JP3086297B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP3086297B2
JP3086297B2 JP03214830A JP21483091A JP3086297B2 JP 3086297 B2 JP3086297 B2 JP 3086297B2 JP 03214830 A JP03214830 A JP 03214830A JP 21483091 A JP21483091 A JP 21483091A JP 3086297 B2 JP3086297 B2 JP 3086297B2
Authority
JP
Japan
Prior art keywords
lithium
manganese
aqueous solvent
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03214830A
Other languages
Japanese (ja)
Other versions
JPH04345759A (en
Inventor
卓美 内田
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16662249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3086297(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP03214830A priority Critical patent/JP3086297B2/en
Publication of JPH04345759A publication Critical patent/JPH04345759A/en
Application granted granted Critical
Publication of JP3086297B2 publication Critical patent/JP3086297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非水溶媒二次電池に用い
られる正極活物質の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode active material used for a non-aqueous solvent secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、更に、繰返し充放電
可能な二次電池の開発が要望されている。この種の二次
電池としては、負極活物質として、リチウム又はリチウ
ム合金を用い、正極活物質として、モリブデン、バナジ
ウム、チタン、ニオブなどの酸化物、硫化物、セレン化
物などを用いたものが知られている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for the development of a secondary battery which is small, lightweight, has a high energy density and can be repeatedly charged and discharged. Known secondary batteries of this type use lithium or a lithium alloy as a negative electrode active material, and use oxides, sulfides, selenides, or the like such as molybdenum, vanadium, titanium, or niobium as a positive electrode active material. Have been.

【0003】一方、二酸化マンガンは高エネルギー密
度、高電圧を有する正極活物質として非水溶媒一次電池
に用いられ、実用化されている。そこで、リチウム負極
を有する非水溶媒二次電池において、前記二酸化マンガ
ンを正極活物質として用いることが検討されている。と
ころが、かかる非水溶媒二次電池は、充放電サイクル特
性に問題があった。即ち、前記二酸化マンガンはトンネ
ル構造を有しており、電池が放電することによって負極
のLiイオンが前記トンネル内に侵入し、これによっ
て、MnO結晶構造は膨脹する。このトンネル内のア
ルカリ金属イオンは、容易に移動できる状態であるた
め、この電池を充電状態にすると、トンネル内のLi
が放出され、それに伴ってMnO結晶構造が収縮す
る。このため、従来の非水溶媒一次電池で使用されるM
nOを、そのまま二次電池の正極活物質として用いる
と、初期放電容量は大きいが、電池の充放電に伴って結
晶構造の収縮・膨張が繰り返されることによってMnO
のトンネル構造が崩れてしまい、充放電サイクルの進
行につれて充放電容量の劣化が著しくなるという問題が
あった。
On the other hand, manganese dioxide is used in non-aqueous solvent primary batteries as a positive electrode active material having a high energy density and a high voltage, and has been put to practical use. Therefore, in a non-aqueous solvent secondary battery having a lithium anode, use of the manganese dioxide as a cathode active material has been studied. However, such non-aqueous solvent secondary batteries have a problem in charge / discharge cycle characteristics. That is, the manganese dioxide has a tunnel structure, and when the battery is discharged, the Li + ions of the negative electrode enter the tunnel, thereby expanding the MnO 2 crystal structure. Since the alkali metal ions in the tunnel can easily move, when the battery is charged, the Li +
Is released, and the MnO 2 crystal structure shrinks accordingly. For this reason, M used in a conventional non-aqueous solvent primary battery
When nO 2 is used as it is as a positive electrode active material of a secondary battery, the initial discharge capacity is large, but the contraction and expansion of the crystal structure are repeated as the battery is charged and discharged.
There was a problem that the tunnel structure of No. 2 collapsed and the charge / discharge capacity deteriorated significantly as the charge / discharge cycle progressed.

【0004】このようなことから、特開平2−1703
53、特開平2−170354に示されるように、新規
な合成方法により得たマンガン酸化物に、リチウム塩を
添加し加熱処理したリチウムマンガン酸化物を用いるこ
とによって、サイクル特性の向上がはかられている。
[0004] In view of the above, Japanese Patent Laid-Open No. 2-1703 is disclosed.
53, as shown in JP-A-2-170354, cycle characteristics can be improved by using a lithium manganese oxide obtained by adding a lithium salt to a manganese oxide obtained by a novel synthesis method and heat-treated. ing.

