JP2007115479A - Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same - Google Patents

Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP2007115479A
JP2007115479A JP2005304636A JP2005304636A JP2007115479A JP 2007115479 A JP2007115479 A JP 2007115479A JP 2005304636 A JP2005304636 A JP 2005304636A JP 2005304636 A JP2005304636 A JP 2005304636A JP 2007115479 A JP2007115479 A JP 2007115479A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
electrolyte secondary
aqueous electrolyte
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304636A
Other languages
Japanese (ja)
Other versions
JP5017841B2 (en
Inventor
Satoshi Nakajima
聡 中島
Yasushi Usami
康 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Plastics Inc filed Critical Mitsubishi Chemical Corp
Priority to JP2005304636A priority Critical patent/JP5017841B2/en
Publication of JP2007115479A publication Critical patent/JP2007115479A/en
Application granted granted Critical
Publication of JP5017841B2 publication Critical patent/JP5017841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous electrolyte secondary battery excellent in mechanical physical properties like strength against piercing or the like, free from a problem of short-circuit between electrodes, and a nonaqueous electrolyte secondary battery using the above separator excellent in safety. <P>SOLUTION: The separator for a nonaqueous electrolyte secondary battery, composed of thermoplastic resin composition containing thermoplastic resin and a filler, has a strength against piercing of 2.5 N per a thickness of 25μm, to which an extension treatment is applied at least one time at a temperature of a melting point or lower of the thermoplastic resin, after applying extension treatment at least one time at a temperature of the melting point or higher. The nonaqueous electrolyte secondary battery provided with the above separator is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水系電解液二次電池用セパレータ及びそれを用いた非水系電解液二次電池に関し、詳しくは、突き刺し強度に優れた非水系二次電池用セパレータ、及び該セパレータと、リチウムを吸蔵・放出することが可能な負極及び正極と、非水系溶媒及びリチウム塩を有する非水系電解液とを備えてなる非水系電解液二次電池に関する。   The present invention relates to a separator for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the separator, and more specifically, a separator for a non-aqueous secondary battery excellent in piercing strength, the separator, and lithium. The present invention relates to a non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode that can be occluded / released, and a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt.

電気製品の軽量化、小型化に伴ない高いエネルギー密度を持ち、且つ軽量な非水系電解液二次電池であるリチウム二次電池が広い分野で使用されている。   2. Description of the Related Art Lithium secondary batteries, which are light nonaqueous electrolyte secondary batteries that have a high energy density with the reduction in weight and size of electrical products, are used in a wide range of fields.

リチウム二次電池は、通常、コバルト酸リチウムに代表されるリチウム化合物などの正極活物質を含有する活物質層を集電体上に形成させた正極と、黒鉛などに代表されるリチウムの吸蔵・放出が可能な炭素材料などの負極活物質を含有する活物質層を集電体上に形成させた負極と、LiPF等のリチウム塩等の電解質を通常非プロトン性の非水系溶媒に溶解した非水系電解液と、高分子多孔質膜からなるセパレータとから主として構成される。 Lithium secondary batteries usually have a positive electrode in which an active material layer containing a positive electrode active material such as a lithium compound typified by lithium cobaltate is formed on a current collector, and lithium occlusion / representative typified by graphite. A negative electrode in which an active material layer containing a negative electrode active material such as a carbon material that can be released is formed on a current collector, and an electrolyte such as a lithium salt such as LiPF 6 are dissolved in a normal aprotic non-aqueous solvent. It is mainly composed of a non-aqueous electrolyte and a separator made of a polymer porous membrane.

リチウム二次電池で使用されるセパレータには、両極間のイオン伝導を妨げないこと、電解液を保持できること、電解液に対して耐性を有すること、などの要件を満たすことが求められ、主としてポリエチレンやポリプロピレン等の熱可塑性樹脂からなる高分子多孔質膜が用いられている。   Separators used in lithium secondary batteries are required to satisfy requirements such as not impeding ion conduction between both electrodes, being able to hold an electrolytic solution, and having resistance to an electrolytic solution. A porous polymer membrane made of a thermoplastic resin such as polypropylene or polypropylene is used.

ところで、リチウム二次電池は高いエネルギー密度を持つため、電極間の短絡等が生じた場合は一度に電流が流れて大きな発熱を生じ、電解液の分解・発火等を起こして非常に危険である。この両極間の短絡は、電極とセパレータの捲回時における巻き締まりや充放電時の電極の膨張・収縮による圧力、あるいは電池を落下させたときの衝撃などで、活物質がセパレータを突き破って生じることが多い。従って、このような異常事態を防止するため、セパレータには、更に高い突き刺し強度が求められている。   By the way, the lithium secondary battery has a high energy density, so when a short circuit between the electrodes occurs, a current flows at a time and a large amount of heat is generated, causing decomposition and ignition of the electrolyte, which is very dangerous. . This short-circuit between the two electrodes is caused by the active material breaking through the separator due to tightening during winding of the electrode and separator, pressure due to expansion / contraction of the electrode during charging / discharging, or impact when the battery is dropped. There are many cases. Therefore, in order to prevent such an abnormal situation, the separator is required to have higher piercing strength.

従来、これらの高分子多孔質膜を製造する方法としては、例えば以下の手法が公知技術として知られている。
(1) 高分子材料に後工程で容易に抽出除去可能な可塑剤を加えて成形を行い、その後可塑剤を適当な溶媒で除去して多孔化する抽出法(特許文献1)。
(2) 結晶性高分子材料を成形した後、構造的に弱い非晶部分を選択的に延伸して微細孔を形成する延伸法(特許文献2)。
(3) 高分子材料に充填剤を加えて成形を行い、その後の延伸操作により高分子材料と充填剤との界面を剥離させて微細孔を形成する界面剥離法(特許文献3)。
Conventionally, as a method for producing these polymer porous membranes, for example, the following methods are known as known techniques.
(1) An extraction method in which a plasticizer that can be easily extracted and removed in a post-process is added to a polymer material, followed by molding, and then the plasticizer is removed with a suitable solvent to make it porous (Patent Document 1).
(2) A stretching method in which after forming a crystalline polymer material, a structurally weak amorphous portion is selectively stretched to form micropores (Patent Document 2).
(3) An interfacial exfoliation method in which a filler is added to a polymer material, molding is performed, and the interface between the polymer material and the filler is exfoliated by a subsequent stretching operation to form micropores (Patent Document 3).

しかしながら(1)の抽出法は、大量の廃液を処理する必要があり、環境・経済性の両面において問題がある。また抽出工程で発生する膜の収縮のために均等な膜を得ることが難しく、歩留まりなど生産性においても問題がある。(2)の延伸法は、延伸前の結晶相・非晶相の構造制御により孔径分布を制御するために、長時間の熱処理が必要であり、生産性の面で問題がある。   However, the extraction method (1) requires treatment of a large amount of waste liquid, and has problems in both environmental and economic aspects. Further, it is difficult to obtain a uniform film due to the contraction of the film generated in the extraction process, and there is a problem in productivity such as yield. The stretching method (2) requires a long heat treatment in order to control the pore size distribution by controlling the crystal phase / amorphous phase structure before stretching, which is problematic in terms of productivity.

これに対して、(3)の界面剥離法は、廃液の発生などはなく、環境・経済性の両面において優れた方法である。また、高分子材料と充填剤との界面は延伸操作により容易に剥離することができるため、熱処理などの前処理を必要とせずに多孔質膜を得ることができ、生産性の面でも優れた手法である。   On the other hand, the interfacial peeling method (3) does not generate waste liquid and is an excellent method in both environmental and economic aspects. In addition, since the interface between the polymer material and the filler can be easily peeled off by a stretching operation, a porous film can be obtained without the need for a pretreatment such as heat treatment, which is excellent in terms of productivity. It is a technique.

しかしながら、界面剥離法は、高分子材料と充填剤との界面を延伸操作により容易に剥離することができる反面、一度開孔するとその後の延伸で開孔部が拡大しやすく、空孔率が過剰となって突き刺し強度などの機械的物性が低下する傾向があり、前述の捲回時の巻き締まりや充放電時の電極の膨張収縮、電池缶の落下等の際の安全性が充分に確保できているとは言い難かった。   However, the interfacial debonding method can easily delaminate the interface between the polymer material and the filler by stretching operation. However, once the holes are opened, the holes are easily expanded by the subsequent stretching, and the porosity is excessive. As a result, mechanical properties such as piercing strength tend to decrease, and sufficient safety can be ensured in the case of winding tightening, winding expansion / contraction during charging / discharging, and battery can dropping. It was hard to say.

