyobo Co Ltd Porous membrane, method for producing the same and lithium ion secondary battery using the same
JP5052135B2 (en) * 2004-08-30 2012-10-17 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane and battery separator
WO2006025323A1 (en) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corporation Microporous polyolefin film and separator for storage cell
US9203072B2 (en) 2004-08-30 2015-12-01 Asahi Kasei Chemicals Corporation Microporous polyolefin film and separator for storage cell
JPWO2006025323A1 (en) * 2004-08-30 2008-05-08 旭化成ケミカルズ株式会社 Polyolefin microporous membrane and battery separator
JP4646199B2 (en) * 2004-09-29 2011-03-09 日東電工株式会社 Method for producing porous membrane
JP2006100120A (en) * 2004-09-29 2006-04-13 Nitto Denko Corp Manufacturing method of porous membrane
JP4661155B2 (en) * 2004-10-04 2011-03-30 住友化学株式会社 Resin composition containing inorganic fine particles
JP2006104278A (en) * 2004-10-04 2006-04-20 Sumitomo Chemical Co Ltd Resin composition containing inorganic fine particle
JP2006307163A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Sheet comprising polyolefin resin composition, porous film, and separator for electric battery
JP2006289657A (en) * 2005-04-06 2006-10-26 Asahi Kasei Chemicals Corp Multilayered porous film
JP2006344506A (en) * 2005-06-09 2006-12-21 Tomoegawa Paper Co Ltd Separator for electronic components
WO2006134833A1 (en) * 2005-06-14 2006-12-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP4902537B2 (en) * 2005-06-24 2012-03-21 東レ東燃機能膜合同会社 Polyethylene multilayer microporous membrane and battery separator and battery using the same
WO2006137540A1 (en) * 2005-06-24 2006-12-28 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
JP2007115479A (en) * 2005-10-19 2007-05-10 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2007273443A (en) * 2005-12-22 2007-10-18 Asahi Kasei Chemicals Corp Multilayered porous membrane and its manufacturing method
JP2007294437A (en) * 2006-03-29 2007-11-08 Hitachi Maxell Ltd Separator for electrochemical cell, and lithium secondary battery
KR101057844B1 (en) 2006-09-20 2011-08-19 아사히 가세이 케미칼즈 가부시키가이샤 Separators for polyolefin microporous membranes and nonaqueous electrolyte batteries
JP5172683B2 (en) * 2006-09-20 2013-03-27 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane and non-aqueous electrolyte battery separator
EP2065432A4 (en) * 2006-09-20 2010-11-03 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
US9722225B2 (en) 2006-09-20 2017-08-01 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
EP2065432A1 (en) * 2006-09-20 2009-06-03 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
US9722226B2 (en) 2006-09-20 2017-08-01 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane and separator for nonaqueous electrolyte battery
KR101384916B1 (en) * 2006-09-26 2014-04-11 스미또모 가가꾸 가부시끼가이샤 Multilayer porous film and separator for nonaqueous electrolyte secondary battery
WO2008062895A1 (en) * 2006-11-21 2008-05-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material and positive electrode active material
US20100055554A1 (en) * 2006-11-21 2010-03-04 Sumitomo Chemical Company, Limited Positive electrode active material powder and positive electrode active material
JP2008153197A (en) * 2006-11-21 2008-07-03 Sumitomo Chemical Co Ltd Powder for positive electrode active material and positive electrode active material
WO2008149895A1 (en) * 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
US7892672B2 (en) 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US9029002B2 (en) 2007-06-19 2015-05-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US7976987B2 (en) 2007-06-19 2011-07-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
EP2214235A1 (en) * 2007-10-30 2010-08-04 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
EP2214235A4 (en) * 2007-10-30 2012-03-28 Sumitomo Chemical Co Nonaqueous electrolyte secondary battery, electrode and carbon material
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
WO2009099061A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
EP2242132A4 (en) * 2008-02-04 2013-10-23 Sumitomo Chemical Co Sodium rechargeable battery
EP2242132A1 (en) * 2008-02-04 2010-10-20 Sumitomo Chemical Company, Limited Sodium rechargeable battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
WO2009099058A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive electrode active material, and sodium rechargeable battery
JP2009209037A (en) * 2008-02-06 2009-09-17 Sumitomo Chemical Co Ltd Composite metal oxide and sodium secondary battery
KR101572289B1 (en) 2008-02-20 2015-11-26 스미또모 가가꾸 가부시키가이샤 Porous film, multilayer porous film comprising the same, and separator
WO2009104810A1 (en) 2008-02-20 2009-08-27 住友化学株式会社 Porous film, multilayer porous film comprising the same, and separator
JP2009197096A (en) * 2008-02-20 2009-09-03 Sumitomo Chemical Co Ltd Porous film, laminated porous film containing the same and separator
WO2010024304A1 (en) * 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
KR101621579B1 (en) 2009-02-06 2016-05-16 스미또모 가가꾸 가부시끼가이샤 Resin composition, sheet, and porous film
WO2010090340A1 (en) 2009-02-06 2010-08-12 住友化学株式会社 Resin composition, sheet, and porous film
JP2010180341A (en) * 2009-02-06 2010-08-19 Sumitomo Chemical Co Ltd Resin composition, sheet and porous film
JP2010195898A (en) * 2009-02-24 2010-09-09 Sumitomo Chemical Co Ltd Polyolefin-based resin composition, method for producing porous film by using the composition, porous film, method for producing laminated porous film, laminated porous film, and separator for battery
US9502714B2 (en) 2009-03-13 2016-11-22 Sumitomo Chemical Company, Limited Mixed metal oxide, electrode, and sodium secondary battery
JP2010235434A (en) * 2009-03-13 2010-10-21 Sumitomo Chemical Co Ltd Composite metal oxide, electrode, and sodium secondary battery
WO2010104202A1 (en) * 2009-03-13 2010-09-16 住友化学株式会社 Composite metal oxide, electrode, and sodium secondary battery
JP2012521615A (en) * 2009-03-19 2012-09-13 アムテック リサーチ インターナショナル エルエルシー Self-supporting, heat-resistant microporous film for use in energy storage devices
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides
JP2011032446A (en) * 2009-08-06 2011-02-17 Sumitomo Chemical Co Ltd Porous film, battery separator, and battery
KR101791376B1 (en) 2009-08-06 2017-10-27 스미또모 가가꾸 가부시끼가이샤 Porous film, separator for batteries, and battery
US9259900B2 (en) 2009-08-06 2016-02-16 Sumitomo Chemical Company, Limited Porous film, battery separator, and battery
KR101679451B1 (en) * 2009-08-06 2016-11-24 스미또모 가가꾸 가부시끼가이샤 Porous film, separator for batteries, and battery
JP2011032445A (en) * 2009-08-06 2011-02-17 Sumitomo Chemical Co Ltd Porous film, battery separator, and battery
WO2011016571A1 (en) 2009-08-06 2011-02-10 住友化学株式会社 Porous film, separator for batteries, and battery
JP2010092879A (en) * 2009-12-18 2010-04-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2013099539A1 (en) * 2011-12-26 2013-07-04 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film, polyolefin microporous film roll, method for producing polyolefin microporous film or polyolefin microporous film roll, and separator for batteries using polyolefin microporous film or polyolefin microporous film roll
JPWO2013099539A1 (en) * 2011-12-26 2015-04-30 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film, polyolefin microporous film roll, production method thereof, and battery separator using them
JP2012169286A (en) * 2012-04-20 2012-09-06 Mitsubishi Plastics Inc Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2014104687A1 (en) * 2012-12-24 2014-07-03 뉴로엘리싯 주식회사 Method for manufacturing organic-inorganic porous separator for secondary battery, and organic-inorganic porous separator manufactured therefrom
US10062890B2 (en) 2013-10-28 2018-08-28 Sumitomo Chemical Company, Limited Laminated porous film, non-aqueous electrolyte secondary battery separator, and non-aqueous electrolyte secondary battery
KR101660209B1 (en) 2015-11-30 2016-09-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator, laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9741990B2 (en) 2015-11-30 2017-08-22 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery laminated separator
US9941499B2 (en) 2015-11-30 2018-04-10 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminated separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
KR101688370B1 (en) 2015-11-30 2016-12-20 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery
KR101660210B1 (en) 2015-11-30 2016-10-10 스미또모 가가꾸 가부시키가이샤 Laminated separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US10573867B2 (en) 2015-11-30 2020-02-25 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator

Also Published As

Publication number Publication date
JP5140896B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5140896B2 (en) Porous film and battery separator using the same
KR100912800B1 (en) Porous film, separator for battery using the same, and battery comprising the separator
US9259900B2 (en) Porous film, battery separator, and battery
KR101621579B1 (en) Resin composition, sheet, and porous film
JP5286817B2 (en) Separator
JP5845381B1 (en) Polyolefin laminated porous membrane, battery separator using the same, and method for producing polyolefin laminated porous membrane
WO2015125712A1 (en) Laminated porous film and non-aqueous electrolyte secondary cell
JP5476844B2 (en) Porous film, battery separator and battery
WO2010123086A1 (en) Coating liquid
JP2012077220A (en) Method for producing polyolefin resin composition, and method for producing porous film made of polyolefin resin
JP6781565B2 (en) Separator for power storage device
JP5476845B2 (en) Porous film, battery separator and battery
JP5874781B2 (en) Resin composition, sheet, and porous film
JP2012076384A (en) Laminated porous film and battery
KR20220136213A (en) Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5140896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees