JP5874781B2 - Resin composition, sheet, and porous film - Google Patents

Resin composition, sheet, and porous film Download PDF

Info

Publication number
JP5874781B2
JP5874781B2 JP2014120253A JP2014120253A JP5874781B2 JP 5874781 B2 JP5874781 B2 JP 5874781B2 JP 2014120253 A JP2014120253 A JP 2014120253A JP 2014120253 A JP2014120253 A JP 2014120253A JP 5874781 B2 JP5874781 B2 JP 5874781B2
Authority
JP
Japan
Prior art keywords
porous film
molecular weight
polyolefin
sheet
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014120253A
Other languages
Japanese (ja)
Other versions
JP2014218668A (en
Inventor
博彦 長谷川
博彦 長谷川
大三郎 屋鋪
大三郎 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2014120253A priority Critical patent/JP5874781B2/en
Publication of JP2014218668A publication Critical patent/JP2014218668A/en
Application granted granted Critical
Publication of JP5874781B2 publication Critical patent/JP5874781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、樹脂組成物、該樹脂組成物を成形して得られるシート、および該シートを延伸して得られる多孔質フィルムに関する。 The present invention relates to a resin composition, a sheet obtained by molding the resin composition, and a porous film obtained by stretching the sheet.

多孔質フィルムは、衛生材料、医療用材料、電池セパレータ等、多種用途に使用されている。中でも多孔質フィルムをリチウムイオン二次電池等の電池用セパレータとして用いる場合には、高い突刺し強度が要求される。
突刺し強度に優れる多孔質フィルムを製造する方法として、重量平均分子量が5×10以上の高分子量ポリオレフィンと、重量平均分子量が2×10以下の熱可塑性樹脂と、微粒子とを含む組成物を混練し、シート状に成形した後、該シートを延伸して多孔質フィルムを製造する方法が知られている(特許文献1参照)。
しかしながら前記した組成物を用いて均質な多孔質フィルムを長時間に渡って製造する場合には、混練条件を厳密に制御する必要があるため、より加工性に優れる組成物が求められていた。
The porous film is used for various applications such as sanitary materials, medical materials, and battery separators. In particular, when a porous film is used as a battery separator such as a lithium ion secondary battery, high piercing strength is required.
A composition comprising a high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, a thermoplastic resin having a weight average molecular weight of 2 × 10 4 or less, and fine particles as a method for producing a porous film having excellent puncture strength Is kneaded and formed into a sheet shape, and then a method for producing a porous film by stretching the sheet is known (see Patent Document 1).
However, in the case where a homogeneous porous film is produced for a long time using the above-described composition, it is necessary to strictly control the kneading conditions, and therefore a composition having better workability has been demanded.

特開2002−69221号公報JP 2002-69221 A

本発明の目的は、フィルム製造時の加工性と得られるフィルムの突刺し強度とのバランスに優れる樹脂組成物、該樹脂組成物を用いて得られるシート、多孔質フィルム、それを用いてなる電池用セパレータ及び電池を提供することにある。 An object of the present invention is to provide a resin composition having an excellent balance between processability during film production and the piercing strength of the obtained film, a sheet obtained using the resin composition, a porous film, and a battery using the same It is providing a separator for a battery and a battery.

すなわち本発明は、[1]〜[6]に係るものである。
[1]フィラー、高分子量ポリオレフィン、および重量平均分子量700〜6000のポリオレフィンワックスを含む樹脂組成物であって、該樹脂組成物中に含まれる前記超高分子量ポリオレフィンの重量をW1、重量平均分子量700〜6000のポリオレフィンワックス重量をW2とし、前記超高分子量ポリオレフィンの固有粘度を[η]とするとき、下記式(1)を満たす樹脂組成物。
[η]×4.3−21< {W2/(W1+W2)}×100 < [η]×4.3−8 式(1)
[2]上記[1]の樹脂組成物を成形して得られるシート
[3]上記[2]のシートを、延伸して得られる多孔質フィルム。
[4]上記[3]の多孔質フィルムと、多孔質の耐熱層とが積層されてなる積層多孔質フィルム。
[5]上記[3]に記載の多孔質フィルムまたは上記[4]に記載の積層多孔質フィルムを含む電池用セパレータ。
[6]上記[5]に記載の電池用セパレータを含む電池。
That is, the present invention relates to [1] to [6].
[1] A resin composition comprising a filler, a high molecular weight polyolefin, and a polyolefin wax having a weight average molecular weight of 700 to 6000, wherein the weight of the ultrahigh molecular weight polyolefin contained in the resin composition is W1, and the weight average molecular weight is 700. The resin composition which satisfy | fills following formula (1) when the polyolefin wax weight of -6000 is set to W2, and the intrinsic viscosity of the said ultra high molecular weight polyolefin is set to [(eta)].
[Η] × 4.3−21 <{W2 / (W1 + W2)} × 100 <[η] × 4.3−8 Formula (1)
[2] Sheet obtained by molding the resin composition of [1] [3] A porous film obtained by stretching the sheet of [2].
[4] A laminated porous film obtained by laminating the porous film of [3] above and a porous heat-resistant layer.
[5] A battery separator comprising the porous film according to [3] or the laminated porous film according to [4].
[6] A battery comprising the battery separator according to [5].

本発明によれば、フィルム製造時の加工性と得られるフィルムの突刺し強度とのバランスに優れる樹脂組成物、該樹脂組成物を用いて得られるシート、多孔質フィルム、それを用いてなる電池用セパレータ及び電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the resin composition which is excellent in the balance of the workability at the time of film manufacture, and the piercing strength of the film obtained, the sheet | seat obtained using this resin composition, a porous film, and a battery using the same Separators and batteries can be provided.

本発明は、フィラー、高分子量ポリオレフィン、および重量平均分子量700〜6000のポリオレフィンワックスを含む樹脂組成物であって、該樹脂組成物中に含まれる前記高分子量ポリオレフィンの重量をW1、重量平均分子量700〜6000のポリオレフィンワックス重量をW2とし、前記高分子量ポリオレフィンの固有粘度を[η]とするとき、下記式(1)を満たす樹脂組成物である。
[η]×4.3−21< {W2/(W1+W2)}×100 < [η]×4.3−8 式(1)
上記式(1)を満たす本発明の樹脂組成物は、フィルム製造時の加工性と得られるフィルムの突刺し強度とのバランスに優れるものである。
The present invention is a resin composition comprising a filler, a high molecular weight polyolefin, and a polyolefin wax having a weight average molecular weight of 700 to 6000, wherein the weight of the high molecular weight polyolefin contained in the resin composition is W1, and the weight average molecular weight is 700. It is a resin composition satisfying the following formula (1) when the weight of the polyolefin wax of ˜6000 is W2 and the intrinsic viscosity of the high molecular weight polyolefin is [η].
[Η] × 4.3−21 <{W2 / (W1 + W2)} × 100 <[η] × 4.3−8 Formula (1)
The resin composition of the present invention satisfying the above formula (1) is excellent in the balance between processability during film production and the piercing strength of the obtained film.

本発明における高分子量ポリオレフィンは、固有粘度[η]が4〜30であることが、得られる多孔質フィルムの突刺し強度とフィルム製造時の加工性とのバランスの観点から好ましく、5〜15であることがより好ましい。高分子量ポリオレフィンとしては、例えばエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した高分子量の単独重合体または共重合体が挙げられる。中でもエチレン由来の構成単位を主成分とする高分子量ポリエチレンが好ましい。 The high molecular weight polyolefin in the present invention preferably has an intrinsic viscosity [η] of 4 to 30 from the viewpoint of the balance between the piercing strength of the obtained porous film and the workability during film production, and is preferably 5 to 15. More preferably. Examples of the high molecular weight polyolefin include a high molecular weight homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Among these, high molecular weight polyethylene mainly composed of ethylene-derived structural units is preferable.

高分子量ポリオレフィンの固有粘度とは、溶媒としてテトラリンを用い、ウベローデ粘度計で135℃にてJISK7130に準拠して測定することによって得られる固有粘度である。 The intrinsic viscosity of the high molecular weight polyolefin is an intrinsic viscosity obtained by measuring in accordance with JISK7130 at 135 ° C. with a Ubbelohde viscometer using tetralin as a solvent.

本発明におけるポリオレフィンワックスは、重量平均分子量が700〜6000のワックスである。ポリオレフィンワックスの重量平均分子量とは、GPC測定により求められたポリスチレン換算の重量平均分子量である。GPC測定は例えば、溶媒としてo−ジクロルベンゼンを用い、140℃で行なう。
ポリオレフィンワックスとしては、エチレン単独重合体、エチレン−α−オレフィン共重合体等のポリエチレン樹脂、プロピレン単独重合体、プロピレン−α−オレフィン共重合体等のポリプロピレン系樹脂、ポリ(4−メチルペンテン−1)、ポリ(ブテン−1)、エチレン−酢酸ビニル共重合体などが挙げられる。
高分子量ポリオレフィンとの相溶性に優れるポリオレフィンワックスを選択することが好ましく、例えば高分子量ポリオレフィンとして高分子量ポリエチレンを用い、ポリオレフィンワックスとしてポリエチレンワックス、とりわけエチレン−α−オレフィン共重合体ワックスを用いることが好ましい。
The polyolefin wax in the present invention is a wax having a weight average molecular weight of 700 to 6000. The weight average molecular weight of the polyolefin wax is a weight average molecular weight in terms of polystyrene determined by GPC measurement. For example, GPC measurement is performed at 140 ° C. using o-dichlorobenzene as a solvent.
Polyolefin waxes include polyethylene resins such as ethylene homopolymers and ethylene-α-olefin copolymers, polypropylene resins such as propylene homopolymers and propylene-α-olefin copolymers, and poly (4-methylpentene-1 ), Poly (butene-1), ethylene-vinyl acetate copolymer, and the like.
It is preferable to select a polyolefin wax excellent in compatibility with the high molecular weight polyolefin, for example, it is preferable to use a high molecular weight polyethylene as the high molecular weight polyolefin, and a polyethylene wax, particularly an ethylene-α-olefin copolymer wax, as the polyolefin wax. .

本発明における高分子量ポリオレフィンとポリオレフィンワックスを上記の式(1)を満たす範囲でフィラーと共に混合すると、シートやフィルムにする際に加工しやすく、また得られたシートやフィルムは高い突刺し強度をもつ。高分子量ポリオレフィンの固有粘度に応じて、適量のポリオレフィンワックスを加えることで、組成物の分子運動性を適度に保たれるために良好な加工性が得られると同時に、高分子量ポリオレフィンの固有粘度及び比率から十分な突刺し強度を出すことが可能となったためと考えられる。つまり
[η]×4.3−21≧ {W2/(W1+W2)}×100
を満たす場合には、シートまたはフィルムにした際に高い突刺し強度が得られるものの、加工性に劣る樹脂組成物となり、
{W2/(W1+W2)}×100 ≧ [η]×4.3−8
を満たす場合には、優れた加工性が得られるものの、シートまたはフィルムにした際に突刺強度に劣るものとなる。
When the high molecular weight polyolefin and the polyolefin wax in the present invention are mixed together with the filler within the range satisfying the above formula (1), it is easy to process into a sheet or film, and the obtained sheet or film has a high piercing strength. . Depending on the intrinsic viscosity of the high molecular weight polyolefin, by adding an appropriate amount of polyolefin wax, the molecular mobility of the composition can be maintained moderately, so that good processability is obtained, and at the same time, the intrinsic viscosity of the high molecular weight polyolefin and It is considered that sufficient puncture strength can be obtained from the ratio. That is, [η] × 4.3-21 ≧ {W2 / (W1 + W2)} × 100
When satisfying, although a high puncture strength is obtained when it is made into a sheet or film, it becomes a resin composition inferior in workability,
{W2 / (W1 + W2)} × 100 ≧ [η] × 4.3-8
When satisfy | filling, although it is excellent in workability, when it is set as a sheet | seat or a film, it will be inferior to puncture strength.

本発明におけるフィラーとしては、一般的に充填剤と呼ばれる無機又は有機の微粒子が用いられる。無機の微粒子としては、炭酸カルシウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、水酸化アルミニウム、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、マイカ、ゼオライト、ガラス粉、酸化亜鉛などが使用される。特にこれらの中でも水分の少ない炭酸カルシウムや硫酸バリウムが好ましい。有機の微粒子としては、公知の樹脂粒子が用いられ、該樹脂としてスチレン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、アクリル酸メチルなどのモノマーを単独あるいは2種類以上重合して得られる重合体、メラミン、尿素などの重縮合樹脂が好ましい。 As the filler in the present invention, inorganic or organic fine particles generally called a filler are used. Inorganic fine particles include calcium carbonate, talc, clay, kaolin, silica, hydrotalcite, diatomaceous earth, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, aluminum hydroxide, magnesium hydroxide, calcium oxide, oxidation Magnesium, titanium oxide, alumina, mica, zeolite, glass powder, zinc oxide and the like are used. Of these, calcium carbonate and barium sulfate with low water content are particularly preferred. As the organic fine particles, known resin particles are used. As the resin, a polymer such as styrene, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, methyl acrylate, or the like obtained by polymerization alone or in combination of two or more types. Polycondensation resins such as coalescence, melamine and urea are preferred.

フィラーは、シートを延伸する前、又は延伸した後に除去してもよい。その際には、フィラーが水溶性であると、中性、酸性やアルカリ性などの水溶液で簡便に除去できるため好ましい。水溶性のフィラーとしては、例えば前述の微粒子の中ではタルク、クレー、カオリン、珪藻土、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、酸化カルシウム、酸化カルシウム、水酸化マグネシウム、水酸化カルシウム、酸化亜鉛、シリカが挙げられる。これらの中でも炭酸カルシウムが好ましい。   The filler may be removed before or after the sheet is stretched. In that case, it is preferable that the filler is water-soluble because it can be easily removed with an aqueous solution such as neutral, acidic or alkaline. Examples of the water-soluble filler include talc, clay, kaolin, diatomaceous earth, calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, calcium oxide, calcium oxide, magnesium hydroxide, calcium hydroxide, and zinc oxide among the aforementioned fine particles. And silica. Among these, calcium carbonate is preferable.

フィラーの平均粒径は、0.01〜3μmが好ましく、0.02〜1μmがより好ましく、0.05〜0.5μmが最も好ましい。平均粒径が3μm以下であるとより突刺し強度に優れるフィルムを得ることができ、0.01μm以上であると、高分子量ポリオレフィン及びポリオレフィンワックス内で高分散しやすくなるため、延伸によって均一に開孔しやすくなる。 The average particle size of the filler is preferably 0.01 to 3 μm, more preferably 0.02 to 1 μm, and most preferably 0.05 to 0.5 μm. When the average particle size is 3 μm or less, a film having better piercing strength can be obtained. When the average particle size is 0.01 μm or more, it becomes easy to highly disperse in the high molecular weight polyolefin and the polyolefin wax. It becomes easy to perforate.

また本発明に用いるフィラーは、高分子量ポリオレフィン及びポリオレフィンワックスとの分散性向上、樹脂との界面剥離のしやすさ、外部からの水分の吸収を防ぐ、という観点から、表面処理が施されたものが好ましい。表面処理剤としては例えば、ステアリン酸、ラウリル酸等の高級脂肪酸又はその金属塩を挙げることができる。 The filler used in the present invention has been subjected to a surface treatment from the viewpoints of improving dispersibility with high molecular weight polyolefin and polyolefin wax, facilitating interfacial peeling from the resin, and preventing external moisture absorption. Is preferred. Examples of the surface treatment agent include higher fatty acids such as stearic acid and lauric acid, and metal salts thereof.

本発明の樹脂組成物におけるフィラーの含有量は、高分子量ポリオレフィンとポリオレフィンワックスの合計体積を100体積部とするとき、該合計体積100体積部に対して、好ましくは15〜150体積部であり、より好ましくは25〜100体積部である。15体積部以上であれば、延伸により十分に開孔し良好な多孔質フィルムを得ることができ、また150体積部以下であると樹脂比率が高いため突刺し強度に優れた多孔質フィルムを得ることができる。   The filler content in the resin composition of the present invention is preferably 15 to 150 parts by volume with respect to 100 parts by volume when the total volume of the high molecular weight polyolefin and the polyolefin wax is 100 parts by volume. More preferably, it is 25-100 volume parts. If it is 15 parts by volume or more, it can be sufficiently opened by stretching to obtain a good porous film, and if it is 150 parts by volume or less, a resin ratio is high, so that a porous film having excellent puncture strength is obtained. be able to.

また本発明の樹脂組成物には、必要に応じて本発明の目的を損じない範囲で一般に使用される添加剤(帯電防止剤、可塑剤、滑剤、酸化防止剤、増核剤など)を加えてもよい。 The resin composition of the present invention may be added with additives (antistatic agents, plasticizers, lubricants, antioxidants, nucleating agents, etc.) that are generally used as long as they do not impair the purpose of the present invention. May be.

本発明のポリオレフィン系樹脂組成物の製造方法は、特に限定はされないが、原料である高分子量ポリオレフィン、ポリオレフィンワックス、フィラー、必要に応じて添加剤を、高いせん断力を有する混練装置にて混練することにより得ることができる。具体的には、ロール、バンバリミキサー、一軸押出機、二軸押出機などが例示される。   The method for producing the polyolefin resin composition of the present invention is not particularly limited, but the raw material high molecular weight polyolefin, polyolefin wax, filler, and additives as necessary are kneaded in a kneading apparatus having high shearing force. Can be obtained. Specifically, a roll, a Banbury mixer, a single screw extruder, a twin screw extruder, etc. are illustrated.

本発明の樹脂組成物を成形してシートを製造する方法は、特に限定はされないが、インフレーション加工、カレンダー加工、Tダイ押出加工、スカイフ法等が挙げられる。より膜厚精度の高いシートが得られることから、下記の方法により製造することが好ましい。   The method for producing the sheet by molding the resin composition of the present invention is not particularly limited, and examples thereof include inflation processing, calendar processing, T-die extrusion processing, and Skyf method. Since a sheet with higher film thickness accuracy can be obtained, it is preferable to produce the sheet by the following method.

シートの好ましい製造方法とは、樹脂組成物に含有される高分子量ポリオレフィンの融点より高い表面温度に調整された一対の回転成形工具を用いて、樹脂組成物を圧延成形する方法である。回転成形工具の表面温度は、(融点+5)℃以上であることが好ましい。また表面温度の上限は、(融点+30)℃以下であることが好ましく、(融点+20)℃以下であることがさらに好ましい。一対の回転成形工具としては、ロールやベルトが挙げられる。両回転成形工具の周速度は必ずしも厳密に同一周速度である必要はなく、それらの差異が±5%以内程度であればよい。このような方法により得られるシートを用いて多孔質フィルムを製造することにより、強度やイオン透過、通気性などに優れる多孔質フィルムを得ることができる。また、前記したような方法により得られる単層のシート同士を積層したものを、多孔質フィルムの製造に使用してもよい。 A preferable production method of the sheet is a method of rolling the resin composition using a pair of rotational molding tools adjusted to a surface temperature higher than the melting point of the high molecular weight polyolefin contained in the resin composition. The surface temperature of the rotary forming tool is preferably (melting point + 5) ° C. or higher. The upper limit of the surface temperature is preferably (melting point + 30) ° C. or less, and more preferably (melting point + 20) ° C. or less. Examples of the pair of rotary forming tools include a roll and a belt. The peripheral speeds of the two rotary forming tools do not necessarily have to be exactly the same peripheral speed, and the difference between them may be about ± 5% or less. By producing a porous film using a sheet obtained by such a method, a porous film excellent in strength, ion permeation, air permeability and the like can be obtained. Moreover, you may use what laminated | stacked the sheet | seat of the single layer obtained by the above methods for manufacture of a porous film.

樹脂組成物を一対の回転成形工具により圧延成形する際には、押出機よりストランド状に吐出した樹脂組成物を直接一対の回転成形工具間に導入してもよく、一旦ペレット化した樹脂組成物を用いてもよい。   When the resin composition is roll-formed with a pair of rotational molding tools, the resin composition discharged in a strand form from an extruder may be directly introduced between the pair of rotational molding tools, and the resin composition once pelletized May be used.

樹脂組成物を成形して得られるシートを延伸して多孔質フィルムとする方法は、特に限定はされないが、テンター、ロール、オートグラフなどの公知の装置を用いて延伸することができる。また延伸は一軸方向でも二軸方向でもよく、また延伸を一段で行なっても、多段階に分けて行なってもよい。樹脂とフィラーの界面剥離を起こさせるために、延伸倍率は2〜12倍が好ましく、4〜10倍がより好ましい。延伸温度は、通常高分子量ポリオレフィンの軟化点以上融点以下の温度で行なわれ、80℃〜120℃で行なうことが好ましい。このような温度で延伸を行なうことにより、延伸時にフィルムが破膜しにくく、かつ高分子量ポリオレフィンが溶融しにくいため、樹脂とフィラーの界面剥離によって生じた孔が閉孔しにくくなる。また延伸の後に、必要に応じて孔の形態を安定化するために熱固定処理を行なってもよい。   Although the method of extending | stretching the sheet | seat obtained by shape | molding a resin composition and making it a porous film is not specifically limited, It can extend | stretch using well-known apparatuses, such as a tenter, a roll, and an autograph. Further, the stretching may be performed in a uniaxial direction or a biaxial direction, and the stretching may be performed in one step or in multiple steps. In order to cause interface peeling between the resin and the filler, the draw ratio is preferably 2 to 12 times, and more preferably 4 to 10 times. The stretching temperature is usually from a softening point to a melting point of the high molecular weight polyolefin and preferably from 80 ° C to 120 ° C. By stretching at such a temperature, the film hardly breaks during stretching, and the high-molecular-weight polyolefin hardly melts, so that the holes generated by the interface peeling between the resin and the filler are difficult to close. In addition, after stretching, a heat setting treatment may be performed as necessary to stabilize the shape of the holes.

樹脂組成物を成形して得られるシートから、少なくとも一部のフィラーを除去した後、上記したような方法で延伸して多孔質フィルムを製造してもよい。あるいは、樹脂組成物を成形して得られるシートを上記したような方法で延伸した後、少なくとも一部のフィラーを除去して多孔質フィルムを製造してもよい。フィラーを除去する方法としては、シートまたは延伸後のフィルムを、フィラーを溶解可能な液体に浸漬する方法が挙げられる。   After removing at least a part of the filler from the sheet obtained by molding the resin composition, it may be stretched by the method described above to produce a porous film. Or after extending | stretching the sheet | seat obtained by shape | molding a resin composition by the above-mentioned method, you may remove a at least one part filler and manufacture a porous film. Examples of the method for removing the filler include a method of immersing the sheet or the stretched film in a liquid capable of dissolving the filler.

本発明では、前記したような方法で得られる多孔質フィルムの少なくとも片面に、多孔質の耐熱層を積層することができる。このような耐熱層を有する積層多孔質フィルムは、膜厚の均一性や耐熱性、強度、イオン透過性に優れるため、非水電解液電池用セパレータ、特にリチウム2次電池用セパレータとして好適に使用することができる。   In the present invention, a porous heat-resistant layer can be laminated on at least one surface of the porous film obtained by the method as described above. A laminated porous film having such a heat-resistant layer is excellent in uniformity of film thickness, heat resistance, strength, and ion permeability, and therefore suitable for use as a separator for non-aqueous electrolyte batteries, particularly as a separator for lithium secondary batteries. can do.

前記耐熱層を構成する耐熱樹脂としては、主鎖に窒素原子を含む重合体が好ましく、特に芳香族環を含むものが耐熱性の観点から好ましい。例えば、芳香族ポリアラミド(以下、「アラミド」ということがある)、芳香族ポリイミド(以下、「ポリイミド」ということがある)、芳香族ポリアミドイミドなどが挙げられる。アラミドとしては、例えばメタ配向芳香族ポリアミドとパラ配向芳香族ポリアミド(以下、「パラアラミド」ということがある)が挙げられ、膜厚が均一で通気性に優れる多孔性の耐熱層を形成しやすいことからパラアラミドが好ましい。   The heat-resistant resin constituting the heat-resistant layer is preferably a polymer containing a nitrogen atom in the main chain, and particularly preferably contains an aromatic ring from the viewpoint of heat resistance. For example, aromatic polyaramid (hereinafter sometimes referred to as “aramid”), aromatic polyimide (hereinafter sometimes referred to as “polyimide”), aromatic polyamideimide, and the like can be given. Examples of aramids include meta-oriented aromatic polyamides and para-oriented aromatic polyamides (hereinafter sometimes referred to as “para-aramids”), and it is easy to form a porous heat-resistant layer having a uniform film thickness and excellent air permeability. To para-aramid.

パラアラミドとは、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮合重合により得られるものであり、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば4,4’−ビフェニレン、1,5−ナフタレン、2,6−ナフタレン等のような反対方向に同軸または平行に伸びる配向位)で結合される繰り返し単位から実質的になるものである。具体的には、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロローパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合等のパラ配向型、またはパラ配向型に準じた構造を有するパラアラミドが例示される。   Para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′-biphenylene). , 1,5-naphthalene, 2,6-naphthalene, and the like, which are substantially composed of repeating units bonded in the opposite direction (orientation positions extending coaxially or in parallel). Specifically, poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly ( (Paraphenylene 2,6-naphthalene dicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, etc. Para-aramid having a similar structure is exemplified.

耐熱層を設ける際には、通常耐熱樹脂を溶媒に溶かして塗工液として用いる。耐熱樹脂がパラアラミドである場合、前記溶媒としては、極性アミド系溶媒または極性尿素系溶媒を用いることができ、具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、テトラメチルウレアなどが挙げられるが、これらに限定されるものではない。
塗工性の観点から耐熱樹脂は、固有粘度1.0〜2.8dl/gの耐熱樹脂であることが好ましく、固有粘度1.7〜2.5dl/gの耐熱樹脂であることがより好ましい。ここでの固有粘度は、一度析出させた耐熱樹脂を溶解し、耐熱樹脂硫酸溶液にして測定された値である。塗工性の観点から塗工液中の耐熱樹脂濃度は0.5〜10重量%であることが好ましい。
When providing a heat-resistant layer, a heat-resistant resin is usually dissolved in a solvent and used as a coating solution. When the heat-resistant resin is para-aramid, a polar amide solvent or a polar urea solvent can be used as the solvent. Specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Examples include, but are not limited to, -2-pyrrolidone and tetramethylurea.
From the viewpoint of coatability, the heat resistant resin is preferably a heat resistant resin having an intrinsic viscosity of 1.0 to 2.8 dl / g, and more preferably a heat resistant resin having an intrinsic viscosity of 1.7 to 2.5 dl / g. . The intrinsic viscosity here is a value measured by dissolving the heat-resistant resin once deposited and making it into a heat-resistant resin sulfuric acid solution. From the viewpoint of coating properties, the heat-resistant resin concentration in the coating solution is preferably 0.5 to 10% by weight.

耐熱樹脂としてパラアラミドを用いる場合、パラアラミドの溶媒への溶解性を改善する目的で、パラアラミド重合時にアルカリ金属、又はアルカリ土類金属の塩化物を添加することが好ましい。具体例としては、塩化リチウムまたは塩化カルシウムが挙げられるが、これらに限定されるものではない。上記塩化物の重合系への添加量としては、縮合重合で生成するアミド基1.0モル当たり0.5〜6.0モルが好ましく、1.0〜4.0モルがより好ましい。塩化物が0.5モル以上であると、生成するパラアラミドの溶解性が十分となり、6.0モル以下であると塩化物が溶媒に溶け残ることがなくなるため好ましい。一般には、アルカリ金属、またはアルカリ土類金属の塩化物が2重量%以上でパラアラミドの溶解性が十分となる場合が多く、10重量%以下でアルカリ金属、またはアルカリ土類金属の塩化物が極性アミド系溶媒または極性尿素系溶媒などの極性有機溶媒に溶け残ることなく完全に溶解する場合が多い。   When para-aramid is used as the heat-resistant resin, it is preferable to add an alkali metal or alkaline earth metal chloride during the para-aramid polymerization for the purpose of improving the solubility of para-aramid in a solvent. Specific examples include, but are not limited to lithium chloride or calcium chloride. The amount of the chloride added to the polymerization system is preferably 0.5 to 6.0 mol, more preferably 1.0 to 4.0 mol, per 1.0 mol of the amide group produced by condensation polymerization. If the chloride is 0.5 mol or more, the resulting para-aramid is sufficiently soluble, and if it is 6.0 mol or less, the chloride does not remain dissolved in the solvent. In general, the alkali metal or alkaline earth metal chloride is often 2% by weight or more and the solubility of para-aramid is often sufficient. At 10% by weight or less, the alkali metal or alkaline earth metal chloride is polar. In many cases, it is completely dissolved without being dissolved in a polar organic solvent such as an amide solvent or a polar urea solvent.

本発明に用いられるポリイミドとしては、芳香族の二酸無水物とジアミンの縮合重合で製造される全芳香族ポリイミドが好ましい。該二酸無水物の具体例としては、ピロメリット酸二無水物、2,2'−ビス(3,4−ジカルボキシフェニルフェニル)ヘキサフルオロプロパン、3,3'、4,4'−ビフェニルテトラカルボン酸二無水物などが挙げられる。該ジアミンの具体例としては、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3'−メチレンジアニリン、3,3'−ジアミノベンゾフェノン、3,3'−ジアミノジフェニルスルフォン、1,5−ナフタレンジアミンなどが挙げられるが、本発明は、これらに限定されるものではない。本発明においては、溶媒に可溶なポリイミドが好適に使用できる。このようなポリイミドとしては、例えば、3,3',4,4'−ジフェニルスルホンテトラカルボン酸二無水物と芳香族ジアミンとの縮合重合物のポリイミドが挙げられる。ポリイミドを溶解させる極性有機溶媒としては、アラミドを溶解させる溶媒として例示したもののほか、ジメチルスルホキサイド、クレゾール、及びo−クロロフェノールなどが好適に使用できる。   The polyimide used in the present invention is preferably a wholly aromatic polyimide produced by condensation polymerization of an aromatic dianhydride and a diamine. Specific examples of the dianhydride include pyromellitic dianhydride, 2,2′-bis (3,4-dicarboxyphenylphenyl) hexafluoropropane, 3,3 ′, 4,4′-biphenyltetra. Examples thereof include carboxylic dianhydrides. Specific examples of the diamine include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobenzophenone, 3,3′-diaminodiphenylsulfone, 1,5-naphthalene. Although diamine etc. are mentioned, this invention is not limited to these. In the present invention, a polyimide soluble in a solvent can be suitably used. An example of such a polyimide is a polyimide that is a condensation polymer of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine. As a polar organic solvent for dissolving polyimide, dimethyl sulfoxide, cresol, o-chlorophenol, and the like can be suitably used in addition to those exemplified as a solvent for dissolving aramid.

本発明において耐熱層を形成するために用いる塗工液は、セラミックス粉末を含有することが特に好ましい。任意の耐熱樹脂濃度の溶液にセラミックス粉末が添加された塗工液を用いて耐熱層を形成することにより、膜厚が均一で、かつ微細な多孔質である耐熱層を形成することができる。またセラミックス粉末の添加量によって、透気度を制御することができる。本発明におけるセラミックス粉末は、多孔質フィルムの強度や耐熱層表面の平滑性の点より、一次粒子の平均粒子径が1.0μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。
セラミックス粉末の含有量は多孔質フィルム中1重量%〜95重量%以下であることが好ましく、5重量%〜50重量%であることがより好ましい。1重量%以上であると、十分な多孔性が得られるためイオン透過性に優れ、95重量%以下であると十分な膜強度が得られるためハンドリングに優れる。使用するセラミックス粉末の形状は、特に限定はなく、球状でもランダムな形状でも使用できる。
In the present invention, the coating solution used for forming the heat-resistant layer particularly preferably contains ceramic powder. By forming a heat-resistant layer using a coating solution in which ceramic powder is added to a solution having an arbitrary heat-resistant resin concentration, it is possible to form a heat-resistant layer having a uniform film thickness and a fine porosity. The air permeability can be controlled by the amount of ceramic powder added. In the ceramic powder of the present invention, the average particle diameter of the primary particles is preferably 1.0 μm or less, more preferably 0.5 μm or less, from the viewpoint of the strength of the porous film and the smoothness of the heat-resistant layer surface. More preferably, it is 0.1 μm or less.
The content of the ceramic powder is preferably 1% by weight to 95% by weight or less in the porous film, and more preferably 5% by weight to 50% by weight. When the content is 1% by weight or more, sufficient porosity is obtained, so that the ion permeability is excellent. When the content is 95% by weight or less, sufficient film strength is obtained, so that handling is excellent. The shape of the ceramic powder to be used is not particularly limited, and can be spherical or random.

本発明におけるセラミックス粉末としては、電気絶縁性の金属酸化物、金属窒化物、金属炭化物などからなるセラミックス粉末が挙げられ、例えばアルミナ、シリカ、二酸化チタン、酸化ジルコニウムなどの粉末が好ましく用いられる。上記セラミックス粉末は単独で用いても良いし、2種類以上を混合したり、粒径の異なる同種あるいは異種のセラミックス粉末を任意に混合して用いることもできる。   Examples of the ceramic powder in the present invention include ceramic powders made of electrically insulating metal oxides, metal nitrides, metal carbides, and the like. For example, powders of alumina, silica, titanium dioxide, zirconium oxide and the like are preferably used. The above ceramic powders may be used alone, or two or more kinds thereof may be mixed, or the same or different ceramic powders having different particle diameters may be arbitrarily mixed and used.

高分子量ポリオレフィン、ポリオレフィンワックスおよびフィラーを含む樹脂組成物を用いて得られる多孔質フィルムに耐熱層を積層する方法としては、耐熱層を別に製造して後で多孔質フィルムと積層する方法、多孔質フィルムの少なくとも片面にセラミックス粉末と耐熱樹脂とを含有する塗工液を塗布して耐熱層を形成する方法などが挙げられるが、生産性の観点から後者の方法が好ましい。後者の方法としては具体的には以下のような工程を含む方法が挙げられる。
(a)耐熱樹脂100重量部を含む極性有機溶媒溶液に、耐熱樹脂100重量部に対しセラミックス粉末を1〜500重量部分散したスラリー状塗工液を調整する
(b)該塗工液を多孔質フィルムの少なくとも片面に塗工し、塗工膜を形成する。
(c)加湿、溶媒除去、あるいは耐熱樹脂を溶解しない溶媒への浸漬などの手段で、前記塗工膜から耐熱樹脂を析出させた後、必要に応じて乾燥する。
塗工液は、特開2001−316006号公報に記載の塗工装置及び特開2001−23602号公報に記載の方法により連続的に塗工することが好ましい。
As a method of laminating a heat-resistant layer on a porous film obtained by using a resin composition containing a high-molecular-weight polyolefin, a polyolefin wax and a filler, a method of separately producing a heat-resistant layer and laminating the porous film later, porous Although the method of apply | coating the coating liquid containing ceramic powder and a heat resistant resin to the at least single side | surface of a film and forming a heat resistant layer is mentioned, The latter method is preferable from a viewpoint of productivity. Specifically, the latter method includes a method including the following steps.
(A) In a polar organic solvent solution containing 100 parts by weight of a heat resistant resin, a slurry-like coating liquid in which 1 to 500 parts by weight of ceramic powder is dispersed with respect to 100 parts by weight of the heat resistant resin is prepared. (B) The coating liquid is porous. Coating is performed on at least one surface of the quality film to form a coating film.
(C) The heat resistant resin is deposited from the coating film by means of humidification, solvent removal, or immersion in a solvent that does not dissolve the heat resistant resin, and then dried as necessary.
The coating liquid is preferably applied continuously by a coating apparatus described in JP-A-2001-316006 and a method described in JP-A-2001-23602.

本発明の多孔質フィルムは、使用温度での透過性に優れ、かつ使用温度を超えた場合には低温で速やかにシャットダウン可能であり、非水系電池用セパレータとして好適である。また本発明の多孔質フィルムに耐熱層を積層させた積層多孔質フィルムは、耐熱性、強度、イオン透過性に優れ、非水系電池用セパレータ、特にリチウム2次電池用セパレータとして好適に使用することができる。   The porous film of the present invention is excellent in permeability at the use temperature and can be quickly shut down at a low temperature when the use temperature is exceeded, and is suitable as a separator for non-aqueous batteries. Moreover, the laminated porous film obtained by laminating the heat-resistant layer on the porous film of the present invention is excellent in heat resistance, strength and ion permeability, and is preferably used as a separator for non-aqueous batteries, particularly a separator for lithium secondary batteries. Can do.

本発明の電池用セパレータは、上記多孔質フィルムまたは積層多孔質フィルムを含むことを特徴とする。電池用セパレータに使用する多孔質フィルムまたは積層多孔質フィルムの上記膜抵抗は、イオン透過性の観点から5以下であることが好ましい。なお、熱をかけたときの収縮が少ないので、安全性の向上の観点から、上記積層多孔質フィルムを含むことが好ましい。 The battery separator according to the present invention includes the porous film or the laminated porous film. The membrane resistance of the porous film or laminated porous film used for the battery separator is preferably 5 or less from the viewpoint of ion permeability. In addition, since there is little shrinkage | contraction when heat | fever is applied, it is preferable to include the said laminated porous film from a viewpoint of the improvement of safety | security.

本発明の電池用セパレータが、本発明の多孔質フィルムを含むものである場合、該多孔質フィルムの空隙率は、30〜80体積%が好ましく、さらに好ましくは40〜70体積%である。該空隙率が30体積%未満では電解液の保持量が少なくなる場合があり、80%を超えると強度が不十分となり、またシャットダウン機能が低下する場合がある。また、多孔質フィルムの厚みは、5〜50μmが好ましく、より好ましくは10〜50μmが好ましく、さらに好ましくは10〜30μmである。該厚みが薄すぎると、シャットダウン機能が不充分だったり、巻回時に電池が短絡する場合があり、厚すぎると高電気容量化が達成できない場合がある。多孔質フィルムの孔径としては0.1μm以下が好ましく、0.08μm以下がより好ましい。孔径が小さくなることによって同じ透気度でも膜抵抗の値が小さな多孔質フィルムとなる。 When the battery separator of the present invention includes the porous film of the present invention, the porosity of the porous film is preferably 30 to 80% by volume, more preferably 40 to 70% by volume. If the porosity is less than 30% by volume, the amount of electrolyte retained may be reduced, and if it exceeds 80%, the strength may be insufficient and the shutdown function may be reduced. Moreover, 5-50 micrometers is preferable, as for the thickness of a porous film, 10-50 micrometers is more preferable, More preferably, it is 10-30 micrometers. If the thickness is too thin, the shutdown function may be insufficient, or the battery may be short-circuited during winding, and if it is too thick, high electrical capacity may not be achieved. The pore diameter of the porous film is preferably 0.1 μm or less, and more preferably 0.08 μm or less. By reducing the pore diameter, a porous film having a small membrane resistance value is obtained even with the same air permeability.