なお、熱可塑性樹脂に充填剤を含有したセパレータとしては、特許文献4及び5に公知技術が開示されている。しかしながら、特許文献4で開示されている実施例は何れも分子量100万を超える樹脂で成形性に難があるため、可塑剤として鉱物オイルを大量に添加して成形せざるを得ず、また開孔のため成形後に可塑剤を抽出除去することが必要で、前述の通り環境・経済性の両面において問題がある。特許文献5でもやはり基材樹脂の分子量が高いため、成形性確保のため、分子量20000以下の低分子量樹脂の添加が必須となっているが、これらの低分子量樹脂は融点が低いため、通常の電池の使用温度で溶融して孔の閉塞を生じてセパレータとして機能しなくなるという欠点を有する。
特開平7−029563号公報 特開平7−304110号公報 特開2002−201298号公報 特開平11−260338号公報 特開2002−69221号公報
In addition, as a separator containing a filler in a thermoplastic resin, known techniques are disclosed in Patent Documents 4 and 5. However, since all of the examples disclosed in Patent Document 4 are resins having a molecular weight exceeding 1 million and difficult to mold, a large amount of mineral oil must be added as a plasticizer and molding must be performed. Because of the holes, it is necessary to extract and remove the plasticizer after molding, and as described above, there are problems in both environmental and economic aspects. Even in Patent Document 5, since the molecular weight of the base resin is high, it is essential to add a low molecular weight resin having a molecular weight of 20000 or less in order to ensure moldability. However, these low molecular weight resins have a low melting point, so It has the disadvantage that it melts at the operating temperature of the battery and clogs the pores so that it does not function as a separator.
JP 7-029563 A JP-A-7-304110 JP 2002-201298 A JP-A-11-260338 JP 2002-69221 A

本発明は上記従来の実情に鑑みてなされたものであって、突き刺し強度などの機械的物性に優れ、両極間の短絡の問題のない非水系電解液二次電池用セパレータと、この非水系電解液二次電池用セパレータを用いた、安全性に優れた非水系電解液二次電池を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and is excellent in mechanical properties such as piercing strength and has no problem of short circuit between both electrodes, and a separator for a non-aqueous electrolyte secondary battery, and this non-aqueous electrolysis It aims at providing the non-aqueous electrolyte secondary battery excellent in safety | security using the separator for liquid secondary batteries.

本発明者らは鋭意研究の結果、低分子量成分を必要とせずに熱成形が可能な通常の分子量の熱可塑性樹脂と充填剤からなる熱可塑性樹脂組成物に、特定の温度条件で延伸操作を施すことで得られるセパレータの突き刺し強度が著しく向上することを見出し、本発明を完成させた。
即ち本発明は以下を要旨とする。
As a result of diligent research, the present inventors have conducted a stretching operation under a specific temperature condition on a thermoplastic resin composition comprising a normal molecular weight thermoplastic resin and a filler that can be thermoformed without requiring a low molecular weight component. The present inventors have found that the puncture strength of the separator obtained by application is remarkably improved, and the present invention has been completed.
That is, the gist of the present invention is as follows.

[1] 熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物からなり、厚み25μm当たりの突き刺し強度が2.5N以上であることを特徴とする非水系電解液二次電池用セパレータ。 [1] A separator for a non-aqueous electrolyte secondary battery comprising a thermoplastic resin composition containing a thermoplastic resin and a filler, and having a puncture strength per thickness of 25 μm of 2.5 N or more.

[2] 熱可塑性樹脂が、JISK7210に基づくメルトフローレートが0.01乃至0.3g/10minのポリオレフィン樹脂であることを特徴とする[1]に記載の非水系電解液二次電池用セパレータ。 [2] The separator for a non-aqueous electrolyte secondary battery according to [1], wherein the thermoplastic resin is a polyolefin resin having a melt flow rate based on JISK7210 of 0.01 to 0.3 g / 10 min.

[3] ポリオレフィン樹脂が、ポリエチレン及び/又はポリプロピレンであることを特徴とする[2]に記載の非水系電解液二次電池用セパレータ。 [3] The separator for a non-aqueous electrolyte secondary battery according to [2], wherein the polyolefin resin is polyethylene and / or polypropylene.

[4] ポリオレフィン樹脂が、高密度ポリエチレンであることを特徴とする[2]又は[3]に記載の非水系電解液二次電池用セパレータ。 [4] The separator for a nonaqueous electrolyte secondary battery according to [2] or [3], wherein the polyolefin resin is high-density polyethylene.

[5] 充填剤が、無機物であることを特徴とする[1]乃至[4]のいずれかに記載の非水系電解液二次電池用セパレータ。 [5] The separator for a non-aqueous electrolyte secondary battery according to any one of [1] to [4], wherein the filler is an inorganic substance.

[6] 熱可塑性樹脂組成物中の充填剤含量が、10乃至50体積%であることを特徴とする[1]乃至[5]のいずれかに記載の非水系電解液二次電池用セパレータ。 [6] The nonaqueous electrolyte secondary battery separator according to any one of [1] to [5], wherein the filler content in the thermoplastic resin composition is 10 to 50% by volume.

[7] 充填剤が、硫酸塩であることを特徴とする[1]乃至[6]のいずれかに記載の非水系電解液二次電池用セパレータ。 [7] The separator for a nonaqueous electrolyte secondary battery according to any one of [1] to [6], wherein the filler is a sulfate.

[8] 硫酸塩が、硫酸バリウムであることを特徴とする[7]に記載の非水系電解液二次電池用セパレータ。 [8] The separator for a non-aqueous electrolyte secondary battery according to [7], wherein the sulfate is barium sulfate.

[9] 充填剤が、金属酸化物であることを特徴とする[1]乃至[6]のいずれかに記載の非水系電解液二次電池用セパレータ。 [9] The separator for a non-aqueous electrolyte secondary battery according to any one of [1] to [6], wherein the filler is a metal oxide.

[10] 金属酸化物が、アルミナであることを特徴とする[9]に記載の非水系電解液二次電池用セパレータ。 [10] The separator for a nonaqueous electrolyte secondary battery according to [9], wherein the metal oxide is alumina.

[11] 熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物からなる非水系電解液二次電池用セパレータであって、該セパレータは、該熱可塑性樹脂の融点以上の温度で少なくとも1回の延伸処理が施された後、該融点以上での延伸処理と同方向に該融点未満の温度で少なくとも1回の延伸処理が施されたものであることを特徴とする非水系電解液二次電池用セパレータ。 [11] A separator for a non-aqueous electrolyte secondary battery comprising a thermoplastic resin composition containing a thermoplastic resin and a filler, wherein the separator is at least once at a temperature equal to or higher than the melting point of the thermoplastic resin. A non-aqueous electrolyte secondary battery that has been subjected to a stretching treatment and is subjected to at least one stretching treatment at a temperature lower than the melting point in the same direction as the stretching treatment at or above the melting point. Separator for use.

[12] リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、非水系溶媒及びリチウム塩を含有する非水系電解液と、セパレータとを有する非水系電解液二次電池において、セパレータとして、[1]乃至[11]のいずれかに記載のセパレータを用いたことを特徴とする非水系電解液二次電池。 [12] A non-aqueous electrolyte secondary having a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt, and a separator A non-aqueous electrolyte secondary battery using the separator according to any one of [1] to [11] as a separator.

本発明によれば、電極とセパレータの捲回時における巻き締まりや充放電時の電極の膨張・収縮による圧力、あるいは電池を落下させたときの衝撃などで活物質がセパレータを突き破ることがなく、両極間の短絡を生じることのない、突き刺し強度等の機械的物性に優れた非水系電解液二次電池用セパレータと、このセパレータとリチウムイオンを吸蔵・放出可能な正極及び負極と非水系溶媒及びリチウム塩を含有する非水系電解液とを備えてなる、安全性の高い非水系電解液二次電池が提供される。   According to the present invention, the active material does not break through the separator due to the tightening during winding of the electrode and the separator, the pressure due to the expansion / contraction of the electrode during charging / discharging, or the impact when the battery is dropped, A separator for a non-aqueous electrolyte secondary battery excellent in mechanical properties such as piercing strength that does not cause a short circuit between both electrodes, a positive electrode and a negative electrode capable of inserting and extracting lithium ions, a non-aqueous solvent, and A highly safe non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a lithium salt is provided.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[非水系電解液二次電池用セパレータ]
まず、本発明の非水系電解液二次電池用セパレータについて説明する。
本発明の非水系電解液二次電池用セパレータは、熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物からなり、厚み25μm当たりの突き刺し強度が2.5N以上であることを特徴とする。
[Separator for non-aqueous electrolyte secondary battery]
First, the separator for a non-aqueous electrolyte secondary battery of the present invention will be described.
The separator for a non-aqueous electrolyte secondary battery of the present invention is composed of a thermoplastic resin composition containing a thermoplastic resin and a filler, and has a puncture strength of 2.5 N or more per 25 μm thickness.

{熱可塑性樹脂組成物}
<熱可塑性樹脂>
本発明のセパレータを構成する熱可塑性樹脂組成物の基材樹脂としての熱可塑性樹脂は、後述する充填剤が均等に分散されうるものであれば特に限定されるものではないが、例えば、ポリオレフィン樹脂、フッ素樹脂、ポリスチレン等のスチレン系樹脂、ABS樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリアミド樹脂、アセタール樹脂、ポリカーボネート樹脂などが挙げられる。
{Thermoplastic resin composition}
<Thermoplastic resin>
The thermoplastic resin as the base resin of the thermoplastic resin composition constituting the separator of the present invention is not particularly limited as long as the filler described later can be uniformly dispersed. For example, a polyolefin resin And styrene resins such as fluorine resin and polystyrene, ABS resin, vinyl chloride resin, vinyl acetate resin, acrylic resin, polyamide resin, acetal resin, polycarbonate resin, and the like.

これらの中でも、耐熱性、耐溶剤性、可撓性のバランスに優れていることから、特に好ましいのはポリオレフィン樹脂である。   Among these, polyolefin resin is particularly preferable because of its excellent balance of heat resistance, solvent resistance, and flexibility.