【0005】一方、これらリチウムを負極活物質に用い
た系においては、充放電に伴いリチウムが針状に析出す
るデンドライト現象を起こし、内部ショート等の危険性
が現段階では考えられる。そのため負極担持体として、
インターカレーションまたはドーピング現象を用いた電
極活物質が注目を集めている。これらの電極活物質は充
放電反応時において複雑な化学反応を起さないことか
ら、極めて優れた充放電サイクルを有することが期待さ
れる。中でも炭素質材料を負極担持体とするものを用
い、LiCoO/LiNiO等を正極活物質として
用いる系が提案されている。
On the other hand, in a system using lithium as a negative electrode active material, a dendrite phenomenon in which lithium precipitates in a needle-like shape during charging and discharging is caused, and the danger of an internal short circuit or the like is considered at this stage. Therefore, as a negative electrode carrier,
Electrode active materials using the intercalation or doping phenomenon have attracted attention. Since these electrode active materials do not cause a complicated chemical reaction during the charge / discharge reaction, they are expected to have an extremely excellent charge / discharge cycle. In particular, a system using a carbonaceous material as a negative electrode support and using LiCoO 2 / LiNiO 2 or the like as a positive electrode active material has been proposed.

【0006】[0006]

【発明が解決しようとする課題】以上述べてきたなか
で、炭素質材料を負極担持体とする系は非常に興味深い
ものであるが、その際対極となる正極活物質の選択が重
要となる。前述したLiCoO/LiNiOはその
合成条件・第三成分の添加等によってサイクル寿命は向
上し、炭素質材料と組み合わせた場合優れたサイクル特
性を有する電池となり得るが、正極コストが高く、また
充電生成物が不安定である等の欠点を有する。また特開
平2−170354に示すリチウムマンガン酸化物を組
み合わせた場合、サイクルに伴う容量が大きく実用には
耐えられない。
As described above, a system using a carbonaceous material as a negative electrode carrier is very interesting. At this time, it is important to select a positive electrode active material as a counter electrode. The cycle life of LiCoO 2 / LiNiO 2 described above can be improved by its synthesis conditions and the addition of the third component, and when combined with a carbonaceous material, the battery can have excellent cycle characteristics. It has disadvantages such as instability of the product. Further, when a lithium manganese oxide disclosed in Japanese Patent Application Laid-Open No. 2-170354 is combined, the capacity accompanying the cycle is so large that it cannot be put to practical use.

【0007】本発明はかかる問題点に対してなされたも
ので、リチウムマンガン酸化物のサイクル特性の向上を
目的とする。
[0007] The present invention has been made to address such a problem, and has as its object to improve the cycle characteristics of lithium manganese oxide.

【0008】[0008]

【課題を解決するための手段】本発明は硫酸マンガンを
焙焼して得た三二酸化マンガン、四三酸化マンガンに、
リチウム化合物と、マグネシウム、チタン、バナジウ
ム、鉄、コバルト、ニッケル、亜鉛から選択される1種
以上の金属塩とを添加・加熱処理して得られるリチウム
マンガン系複合酸化物を正極活物質として用いることに
よって、上記目的を達成するものである。
The present invention relates to manganese trioxide and manganese tetroxide obtained by roasting manganese sulfate.
As a positive electrode active material, a lithium manganese-based composite oxide obtained by adding and heating a lithium compound and at least one metal salt selected from magnesium, titanium, vanadium, iron, cobalt, nickel, and zinc is used. By doing so, the above object is achieved.

【0009】上記リチウムマンガン系複合酸化物の合成
方法を順をおって説明する。硫酸マンガンを加熱し無水
硫酸マンガンを得、これを大気中1000℃前後で加熱
することによりMnを得ることができる。さらに
このMnを700℃程度で酸化焙焼してMn
が得られる。上記リチウム化合物としては、例えば炭
酸リチウム(LiCO)、硝酸リチウム(LiNO
)、水酸化リチウム(LiOH)等があげられる。ま
た第三成分金属塩としては、炭酸塩(MgCO,Co
CO,NiCO,ZnCO)、硫酸塩(Fe
(SO,Ti(SO)、バナジン酸アン
モニウム(NHVO)等があげられる。
A method for synthesizing the above-mentioned lithium manganese composite oxide will be described step by step. Mn 3 O 4 can be obtained by heating manganese sulfate to obtain anhydrous manganese sulfate and heating it at about 1000 ° C. in the atmosphere. Further, this Mn 3 O 4 is oxidized and roasted at about 700 ° C. to form Mn 2 O 4.
3 is obtained. Examples of the lithium compound include lithium carbonate (Li 2 CO 3 ) and lithium nitrate (LiNO
3 ) and lithium hydroxide (LiOH). As the third component metal salt, carbonate (MgCO 3 , Co
CO 3 , NiCO 3 , ZnCO 3 ), sulfate (Fe
2 (SO 4 ) 3 , Ti (SO 4 ) 2 ) and ammonium vanadate (NH 4 VO 3 ).

【0010】これらの混合比としては、一般式、Lix
MnyMzO(M:金属分)で表わすと、0.9≦x
≦1.16,1≦y<2,0<z≦1,1.8≦y+z
≦2.2の範囲が好ましい。リチウム量(x)が少ない
と加熱処理後のリチウムマンガン酸化物中に低級金属酸
化物が含有され、また多すぎるとLiCO,Li
O等が含有され、いずれの場合もサイクル特性の劣化を
招く恐れがある。マンガン量及び金属成分量に関しても
明示範囲をはずれる場合は、得られるリチウムマンガン
系複合酸化物のサイクル特性劣化の恐れがある。また上
記の金属塩を添加した後の加熱温度範囲は600〜95
0℃の温度範囲が好ましい。これは600℃未満では未
反応分が存在し、950℃を越えると低級金属酸化物が
含有され、それぞれサイクル特性の劣化を招く恐れがあ
る。
The mixing ratio of these compounds is represented by the general formula: Lix
When expressed as MMyMzO 4 (M: metal component), 0.9 ≦ x
≦ 1.16, 1 ≦ y <2, 0 <z ≦ 1, 1.8 ≦ y + z
The range of ≦ 2.2 is preferred. If the amount of lithium (x) is small, the lower metal oxide is contained in the lithium manganese oxide after the heat treatment, and if it is too large, Li 2 CO 3 , Li 2
O and the like are contained, and in any case, the cycle characteristics may be deteriorated. When the manganese content and the metal component content are out of the specified ranges, there is a possibility that the cycle characteristics of the obtained lithium manganese-based composite oxide may deteriorate. The heating temperature range after the addition of the metal salt is 600 to 95.
A temperature range of 0 ° C. is preferred. If the temperature is lower than 600 ° C., unreacted components are present, and if the temperature exceeds 950 ° C., a lower metal oxide is contained, which may cause deterioration of cycle characteristics.

【0011】本発明の非水溶媒二次電池において、正極
及び負極を形成するために、結着剤を用いてもよい。結
着剤としては、例えばエチレン−プロピレン−環状ジエ
ンの三元共重合体、ポリテトラフルオロエチレン、ポリ
アクリル酸、ポリアクリル酸塩類などが挙げられる。
In the non-aqueous solvent secondary battery of the present invention, a binder may be used to form a positive electrode and a negative electrode. Examples of the binder include a terpolymer of ethylene-propylene-cyclic diene, polytetrafluoroethylene, polyacrylic acid, and polyacrylates.

【0012】本発明の非水溶媒二次電池に用いられる非
水電解液の電解質としては、LiPF、LiCl
、LiBF、LiCFSO等のリチウム塩な
どが挙げられる。同電解液の溶媒としては、プロピレン
カーボネート(PC)、エチレンカーボネート(E
C)、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、γ−プチロラクトン、1,2−ジメトキシエタン
(DME)が挙げられる。これらの溶媒は1種又は2種
以上の混合物で用いることができ、とくに充放電サイク
ル寿命を長くする観点から、プロピレンカーボネートと
1,2−ジメトキシエタンとの混合溶媒、エチレンカー
ボネートと2−メチルテトラヒドロフランとの混合溶
媒、エチレンカーボネートと1・2−ジメトキシエタン
との混合溶媒、プロピレンカーボネートとエチレンカー
ボネートとの混合溶媒が望ましい。
The electrolyte of the non-aqueous electrolyte used in the non-aqueous solvent secondary battery of the present invention includes LiPF 6 , LiCl
Lithium salts such as O 4 , LiBF 4 , and LiCF 3 SO 3 are exemplified. As the solvent for the electrolytic solution, propylene carbonate (PC), ethylene carbonate (E
C), tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,2-dimethoxyethane (DME). These solvents can be used alone or as a mixture of two or more kinds. In particular, from the viewpoint of extending the charge / discharge cycle life, a mixed solvent of propylene carbonate and 1,2-dimethoxyethane, ethylene carbonate and 2-methyltetrahydrofuran , A mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, and a mixed solvent of propylene carbonate and ethylene carbonate.

【0013】負極担持体である炭素質材料は、電池特性
の向上のために、好ましくは有機化合物を焼成してなる
炭素質材料を用いる。この炭素質材料の原料となる有機
化合物としては、通常使用されているものであればとく
に限定されるものではなく、例えばフェノール樹脂、と
くにノボラック樹脂、ならびにポリアクリロニトリルな
どを用いることができる。またこの炭素質材料として
は、特願平1−283086号に示すような有機化合物
焼成体の特性を有するのが、とくに好ましい。
As the carbonaceous material as the negative electrode carrier, a carbonaceous material obtained by firing an organic compound is preferably used in order to improve battery characteristics. The organic compound serving as a raw material of the carbonaceous material is not particularly limited as long as it is a commonly used one. For example, a phenol resin, particularly a novolak resin, and polyacrylonitrile can be used. It is particularly preferable that the carbonaceous material has the characteristics of an organic compound fired body as shown in Japanese Patent Application No. 1-283086.

【0014】[0014]

【作用】本発明によれば硫酸マンガンを焙焼して得た三
二酸化マンガン,四三酸化マンガンに、リチウム化合物
と、Mg,Ti,V,Fe,Co,Ni,Znから成る
1種以上の金属塩とを添加・加熱処理して得られるリチ
ウムマンガン系複合酸化物を用いることによって、炭素
質材料を負極担持体とした時の充放電に伴う容量劣化を
おさえることができた。これは第三成分元素が結晶構造
中でマンガンと置換しており、そのため結晶構造中のL
iの脱離・侵入に伴う構造変化をおさえることができた
ためである。
According to the present invention, manganese trioxide and manganese tetroxide obtained by roasting manganese sulfate are added to a lithium compound and at least one of Mg, Ti, V, Fe, Co, Ni and Zn. By using a lithium manganese-based composite oxide obtained by adding and heat-treating a metal salt, it was possible to suppress capacity deterioration due to charge and discharge when a carbonaceous material was used as a negative electrode support. This is because the third component element replaces manganese in the crystal structure, and therefore L in the crystal structure
This is because the structural change due to the desorption / intrusion of i could be suppressed.

【0015】[0015]

【実施例】以下本発明を図面を参照して詳細に説明す
る。 実施例1:硫酸マンガン(MnSO・HO)2kg
を空気中で600℃、30分間加熱して無水塩に脱水し
た後、得られた無水硫酸マンガン(MnSO)を大気
中で1050℃で20分間焙焼してMnとし、さ
らにこれを700℃で10分間酸化焙焼してMn
を約1kg得た。この間の反応式を次に示す。 MnSO・HO →MnSO+HO MnSO →1/3Mn+SO+1/3O Mn+1/4O→3/2Mn 上記の方法で得たMnと炭酸リチウムと炭酸ニ
ッケルとを、Li:Mn:Ni=1:1.9:0.1の
モル比で秤り取り乳鉢において充分に混合した。この混
合物を850℃で加熱、冷却後再度粉砕し、850℃で
加熱しリチウムマンガン系複合酸化物(LiMn1.9
Ni0.1)を得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.
You. Example 1: Manganese sulfate (MnSO4・ H2O) 2 kg
Is heated in air at 600 ° C. for 30 minutes to dehydrate to anhydrous salt.
After that, the obtained anhydrous manganese sulfate (MnSO4) Atmosphere
Baking at 1050 ° C for 20 minutes in Mn3O4And
Further, this is oxidized and roasted at 700 ° C. for 10 minutes to obtain Mn2O3
Was obtained in an amount of about 1 kg. The reaction formula during this time is shown below. MnSO4・ H2O → MnSO4+ H2O MnSO4 → 1 / 3Mn3O4+ SO2+1/302  Mn3O4+ / O2→ 3 / 2Mn2O3  Mn obtained by the above method2O3And lithium carbonate and dicarbonate
And Li: Mn: Ni = 1: 1.9: 0.1.
The mixture was weighed in a molar ratio and mixed well in a mortar. This mix
The mixture was heated at 850 ° C, cooled and pulverized again.
Heat to heat lithium manganese composite oxide (LiMn1.9
Ni0.1O4) Got.

【0016】この生成物90重量%、導電材としてアセ
チレンブラック7重量%及び結着剤としてエチレン−プ
ロピレン−環状ジエンの三元共重合体3重量%をヘキサ
ン中で混練してスラリー状の正極合剤を調製し、この正
極合剤を厚さ15μmのチタン基板上に塗布・風乾した
後、加圧して一定厚にし、つづいて、200℃、10時
間の条件で加熱乾燥して、0.26mm厚の正極合剤層
を有する板状の正極を製造した。
90% by weight of this product, 7% by weight of acetylene black as a conductive material and 3% by weight of a terpolymer of ethylene-propylene-cyclic diene as a binder are kneaded in hexane to form a slurry-like positive electrode. A positive electrode mixture was prepared, and this positive electrode mixture was applied on a titanium substrate having a thickness of 15 μm, air-dried, and then pressurized to a constant thickness, followed by heating and drying at 200 ° C. for 10 hours to obtain 0.26 mm A plate-shaped positive electrode having a thick positive electrode mixture layer was produced.

【0017】一方、負極担持体である炭素質材料は、ノ
ボラック樹脂を窒素雰囲気下で950℃で焼成した後、
さらに2.000℃に加熱して炭素化することによって
製造し、粉砕して平均粒径10μmの粉末とした。
On the other hand, the carbonaceous material as the negative electrode carrier is obtained by firing a novolak resin at 950 ° C. in a nitrogen atmosphere.
It was further manufactured by heating to 2.000 ° C. to carbonize and pulverized to a powder having an average particle size of 10 μm.

【0018】結着剤のエチレン−プロピレン−環状ジエ
ンの三元共重合体をヘキサンに溶解し、炭素質材料:結
着剤=97:3となるように分散させ、スラリー状の負
極合剤を調製した。このスラリーを厚さ10μmのステ
ンレス基板上に塗布・乾燥して、厚さ0.2mmの負極
合剤層を形成した。
A terpolymer of ethylene-propylene-cyclic diene as a binder is dissolved in hexane and dispersed so that the carbonaceous material: the binder = 97: 3. Prepared. This slurry was applied on a stainless steel substrate having a thickness of 10 μm and dried to form a negative electrode mixture layer having a thickness of 0.2 mm.

【0019】このようにして得られた正・負極を用い
て、図1に示すような単三(AA)サイズの非水溶媒二
次電池(A)を組立てた。すなわち、非水溶媒二次電池
1は、底部に絶縁体2が配置され、負極端子を兼ねる有
底円筒状のステンレス容器3を有する。この容器3に
は、電極群4が収納されている。この電極群4は、負極
5、セパレータ6及び正極7をこの順序で積層した帯状
物を、負極5が外側に位置するように渦巻き状に巻回し
た構造になっている。前記のセパレータ6は、電解液を
含浸したポリプロピレン性多孔質フィルムから形成され
ている。該電解液は、プロピレンカーボネートと1,2
−ジメトキシエタンとの混合溶媒(体積比率50:5
0)に、電解質として六フッ化リン酸リチウム(LiP
)を0.5モル濃度含有する。容器3内で前記の電
極群4の上方には、中心を開口した絶縁板8が配置され
ている。前記の容器3の上部開口部には、絶縁封口体9
が、該容器3に気密にかしめ固定されている。この絶縁
封口板8の中央開口部には、正極端子10が嵌合されて
いる。この正極端子10は、前記の正極7に正極リード
11を介して接続されている。なお、前記の負極5は、
図示しない負極リードを介して負極端子である前記の容
器3に接続されている。
Using the positive and negative electrodes thus obtained, a non-aqueous solvent secondary battery (A) of AA size as shown in FIG. 1 was assembled. That is, the non-aqueous solvent secondary battery 1 includes the cylindrical stainless steel container 3 having the bottom, on which the insulator 2 is disposed, and which also serves as the negative electrode terminal. The container 3 contains an electrode group 4. The electrode group 4 has a structure in which a strip formed by laminating a negative electrode 5, a separator 6, and a positive electrode 7 in this order is spirally wound so that the negative electrode 5 is located outside. The separator 6 is formed of a polypropylene porous film impregnated with an electrolytic solution. The electrolyte is composed of propylene carbonate and 1,2
Mixed solvent with dimethoxyethane (volume ratio 50: 5
0), lithium hexafluorophosphate (LiP
F 6 ) in a 0.5 molar concentration. Above the electrode group 4 in the container 3, an insulating plate 8 having an opening at the center is arranged. An insulating sealing body 9 is provided at the upper opening of the container 3.
Are fixed to the container 3 in an airtight manner. A positive electrode terminal 10 is fitted into a central opening of the insulating sealing plate 8. The positive terminal 10 is connected to the positive electrode 7 via a positive electrode lead 11. In addition, the said negative electrode 5
It is connected to the above-mentioned container 3 which is a negative electrode terminal via a negative electrode lead (not shown).

【0020】実施例2:実施例1の方法で得たMn
と炭酸リチウム,炭酸マグネシウムとをLi:Mn:
Mg=1:1.7:0.3のモル比で秤り取り乳鉢にお
いて充分に混合した。この混合物を800℃で加熱、冷
却後再度混合し800℃で加熱し、リチウムマンガン系
複合酸化物(LiMn1.7Mg0.3)を得た。
この生成物を用い実施例1と同様な電池(B)を作成し
た。
Example 2: Mn 2 O obtained by the method of Example 1
3 and lithium carbonate, magnesium carbonate with Li: Mn:
Mg was weighed out in a molar ratio of 1: 1.7: 0.3 and mixed well in a mortar. This mixture was heated at 800 ° C., cooled, mixed again, and heated at 800 ° C. to obtain a lithium manganese composite oxide (LiMn 1.7 Mg 0.3 O 4 ).
Using this product, a battery (B) similar to that of Example 1 was produced.

【0021】実施例3:実施例1の方法で得たMn
と炭酸リチウム、炭酸コバルト、バナジン酸アンモニ
ウムとを、Li:Mn:Co:V=1.1:1.2:
0.8:0.1のモル比で秤り取り、乳鉢において充分
に混合した。この混合物を850℃で加熱、冷却後再度
混合し、850℃で加熱し、リチウムマンガン系複合酸
化物(Li1.1Mn1.2Co0.80.1
を得た。この生成物を用い実施例1と同様な電池(C)
を作成した。
Example 3 Mn 2 O obtained by the method of Example 1
3 with lithium carbonate, cobalt carbonate and ammonium vanadate, Li: Mn: Co: V = 1.1: 1.2:
It was weighed in a molar ratio of 0.8: 0.1 and mixed well in a mortar. This mixture was heated at 850 ° C., cooled and mixed again, and heated at 850 ° C. to obtain a lithium manganese composite oxide (Li 1.1 Mn 1.2 Co 0.8 V 0.1 O 4 ).
I got Battery (C) similar to that of Example 1 using this product
It was created.

【0022】比較例1:実施例1で得たMnと炭
酸リチウムとをLi:Mn:=1:2のモル比で秤り取
り混合した後850℃で加熱処理し、スピネル型LiM
を得た。この生成物を用い実施例1と同様な電
池(D)を作成した。 比較例2:電解二酸化マンガンを600℃で熱処理して
得たMnと、炭酸リチウムと炭酸ニッケルとを、
Li:Mn:Ni=1:1,9:0.1のモル比で秤り
取り、混合した後850℃で加熱処理してリチウムマン
ガン系複合酸化物を得た。この生成物を用い実施例1と
同様な電池(E)を作成した。
Comparative Example 1: Mn 2 O 3 obtained in Example 1 and lithium carbonate were weighed and mixed at a molar ratio of Li: Mn = 1: 2, and then heated at 850 ° C. to obtain spinel type LiM.
n 2 O 4 was obtained. Using this product, a battery (D) similar to that of Example 1 was produced. Comparative Example 2: Mn 2 O 3 obtained by heat-treating electrolytic manganese dioxide at 600 ° C., lithium carbonate and nickel carbonate,
Li: Mn: Ni = 1: 1, 9: 0.1 were weighed out, mixed, and then heat-treated at 850 ° C. to obtain a lithium-manganese composite oxide. Using this product, a battery (E) similar to that of Example 1 was produced.

【0023】このようにして作成した実施例1,2,
3、比較例1,2の5種類の非水溶媒二次電池につい
て、20℃の一定温度100mAの一定電流で4.2V
から2.8Vの範囲で充放電評価を行なった。この充放
電評価での放電容量維持率を図2に示す。図2から明ら
かなように、本発明の非水溶媒二次電池A,B,Cはサ
イクルに伴う容量劣化が比較例電池D,Eよりも小さ
く。良好な特性を有している。
Embodiments 1, 2, 2
3. With respect to the five types of non-aqueous solvent secondary batteries of Comparative Examples 1 and 2, 4.2 V at a constant current of 20 mA and a constant current of 100 mA.
And 2.8 V in the range from 1 to 2.8 V. FIG. 2 shows the discharge capacity retention rate in this charge / discharge evaluation. As is clear from FIG. 2, the non-aqueous solvent secondary batteries A, B, and C of the present invention have smaller capacity deterioration due to the cycle than the comparative batteries D and E. Has good characteristics.

【0024】これは合成時に添加している第三成分金属
元素が、スピネル構造LiMn中のマンガンの配
位位置を一部置換すると伴に、一部分リチウム化合物と
なり活物質中に混在することとなる。これらの影響で4
V程度での充放電に伴う結晶中のLiイオンの出入りが
なめらかに行なわれ、また構造変化をおさえることがで
きるため容量劣化が少ないと考えられる。さらに、実施
例1と比較例2とは組成は同一であるが、本実施例のも
のの方が優れたサイクル特性を有している。これは本実
施例の原料となった低級マンガン酸化物(Mn
Mn)が比表面積が大きく、粒子が小さいため得
られる活物質も比較例のものに比べて比表面積が大で粒
子径が小さくなり、電気化学特性が向上するものと考え
られる。
This is because the third component metal element added during the synthesis partially replaces the coordination position of manganese in the spinel-structured LiMn 2 O 4 , and partially becomes a lithium compound and is mixed in the active material. Becomes Due to these effects, 4
It is considered that the Li ions in the crystal accompanying the charge / discharge at about V smoothly flow in and out, and the structural change can be suppressed, so that the capacity deterioration is small. Further, the composition of Example 1 and Comparative Example 2 is the same, but the one of this example has better cycle characteristics. This is because the lower manganese oxide (Mn 2 O 3 ,
Since Mn 3 O 4 ) has a large specific surface area and small particles, the obtained active material has a large specific surface area and a small particle diameter as compared with those of the comparative example, and it is considered that the electrochemical properties are improved.

【0025】[0025]

【発明の効果】本発明の非水溶媒二次電池は、正極活物
質として硫酸マンガンを焙焼して得た三二酸化マンガ
ン,四三酸化マンガンに、リチウム塩と、Mg,Fe,
V,Ti,Co,Ni,Znからなる1種以上の金属塩
とを添加・加熱処理して得られるリチウムマンガン系活
物質を用いることによって、負極として炭素質材料を用
いた場合においても充放電に伴う容量劣化をおさえるこ
とができ、長寿命を有する優れた非水溶媒二次電池を得
ることができた。なお負極としてリチウムあるいはリチ
ウム合金を用いた系においても、本発明の正極活物質は
用いることができ、その際の電池特性を制限するものは
負極側の劣化であり、正極活物質としては特開平2−1
70354に示したものと同等の特性が得られる。
The non-aqueous solvent secondary battery of the present invention is characterized in that manganese sulfate and manganese oxide obtained by roasting manganese sulfate as a positive electrode active material are added to lithium salt, Mg, Fe,
By using a lithium manganese-based active material obtained by adding and heating at least one metal salt composed of V, Ti, Co, Ni, and Zn, charge and discharge can be performed even when a carbonaceous material is used as the negative electrode. Thus, a non-aqueous solvent secondary battery having a long service life can be obtained. The positive electrode active material of the present invention can be used in a system using lithium or a lithium alloy as the negative electrode. In that case, what limits the battery characteristics is deterioration on the negative electrode side. 2-1
Characteristics equivalent to those shown in 70354 are obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の非水溶媒二次電池を示す半
載断面図である。
FIG. 1 is a half-mounted sectional view showing a non-aqueous solvent secondary battery of Example 1 of the present invention.

【図2】実施例1(A),実施例2(B),実施例3
(C)と、比較例1(D),比較例2(E)の各非水溶
媒二次電池における充放電サイクル数に対する放電容量
の変化を示す特性図である。
2 (A), 2 (B) and 3
FIG. 9C is a characteristic diagram showing a change in discharge capacity with respect to the number of charge / discharge cycles in each of the nonaqueous solvent secondary batteries of Comparative Example 1 (D) and Comparative Example 2 (E).

【符号の説明】[Explanation of symbols]

1…非水溶媒二次電池 4…電極群 7…正極 1: Non-aqueous solvent secondary battery 4: Electrode group 7: Positive electrode

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 10/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/36-4/62 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫酸マンガンを焙焼して得られる三二酸
化マンガン(Mn)あるいは四三酸化マンガン
(Mn)に、リチウム化合物と、マグネシウム、
チタン、バナジウム、鉄、コバルト、ニッケル、亜鉛か
ら選択される1種または2種以上の金属塩とを添加・加
熱処理して得られるリチウムマンガン系複合酸化物を正
極活物質とすることを特徴とする非水溶媒二次電池。
A lithium compound, magnesium, or manganese trioxide (Mn 2 O 3 ) or manganese tetroxide (Mn 3 O 4 ) obtained by roasting manganese sulfate.
A lithium manganese-based composite oxide obtained by adding and heating one or more metal salts selected from titanium, vanadium, iron, cobalt, nickel and zinc is used as a positive electrode active material. Non-aqueous solvent secondary battery.
JP03214830A 1991-05-21 1991-05-21 Non-aqueous solvent secondary battery Expired - Lifetime JP3086297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03214830A JP3086297B2 (en) 1991-05-21 1991-05-21 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03214830A JP3086297B2 (en) 1991-05-21 1991-05-21 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH04345759A JPH04345759A (en) 1992-12-01
JP3086297B2 true JP3086297B2 (en) 2000-09-11

Family

ID=16662249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03214830A Expired - Lifetime JP3086297B2 (en) 1991-05-21 1991-05-21 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3086297B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190357B (en) * 2010-03-09 2013-04-24 梁海军 Water treatment method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614239A3 (en) * 1993-03-01 1996-10-16 Tadiran Ltd Non-aqueous safe secondary cell.
WO1998038648A1 (en) * 1997-02-28 1998-09-03 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Interlayer compound and method for producing the same
JP4106186B2 (en) 1998-11-13 2008-06-25 エフエムシー・コーポレイション Layered lithium metal oxide free of localized cubic spinel-like structural phase and method for producing the same
JP5019548B2 (en) * 1999-08-16 2012-09-05 日本化学工業株式会社 Lithium manganese composite oxide, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190357B (en) * 2010-03-09 2013-04-24 梁海军 Water treatment method

Also Published As

Publication number Publication date
JPH04345759A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
US7459238B2 (en) Positive electrode active material for lithium ion secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3016627B2 (en) Non-aqueous solvent secondary battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP3086297B2 (en) Non-aqueous solvent secondary battery
US7972729B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode material for non-aqueous electrolyte secondary battery
JP2000251887A (en) Nonaqueous electrolyte battery
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2000048820A (en) Lithium secondary battery
JP2835138B2 (en) Non-aqueous solvent secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH0817471A (en) Non-aqueous electrolytic secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPH04370661A (en) Secondary battery with nonaqueous solvent
JP3017847B2 (en) Non-aqueous solvent secondary battery
JPH04123769A (en) Nonaqueous solvent secondary battery
JPH056778A (en) Nonaqueous solvent secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JPH08227713A (en) Manufacture of positive active material for nonaqueous electrolytic battery