本発明の電池用セパレータが、本発明の積層多孔質フィルムを含むものである場合、該積層多孔質フィルムのうち、多孔質フィルムの好ましい空隙率、孔径は上記の多孔質フィルムと同様である。ただし膜厚については、積層多孔質フィルム全体として5〜50μmが好ましく、より好ましくは、10〜50μm、さらに好ましくは10〜30μmである。
積層多孔質フィルムのうち、耐熱層の空隙率は30〜80体積%が好ましく、さらに好ましくは40〜70体積%である。該空孔率が小さ過ぎると電解液の保持量が少ない傾向にあり、大きすぎると耐熱層の強度が不十分となる傾向にある。耐熱層の膜厚は0.5μm〜10μmが好ましく、さらに好ましくは1μm〜5μmである。膜厚が薄すぎると加熱時に耐熱層が収縮を抑えきれない傾向にあり、膜厚が厚すぎると電池とした際に負荷特性が悪くなる傾向にある。
When the battery separator of the present invention includes the laminated porous film of the present invention, among the laminated porous films, preferred porosity and pore diameter of the porous film are the same as those of the porous film. However, the film thickness is preferably 5 to 50 μm, more preferably 10 to 50 μm, and still more preferably 10 to 30 μm as the whole laminated porous film.
Of the laminated porous film, the porosity of the heat-resistant layer is preferably 30 to 80% by volume, more preferably 40 to 70% by volume. If the porosity is too small, the amount of electrolyte retained tends to be small, and if it is too large, the strength of the heat-resistant layer tends to be insufficient. The film thickness of the heat-resistant layer is preferably 0.5 μm to 10 μm, more preferably 1 μm to 5 μm. If the film thickness is too thin, the heat-resistant layer tends not to be able to suppress shrinkage during heating, and if the film thickness is too thick, the load characteristics tend to deteriorate when the battery is used.

本発明の電池は、本発明の電池用セパレータを含むことを特徴とする。以下に、本発明の電池がリチウム電池などの非水電解液二次電池の場合を例として、電池用セパレータ以外の構成要素について説明するが、これらに限定されるものではない。 The battery of the present invention includes the battery separator of the present invention. In the following, components other than the battery separator will be described by taking, as an example, the case where the battery of the present invention is a non-aqueous electrolyte secondary battery such as a lithium battery, but is not limited thereto.

非水電解質溶液としては、例えばリチウム塩を有機溶媒に溶解させた非水電解質溶液を用いることができる。リチウム塩としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF32、LiC(SO2CF33、Li210Cl10、低級脂肪族カルボン酸リチウム塩、LiAlCl4などのうち1種または2種以上の混合物が挙げられる。リチウム塩として、これらの中でもフッ素を含むLiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(CF3SO22、およびLiC(CF3SO23からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。 As the non-aqueous electrolyte solution, for example, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used. Examples of lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , One or a mixture of two or more of lower aliphatic carboxylic acid lithium salts, LiAlCl 4 and the like can be mentioned. The lithium salt is selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3 among these. It is preferable to use one containing at least one selected from the above.

非水電解質溶液で用いる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、または上記の有機溶媒にフッ素置換基を導入したものを用いることができるが、通常はこれらのうちの2種以上を混合して用いる。 Examples of the organic solvent used in the nonaqueous electrolyte solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di ( Carbonates such as methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2-methyl Ethers such as tetrahydrofuran; esters such as methyl formate, methyl acetate and γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethylacetate Amides such as amide; Carbamates such as 3-methyl-2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone, or those obtained by introducing a fluorine substituent into the above organic solvent Usually, a mixture of two or more of these is used.

これらの中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートの混合溶媒としては、動作温度範囲が広く、負荷特性に優れ、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。正極シートは、通常、正極活物質、導電材および結着剤を含む合剤を集電体上に担持したものを用いる。具体的には、該正極活物質として、リチウムイオンをドープ・脱ドープ可能な材料を含み、導電材として炭素質材料を含み、結着剤として熱可塑性樹脂などを含むものを用いることができる。該リチウムイオンをドープ・脱ドープ可能な材料としては、V、Mn、Fe、Co、Niなどの遷移金属を少なくとも1種含むリチウム複合酸化物が挙げられる。中でも好ましくは、平均放電電位が高いという点で、ニッケル酸リチウム、コバルト酸リチウムなどのα−NaFeO2型構造を母体とする層状リチウム複合酸化物、リチウムマンガンスピネルなどのスピネル型構造を母体とするリチウム複合酸化物が挙げられる。 Among these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate or cyclic carbonate and ether is more preferable. The mixed solvent of cyclic carbonate and non-cyclic carbonate has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material. In addition, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. As the positive electrode sheet, a sheet in which a mixture containing a positive electrode active material, a conductive material, and a binder is supported on a current collector is usually used. Specifically, as the positive electrode active material, a material containing a material that can be doped / undoped with lithium ions, a carbonaceous material as a conductive material, and a thermoplastic resin as a binder can be used. Examples of the material that can be doped / undoped with lithium ions include lithium composite oxides containing at least one transition metal such as V, Mn, Fe, Co, and Ni. Among these, in view of high average discharge potential, lithium based on a layered lithium composite oxide based on an α-NaFeO2 type structure such as lithium nickelate and lithium cobaltate and a spinel type structure such as lithium manganese spinel is preferable. A composite oxide is mentioned.

該リチウム複合酸化物は、種々の添加元素を含んでもよく、特にTi、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選ばれた少なくとも1種の金属のモル数とニッケル酸リチウム中のNiのモル数との和に対して、前記の少なくとも1種の金属が0.1〜20モル%であるように該金属を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル性が向上するので好ましい。 The lithium composite oxide may contain various additive elements, particularly at least selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Ag, Mg, Al, Ga, In, and Sn. Composite nickel acid containing a metal such that the at least one metal is 0.1 to 20 mol% with respect to the sum of the number of moles of one metal and the number of moles of Ni in lithium nickelate Lithium is preferable because cycle characteristics in use at a high capacity are improved.

該結着剤としての熱可塑性樹脂としては、ポリビニリデンフロライド、ビニリデンフロライドの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフロロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、ポリプロピレンなどが挙げられる。 As the thermoplastic resin as the binder, polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether Copolymer, ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, thermoplastic polyimide, polyethylene, polypropylene and the like.

該導電剤としての炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどが挙げられる。導電材として、それぞれ単独で用いてもよいし、例えば人造黒鉛とカーボンブラックとを混合して用いるといった複合導電材系を選択してもよい。 Examples of the carbonaceous material as the conductive agent include natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, or for example, a composite conductive material system in which artificial graphite and carbon black are mixed and used may be selected.

負極シートとしては、例えばリチウムイオンをドープ・脱ドーブ可能な材料、リチウム金属またはリチウム合金などを用いることができる。リチウムイオンをドープ・脱ドープ可能な材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料、正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物が挙げられる。炭素質材料として、電位平坦性が高く、また平均放電電位が低いため正極と組み合わせた場合大きなエネルギー密度が得られるという点で、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料が好ましい。 As the negative electrode sheet, for example, a material capable of doping and dedoping lithium ions, lithium metal, or a lithium alloy can be used. Materials that can be doped / undoped with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds, and lower potential than the positive electrode. And chalcogen compounds such as oxides and sulfides for doping and dedoping lithium ions. As a carbonaceous material, a carbonaceous material mainly composed of graphite materials such as natural graphite and artificial graphite, because it has a high potential flatness and a low average discharge potential, so that a large energy density can be obtained when combined with a positive electrode. Is preferred.

負極集電体としては、Cu、Ni、ステンレスなどを用いることができるが、特にリチウム二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。該負極集電体に負極活物質を含む合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し集電体上に塗布乾燥後プレスするなどして圧着する方法が挙げられる。 As the negative electrode current collector, Cu, Ni, stainless steel, or the like can be used. In particular, in a lithium secondary battery, Cu is preferable because it is difficult to form an alloy with lithium and it can be easily processed into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or a method of pasting into a paste using a solvent or the like and applying pressure to the current collector by pressing after drying Is mentioned.

なお、本発明の電池の形状は、特に限定されるものではなく、ペーパー型、コイン型、円筒型、角形などのいずれであってもよい。 The shape of the battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a rectangular shape, and the like.

以下に実施例、比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples.

(1)膜厚
JISK7130に準拠してミツトヨ製VL-50Aにて測定を行った。
(1) Film thickness Measured with Mitutoyo VL-50A according to JISK7130.

(2)突刺強度
多孔性フィルムを12mmΦのワッシャで固定し、ピンを200mm/minで突き刺したときの最大応力(gf)を該フィルムの突刺強度とした。ピンは、ピン径1mmΦ、先端0.5Rのものを使用した。
(2) Puncture strength The maximum stress (gf) when the porous film was fixed with a 12 mmφ washer and the pin was punctured at 200 mm / min was defined as the puncture strength of the film. A pin with a pin diameter of 1 mmΦ and a tip of 0.5R was used.

(3)メルトインデックス(MI)
タカラ工業社製 メルトインデクサーを用いて、JISK7130に準拠して測定を行った。測定温度は240℃とし、オフィス径は3.3mmφのものを用いて、組成物の場合は荷重21.6kgで測定した。MIの値が高いほど、加工性に優れることを表す。
(3) Melt index (MI)
Measurement was performed in accordance with JISK7130 using a melt indexer manufactured by Takara Industries. The measurement temperature was 240 ° C., the office diameter was 3.3 mmφ, and the composition was measured with a load of 21.6 kg. The higher the MI value, the better the workability.

(4)固有粘度
JISK7367−1に準拠して測定を行った。溶媒としてテトラリンを用い、ウベローデ粘度計で135℃にて測定を行った。
(4) Intrinsic viscosity Measured according to JISK7367-1. Tetralin was used as a solvent, and measurement was performed at 135 ° C. with an Ubbelohde viscometer.

実施例1
固有粘度[η]7.7の高分子量ポリエチレン粉末(ハイゼックスミリオン145M、三井化学社製)20.9g(=W1)、ポリエチレンワックス粉末(ハイワックス110P、三井化学社製、重量平均分子量1000)3.7g(=W2)、炭酸カルシウム(010AS、丸尾カルシウム社製)39.6g、酸化防止剤 (Irg1010、チバ・スペシャリティ・ケミカルズ社製)0.17g、(P168、チバ・スペシャリティ・ケミカルズ社製)0.05g、ステアリン酸ナトリウム0.47gを粉末のまま混合した後、ラボプラストミル(R-60H型)にて200℃、60rpmで3分間混練し、次いで230℃、100rpmで3分間混練して均一な混練物としてとりだした。
得られた混練物を230℃に設定した熱プレスで厚さ約150μmのシート状に加工したのち、冷却プレスで固化させた。得られたシートを界面活性剤入りの塩酸で洗い、炭酸カルシウムを溶解させ多孔質シートとし、その後水洗、乾燥した。得られた多孔質シートを、オートグラフ(AGS−G, 島津製作所)を用いて5倍に一軸延伸し、延伸フィルムとした。なお延伸は105℃、延伸速度200mm/minで行った。延伸フィルムの突刺強度を表1に示す。
Example 1
20.9 g (= W1) of high molecular weight polyethylene powder having an intrinsic viscosity [η] of 7.7 (Hi-Zex Million 145M, Mitsui Chemicals), polyethylene wax powder (High Wax 110P, Mitsui Chemicals, weight average molecular weight 1000) 3 0.7 g (= W2), calcium carbonate (010AS, manufactured by Maruo Calcium) 39.6 g, antioxidant (Irg1010, manufactured by Ciba Specialty Chemicals) 0.17 g, (P168, manufactured by Ciba Specialty Chemicals) 0.05 g and 0.47 g of sodium stearate were mixed in powder form, then kneaded for 3 minutes at 200 ° C. and 60 rpm in a lab plast mill (R-60H type), and then kneaded for 3 minutes at 230 ° C. and 100 rpm. It was taken out as a uniform kneaded product.
The obtained kneaded material was processed into a sheet having a thickness of about 150 μm by a hot press set at 230 ° C., and then solidified by a cooling press. The obtained sheet was washed with hydrochloric acid containing a surfactant to dissolve calcium carbonate to form a porous sheet, and then washed with water and dried. The obtained porous sheet was uniaxially stretched 5 times using an autograph (AGS-G, Shimadzu Corporation) to obtain a stretched film. The stretching was performed at 105 ° C. and a stretching speed of 200 mm / min. Table 1 shows the puncture strength of the stretched film.

実施例2
固有粘度[η]7.5の高分子量ポリエチレン(GUR4012、ティコナ社製)を用いた以外は実施例1と同様にして混練物および延伸フィルムを得た。評価結果を表1に示す。
Example 2
A kneaded product and a stretched film were obtained in the same manner as in Example 1 except that high molecular weight polyethylene having an intrinsic viscosity [η] of 7.5 (GUR4012, manufactured by Ticona) was used. The evaluation results are shown in Table 1.

比較例1
固有粘度[η]14.1の高分子量ポリエチレン粉末(GUR4032、ティコナ社製)を17.2g(=W1)、ポリエチレンワックス粉末(ハイワックス110P、三井化学社製、重量平均分子量1000)7.4g(=W2)を用いた以外は実施例1と同様にして混練物および延伸フィルムを得た。評価結果を表1に示す。
Comparative Example 1
17.2 g (= W1) of high molecular weight polyethylene powder (GUR4032, manufactured by Ticona) having an intrinsic viscosity [η] of 14.1, 7.4 g of polyethylene wax powder (High Wax 110P, manufactured by Mitsui Chemicals, weight average molecular weight 1000) A kneaded product and a stretched film were obtained in the same manner as in Example 1 except that (= W2) was used. The evaluation results are shown in Table 1.

比較例2
固有粘度[η]10.2の高分子量ポリエチレン粉末(GUR4113、ティコナ社製)を19.7g(=W1)、ポリエチレンワックス粉末(ハイワックス110P、三井化学社製、重量平均分子量1000)4.9g(=W2)を用いた以外は実施例1と同様にして混練物および延伸フィルムを得た。評価結果を表1に示す。
Comparative Example 2
19.7 g (= W1) of high molecular weight polyethylene powder (GUR4113, manufactured by Ticona) having an intrinsic viscosity [η] of 10.2 and 4.9 g of polyethylene wax powder (High Wax 110P, manufactured by Mitsui Chemicals, weight average molecular weight 1000) A kneaded product and a stretched film were obtained in the same manner as in Example 1 except that (= W2) was used. The evaluation results are shown in Table 1.

Figure 0005874781
Figure 0005874781

Claims (13)

高分子量ポリオレフィン、および重量平均分子量700〜6000のポリオレフィンワックスを含むシートであって、該シート中に含まれる前記高分子量ポリオレフィンの重量をW1、重量平均分子量700〜6000のポリオレフィンワックス重量をW2とし、前記高分子量ポリオレフィンの固有粘度を[η]とするとき、[η]が〜7.7であり、かつ下記式(1)を満たし、かつ{W2/(W1+W2)}×100が15以下であるシート。
[η]×4.3−21< {W2/(W1+W2)}×100 < [η]×4.3−8 式(1)
A sheet comprising a high molecular weight polyolefin and a polyolefin wax having a weight average molecular weight of 700 to 6000, wherein the weight of the high molecular weight polyolefin contained in the sheet is W1, and the weight of the polyolefin wax having a weight average molecular weight of 700 to 6000 is W2. when the intrinsic viscosity of the high molecular weight polyolefin and [η], [η] is from 5 to 7.7, and meets the following formula (1), and {W2 / (W1 + W2) } × 100 is 15 or less Is a sheet.
[Η] × 4.3−21 <{W2 / (W1 + W2)} × 100 <[η] × 4.3−8 Formula (1)
高分子量ポリオレフィン、および重量平均分子量700〜6000のポリオレフィンワックスを含む多孔質フィルムであって、該多孔質フィルム中に含まれる前記高分子量ポリオレフィンの重量をW1、重量平均分子量700〜6000のポリオレフィンワックス重量をW2とし、前記高分子量ポリオレフィンの固有粘度を[η]とするとき、[η]が〜7.7であり、かつ下記式(1)を満たし、かつ{W2/(W1+W2)}×100が15以下である多孔質フィルム。
[η]×4.3−21< {W2/(W1+W2)}×100 < [η]×4.3−8 式(1)
A porous film comprising a high molecular weight polyolefin and a polyolefin wax having a weight average molecular weight of 700 to 6000, wherein the weight of the high molecular weight polyolefin contained in the porous film is W1, and the weight of the polyolefin wax having a weight average molecular weight of 700 to 6000 was a W2, when the intrinsic viscosity of the high molecular weight polyolefin and [η], [η] is from 5 to 7.7, and meets the following formula (1), and {W2 / (W1 + W2) } × A porous film in which 100 is 15 or less .
[Η] × 4.3−21 <{W2 / (W1 + W2)} × 100 <[η] × 4.3−8 Formula (1)
請求項2に記載の多孔質フィルムと、多孔質の耐熱層とが積層されてなる積層多孔質フィルム。 A laminated porous film obtained by laminating the porous film according to claim 2 and a porous heat-resistant layer. 請求項2に記載の多孔質フィルム、または請求項3記載の積層多孔質フィルムを含む電池用セパレータ。 A battery separator comprising the porous film according to claim 2 or the laminated porous film according to claim 3. 請求項4に記載の電池用セパレータを含む電池。 A battery comprising the battery separator according to claim 4. フィラー、高分子量ポリエチレン、および重量平均分子量700〜6000のポリオレフ
ィンワックスを含む樹脂組成物であって、該樹脂組成物中に含まれる前記高分子量ポリエ
チレンの重量をW1、重量平均分子量700〜6000のポリオレフィンワックス重量を
W2とし、前記高分子量ポリエチレンの固有粘度を[η]とするとき、[η]が5〜7.
7であり、かつ下記式(1)を満たし、かつ{W2/(W1+W2)}×100が15以下である樹脂組成物。
[η]×4.3−21< {W2/(W1+W2)}×100 < [η]×4.3−8 式(1)
A resin composition comprising a filler, a high molecular weight polyethylene, and a polyolefin wax having a weight average molecular weight of 700 to 6000, wherein the weight of the high molecular weight polyethylene contained in the resin composition is W1, and a polyolefin having a weight average molecular weight of 700 to 6000 When the wax weight is W2 and the intrinsic viscosity of the high molecular weight polyethylene is [η], [η] is 5 to 7.
It is 7, and meets the following formula (1), and {W2 / (W1 + W2) } × 100 is a resin composition is 15 or less.
[Η] × 4.3−21 <{W2 / (W1 + W2)} × 100 <[η] × 4.3−8 Formula (1)
請求項に記載の樹脂組成物を成形して得られるシート。 A sheet obtained by molding the resin composition according to claim 6 . 請求項に記載のシートを、延伸して得られる多孔質フィルム。 A porous film obtained by stretching the sheet according to claim 7 . 請求項に記載のシートから、少なくとも一部のフィラーを除去した後、延伸して得られる多孔質フィルム。 The porous film obtained by extending | stretching after removing at least one part filler from the sheet | seat of Claim 7 . 請求項に記載のシートを延伸した後、少なくとも一部のフィラーを除去して得られる多孔質フィルム。 The porous film obtained by extending | stretching the sheet | seat of Claim 7 , and removing at least one part filler. 請求項8〜10のいずれか記載の多孔質フィルムと、多孔質の耐熱層とが積層されてなる積層多孔質フィルム。 A laminated porous film obtained by laminating the porous film according to claim 8 and a porous heat-resistant layer. 請求項8〜10のいずれかに記載の多孔質フィルムまたは請求項11記載の積層多孔質フィルムを含む電池用セパレータ。 The battery separator containing the porous film in any one of Claims 8-10 , or the laminated porous film of Claim 11. 請求項12に記載の電池用セパレータを含む電池。 A battery comprising the battery separator according to claim 12 .
JP2014120253A 2014-06-11 2014-06-11 Resin composition, sheet, and porous film Active JP5874781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120253A JP5874781B2 (en) 2014-06-11 2014-06-11 Resin composition, sheet, and porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120253A JP5874781B2 (en) 2014-06-11 2014-06-11 Resin composition, sheet, and porous film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009025837A Division JP2010180341A (en) 2009-02-06 2009-02-06 Resin composition, sheet and porous film

Publications (2)

Publication Number Publication Date
JP2014218668A JP2014218668A (en) 2014-11-20
JP5874781B2 true JP5874781B2 (en) 2016-03-02

Family

ID=51937420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120253A Active JP5874781B2 (en) 2014-06-11 2014-06-11 Resin composition, sheet, and porous film

Country Status (1)

Country Link
JP (1) JP5874781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025958B1 (en) 2015-11-30 2016-11-16 住友化学株式会社 Nonaqueous electrolyte secondary battery separator and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318307B2 (en) * 2001-03-30 2013-10-16 住友化学株式会社 Polyolefin resin film and composition for polyolefin resin film
JP4867185B2 (en) * 2005-03-29 2012-02-01 住友化学株式会社 Method for producing porous film and porous film
JP4839882B2 (en) * 2005-03-31 2011-12-21 住友化学株式会社 Sheet made of polyolefin resin composition, porous film, and battery separator

Also Published As

Publication number Publication date
JP2014218668A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP2010180341A (en) Resin composition, sheet and porous film
US9259900B2 (en) Porous film, battery separator, and battery
JP5140896B2 (en) Porous film and battery separator using the same
JP5286817B2 (en) Separator
JP5938512B1 (en) Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminate separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP5920496B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
US20190020007A1 (en) Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
US20020034689A1 (en) Porous film and separator for battery using the same
CN109390535B (en) Laminated separator for nonaqueous electrolyte secondary battery
JP5476844B2 (en) Porous film, battery separator and battery
JPWO2019093184A1 (en) Polyolefin composite porous membrane and its manufacturing method, battery separator and battery
WO2015156376A1 (en) Method for producing separator
WO2012018132A1 (en) Separator
JP2012094493A (en) Slurry and method of manufacturing separator for nonaqueous electrolyte secondary battery using that slurry
JP2012077220A (en) Method for producing polyolefin resin composition, and method for producing porous film made of polyolefin resin
JP5874781B2 (en) Resin composition, sheet, and porous film
JP5476845B2 (en) Porous film, battery separator and battery
JP2012076384A (en) Laminated porous film and battery
JP7489767B2 (en) Method for manufacturing separator for non-aqueous electrolyte secondary battery, method for manufacturing member for non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP2022155050A (en) Non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery member, and non-aqueous electrolyte secondary battery
JP2017103199A (en) Separator for non-aqueous electrolyte secondary battery, laminated separator for non-aqueous electrolyte secondary battery, member for non-aqueous electrolyte secondary batter and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R151 Written notification of patent or utility model registration

Ref document number: 5874781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350