ポリオレフィン樹脂としては、例えば、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセン等のモノオレフィン重合体や、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン又は1−デセンと4−メチル−1−ペンテン又は酢酸ビニル等の他のモノマーとの共重合体等を主成分とするものが挙げられ、具体的には、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、結晶性エチレン−プロピレンブロック共重合体、ポリブテン、エチレン−酢酸ビニル共重合体等が挙げられる。   Examples of the polyolefin resin include monoolefin polymers such as ethylene, propylene, 1-butene, 1-hexene, 1-octene or 1-decene, ethylene, propylene, 1-butene, 1-hexene, 1-octene or The main component is a copolymer of 1-decene and another monomer such as 4-methyl-1-pentene or vinyl acetate. Specifically, low-density polyethylene, linear low-density polyethylene, Examples thereof include high-density polyethylene, polypropylene, crystalline ethylene-propylene block copolymer, polybutene, and ethylene-vinyl acetate copolymer.

本発明においては、上記ポリオレフィン樹脂の中でも高密度ポリエチレン又はポリプロピレンを用いるのが好ましい。   In the present invention, it is preferable to use high density polyethylene or polypropylene among the polyolefin resins.

上記ポリオレフィン樹脂等の熱可塑性樹脂は1種を単独で用いても2種以上を混合して用いても良い。   The above thermoplastic resins such as polyolefin resins may be used alone or in combination of two or more.

このような熱可塑性樹脂は、JISK7210に基づくメルトフローレートが0.01乃至0.3g/10minであることが好ましく、より好ましくは0.02乃至0.2g/10min、更に好ましくは0.03乃至0.1g/10minである。メルトフローがこの上限を超えると、樹脂の分子量が低くなるため、充分な機械的強度を得ることが難しくなる傾向がある。また、この下限を下回ると樹脂の分子量が高くなり過ぎて通常の熱成形が難しくなり、低分子量成分の添加が必須となって、低分子量成分の抽出が必要になったり、電池使用中に、電池温度が上昇するとセパレータの閉塞を招く虞がある。   Such a thermoplastic resin preferably has a melt flow rate based on JISK7210 of 0.01 to 0.3 g / 10 min, more preferably 0.02 to 0.2 g / 10 min, still more preferably 0.03 to 0.1 g / 10 min. When the melt flow exceeds this upper limit, the molecular weight of the resin becomes low, and it tends to be difficult to obtain sufficient mechanical strength. Also, below this lower limit, the resin molecular weight becomes too high and normal thermoforming becomes difficult, the addition of a low molecular weight component is essential, the extraction of the low molecular weight component is necessary, or while using the battery, When the battery temperature rises, the separator may be blocked.

<充填剤>
本発明の非水系電解液二次電池用セパレータを構成する熱可塑性樹脂組成物に含まれる充填剤としては、一般に、リチウム二次電池で用いられるカーボネート系有機電解液を分解しない性質を有する無機充填剤が選ばれる。そのような充填剤としては、難水溶性の硫酸塩、アルミナ等が挙げられるが、特に硫酸バリウムが好適に用いられる。なお、ここに云う難水溶性とは、25℃の水に対する溶解度が5mg/l以下であることを指す。
<Filler>
As a filler contained in the thermoplastic resin composition constituting the separator for a non-aqueous electrolyte secondary battery of the present invention, generally, an inorganic filler having a property of not decomposing a carbonate-based organic electrolyte used in a lithium secondary battery The agent is selected. Examples of such a filler include sparingly water-soluble sulfates and alumina, but barium sulfate is particularly preferably used. The poorly water-soluble herein means that the solubility in water at 25 ° C. is 5 mg / l or less.

一般に充填剤として用いられることの多い炭酸カルシウムなどの炭酸塩や酸化チタン、シリカなどは、非水電解液成分の分解を招く虞がある。   In general, carbonates such as calcium carbonate, titanium oxide, silica, and the like that are often used as fillers may cause decomposition of non-aqueous electrolyte components.

充填剤の粒径としては、平均粒径の下限が通常0.01μm以上、好ましくは0.1μm以上、中でも0.2μm以上であり、上限は通常10μm以下、好ましくは5μm以下、より好ましくは3μm以下、中でも1μm以下であることが好ましい。充填剤の平均粒径が10μmを超えると、延伸で形成される孔の径が大きくなりすぎ、延伸破断やフィルム強度の低下を招きやすい。また、平均粒径が0.01μmより小さいと充填剤が凝集し易くなるため、基材樹脂に均等に充填剤を分散させることが難しくなりやすい。   As the particle size of the filler, the lower limit of the average particle size is usually 0.01 μm or more, preferably 0.1 μm or more, especially 0.2 μm or more, and the upper limit is usually 10 μm or less, preferably 5 μm or less, more preferably 3 μm. In particular, the thickness is preferably 1 μm or less. When the average particle diameter of the filler exceeds 10 μm, the diameter of the holes formed by stretching becomes too large, and it tends to cause stretching breakage and a decrease in film strength. Further, if the average particle size is smaller than 0.01 μm, the filler is likely to aggregate, so that it is difficult to uniformly disperse the filler in the base resin.

本発明においては、上記条件に適合する充填剤であれば1種を単独で用いることもでき、2種以上を混合して用いることもできる。   In the present invention, one kind of filler can be used alone, or two or more kinds can be mixed and used as long as the filler satisfies the above conditions.

本発明に係る熱可塑性樹脂組成物中の上記充填剤の配合量は、熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物中好ましくは10乃至50体積%であり、より好ましくは15乃至40体積%、特に好ましくは20乃至30体積%である。この充填剤の配合量が10体積%未満であると連通孔を形成することが難しく、セパレータとしての機能を発現することが困難となる。また、50体積%を超えるとフィルム成形時の粘度が高くなり加工性に劣るばかりでなく、多孔化のための延伸時にフィルム破断を生じる虞がある。   The blending amount of the filler in the thermoplastic resin composition according to the present invention is preferably 10 to 50% by volume in the thermoplastic resin composition containing the thermoplastic resin and the filler, and more preferably 15 to 40%. % By volume, particularly preferably 20 to 30% by volume. If the blending amount of the filler is less than 10% by volume, it is difficult to form a communication hole, and it becomes difficult to exhibit a function as a separator. Moreover, when it exceeds 50 volume%, the viscosity at the time of film formation becomes high and it is inferior to workability, and there exists a possibility of producing a film fracture | rupture at the time of extending | stretching for porosity.

充填剤としては、熱可塑性樹脂への分散性を高めるために表面処理剤により表面処理されているものを用いることもできる。この表面処理としては、熱可塑性樹脂がポリオレフィン樹脂の場合、例えばステアリン酸等の脂肪酸又はその金属塩、或いはポリシロキサンやシランカップリング剤による処理が挙げられる。   As the filler, one that has been surface-treated with a surface treatment agent in order to enhance dispersibility in the thermoplastic resin can also be used. As the surface treatment, when the thermoplastic resin is a polyolefin resin, for example, a treatment with a fatty acid such as stearic acid or a metal salt thereof, polysiloxane, or a silane coupling agent can be given.

<他の添加剤>
本発明に係る熱可塑性樹脂組成物中には、前記熱可塑性樹脂との相溶性を有する低分子量化合物を少量添加しても良い。この低分子量化合物は熱可塑性樹脂の分子間に入り込み、分子間の相互作用を低下させると共に結晶化を阻害し、その結果、シート成形時の熱可塑性樹脂組成物の延伸性を向上させる。また、低分子量化合物は熱可塑性樹脂と充填剤との界面接着力を適度に高めて、延伸による孔の粗大化を防止する作用を奏すると共に、熱可塑性樹脂と充填剤との界面接着力を高めることでフィルムからの充填剤の脱落を防止する作用を奏する。
<Other additives>
A small amount of a low molecular weight compound having compatibility with the thermoplastic resin may be added to the thermoplastic resin composition according to the present invention. This low molecular weight compound enters between the molecules of the thermoplastic resin, lowers the interaction between molecules and inhibits crystallization, and as a result, improves the stretchability of the thermoplastic resin composition during sheet molding. In addition, the low molecular weight compound moderately increases the interfacial adhesive force between the thermoplastic resin and the filler, thereby preventing the pores from becoming coarse due to stretching, and also increases the interfacial adhesive force between the thermoplastic resin and the filler. This has the effect of preventing the filler from falling off the film.

この低分子量化合物としては分子量200〜3000のものが好適に用いられる。この低分子量化合物の分子量が3000を超えると低分子量化合物が熱可塑性樹脂の分子間に入りにくくなるため、延伸性の向上効果が不充分となる。また、分子量が200未満では、相溶性は上がるが、低分子量化合物がセパレータを構成する高分子多孔質膜表面に析出する、いわゆるブルーミングが起こりやすくなり、膜性状の悪化やブロッキングを起こしやすくなる。   As this low molecular weight compound, those having a molecular weight of 200 to 3000 are preferably used. When the molecular weight of the low molecular weight compound exceeds 3000, the low molecular weight compound is difficult to enter between the molecules of the thermoplastic resin, so that the effect of improving stretchability is insufficient. On the other hand, if the molecular weight is less than 200, the compatibility increases, but so-called blooming, in which a low molecular weight compound precipitates on the surface of the polymer porous membrane constituting the separator, is likely to occur, and the film properties are likely to deteriorate or block.

低分子量化合物としては、熱可塑性樹脂がポリオレフィン樹脂の場合、脂肪族炭化水素又はグリセライドなどが好ましく使われる。特に、ポリオレフィン樹脂がポリエチレンの場合は、流動パラフィンや低融点ワックスが好ましく用いられる。   As the low molecular weight compound, when the thermoplastic resin is a polyolefin resin, an aliphatic hydrocarbon or glyceride is preferably used. In particular, when the polyolefin resin is polyethylene, liquid paraffin or low melting point wax is preferably used.

上記低分子量化合物の配合量は、熱可塑性樹脂と充填剤との合計100重量部に対し好ましくは1乃至10重量部である。この低分子量化合物の配合量が1重量部未満であると、低分子量化合物を配合することによる上記効果が十分に得られず、また10重量部を超えると熱可塑性樹脂の分子間の相互作用を低下させ過ぎて、十分な強度が得られなくなる。また、シート成形時に発煙が生じたり、スクリュー部分での滑りが生じて、安定なシート成形が難しくなる。さらに、低分子量化合物の抽出が必要になったり、電池を使用中に電池温度が上昇するとセパレータの閉塞を招く虞がある。   The blending amount of the low molecular weight compound is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the total of the thermoplastic resin and the filler. If the blending amount of the low molecular weight compound is less than 1 part by weight, the above-mentioned effect by blending the low molecular weight compound cannot be sufficiently obtained, and if the blending amount exceeds 10 parts by weight, the interaction between the molecules of the thermoplastic resin is caused. If it is lowered too much, sufficient strength cannot be obtained. In addition, smoke generation occurs during sheet forming, and slipping occurs at the screw portion, making it difficult to form a stable sheet. Furthermore, if the extraction of a low molecular weight compound becomes necessary, or the battery temperature rises while the battery is in use, the separator may be clogged.

本発明に係る熱可塑性樹脂組成物には、更に必要に応じて熱安定剤等の他の添加剤を添加することができる。上記添加剤としては、公知のものであれば特に制限されず用いられる。これらの添加剤の配合量は、熱可塑性樹脂と充填剤との合計100重量部に対し通常0.05乃至1重量部である。   The thermoplastic resin composition according to the present invention may further contain other additives such as a heat stabilizer as necessary. The additive is not particularly limited as long as it is a known additive. The compounding amount of these additives is usually 0.05 to 1 part by weight with respect to 100 parts by weight of the total of the thermoplastic resin and the filler.

{製造方法}
本発明の非水系電解液二次電池用セパレータの製造方法としては界面剥離法が好ましい。
本発明の非水系電解液二次電池用セパレータは、より具体的には、次のような方法で製造される。
{Production method}
The method for producing the separator for a non-aqueous electrolyte secondary battery of the present invention is preferably an interfacial peeling method.
More specifically, the separator for a non-aqueous electrolyte secondary battery of the present invention is manufactured by the following method.

まず、充填剤と熱可塑性樹脂、及び必要に応じて添加される低分子量化合物や酸化防止剤等の添加剤の所定量を配合し、溶融混練することにより熱可塑性樹脂組成物を調製する。ここで、上記樹脂組成物はヘンシェルミキサー等によって予備混合を行い、しかる後に通常用いられる一軸スクリュー押出機、二軸スクリュー押出機、ミキシングロール又は二軸混練機等を用いて調製しても良く、予備混練を省略して直接上記押出機等で樹脂組成物を調製しても良い。   First, a thermoplastic resin composition is prepared by blending a predetermined amount of a filler, a thermoplastic resin, and additives such as a low molecular weight compound and an antioxidant that are added as necessary, and melt-kneading. Here, the resin composition may be premixed by a Henschel mixer or the like, and then prepared using a commonly used single screw extruder, twin screw extruder, mixing roll or twin screw kneader, etc. The pre-kneading may be omitted and the resin composition may be directly prepared with the above extruder or the like.

次いで、上記熱可塑性樹脂組成物をシート成形する。シート成形は通常用いられるTダイによるTダイ法や円形ダイによるインフレーション法などにより行うことができる。   Next, the thermoplastic resin composition is formed into a sheet. Sheet forming can be performed by a commonly used T-die method using a T-die or an inflation method using a circular die.

次いで、成形されたシートの延伸を行う。該延伸には、シートの引き取り方向(MD)に延伸する縦一軸延伸、テンター延伸機等により横方向(TD)に延伸する横一軸延伸、MDへの一軸延伸後引き続きテンター延伸機等によりTDに延伸する逐次二軸延伸法、又は縦方向及び横方向を同時に延伸する同時二軸延伸法がある。上記一軸延伸はロール延伸により行うことができる。   Next, the formed sheet is stretched. For the stretching, longitudinal uniaxial stretching for stretching in the sheet take-up direction (MD), transverse uniaxial stretching for stretching in the transverse direction (TD) with a tenter stretching machine, etc., uniaxial stretching to MD, followed by TD with a tenter stretching machine, etc. There is a sequential biaxial stretching method in which stretching is performed, or a simultaneous biaxial stretching method in which the longitudinal direction and the transverse direction are simultaneously stretched. The uniaxial stretching can be performed by roll stretching.

上記延伸処理は、好ましくは、少なくとも一方向に施されており該延伸処理は熱可塑性樹脂の融点以上の温度で少なくとも1回の延伸が施される高温延伸工程と、この高温延伸後に高温延伸と同方向に融点未満の温度で少なくとも1回の延伸が施される低温延伸工程との2つの工程から成る。ここで熱可塑性樹脂の融点はJISK7121に基いて定められる。   The stretching treatment is preferably performed in at least one direction, and the stretching treatment includes a high-temperature stretching step in which stretching is performed at least once at a temperature equal to or higher than the melting point of the thermoplastic resin, and high-temperature stretching after the high-temperature stretching. It consists of two processes, a low-temperature stretching process in which stretching is performed at least once at a temperature below the melting point in the same direction. Here, the melting point of the thermoplastic resin is determined based on JISK7121.

高温延伸は、熱可塑性樹脂の融点乃至融点+10℃の温度で施され、好ましくは融点乃至融点+5℃の温度で施される。高温延伸は開孔部を生じずに熱可塑性樹脂組成物を配向させて機械的強度を向上させるために施すものであり、界面剥離が生じない温度で施す必要があり、融点以上の温度で施される。高温延伸が融点未満の温度で施されると、延伸初期に樹脂と充填剤の間に界面剥離が生じて開孔し、以後の延伸では開孔部が拡大するだけで機械的強度の向上につながらない。また、高温延伸が融点+10℃を超える温度では樹脂の流動性が高くなりすぎて、高温延伸が樹脂組成物の配向につながらず、充分な機械的強度の向上につながりにくい。   The high temperature stretching is performed at a temperature of the melting point of the thermoplastic resin to the melting point + 10 ° C., preferably at a temperature of the melting point to the melting point + 5 ° C. The high-temperature stretching is performed in order to improve the mechanical strength by orienting the thermoplastic resin composition without causing an opening portion, and it is necessary to perform the stretching at a temperature at which interface peeling does not occur. Is done. When high-temperature stretching is performed at a temperature lower than the melting point, interfacial delamination occurs between the resin and the filler in the initial stage of stretching, resulting in opening of holes, and subsequent stretching only improves the mechanical strength by expanding the opening. it dose not connect. Further, when the high temperature stretching exceeds the melting point + 10 ° C., the fluidity of the resin becomes too high, and the high temperature stretching does not lead to the orientation of the resin composition, and it is difficult to improve the sufficient mechanical strength.

低温延伸は、高温延伸後に高温延伸と同方向に施される。低温延伸は熱可塑性樹脂の好ましくは融点−30℃乃至融点−2℃の温度で施され、より好ましくは融点−20℃乃至融点−5℃の温度で施される。低温延伸が融点−30℃未満の温度で施されると熱可塑性樹脂組成物の軟化が充分ではないため、延伸破断を起こしやすくなり好ましくない。また低温延伸が融点−2℃より高い温度で施されると樹脂と充填剤の間の界面剥離が生じにくいため、開孔が充分に行われず、セパレータとして機能することが困難となる。   The low temperature stretching is performed in the same direction as the high temperature stretching after the high temperature stretching. The low temperature stretching is preferably performed at a temperature of the melting point of −30 ° C. to the melting point of −2 ° C., more preferably at a temperature of the melting point of −20 ° C. to the melting point of −5 ° C. If the low-temperature stretching is performed at a temperature lower than the melting point of −30 ° C., the thermoplastic resin composition is not sufficiently softened, so that the stretching breakage is likely to occur, which is not preferable. Further, when the low-temperature stretching is performed at a temperature higher than the melting point of −2 ° C., interfacial peeling between the resin and the filler is difficult to occur, so that the holes are not sufficiently formed and it becomes difficult to function as a separator.

なお、本発明において、高温延伸後に低温延伸を行うことは重要であり、高温延伸と低温延伸は順番を入れ替えることはできない。即ち、この順番を入れ替えると低温延伸で開孔した孔が高温延伸で潰れてしまい、非多孔性のフィルムとなるため、セパレータとして機能しなくなる。   In the present invention, it is important to perform low-temperature stretching after high-temperature stretching, and the order of high-temperature stretching and low-temperature stretching cannot be interchanged. That is, if this order is changed, the holes opened by the low-temperature stretching are crushed by the high-temperature stretching and become a non-porous film, so that it does not function as a separator.

また、高温延伸と低温延伸は同方向に行う必要がある。高温延伸と低温延伸の方向が異なると、後から施す低温延伸により、高温延伸による樹脂組成物の配向が緩和されてしまうため充分な機械的強度を発現しなくなる。   Moreover, it is necessary to perform high temperature stretching and low temperature stretching in the same direction. If the directions of the high temperature drawing and the low temperature drawing are different, the orientation of the resin composition by the high temperature drawing is relaxed by the low temperature drawing applied later, so that sufficient mechanical strength is not exhibited.

延伸倍率は必要とされる孔径や強度に応じて任意に設定されるが、厚み25μm当たりの突き刺し強度が2.5N以上であるためには、高温延伸と低温延伸の倍率の積が少なくとも一軸方向に4倍以上8倍以下となることが好ましい。一軸方向の延伸倍率の積が4倍未満では、高温延伸の倍率が低すぎる場合は強度が充分に向上せず、厚み25μm当たりの突き刺し強度を2.5N以上することが難しくなり、低温延伸の倍率が低すぎる場合は界面剥離による開孔が充分に生じずセパレータとして機能することが難しくなる。突き刺し強度と開孔が充分に行われるためには、高温延伸及び低温延伸の倍率はそれぞれ2倍以上であることが好ましい。また、一軸方向の延伸倍率の積が8倍を超えると延伸倍率が高くなりすぎて、延伸破断を起こしやすくなる傾向がある。   The draw ratio is arbitrarily set according to the required pore diameter and strength, but since the piercing strength per thickness of 25 μm is 2.5 N or more, the product of the draw ratio of high temperature drawing and low temperature drawing is at least uniaxial. In addition, it is preferably 4 times or more and 8 times or less. When the product of the uniaxial stretching ratio is less than 4 times, the strength is not sufficiently improved when the hot stretching ratio is too low, and it becomes difficult to increase the piercing strength per 25 μm thickness to 2.5 N or more. When the magnification is too low, there is no sufficient opening due to interfacial peeling, making it difficult to function as a separator. In order to sufficiently perform the piercing strength and the opening, it is preferable that the high-temperature stretching ratio and the low-temperature stretching ratio are each 2 times or more. On the other hand, if the product of the draw ratios in the uniaxial direction exceeds 8 times, the draw ratio tends to be too high and stretch breakage tends to occur.

なお、本発明のセパレータの製造に当たり、延伸処理は、上述の如く、少なくとも一方向に高温延伸した後同方向に低温延伸を行うものであれば良く、この高温延伸及び低温延伸が共に一軸延伸であっても二軸延伸であっても良く、高温延伸と低温延伸の一方が二軸延伸で他方が一軸延伸であっても良い。さらに、高温延伸及び低温延伸共二軸延伸を行う方が突き刺し強度が上がりやすく、多孔化もし易いため好ましい。   In the production of the separator of the present invention, as described above, the stretching treatment is not limited as long as it is subjected to high-temperature stretching in at least one direction and then low-temperature stretching in the same direction. Both the high-temperature stretching and the low-temperature stretching are uniaxial stretching. Or biaxial stretching, one of high-temperature stretching and low-temperature stretching may be biaxial stretching, and the other may be uniaxial stretching. Furthermore, it is preferable to perform high-temperature stretching and low-temperature stretching co-biaxial stretching because the piercing strength is easily increased and the porous structure is easily formed.

{突き刺し強度}
本発明の非水系電解液二次電池用セパレータは、厚み25μm当たりの突き刺し強度が2.5N以上であることを特徴とする。この突き刺し強度が2.5未満では、本発明の目的を達成し得ない。厚み25μm当たりの突き刺し強度は好ましくは3.0N以上である。突き刺し強度は大きい程好ましく、その上限は特に定めないが、通常5.0N以下程度である。
なお、厚み25μm当たりの突き刺し強度は、後述の実施例の項に記載される突き刺し強度測定方法により測定される。
{Puncture strength}
The separator for a non-aqueous electrolyte secondary battery of the present invention is characterized in that the puncture strength per 25 μm thickness is 2.5 N or more. If the piercing strength is less than 2.5, the object of the present invention cannot be achieved. The piercing strength per 25 μm thickness is preferably 3.0 N or more. The puncture strength is preferably as high as possible, and the upper limit is not particularly defined, but is usually about 5.0 N or less.
The piercing strength per 25 μm thickness is measured by the piercing strength measuring method described in the example section described later.

{その他の物性}
本発明の非水系電解液二次電池用セパレータの多孔度は、本発明のセパレータを構成する多孔質膜の空孔率の下限として通常30%以上、好ましくは40%以上、更に好ましくは50%以上であり、上限として通常80%以下、好ましくは70%以下、更に好ましくは65%以下、特に好ましくは60%以下である。空孔率が30%未満であるとイオンの透過性が充分でなく、セパレータとしての機能を果たすことができない虞がある。また、空孔率が80%を超えると、フィルムの実強度が低くなるため、電池作成時の破断や活物質による突き抜けと短絡が生じる虞がある。
{Other physical properties}
The porosity of the separator for a non-aqueous electrolyte secondary battery of the present invention is usually 30% or more, preferably 40% or more, more preferably 50%, as the lower limit of the porosity of the porous film constituting the separator of the present invention. The upper limit is usually 80% or less, preferably 70% or less, more preferably 65% or less, and particularly preferably 60% or less. If the porosity is less than 30%, the ion permeability is not sufficient, and the function as a separator may not be achieved. Further, if the porosity exceeds 80%, the actual strength of the film is lowered, and therefore there is a possibility that breakage or short-circuiting due to the active material and short-circuiting may occur at the time of battery preparation.

なお、多孔質膜の空孔率とは、以下の計算式によって算出される値である。
空孔率Pv(%)=100×(1−w/〔ρ・S・t〕)
S:多孔質膜の面積
t:多孔質膜の厚み
w:多孔質膜の重さ
ρ:多孔質膜の真比重
なお、高分子多孔質膜を構成する成分i(樹脂や充填剤など)のブレンド重量をWi、比重をρiとすると真比重ρは以下の式で求められる。式中、Σは全ての成分の和を表す。
多孔質膜の真比重ρ=ΣWi/Σ(Wi/ρi)
The porosity of the porous film is a value calculated by the following calculation formula.
Porosity Pv (%) = 100 × (1−w / [ρ · S · t])
S: Area of the porous membrane t: Thickness of the porous membrane w: Weight of the porous membrane ρ: True specific gravity of the porous membrane In addition, the component i (resin, filler, etc.) constituting the polymeric porous membrane When the blend weight is Wi and the specific gravity is ρi, the true specific gravity ρ is obtained by the following equation. In the formula, Σ represents the sum of all components.
True specific gravity of porous membrane ρ = ΣWi / Σ (Wi / ρi)

また、本発明のセパレータの厚みの上限値は、通常、100μm以下、中でも50μm以下、好ましくは40μm以下であり、下限値は、通常5μm以上、好ましくは10μm以上である。厚みが5μm未満であると、実強度が低いため、電池の作成時の破断や活物質による突き抜けと短絡が生じる虞がある。また、厚みが100μmを超えるとセパレータの電気抵抗が高くなるため、電池の容量が低下する虞がある。厚みを5〜100μmの範囲とすることにより、良好なイオン透過性を有するセパレータとすることができる。   Moreover, the upper limit of the thickness of the separator of the present invention is usually 100 μm or less, particularly 50 μm or less, preferably 40 μm or less, and the lower limit is usually 5 μm or more, preferably 10 μm or more. If the thickness is less than 5 μm, the actual strength is low, and therefore there is a risk that breakage or short-circuiting due to the active material and short-circuiting may occur during battery production. On the other hand, when the thickness exceeds 100 μm, the electric resistance of the separator increases, and the battery capacity may be reduced. By setting the thickness in the range of 5 to 100 μm, a separator having good ion permeability can be obtained.

[非水系電解液二次電池]
次に、本発明の非水系電解液二次電池について説明する。
本発明の非水系電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、非水系溶媒及びリチウム塩を含有する非水系電解液と、上述の本発明の非水系電解液二次電池用セパレータとを備えるものである。
[Non-aqueous electrolyte secondary battery]
Next, the non-aqueous electrolyte secondary battery of the present invention will be described.
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode capable of occluding and releasing lithium ions, a negative electrode capable of occluding and releasing lithium ions, a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt, and And a separator for a non-aqueous electrolyte secondary battery according to the present invention.

{非水系電解液}
<非水系溶媒>
本発明の非水系電解液二次電池に使用される電解液の非水系溶媒としては、非水系電解液二次電池の溶媒として公知の任意のものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート等の環状カーボネート(好ましくは炭素数3〜5のアルキレンカーボネート);ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート等のジアルキルカーボネート(好ましくは炭素数1〜4のアルキル基を有するジアルキルカーボネート)等の鎖状カーボネート;テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテ
ル;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステル;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。これらは1種を単独で用いても良く、2種類以上を併用しても良い。
{Non-aqueous electrolyte solution}
<Non-aqueous solvent>
As the non-aqueous solvent of the electrolyte used in the non-aqueous electrolyte secondary battery of the present invention, any known solvent can be used as the solvent for the non-aqueous electrolyte secondary battery. For example, cyclic carbonate such as alkylene carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate (preferably alkylene carbonate having 3 to 5 carbon atoms); dialkyl such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate Chain carbonates such as carbonates (preferably dialkyl carbonates having an alkyl group having 1 to 4 carbon atoms); cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; chain ethers such as dimethoxyethane and dimethoxymethane; γ-butyrolactone, γ -Cyclic carboxylic acid esters such as valerolactone; and chain carboxylic acid esters such as methyl acetate, methyl propionate, and ethyl propionate. These may be used alone or in combination of two or more.

上記例示溶媒の中でも、環状カーボネートと鎖状カーボネートとを混合した混合非水系溶媒が、充放電特性、電池寿命等の電池性能全般を高める観点から好ましい。また、上記混合非水系溶媒は、環状カーボネート及び鎖状カーボネートをそれぞれ非水系溶媒全体の15体積%以上含み、且つ、それらの体積の合計が非水系溶媒全体の70体積%以上となるように混合することが好ましい。   Among the above exemplified solvents, a mixed non-aqueous solvent in which a cyclic carbonate and a chain carbonate are mixed is preferable from the viewpoint of improving overall battery performance such as charge / discharge characteristics and battery life. The mixed non-aqueous solvent contains cyclic carbonate and chain carbonate in an amount of 15% by volume or more of the whole non-aqueous solvent, and the total of these volumes is 70% by volume or more of the whole non-aqueous solvent. It is preferable to do.

上記の環状カーボネート及び鎖状カーボネートを混合した混合非水系溶媒に用いられる環状カーボネートとしては、アルキレン基の炭素数が2以上4以下のアルキレンカーボネートが好ましい。その具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネート及びプロピレンカーボネートが好ましい。   As the cyclic carbonate used in the mixed non-aqueous solvent in which the cyclic carbonate and the chain carbonate are mixed, an alkylene carbonate having 2 to 4 carbon atoms in the alkylene group is preferable. Specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Of these, ethylene carbonate and propylene carbonate are preferable.

また、上記の環状カーボネート及び鎖状カーボネートを混合した混合非水系溶媒に用いられる鎖状カーボネートとしては、炭素数が1以上4以下のアルキル基を有するジアルキルカーボネートが好ましい。その具体例としては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネートなどが挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート及びエチルメチルカーボネートが好ましい。   Moreover, as the chain carbonate used for the mixed non-aqueous solvent in which the cyclic carbonate and the chain carbonate are mixed, a dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms is preferable. Specific examples thereof include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate and the like. Of these, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferable.

これらの環状カーボネート及び鎖状カーボネートは各々独立に、1種のみを単独で使用しても良く、複数種を任意の組み合わせ及び比率で併用しても良い。   Each of these cyclic carbonates and chain carbonates may be used independently, or a plurality of types may be used in any combination and ratio.

混合非水系溶媒の環状カーボネートの割合は15体積%以上、特に20〜50体積%で、鎖状カーボネートの割合は30体積%以上、特に40〜80体積%で、環状カーボネートと鎖状カーボネートとの含有比率は、環状カーボネート:鎖状カーボネート=1:1〜4(体積比)であることが好ましい。   The ratio of the cyclic carbonate in the mixed non-aqueous solvent is 15% by volume or more, particularly 20 to 50% by volume, and the ratio of the chain carbonate is 30% by volume or more, particularly 40 to 80% by volume. The content ratio is preferably cyclic carbonate: chain carbonate = 1: 1 to 4 (volume ratio).

さらに、上記の混合非水系溶媒は、製造されるリチウム電池の電池性能を低下させない範囲であれば、環状カーボネート及び鎖状カーボネート以外の溶媒を含んでいても良い。混合非水系溶媒中における環状カーボネート及び鎖状カーボネート以外の溶媒の割合は、通常30体積%以下、好ましくは10体積%以下である。   Furthermore, the mixed non-aqueous solvent may contain a solvent other than the cyclic carbonate and the chain carbonate as long as the battery performance of the manufactured lithium battery is not deteriorated. The ratio of the solvent other than the cyclic carbonate and the chain carbonate in the mixed non-aqueous solvent is usually 30% by volume or less, preferably 10% by volume or less.

<リチウム塩>
非水系電解液の溶質であるリチウム塩としては、任意のものを用いることができる。例えば、LiClO、LiPF、LiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CF9SO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩などが挙げられる。これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩、特にLiPF、LiBFが好ましい。なお、リチウム塩についても1種を単独で用いても良く、2種以上を併用しても良い。
<Lithium salt>
Arbitrary things can be used as lithium salt which is a solute of nonaqueous system electrolyte. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F9SO 2), LiC (CF 3 SO 2) 3, LiPF 4 (CF 3) 2, LiPF 4 (C 2 F 5) 2, LiPF 4 (CF 3 SO 2) 2, LiPF 4 (C 2 F 5 SO 2) 2, LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) 2 fluorine-containing organic lithium salt such as Etc. Of these, fluorine-containing organic lithium salts such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ) 2 , particularly LiPF 6 and LiBF 4 are preferable. . In addition, about lithium salt, 1 type may be used independently and 2 or more types may be used together.

これらのリチウム塩の非水系電解液中の濃度の下限値としては、通常0.5mol/l以上、中でも0.75mol/l以上、上限値としては、通常2mol/l以下、中でも1.5mol/l以下である。リチウム塩の濃度がこの上限値を超えると非水系電解液の粘度が高くなり、電気伝導率も低下する。また、下限値を下回ると電気伝導率が低くなるので、上記濃度範囲内で非水系電解液を調製することが好ましい。   The lower limit of the concentration of these lithium salts in the non-aqueous electrolyte is usually 0.5 mol / l or more, especially 0.75 mol / l or more, and the upper limit is usually 2 mol / l or less, especially 1.5 mol / l. l or less. When the concentration of the lithium salt exceeds this upper limit value, the viscosity of the nonaqueous electrolytic solution increases and the electrical conductivity also decreases. Moreover, since electrical conductivity will become low if less than a lower limit, it is preferable to prepare a non-aqueous electrolyte within the said concentration range.

<被膜形成剤>
本発明に係る非水系電解液は、負極表面に抵抗性被膜を形成しうる被膜形成剤を含有してもよい。本発明で用いる被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート、エリスリタンカーボネート等のエチレン性不飽和結合を有するカーボネート化合物や、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物、フェニルコハク酸無水物等のカルボン酸無水物等が挙げられる。特に、良好なサイクル特性向上効果と、被膜抵抗の温度依存性の観点から、被膜形成剤としてはビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸が好ましく、特に良質な被膜を形成しうることから、ビニレンカーボネートを用いることが更に好ましい。なお、これらの被膜形成剤は1種を単独で用いても良く、2種以上を混合して用いても構わない。
<Film-forming agent>
The nonaqueous electrolytic solution according to the present invention may contain a film forming agent capable of forming a resistive film on the negative electrode surface. As the film forming agent used in the present invention, carbonate compounds having ethylenically unsaturated bonds such as vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate, erythritan carbonate, succinic anhydride, Carboxylic anhydride such as glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride, phenylsuccinic anhydride Thing etc. are mentioned. In particular, vinylene carbonate, vinyl ethylene carbonate, and succinic anhydride are preferable as the film forming agent from the viewpoint of good cycle characteristic improvement effect and temperature dependency of film resistance, and vinylene can be formed because particularly good quality film can be formed. More preferably, carbonate is used. In addition, these film formation agents may be used individually by 1 type, and may mix and use 2 or more types.

本発明において、非水系電解液中の被膜形成剤の含有量は、0.01重量%以上、好ましくは0.1重量%以上、より好ましくは0.3重量%以上であり、10重量%以下、好ましくは8重量%以下、より好ましくは7重量%以下である。被膜形成剤の含有量が上記範囲の下限を下回ると電池のサイクル特性向上効果が得られ難い一方で、上限を超えると低温におけるレート特性の低下を招くおそれがある。   In the present invention, the content of the film forming agent in the nonaqueous electrolytic solution is 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 0.3% by weight or more, and 10% by weight or less. , Preferably 8% by weight or less, more preferably 7% by weight or less. If the content of the film forming agent is below the lower limit of the above range, it is difficult to obtain the effect of improving the cycle characteristics of the battery. On the other hand, if the content exceeds the upper limit, the rate characteristics at low temperatures may be lowered.

なお、本発明に係る非水系電解液には、非水系溶媒、リチウム塩及び被膜形成剤以外に、必要に応じて他の有用な成分、例えば従来公知の過充電防止剤、脱水剤、脱酸剤、正極保護剤等の各種の添加剤を含有させても良い。   In addition to the non-aqueous solvent, lithium salt, and film forming agent, the non-aqueous electrolyte solution according to the present invention includes other useful components as required, for example, conventionally known overcharge inhibitors, dehydrating agents, deoxidizing agents. You may contain various additives, such as an agent and a positive electrode protective agent.

{正極}
正極としては、通常、正極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。
{Positive electrode}
As the positive electrode, a material in which an active material layer containing a positive electrode active material and a binder is usually formed on a current collector is used.

正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に制限はない。好ましい例としては、リチウム遷移金属複合酸化物が挙げられる。   The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Preferable examples include lithium transition metal composite oxides.

リチウム遷移金属複合酸化物の具体例としては、LiCoOなどのリチウム・コバルト複合酸化物、LiNiOなどのリチウム・ニッケル複合酸化物、LiMnOなどのリチウム・マンガン複合酸化物等が挙げられる。これらのリチウム遷移金属複合酸化物は、主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置き換えると、安定化させることができるので好ましい。これらの正極活物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。 Specific examples of the lithium-transition metal composite oxide, lithium cobalt complex oxides such as LiCoO 2, lithium-nickel composite oxide such as LiNiO 2, include lithium-manganese composite oxides such as LiMnO 2. In these lithium transition metal composite oxides, some of the main transition metal atoms are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, etc. Replacing with other metals is preferable because it can be stabilized. Any one of these positive electrode active materials may be used alone, or two or more thereof may be used in any combination and ratio.

バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としてはポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。   The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), Examples thereof include fluororubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, and nitrocellulose. These may be used individually by 1 type, or may use multiple types together.

正極活物質層中のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。   As for the ratio of the binder in the positive electrode active material layer, the lower limit is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and the upper limit is usually 80% by weight or less, preferably 60% by weight or less, more preferably 40% by weight or less, and still more preferably 10% by weight or less. If the proportion of the binder is small, the active material cannot be sufficiently retained, so that the mechanical strength of the positive electrode is insufficient, and the battery performance such as cycle characteristics may be deteriorated. On the contrary, if the amount is too large, the battery capacity and conductivity are lowered. It will be.

正極活物質層は、通常、導電性を高めるため導電剤を含有する。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛の微粒子や、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素微粒子等の炭素質材料を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。   The positive electrode active material layer usually contains a conductive agent in order to increase conductivity. Examples of the conductive agent include carbonaceous materials such as graphite fine particles such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke. These may be used individually by 1 type, or may use multiple types together.

正極活物質層中の導電剤の割合は、下限値が通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、上限値が通常50重量%以下、好ましくは30重量%以下、更に好ましくは15重量%以下である。導電剤の割合が少ないと導電性が不十分になることがあり、逆に多すぎると電池容量が低下することがある。   The ratio of the conductive agent in the positive electrode active material layer is such that the lower limit is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and the upper limit is usually 50% by weight or less. , Preferably 30% by weight or less, more preferably 15% by weight or less. If the proportion of the conductive agent is small, the conductivity may be insufficient, and conversely if too large, the battery capacity may be reduced.

正極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。
増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
In addition, the positive electrode active material layer can contain additives for a normal active material layer such as a thickener.
The thickener is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. These may be used individually by 1 type, or may use multiple types together.

正極の集電体には、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。   Aluminum, stainless steel, nickel-plated steel or the like is used for the current collector of the positive electrode.

正極は、前述の正極活物質とバインダーと導電剤、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。スラリー化のために用いる溶媒としては、通常、バインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。   The positive electrode can be formed by applying a slurry obtained by slurrying the above-described positive electrode active material, a binder, a conductive agent, and other additives added as necessary with a solvent onto a current collector, and drying the positive electrode active material. . As the solvent used for slurrying, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like are used, but not limited thereto. These may be used individually by 1 type, or may use multiple types together. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.

このようにして形成される正極活物質層の厚さは、通常10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。   Thus, the thickness of the positive electrode active material layer formed is about 10-200 micrometers normally. The active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

{負極}
負極は、通常、負極活物質とバインダーを含有する活物質層を集電体上に形成させたものが用いられる。
{Negative electrode}
As the negative electrode, a material in which an active material layer containing a negative electrode active material and a binder is usually formed on a current collector is used.

負極活物質としては様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金などを用いることができる。これらの負極活物質は、1種を単独で用いても良く、2種類以上を混合して用いても良い。   As a negative electrode active material, a carbonaceous material capable of occluding / releasing lithium such as organic pyrolysate, artificial graphite and natural graphite under various pyrolysis conditions; capable of occluding / releasing lithium such as tin oxide and silicon oxide Metal oxide material; lithium metal; various lithium alloys can be used. These negative electrode active materials may be used individually by 1 type, and may mix and use 2 or more types.

バインダーとしては、電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン−ブタジエンゴム、イソプレンゴム、ブタジエンゴム等を挙げることができる。これらは1種を単独で用いても、複数種を併用しても良い。   The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene rubber, isoprene rubber, butadiene rubber and the like. These may be used individually by 1 type, or may use multiple types together.

負極活物質層中の上述のバインダーの割合は、下限値が通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、上限値が通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下、更に好ましくは10重量%以下である。バインダーの割合が少ないと、活物質を十分に保持できないので負極の機械的強度が不足し、サイクル特性等の電池性能を悪化させることがあり、逆に多すぎると電池容量や導電性を下げることになる。   The ratio of the binder in the negative electrode active material layer is such that the lower limit is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and the upper limit is usually 80% by weight or less. Preferably it is 60 weight% or less, More preferably, it is 40 weight% or less, More preferably, it is 10 weight% or less. If the ratio of the binder is small, the active material cannot be sufficiently retained, so that the negative electrode mechanical strength may be insufficient, and the battery performance such as cycle characteristics may be deteriorated. become.

負極活物質層には、その他、増粘剤等の通常の活物質層の添加剤を含有させることができる。
増粘剤は電極製造時に使用する溶媒や電解液、電池使用時に用いる他の材料に対して安定な材料であれば、特に限定されない。その具体例としては、カルボキシルメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。これらは1種を単独で用いても、複数種を併用しても良い。
In addition, the negative electrode active material layer may contain additives for a normal active material layer such as a thickener.
The thickener is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used during electrode production and other materials used during battery use. Specific examples thereof include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein. These may be used individually by 1 type, or may use multiple types together.

負極の集電体には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用される。   Copper, nickel, stainless steel, nickel-plated steel, or the like is used for the negative electrode current collector.

負極は、前述の負極活物質とバインダー、必要に応じて添加されるその他の添加剤とを溶媒でスラリー化したものを集電体に塗布して乾燥することにより形成することができる。スラリー化のために用いる溶媒としては、通常、バインダーを溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が用いられるがこれらに限定されない。これらは1種を単独で用いても、複数種を併用しても良い。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化することもできる。   The negative electrode can be formed by applying a slurry obtained by slurrying the above-described negative electrode active material, a binder, and other additives added as necessary with a solvent, and then drying the current collector. As the solvent used for slurrying, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like are used, but not limited thereto. These may be used individually by 1 type, or may use multiple types together. Moreover, a dispersing agent, a thickener, etc. can be added to water, and an active material can also be slurried with latex, such as SBR.

このようにして形成される負極活物質層の厚さは、通常、10〜200μm程度である。なお、塗布・乾燥によって得られた活物質層は、活物質の充填密度を上げるために、ローラープレス等により圧密化するのが好ましい。   Thus, the thickness of the negative electrode active material layer formed is about 10-200 micrometers normally. The active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the active material.

{電池構成}
本発明の非水系電解液二次電池は、上述した正極と、負極と、非水系電解液と、セパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
{Battery configuration}
The non-aqueous electrolyte secondary battery of the present invention is manufactured by assembling the above-described positive electrode, negative electrode, non-aqueous electrolyte, and separator into an appropriate shape. Furthermore, other components such as an outer case can be used as necessary.

その電池形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、シート電極及びセパレータを積層したラミネートタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。   The battery shape is not particularly limited, and can be appropriately selected from various commonly used shapes according to the application. Examples of commonly used shapes include a cylinder type with a sheet electrode and separator spiral, an inside-out cylinder type with a combination of pellet electrode and separator, a coin type with a stack of pellet electrode and separator, and a sheet Examples include a laminate type in which electrodes and separators are laminated. The method for assembling the battery is not particularly limited, and can be appropriately selected from various commonly used methods according to the shape of the target battery.

以上、本発明の非水系電解液二次電池の一般的な実施形態について説明したが、本発明の非水系電解液二次電池は上記実施形態に制限されるものではなく、その要旨を越えない限りにおいて、各種の変形を加えて実施することが可能である。   The general embodiment of the non-aqueous electrolyte secondary battery of the present invention has been described above, but the non-aqueous electrolyte secondary battery of the present invention is not limited to the above-described embodiment and does not exceed the gist thereof. As long as it is possible, various modifications can be made.

以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.

なお、以下の実施例及び比較例において、セパレータの突き刺し強度は以下の方法で測定した。
<セパレータの突き刺し強度測定方法>
ホルダーで固定したサンプル(測定部:直径10mmの円形)に、直径1mm、先端曲率半径0.5mmの金属(SUS440C)製針を厚さ方向に300mm/minの速さで突き刺して、穴が開口する最大荷重を測定する。突き刺し強度は厚みに比例するとして、厚み25μm当たりの突き刺し強度を求める。
In the following examples and comparative examples, the piercing strength of the separator was measured by the following method.
<Method of measuring piercing strength of separator>
A hole made by a metal (SUS440C) needle with a diameter of 1 mm and a tip curvature radius of 0.5 mm is pierced at a speed of 300 mm / min in the thickness direction into a sample (measurement part: a circle with a diameter of 10 mm) fixed with a holder. Measure the maximum load. Assuming that the piercing strength is proportional to the thickness, the piercing strength per 25 μm thickness is obtained.

[実施例1]
高密度ポリエチレン〔プライムポリマー社製「ハイゼックス7000F」、JISK7210に基づくメルトフローレートが0.04g/10min、JISK7121に基づく融点が131℃〕50重量部(82.2体積%)、充填剤として硫酸バリウム〔平均粒径0.66μm〕50重量部(17.8体積%)を配合して180℃で溶融混練し、得られた樹脂組成物を180℃で熱プレスを行って原反シートを得た。原反シートの厚みは平均450μmであった。
次に、得られた原反シートを135℃で2×2の同時二軸延伸を行った。次いで125℃で3×3の同時二軸延伸を行った。
得られたフィルムは膜厚24μm、空孔率47%、25μm当たりの突き刺し強度は350g(3.43N)であった。
[Example 1]
50 parts by weight (82.2% by volume) of high-density polyethylene ("Hi-Zex 7000F" manufactured by Prime Polymer Co., Ltd., melt flow rate of 0.04 g / 10 min based on JISK7210, melting point 131 ° C based on JISK7121) [Average particle size 0.66 μm] 50 parts by weight (17.8% by volume) were blended and melt-kneaded at 180 ° C., and the resulting resin composition was hot-pressed at 180 ° C. to obtain a raw sheet. . The thickness of the original fabric sheet was 450 μm on average.
Next, the obtained raw sheet was subjected to 2 × 2 simultaneous biaxial stretching at 135 ° C. Next, 3 × 3 simultaneous biaxial stretching was performed at 125 ° C.
The obtained film had a thickness of 24 μm, a porosity of 47%, and a puncture strength per 25 μm of 350 g (3.43 N).

[実施例2]
高密度ポリエチレン〔プライムポリマー社製「ハイゼックス7000F」、JISK7210に基づくメルトフローレートが0.04g/10min、JISK7121に基づく融点が131℃〕50重量部(82.2体積%)、充填剤として硫酸バリウム〔平均粒径0.66μm〕50重量部(17.8体積%)を配合して180℃で溶融混練し、得られた樹脂組成物を180℃で熱プレスを行って原反シートを得た。原反シートの厚みは平均360μmであった。
次に、得られた原反シートを135℃で2×2の同時二軸延伸を行った。次いで120℃で3×3の同時二軸延伸を行った。
得られたフィルムは膜厚16μm、空孔率36%、25μm当たりの突き刺し強度は440g(4.31N)であった。
[Example 2]
50 parts by weight (82.2% by volume) of high-density polyethylene ("Hi-Zex 7000F" manufactured by Prime Polymer Co., Ltd., melt flow rate based on JISK7210 is 0.04 g / 10min, melting point is 131 ° C based on JISK7121), and barium sulfate as a filler [Average particle size 0.66 μm] 50 parts by weight (17.8% by volume) were blended and melt-kneaded at 180 ° C., and the resulting resin composition was hot-pressed at 180 ° C. to obtain a raw sheet. . The thickness of the raw sheet was an average of 360 μm.
Next, the obtained raw sheet was subjected to 2 × 2 simultaneous biaxial stretching at 135 ° C. Next, 3 × 3 simultaneous biaxial stretching was performed at 120 ° C.
The obtained film had a film thickness of 16 μm, a porosity of 36%, and a puncture strength per 25 μm of 440 g (4.31 N).

[比較例1]
高密度ポリエチレン〔プライムポリマー社製「ハイゼックス7000F」、JISK7210に基づくメルトフローレートが0.04g/10min、JISK7121に基づく融点が131℃〕50重量部(82.2体積%)、充填剤として硫酸バリウム〔平均粒径0.66μm〕50重量部(17.8体積%)を配合して180℃で溶融混練し、得られた樹脂組成物を180℃で熱プレスを行って原反シートを得た。原反シートの厚みは平均200μmであった。
次に、得られた原反シートを125℃で3×3の同時二軸延伸を行った。
得られたフィルムは膜厚62μm、空孔率64%、25μm当たりの突き刺し強度は90g(0.88N)であった。
[Comparative Example 1]
50 parts by weight (82.2% by volume) of high-density polyethylene ("Hi-Zex 7000F" manufactured by Prime Polymer Co., Ltd., melt flow rate of 0.04 g / 10 min based on JISK7210, melting point 131 ° C based on JISK7121) [Average particle size 0.66 μm] 50 parts by weight (17.8% by volume) were blended and melt-kneaded at 180 ° C., and the resulting resin composition was hot-pressed at 180 ° C. to obtain a raw sheet. . The thickness of the original fabric sheet was 200 μm on average.
Next, the obtained original sheet was subjected to 3 × 3 simultaneous biaxial stretching at 125 ° C.
The obtained film had a film thickness of 62 μm, a porosity of 64%, and a piercing strength per 25 μm of 90 g (0.88 N).

Claims (12)

熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物からなり、厚み25μm当たりの突き刺し強度が2.5N以上であることを特徴とする非水系電解液二次電池用セパレータ。   A separator for a non-aqueous electrolyte secondary battery comprising a thermoplastic resin composition containing a thermoplastic resin and a filler, and having a puncture strength of 2.5 N or more per 25 μm thickness. 熱可塑性樹脂が、JISK7210に基づくメルトフローレートが0.01乃至0.3g/10minのポリオレフィン樹脂であることを特徴とする請求項1に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 1, wherein the thermoplastic resin is a polyolefin resin having a melt flow rate based on JISK7210 of 0.01 to 0.3 g / 10 min. ポリオレフィン樹脂が、ポリエチレン及び/又はポリプロピレンであることを特徴とする請求項2に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 2, wherein the polyolefin resin is polyethylene and / or polypropylene. ポリオレフィン樹脂が、高密度ポリエチレンであることを特徴とする請求項2又は3に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 2 or 3, wherein the polyolefin resin is high-density polyethylene. 充填剤が、無機物であることを特徴とする請求項1乃至4のいずれかに記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the filler is an inorganic substance. 熱可塑性樹脂組成物中の充填剤含量が、10乃至50体積%であることを特徴とする請求項1乃至5のいずれかに記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the filler content in the thermoplastic resin composition is 10 to 50% by volume. 充填剤が、硫酸塩であることを特徴とする請求項1乃至6のいずれかに記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the filler is a sulfate. 硫酸塩が、硫酸バリウムであることを特徴とする請求項7に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 7, wherein the sulfate is barium sulfate. 充填剤が、金属酸化物であることを特徴とする請求項1乃至6のいずれかに記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the filler is a metal oxide. 金属酸化物が、アルミナであることを特徴とする請求項9に記載の非水系電解液二次電池用セパレータ。   The separator for a non-aqueous electrolyte secondary battery according to claim 9, wherein the metal oxide is alumina. 熱可塑性樹脂と充填剤とを含む熱可塑性樹脂組成物からなる非水系電解液二次電池用セパレータであって、該セパレータは、該熱可塑性樹脂の融点以上の温度で少なくとも1回の延伸処理が施された後、該融点以上での延伸処理と同方向に該融点未満の温度で少なくとも1回の延伸処理が施されたものであることを特徴とする非水系電解液二次電池用セパレータ。   A separator for a non-aqueous electrolyte secondary battery comprising a thermoplastic resin composition containing a thermoplastic resin and a filler, wherein the separator is subjected to at least one stretching treatment at a temperature equal to or higher than the melting point of the thermoplastic resin. A separator for a non-aqueous electrolyte secondary battery that has been subjected to at least one stretching treatment at a temperature below the melting point in the same direction as the stretching treatment at or above the melting point. リチウムイオンを吸蔵・放出可能な正極と、リチウムイオンを吸蔵・放出可能な負極と、非水系溶媒及びリチウム塩を含有する非水系電解液と、セパレータとを有する非水系電解液二次電池において、セパレータとして、請求項1乃至11のいずれかに記載のセパレータを用いたことを特徴とする非水系電解液二次電池。   In a non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium ions, a negative electrode capable of inserting and extracting lithium ions, a non-aqueous electrolyte containing a non-aqueous solvent and a lithium salt, and a separator, A non-aqueous electrolyte secondary battery using the separator according to claim 1 as the separator.
JP2005304636A 2005-10-19 2005-10-19 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same Expired - Fee Related JP5017841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304636A JP5017841B2 (en) 2005-10-19 2005-10-19 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304636A JP5017841B2 (en) 2005-10-19 2005-10-19 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012096387A Division JP5316671B2 (en) 2012-04-20 2012-04-20 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2007115479A true JP2007115479A (en) 2007-05-10
JP5017841B2 JP5017841B2 (en) 2012-09-05

Family

ID=38097483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304636A Expired - Fee Related JP5017841B2 (en) 2005-10-19 2005-10-19 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5017841B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane
JP2014519155A (en) * 2012-04-27 2014-08-07 南通天豊電子新材料有限公司 Method for producing a safety separator with a microporous composite structure by inducing uniaxial stretching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256491A (en) * 1999-03-04 2000-09-19 Nitto Denko Corp Porous film and its production
JP2002069221A (en) * 2000-06-14 2002-03-08 Sumitomo Chem Co Ltd Porous film and battery separator using it
JP2003238720A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Polyolefinic porous membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256491A (en) * 1999-03-04 2000-09-19 Nitto Denko Corp Porous film and its production
JP2002069221A (en) * 2000-06-14 2002-03-08 Sumitomo Chem Co Ltd Porous film and battery separator using it
JP2003238720A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Polyolefinic porous membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane
JP2014519155A (en) * 2012-04-27 2014-08-07 南通天豊電子新材料有限公司 Method for producing a safety separator with a microporous composite structure by inducing uniaxial stretching

Also Published As

Publication number Publication date
JP5017841B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
CN102326277B (en) Battery separator and Non-aqueous lithium battery
WO2005015660A1 (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
JP5500424B2 (en) Battery separator and non-aqueous lithium secondary battery
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP5422372B2 (en) Battery separator and non-aqueous lithium secondary battery
JP2010007053A (en) Microporous polyolefin film
WO2018216819A1 (en) Polyolefin microporous membrane, separator for electricity storage devices, and electricity storage device
JP4929593B2 (en) Non-aqueous electrolyte secondary battery
JP4984372B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP2017183229A (en) Separator for power storage device
JP7235486B2 (en) Polyolefin microporous membrane
JP2009211946A (en) Porous film for battery separator, and battery equipped with the film
JP2010171006A (en) Separator for cell and nonaqueous lithium secondary battery
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5206659B2 (en) Non-aqueous electrolyte secondary battery
JP5017841B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP4586374B2 (en) Non-aqueous electrolyte secondary battery
JP5316671B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP7152435B2 (en) Polyolefin microporous membrane
JP4474931B2 (en) Non-aqueous electrolyte secondary battery
JP4586359B2 (en) Non-aqueous electrolyte secondary battery
JP4586375B2 (en) Non-aqueous electrolyte secondary battery
JP5422373B2 (en) Battery separator and non-aqueous lithium secondary battery
US11728100B2 (en) Polyolefin porous film, separator for energy storage device, and energy storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5017841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees