JP3062304B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP3062304B2
JP3062304B2 JP3175283A JP17528391A JP3062304B2 JP 3062304 B2 JP3062304 B2 JP 3062304B2 JP 3175283 A JP3175283 A JP 3175283A JP 17528391 A JP17528391 A JP 17528391A JP 3062304 B2 JP3062304 B2 JP 3062304B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
aqueous solvent
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3175283A
Other languages
Japanese (ja)
Other versions
JPH0521068A (en
Inventor
洋司 石原
博義 能勢
裕二 望月
義明 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP3175283A priority Critical patent/JP3062304B2/en
Publication of JPH0521068A publication Critical patent/JPH0521068A/en
Application granted granted Critical
Publication of JP3062304B2 publication Critical patent/JP3062304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、負極担持体として炭素
質物を用いた非水溶媒二次電池に関する。
The present invention relates to a non-aqueous solvent secondary battery using a carbonaceous material as a negative electrode carrier.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつエネルギー密度が高く、さらに繰り返し充放電
が可能な二次電池の開発が要望されている。この種の二
次電池としては、負極活物質としてリチウム又はリチウ
ム合金を用い、正極活物質としてモリブデン、バナジウ
ム、チタン、ニオブなどの酸化物、硫化物、セレン化物
等を用いたものが知られている。また最近では、高エネ
ルギー密度を有するマンガン酸化物のサイクル特性を改
良・向上させたスピネル型LiMn2 4 や、他のリチ
ウムマンガン酸化物についての検討が活発に行われてい
る。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery that is small, lightweight, has a high energy density, and can be repeatedly charged and discharged. As this type of secondary battery, those using lithium or a lithium alloy as a negative electrode active material and using an oxide such as molybdenum, vanadium, titanium, niobium, sulfide, selenide, etc. as a positive electrode active material are known. I have. Recently, studies have been actively conducted on spinel-type LiMn 2 O 4 having improved and improved cycle characteristics of a manganese oxide having a high energy density and other lithium manganese oxides.

【0003】これらのリチウムマンガン酸化物を正極活
物質とし、リチウムを負極活物質とする二次電池系にお
いては、充放電サイクルを繰り返すことによって負極活
物質であるリチウムの溶解・析出反応が繰り返され、や
がてリチウム基板上に針状のリチウムデンドライト析出
物を形成するという問題が生じる。そのため、これら二
次電池系においては、正極活物質中で徐々に進行する結
晶構造の崩れとともに、負極側におけるリチウムデンド
ライトの生成と溶媒の分解反応によって電池寿命は規定
され、200サイクル以上の寿命と長期間にわたる信頼
性を有する二次電池の製造は非常に困難であった。
In a secondary battery system using these lithium manganese oxide as a positive electrode active material and lithium as a negative electrode active material, the dissolution / precipitation reaction of lithium as the negative electrode active material is repeated by repeating charge / discharge cycles. Eventually, a problem arises in that needle-like lithium dendrite precipitates are formed on the lithium substrate. Therefore, in these secondary battery systems, the battery life is regulated by the formation of lithium dendrite and the decomposition reaction of the solvent on the negative electrode side with the collapse of the crystal structure gradually progressing in the positive electrode active material, and the life of 200 cycles or more. It has been very difficult to manufacture a secondary battery having long-term reliability.

【0004】このような問題を回避するために、負極に
各種の有機化合物を焼成した炭素質物にリチウム又はリ
チウムを主体とするアルカリ金属を担持させて構成する
二次電池の開発が試みられている。このような負極を用
いることにより、リチウムデンドライトの析出が防止さ
れサイクル特性が向上し、かつ金属リチウムを使用して
いないため安全性についても向上されてきている。
[0004] In order to avoid such problems, development of a secondary battery in which lithium or an alkali metal mainly composed of lithium is supported on a carbonaceous material obtained by firing various organic compounds on a negative electrode has been attempted. . By using such a negative electrode, precipitation of lithium dendrite is prevented, cycle characteristics are improved, and safety is also improved because metal lithium is not used.

【0005】一方、正極には、上記したマンガン酸化物
と異なる反応形態である層状化合物のインターカレーシ
ョン又はドーピング現象を利用した電極活物質が注目を
集めている。これら電極活物質は、充放電反応時におい
て複雑な化学反応を起こさないことから、極めて優れた
充放電サイクル特性を有することが期待される。中でも
炭素質材料を負極担持体とし、正極活物質として3.5
V程度の平均作動動作を示すLiCoO2 ,LiNiO
2 ,LiCox Ni1-x 2 等が検討されてきている。
On the other hand, for the positive electrode, an electrode active material utilizing intercalation or doping of a layered compound having a reaction mode different from that of the above-mentioned manganese oxide has attracted attention. Since these electrode active materials do not cause a complicated chemical reaction during the charge / discharge reaction, they are expected to have extremely excellent charge / discharge cycle characteristics. Among them, a carbonaceous material is used as a negative electrode carrier and 3.5 is used as a positive electrode active material.
LiCoO 2 , LiNiO showing average operation of about V
2 , LiCo x Ni 1-x O 2 and the like have been studied.

【0006】[0006]

【発明が解決しようとする課題】しかし、炭素質材料を
負極担持体として使用した電池は、充放電サイクル寿命
が短く、それゆえ、十分な容量と充放電サイクル数を確
保することができなかった。すなわち、結着剤としてポ
リテトラフルオロエチレンを用いた場合、充放電サイク
ルの進行とともにリチウムと結着剤であるポリテトラフ
ルオロエチレンとが反応・分解し、負極体の結着能力を
大幅に低下させ、結着能力の低下による負極担持体の脱
落及び内部短絡などの問題があった。
However, a battery using a carbonaceous material as a negative electrode carrier has a short charge / discharge cycle life, and therefore, it is not possible to secure a sufficient capacity and a sufficient number of charge / discharge cycles. . In other words, when polytetrafluoroethylene is used as a binder, lithium and polytetrafluoroethylene, which is a binder, react and decompose with the progress of the charge / discharge cycle, greatly reducing the binding ability of the negative electrode body. In addition, there have been problems such as falling off of the negative electrode carrier due to a decrease in binding ability and internal short circuit.

【0007】また、結着剤としてエチレン−プロピレン
−環状ジエンの三元共重合体を用いたものが提案されて
いるが、かかる結着剤は負極担持体を覆うような結着形
態をとるため電池内部抵抗が大幅に増大し、大電流放電
等においては充分な特性を得ることができないという問
題があった。
Further, there has been proposed a binder using a terpolymer of ethylene-propylene-cyclic diene as a binder. However, such a binder takes a binding form that covers a negative electrode carrier. There is a problem that the internal resistance of the battery is greatly increased, and sufficient characteristics cannot be obtained in a large current discharge or the like.

【0008】本発明は、上記問題を解決するためになさ
れたもので、充放電サイクル寿命に優れ、かつ高い容量
維持率をもつ非水溶媒二次電池を提供することを目的と
するものである。
The present invention has been made to solve the above problems, and has as its object to provide a non-aqueous solvent secondary battery having an excellent charge / discharge cycle life and a high capacity retention rate. .

【0009】[0009]

【課題を解決するための手段】上記問題を達成するため
に、本発明の非水溶媒二次電池は、リチウムまたはリチ
ウムを主体とするアルカリ金属を担持した炭素質物から
なる負極体と、セパレータと、リチウム含有複合酸化物
を正極活物質とする正極体をこの順序で一体的に積層し
て成る発電要素を具備する非水溶媒二次電池において、
前記負極体の結着剤としてポリアクリル酸(PAA)と
スチレン・ブタジエンゴム(SBR)を用いることを特
徴とするものである。
In order to achieve the above object, a non-aqueous solvent secondary battery of the present invention comprises a negative electrode body made of a carbonaceous material carrying lithium or an alkali metal mainly composed of lithium, a separator, In a non-aqueous solvent secondary battery including a power generating element formed by integrally laminating a positive electrode body having a lithium-containing composite oxide as a positive electrode active material in this order,
It is characterized in that polyacrylic acid (PAA) and styrene-butadiene rubber (SBR) are used as a binder for the negative electrode body.

【0010】本発明で用いられるリチウム含有複合酸化
物は、一般的に次のような方法で合成される。すなわ
ち、リチウムと、Co,Ni,FeまたはMnから選ば
れる1種または2種以上の遷移金属の炭酸塩、硝酸塩、
硫酸塩、水酸化物などを出発原料として、これらを化学
量論比で混合し、焼成することによって得られる。な
お、出発原料として炭酸塩が好ましい。焼成温度は出発
原料により多少異なるが、通常は600〜1,000℃
の温度範囲、好ましくは600〜800℃の範囲であ
る。
The lithium-containing composite oxide used in the present invention is generally synthesized by the following method. That is, lithium and one or more transition metal carbonates or nitrates selected from Co, Ni, Fe or Mn;
It can be obtained by mixing sulfates, hydroxides and the like as starting materials in a stoichiometric ratio and firing. In addition, carbonate is preferable as a starting material. The firing temperature varies slightly depending on the starting material, but is usually 600 to 1,000 ° C.
, Preferably in the range of 600 to 800 ° C.

【0011】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質物を用いる。この炭素質物の原料となる有機化合
物としては、通常使用されているものであれば、特に限
定されるものではなく、フェノール樹脂、特にノボラッ
ク樹脂並びにポリアクリロニトリルなどを用いることが
できる。また、この炭素質物としては特願平1−283
086号に示すような有機化合物焼成体の特性を有する
ものが特に好ましい。
As the carbonaceous material as the negative electrode carrier, a carbonaceous material obtained by firing an organic compound is preferably used in order to improve battery characteristics. The organic compound serving as a raw material of the carbonaceous material is not particularly limited as long as it is a commonly used organic compound, and a phenol resin, particularly a novolak resin, polyacrylonitrile, or the like can be used. In addition, the carbonaceous material is disclosed in Japanese Patent Application No. 1-283.
Those having the characteristics of an organic compound fired body as shown in No. 086 are particularly preferred.

【0012】本発明で結着剤として用いるポリアクリル
酸は、特に限定はなく、市販品のものを用いることがで
きる。特に25%水溶液で中和されているもの、その中
でもアンモニウム塩で中和されているものが特に好まし
い。
The polyacrylic acid used as a binder in the present invention is not particularly limited, and a commercially available product can be used. In particular, those neutralized with a 25% aqueous solution, and among them, those neutralized with an ammonium salt are particularly preferable.

【0013】また、スチレン・ブタジエンゴムについて
も特に限定はなく一般品を用いることができるが、中で
も重合率60〜95%、結合スチレン20〜50%で、
変性のスチレン・ブタジエンゴムラテックスを用いるこ
とが好ましい。
The styrene-butadiene rubber is not particularly limited, and a general product can be used. Among them, a polymerization rate of 60 to 95%, a bound styrene of 20 to 50%, and
It is preferable to use a modified styrene-butadiene rubber latex.

【0014】なお、負極体における負極担持体量は全体
の90重量%以上であり、結着剤量は0.5〜5.0重
量%である。そのうちポリアクリル酸は0.5〜3.0
重量%、好ましくは1.0〜1.5重量%であり、スチ
レン・ブタジエンゴムは1.0〜5.0重量%、好まし
くは2.0〜3.0重量%である。結着剤量が5.0重
量%を越えると、負極の内部抵抗が増加し、電池の重負
荷放電の能力を大幅に低下させるので好ましくない。ま
た、ポリアクリル酸が3.0重量%越えると、増粘効果
が大きくなり、後述するスラリー化が困難なため好まし
くなく、スチレン・ブタジエンゴムが5.0重量%を越
えると、結着効果が大きくなり電池の内部抵抗を増加さ
せる原因となるため好ましくない。
The amount of the negative electrode carrier in the negative electrode body is 90% by weight or more of the whole, and the amount of the binder is 0.5 to 5.0% by weight. Among them, polyacrylic acid is 0.5 to 3.0.
%, Preferably 1.0 to 1.5% by weight, and the styrene-butadiene rubber is 1.0 to 5.0% by weight, preferably 2.0 to 3.0% by weight. If the amount of the binder exceeds 5.0% by weight, the internal resistance of the negative electrode increases, and the heavy load discharging ability of the battery is greatly reduced, which is not preferable. On the other hand, if the content of polyacrylic acid exceeds 3.0% by weight, the thickening effect becomes large, and it is difficult to form a slurry as described later, which is not preferable. If the content of styrene / butadiene rubber exceeds 5.0% by weight, the binding effect is reduced. It is not preferable because it becomes large and causes an increase in the internal resistance of the battery.

【0015】本発明において、非水溶媒二次電池に用い
られる非水電解液の電解質としては、LiPF6 ,Li
ClO4 ,LiBF4,LiCF3 SO3 等のリチウム
塩などが挙げられる。このような電解液の溶媒として
は、プロピレンカーボネート(PC)、エチレンカーボ
ネート(EC)、テトラヒドロフラン、2−メチルテト
ラヒドロフラン、γ−ブチロラクトン、1,2ジメトキ
シエタン(DME)が挙げられる。これらの溶媒は、1
種または2種以上の混合物で用いることができ、特に充
放電サイクル寿命を長くする観点から、プロピレンカー
ボネート(PC)と1,2ジメトキシエタン(DME)
との混合溶媒、エチレンカーボネート(EC)と2−メ
チルテトラヒドロフランとの混合溶媒、エチレンカーボ
ネート(EC)と1,2ジメトキシエタンとの混合溶
媒、プロピレンカーボネート(PC)とエチレンカーボ
ネート(EC)との混合溶媒が好ましい。
In the present invention, the electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery is LiPF 6 , Li
Lithium salts such as ClO 4 , LiBF 4 , and LiCF 3 SO 3 are exemplified. Examples of the solvent for such an electrolyte include propylene carbonate (PC), ethylene carbonate (EC), tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and 1,2-dimethoxyethane (DME). These solvents are 1
Propylene carbonate (PC) and 1,2-dimethoxyethane (DME), from the viewpoint of extending the charge / discharge cycle life.
Mixed solvent of ethylene carbonate (EC) and 2-methyltetrahydrofuran, mixed solvent of ethylene carbonate (EC) and 1,2-dimethoxyethane, mixed of propylene carbonate (PC) and ethylene carbonate (EC) Solvents are preferred.

【0016】[0016]

【作用】本発明の2次電池においては、リチウムまたは
リチウムを主体とするアルカリ金属を担持した炭素質物
からなる負極体と、セパレータと、リチウム含有複合酸
化物を正極活物質とする正極体をこの順序で一体的に積
層して成る発電要素を具備する非水溶媒二次電池におい
て、前記負極体の結着剤としてポリアクリル酸とスチレ
ン・ブタジエンゴムを用いることによりリチウムと結着
剤との反応はなくなり、その結果、充放電サイクルを繰
り返しても集電体と負極担持体との導電性を損なうこと
により生ずる電池内部抵抗の増加、また結着能力の低下
による負極担持体の脱落、及び内部短絡はなくなる。し
たがって、充放電サイクル寿命が向上し、しかも電池性
能が安定した非水溶媒二次電池を得ることができる。
In the secondary battery of the present invention, a negative electrode body made of a carbonaceous material supporting lithium or an alkali metal mainly composed of lithium, a separator, and a positive electrode body containing a lithium-containing composite oxide as a positive electrode active material are used. In a non-aqueous solvent secondary battery including a power generating element integrally laminated in order, a reaction between lithium and a binder by using polyacrylic acid and styrene-butadiene rubber as a binder for the negative electrode body. As a result, even if the charge / discharge cycle is repeated, the internal resistance of the battery increases due to the loss of conductivity between the current collector and the negative electrode support, and the negative electrode support drops due to a decrease in the binding capacity, and the internal capacity of the negative electrode support decreases. The short circuit disappears. Therefore, a non-aqueous solvent secondary battery with improved charge / discharge cycle life and stable battery performance can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と比較して詳
細に説明する。 (実施例) 市販の炭酸リチウム及び炭酸コバルトを、LiとCoの
モル比でLi/Co=1.1になるように評量し、乳鉢
において充分混合する。この混合物をアルミナ製の坩堝
にいれ、電気炉において800℃で6時間加熱処理す
る。得られた焼成物は、冷却後再度粉砕し、前と同様に
800℃で6時間加熱処理を行い、その後、蒸留水で充
分に洗浄し、未反応のアルカリ分を洗い流す。この生成
物は粉末X線法でLiCoO2 と確認された。この生成
物90重量%、導電材としてアセチレンブラック7重量
%及び結着剤としてエチレン−プロピレン−環状ジエン
の三元共重合体3重量%をヘキサン中で混練してスラリ
ー状の正極合剤を調整し、この正極合剤を厚さ10μm
の基板上に塗布、風乾した後、加圧成形して一定厚に
し、つづいて、0.26mm厚の正極合剤層を有する板
状の正極を製造した。
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples. (Example) Commercially available lithium carbonate and cobalt carbonate are weighed so that the molar ratio of Li to Co becomes Li / Co = 1.1, and they are sufficiently mixed in a mortar. This mixture is placed in an alumina crucible and heat-treated at 800 ° C. for 6 hours in an electric furnace. The obtained fired product is cooled and pulverized again, and heat-treated at 800 ° C. for 6 hours as before, and thereafter sufficiently washed with distilled water to wash away unreacted alkali components. This product was identified as LiCoO 2 by the powder X-ray method. 90% by weight of this product, 7% by weight of acetylene black as a conductive material and 3 % by weight of a terpolymer of ethylene-propylene-cyclic diene as a binder are kneaded in hexane to prepare a slurry-like positive electrode mixture. Then, this positive electrode mixture is 10 μm thick.
And then air-dried, and then press-molded to a constant thickness, followed by production of a plate-like positive electrode having a 0.26 mm-thick positive electrode mixture layer.

【0018】一方、負極担持体である炭素質材料はノボ
ラック樹脂を窒素雰囲気化で950℃で焼成した後、さ
らに、2,000℃に加熱して炭素化することによって
製造し、粉砕して平均径10μmの粉末とする。結着剤
に用いるポリアクリル酸(PAA)は予め蒸留水で溶解
させる。スチレン・ブタジエンゴム(SBR)は予め蒸
留水に分散させ、上記炭素質材料と結着剤の割合が重量
比で96:4(またPAAとSBRの割合が重量比で
1:2)となるように分散させスラリー状の負極合剤を
製造した。この負極合剤を厚さ10μmのステンレス基
板上に塗布・乾燥して厚さ0.2mmの負極合剤層を有
する板状の負極を製造した。
On the other hand, the carbonaceous material serving as the negative electrode carrier is manufactured by baking a novolak resin at 950 ° C. in a nitrogen atmosphere, and then heating it to 2,000 ° C. to carbonize it, pulverizing it and averaging it. A powder having a diameter of 10 μm is used. Polyacrylic acid (PAA) used as a binder is dissolved in distilled water in advance. Styrene-butadiene rubber (SBR) is previously dispersed in distilled water so that the ratio of the carbonaceous material to the binder is 96: 4 by weight (and the ratio of PAA to SBR is 1: 2 by weight). To produce a negative electrode mixture in the form of a slurry. This negative electrode mixture was applied on a 10 μm-thick stainless steel substrate and dried to produce a plate-like negative electrode having a 0.2 mm-thick negative electrode mixture layer.

【0019】このようにして得られた正・負極を用い
て、図1に示すような単三(AA)サイズの非水溶媒二
次電池を組み立てた。すなわち、同図に示すように、非
水溶媒二次電池1は、底部に絶縁体2が配置され、負極
端子を兼ねる有底円筒状のステンレス容器3を有する。
この容器3には電極群4が収納されている。この電極群
4は負極5、セパレータ6及び正極7をこの順序で積層
した帯状物を、負極5が外側に位置するように渦巻き状
に巻回した構造になっている。セパレータ6は、電解液
を含浸したポリプロピレン性多孔質フィルムから形成さ
れている。各電解液は、プロピレンカーボネートと1,
2−ジメトキシエタンとの混合溶媒(体積比率50:5
0)に、電解質として六弗化リン酸リチウム(LiPF
6 )を0.5モル濃度含有する。容器3内で電極群4の
上方には、中心を開口した絶縁板8が配置されており、
また、この容器3の上部開口部には、絶縁封口体9が容
器3に気密にかしめ固定されている。この絶縁板8の中
央開口部には、正極端子10が嵌合されている。この正
極端子10は正極7に正極リード11を介して接続され
ている。なお、負極5は、図示しない負極リードを介し
て負極端子である容器3に接続されている。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery of AA size as shown in FIG. 1 was assembled. That is, as shown in the figure, the non-aqueous solvent secondary battery 1 has a bottomed cylindrical stainless steel container 3 having an insulator 2 disposed at the bottom and also serving as a negative electrode terminal.
The container 3 contains an electrode group 4. The electrode group 4 has a structure in which a strip formed by laminating a negative electrode 5, a separator 6, and a positive electrode 7 in this order is spirally wound so that the negative electrode 5 is located outside. The separator 6 is formed from a polypropylene porous film impregnated with an electrolytic solution. Each electrolytic solution is composed of propylene carbonate and 1,
Mixed solvent with 2-dimethoxyethane (volume ratio 50: 5
0), lithium hexafluorophosphate (LiPF)
6 ) at a 0.5 molar concentration. Above the electrode group 4 in the container 3, an insulating plate 8 having an opening at the center is arranged.
An insulating sealing body 9 is airtightly fixed to the container 3 at the upper opening of the container 3. A positive electrode terminal 10 is fitted into the central opening of the insulating plate 8. The positive electrode terminal 10 is connected to the positive electrode 7 via a positive electrode lead 11. In addition, the negative electrode 5 is connected to the container 3 which is a negative electrode terminal via a negative electrode lead (not shown).

【0020】(比較例1)負極の結着剤にポリテトラフ
ルオロエチレンを用いた以外は実施例と同様の非水溶媒
二次電池を組み立てた。 (比較例2)負極の結着剤にエチレン−プロピレン−環
状ジエンの三元共重合体を用いた以外は実施例と同様の
非水溶媒二次電池を組み立てた。このようにして組立て
た実施例、比較例1、2の3種類の非水溶媒二次電池に
ついて、20℃の一定温度、100mAの一定電流で
4.3Vから3.0Vまでの電圧範囲の充放電評価を行
った。その結果を図2に示す。図中、Aは本実施例の電
池、Bは比較例の電池、Cは比較例の電池の放電容量維
持率曲線である。
Comparative Example 1 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that polytetrafluoroethylene was used as a binder for the negative electrode. Comparative Example 2 A non-aqueous solvent secondary battery was assembled in the same manner as in Example except that a terpolymer of ethylene-propylene-cyclic diene was used as a binder for the negative electrode. The three types of non-aqueous solvent secondary batteries of Examples and Comparative Examples 1 and 2 assembled in this manner were charged at a constant temperature of 20 ° C. and a constant current of 100 mA in a voltage range from 4.3 V to 3.0 V. Discharge evaluation was performed. The result is shown in FIG. In the figure, A is the battery of the present example, B is the battery of the comparative example, and C is the discharge capacity retention rate curve of the battery of the comparative example.

【0021】図2から明らかなように、本実施例の非水
溶媒二次電池は、比較例の電池に比べ、充放電サイクル
を繰り返し行っても高い容量維持率を示し、優れた性能
を有することが分かる。一方、評価を終了した電池を分
解し、負極電極の表面状態を観察すると、比較例1の電
池の電極は炭素材が基板より脱落し易い状態になってお
り、これはリチウムと結着剤が反応・分解したためによ
るものと考えられる。また、比較例2の電池は電極表面
にかなりのリチウムが析出していた。
As is apparent from FIG. 2, the non-aqueous solvent secondary battery of the present example shows a higher capacity retention ratio even after repeated charge / discharge cycles, and has excellent performance, as compared with the battery of the comparative example. You can see that. On the other hand, when the battery after the evaluation was disassembled and the surface state of the negative electrode was observed, the electrode of the battery of Comparative Example 1 was in a state where the carbon material was likely to fall off the substrate. This is probably due to the reaction and decomposition. In the battery of Comparative Example 2, considerable lithium was deposited on the electrode surface.

【0022】[0022]

【発明の効果】以上説明したように、本発明の非水溶媒
二次電池は、負極担持体に炭素質物を、正極活物質とし
てリチウム含有複合酸化物を用い、かつ負極体の結着剤
としてポリアクリル酸とスチレン・ブタジエンゴムを用
いることによって充放電サイクルの進行に伴なうリチウ
ムと結着剤との反応・分解等をなくすことができる。そ
の結果、充放電サイクルを繰り返しても集電体と負極担
持体との導電性を損なうことによる電池内部抵抗の増
加、また結着能力の低下による負極担持体の脱落及び内
部短絡をも改善することができるので、容量維持率を向
上し、かつ長寿命を有する優れた非水溶媒二次電池を得
ることができる。
As described above, the non-aqueous solvent secondary battery of the present invention uses a carbonaceous material for the negative electrode support, a lithium-containing composite oxide as the positive electrode active material, and a binder for the negative electrode body. By using polyacrylic acid and styrene-butadiene rubber, it is possible to eliminate the reaction and decomposition of lithium with the binder accompanying the progress of the charge / discharge cycle. As a result, even if the charge / discharge cycle is repeated, the internal resistance of the battery is increased by impairing the conductivity between the current collector and the negative electrode carrier, and the falling off of the negative electrode carrier and the internal short circuit due to a decrease in binding ability are also improved. Therefore, an excellent non-aqueous solvent secondary battery having an improved capacity retention rate and a long life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である非水溶媒二次電池の一
部断面図。
FIG. 1 is a partial cross-sectional view of a non-aqueous solvent secondary battery according to one embodiment of the present invention.

【図2】本発明の実施例と比較例との充放電サイクル数
に対する放電容量維持率の変化を示す特性図。
FIG. 2 is a characteristic diagram showing a change in a discharge capacity retention ratio with respect to the number of charge / discharge cycles in Examples of the present invention and Comparative Examples.

【符号の説明】[Explanation of symbols]

1…非水溶媒二次電池、2…絶縁体、3…ステンレス容
器、4…電極群、5…負極、6…セパレータ、7…正
極、8…絶縁板、9…絶縁封口板、10…正極端子、1
1…正極リード。
DESCRIPTION OF SYMBOLS 1 ... Non-aqueous solvent secondary battery, 2 ... Insulator, 3 ... Stainless steel container, 4 ... Electrode group, 5 ... Negative electrode, 6 ... Separator, 7 ... Positive electrode, 8 ... Insulating plate, 9 ... Insulating sealing plate, 10 ... Positive electrode Terminal, 1
1. Positive electrode lead.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿左美 義明 東京都品川区南品川三丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 平2−33868(JP,A) 特開 昭57−96471(JP,A) 特開 平4−255670(JP,A) 特開 平4−286875(JP,A) 特開 平4−337247(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshiaki Azami 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Corporation (56) References JP-A-2-33868 (JP, A) JP 57-96471 (JP, A) JP-A-4-255670 (JP, A) JP-A-4-286875 (JP, A) JP-A-4-337247 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/62 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムまたはリチウムを主体とするア
ルカリ金属を担持した炭素質物からなる負極体と、セパ
レータと、リチウム含有複合酸化物を正極活物質とする
正極体をこの順序で一体的に積層して成る発電要素を具
備する非水溶媒二次電池において、前記負極体の結着剤
としてポリアクリル酸とスチレン・ブタジエンゴムを用
いることを特徴とする非水溶媒二次電池。
An anode body made of a carbonaceous material carrying lithium or an alkali metal mainly composed of lithium, a separator, and a cathode body made of a lithium-containing composite oxide as a cathode active material are integrally laminated in this order. A non-aqueous solvent secondary battery comprising a power generating element comprising: a polyacrylic acid and styrene-butadiene rubber as a binder for the negative electrode body.
JP3175283A 1991-07-16 1991-07-16 Non-aqueous solvent secondary battery Expired - Fee Related JP3062304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175283A JP3062304B2 (en) 1991-07-16 1991-07-16 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175283A JP3062304B2 (en) 1991-07-16 1991-07-16 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH0521068A JPH0521068A (en) 1993-01-29
JP3062304B2 true JP3062304B2 (en) 2000-07-10

Family

ID=15993420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175283A Expired - Fee Related JP3062304B2 (en) 1991-07-16 1991-07-16 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3062304B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750800B1 (en) * 1996-07-05 1998-09-11 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR ELECTRODE WITH ORGANIC LIQUID ELECTROLYTE AND MANUFACTURING METHOD THEREOF
WO1998014519A1 (en) 1996-10-01 1998-04-09 Nippon Zeon Co., Ltd. Dispersed polymer composition
JP4083260B2 (en) * 1997-07-09 2008-04-30 松下電器産業株式会社 Method for producing electrode plate of non-aqueous electrolyte secondary battery
US6225003B1 (en) 1998-10-26 2001-05-01 Mitsubishi Chemical Corporation Electrode materials having an elastomer binder and associated electrochemical and fabrication process
JP2004178879A (en) * 2002-11-26 2004-06-24 Hitachi Maxell Ltd Lithium secondary battery
JP5682557B2 (en) * 2009-06-30 2015-03-11 日本ゼオン株式会社 Positive electrode for secondary battery and secondary battery
US9780374B2 (en) 2012-02-02 2017-10-03 Dai-Ichi Kogyo Seiyaku Co., Ltd. Binder for electrodes of lithium secondary batteries, and lithium secondary battery which uses electrode produced using binder for electrodes of lithium secondary batteries
JP5754855B2 (en) * 2012-04-25 2015-07-29 信越化学工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
PL3016180T3 (en) 2013-06-28 2019-02-28 Sumitomo Seika Chemicals Co. Ltd. Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
JP5721151B2 (en) 2013-07-18 2015-05-20 第一工業製薬株式会社 Binder for electrode of lithium secondary battery
US10003076B2 (en) 2013-08-06 2018-06-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Binder for electrode in lithium secondary cell, electrode manufactured using said binder, and lithium secondary cell in which said electrode is used
JP7307543B2 (en) * 2016-06-30 2023-07-12 ハイドロ-ケベック Electrode materials and processes for their preparation
JP6916363B1 (en) 2020-10-21 2021-08-11 第一工業製薬株式会社 Polyurethane resin aqueous dispersion for binders used in lithium secondary batteries, binders for electrodes, and lithium secondary batteries
JP6856812B1 (en) 2020-10-21 2021-04-14 第一工業製薬株式会社 Binder composition for electrodes, coating liquid composition for electrodes, electrodes for power storage devices and power storage devices
CN114335521B (en) * 2021-11-22 2024-08-20 惠州市豪鹏科技有限公司 Negative electrode sheet material, negative electrode sheet, battery preparation method and battery

Also Published As

Publication number Publication date
JPH0521068A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP2000156229A (en) Nonaqueous electrolyte lithium secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
EP1439591A1 (en) Lithium ion secondary battery
JPH10162823A (en) Non-aqueous secondary battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP4103487B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JP3086297B2 (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JPH056778A (en) Nonaqueous solvent secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery
JP3017847B2 (en) Non-aqueous solvent secondary battery
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees