JP2005332629A - Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005332629A
JP2005332629A JP2004148004A JP2004148004A JP2005332629A JP 2005332629 A JP2005332629 A JP 2005332629A JP 2004148004 A JP2004148004 A JP 2004148004A JP 2004148004 A JP2004148004 A JP 2004148004A JP 2005332629 A JP2005332629 A JP 2005332629A
Authority
JP
Japan
Prior art keywords
positive electrode
transition metal
active material
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004148004A
Other languages
Japanese (ja)
Inventor
Kiyomi Kato
清美 加藤
Kaoru Inoue
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004148004A priority Critical patent/JP2005332629A/en
Publication of JP2005332629A publication Critical patent/JP2005332629A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material providing a nonaqueous electrolyte secondary battery whose properties in use continuously charging at a high temperature or repeating a charging and discharging cycle are improved. <P>SOLUTION: This positive electrode active material is composed of a particle of a lithium containing transition metal oxide expressed by a general formula LiMO<SB>2</SB>. The average valence of the transition metal on the surfaces is lower than the average valence in the particle, and the surface of the particle is covered with a carbonaceous material. The M in the formula is at least one kind selected from a group comprising Co, Ni and Mn. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液二次電池用正極活物質およびその製造方法に関するもので、高温において連続充電し、または充放電サイクルを繰り返す用途での非水電解液二次電池の特性を改善するものである。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same, and improves characteristics of the non-aqueous electrolyte secondary battery in applications where continuous charging at high temperatures or repeated charge / discharge cycles is performed. Is.

近年、民生用電子機器のポータブル化、コードレス化が進んでいる。従来、これら電子機器の駆動用電源としての役割を、ニッケルカドミウム電池あるいは密閉小型鉛蓄電池が担っていたが、ポータブル化、コードレス化が定着するに従い駆動用電源となる二次電池の高エネルギー密度化、小型軽量化の要望が強くなっている。また、近年はノート型パソコンの急速な市場の拡大に代表されるように、高率充放電が可能な電池が要望されている。   In recent years, consumer electronic devices have become portable and cordless. Traditionally, nickel cadmium batteries or sealed small lead-acid batteries have played a role as power sources for driving these electronic devices. However, as portable and cordless devices become established, the energy density of secondary batteries that serve as drive power sources will increase. There is an increasing demand for smaller and lighter weight. In recent years, there has been a demand for a battery that can be charged and discharged at a high rate, as represented by the rapid market expansion of notebook personal computers.

このような状況から、高い充放電電圧を示すリチウム二次電池、例えば特許文献1には、コバルト酸リチウムを正極活物質に用い、リチウムイオンの挿入・脱離を利用した非水電解液二次電池が開示されている。   From such a situation, a lithium secondary battery exhibiting a high charge / discharge voltage, for example, in Patent Document 1, a non-aqueous electrolyte secondary battery using lithium cobaltate as a positive electrode active material and utilizing insertion / extraction of lithium ions is used. A battery is disclosed.

ところで、正極活物質に4V級の電圧を示すリチウム含有複合酸化物を用いた場合、充電状態において、正極活物質と非水電解液が反応し、高温で保存したり充放電サイクルを繰り返すと、容量劣化率が大きくなる等の問題があった。そのために、例えば特許文献2においては、還元性の雰囲気中において正極活物質を熱処理し、その正極活物質の表面部分における遷移金属の平均価数を、正極活物質全体での遷移金属の平均価数よりも低くすることが提案されている。これによると、非水電解液との反応に関与する活性な酸素が低下し、充電状態にして高温で保存した場合における正極活物質と非水電解液との反応が抑制され、放電特性の低下が防止される。   By the way, when a lithium-containing composite oxide showing a voltage of 4 V class is used as the positive electrode active material, when the positive electrode active material reacts with the non-aqueous electrolyte in the charged state and is stored at a high temperature or a charge / discharge cycle is repeated, There were problems such as an increased capacity deterioration rate. Therefore, for example, in Patent Document 2, the positive electrode active material is heat-treated in a reducing atmosphere, and the average valence of the transition metal in the surface portion of the positive electrode active material is determined as the average valence of the transition metal in the entire positive electrode active material. Proposed to be lower than the number. According to this, the active oxygen involved in the reaction with the non-aqueous electrolyte is reduced, the reaction between the positive electrode active material and the non-aqueous electrolyte is suppressed when stored in a charged state at a high temperature, and the discharge characteristics are deteriorated. Is prevented.

さらに、特許文献3においては、正極活物質表層の少なくとも一部に、0.5〜19wt%の窒素、0.5〜35wt%の硫黄および0.5〜25wt%の酸素からなる群より選択される少なくとも1種の元素を含む炭素材層を含有させることにより、高温時の正極活物質上での電解液の分解反応などを抑制して、高温保存特性への悪影響を除去することが提案されている。   Further, in Patent Document 3, at least a part of the surface layer of the positive electrode active material is selected from the group consisting of 0.5 to 19 wt% nitrogen, 0.5 to 35 wt% sulfur, and 0.5 to 25 wt% oxygen. By including a carbon material layer containing at least one kind of element, it is proposed to suppress the decomposition reaction of the electrolytic solution on the positive electrode active material at a high temperature and remove the adverse effect on the high temperature storage characteristics. ing.

また、特許文献4においては、リチウム化合物と遷移金属化合物とを含む反応原料を焼成処理する際に、炭素原子を有する物質の存在下で焼成を行った後、高酸素濃度雰囲気下で焼成を行うリチウム含有遷移金属酸化物の製造法が提案されている。しかし、この方法は、低酸素雰囲気下での焼成処理のみで、焼成処理が完結するリチウム含有遷移金属酸化物の製造法ではない。
特開昭63−59507号公報 特開平10−199530号公報 特開平10−21912号公報 特開2002−279990号公報
Moreover, in patent document 4, when baking the reaction raw material containing a lithium compound and a transition metal compound, after baking in the presence of the substance which has a carbon atom, baking is performed in high oxygen concentration atmosphere. A method for producing a lithium-containing transition metal oxide has been proposed. However, this method is not a method for producing a lithium-containing transition metal oxide in which the firing process is completed only by a firing process in a low oxygen atmosphere.
JP-A-63-59507 JP-A-10-199530 Japanese Patent Laid-Open No. 10-21912 JP 2002-279990 A

前記の還元性雰囲気中において正極活物質を熱処理し、その正極活物質の表面部分における遷移金属の平均価数を、正極活物質全体での遷移金属の平均価数よりも低くすると、高電圧を保持した状態で保存した場合や、充電保存と充放電を繰り返し行った場合、容量が低下したり充放電特性が低下したりし、十分な保存特性を得ることができなかった。   When the positive electrode active material is heat-treated in the reducing atmosphere and the average valence of the transition metal in the surface portion of the positive electrode active material is lower than the average valence of the transition metal in the entire positive electrode active material, a high voltage is generated. When it was stored in a held state, or when charge storage and charge / discharge were repeated, the capacity decreased or the charge / discharge characteristics decreased, and sufficient storage characteristics could not be obtained.

その原因は次のように考えられている。すなわち、価数の低い遷移金属は溶出し易いため、平均価数の低い表面部分の遷移金属が非水電解液中に溶出し、容量低下を招く。また、溶出した遷移金属は、負極上で還元されて析出し、負極での電極反応を妨げるため、充放電特性が低下する。   The cause is considered as follows. That is, since the transition metal having a low valence is easily eluted, the transition metal on the surface portion having a low average valence is eluted in the non-aqueous electrolyte, resulting in a decrease in capacity. Moreover, since the eluted transition metal is reduced and deposited on the negative electrode and prevents the electrode reaction at the negative electrode, the charge / discharge characteristics are deteriorated.

また、従来の正極活物質表層の少なくとも一部に炭素材層を含有させた場合においても、高電圧を保持した保存特性や、充電保存と充放電を繰り返し行うサイクル特性において、十分な向上効果が得られなかった。その原因としては、非水電解液との反応に関与する活性な酸素が存在するためと考えられる。   In addition, even when a carbon material layer is included in at least a part of the surface layer of the conventional positive electrode active material, there is a sufficient improvement effect in storage characteristics that maintain a high voltage and cycle characteristics in which charge storage and charge / discharge are repeated. It was not obtained. The cause is considered to be the presence of active oxygen involved in the reaction with the non-aqueous electrolyte.

そこで、本発明は平均価数の低い表面部分を炭素質物質で被覆することにより、高電圧を保持した状態で保存した場合や、充電保存と充放電を繰り返し行った場合においても、そのリチウム含有遷移金属酸化物と非水電解液との反応を抑制するとともに、平均価数の低い表面部分の遷移金属が非水電解液中に溶出するのを抑制して、容量低下や放電特性低下を防止し、高温連続充電保存特性や高温充電保存サイクル寿命特性に優れた非水電解液二次電池を提供することを目的とするものである。   Therefore, the present invention covers the surface portion with a low average valence with a carbonaceous material, so that it can be stored in a state where a high voltage is maintained, or even when charging and discharging are repeated, the lithium content Suppresses the reaction between the transition metal oxide and the non-aqueous electrolyte, and suppresses the transition metal on the surface portion with a low average valence from leaching into the non-aqueous electrolyte to prevent the capacity and discharge characteristics from deteriorating. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery excellent in high temperature continuous charge storage characteristics and high temperature charge storage cycle life characteristics.

上記の課題を解決するために本発明の非水電解液二次電池用正極活物質は、一般式LiMO2(式中MはCo、Ni、およびMnからなる群より選ばれる少なくとも1種である。)で表されるリチウム含有遷移金属酸化物の粒子からなり、その表面における遷移金属の平均価数が粒子内部の平均価数よりも低く、かつ、前記粒子の表面が炭素質物質で被覆されていることを特徴とする。 In order to solve the above problems, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention has a general formula LiMO 2 (wherein M is at least one selected from the group consisting of Co, Ni, and Mn). )), The average valence of the transition metal on the surface is lower than the average valence inside the particle, and the surface of the particle is coated with a carbonaceous material. It is characterized by.

本発明は、Co、Ni、およびMnからなる群より選ばれる少なくとも1種の遷移金属の塩と、リチウム塩と、炭素原子を含む物質とを混合し、その混合物を酸素濃度1%〜5%の雰囲気下で焼成する工程を有する非水電解液二次電池用正極活物質の製造方法を提供する。
前記混合物における前記炭素原子を含む物質中に含まれる炭素原子のモル数と、前記遷移金属の塩の遷移金属原子のモル数との比は、0.05〜0.30の範囲が好ましい。
In the present invention, a salt of at least one transition metal selected from the group consisting of Co, Ni, and Mn, a lithium salt, and a substance containing a carbon atom are mixed, and the mixture has an oxygen concentration of 1% to 5%. The manufacturing method of the positive electrode active material for non-aqueous-electrolyte secondary batteries which has the process baked in said atmosphere.
The ratio of the number of moles of carbon atoms contained in the carbon atom-containing substance in the mixture to the number of moles of transition metal atoms of the transition metal salt is preferably in the range of 0.05 to 0.30.

本発明によれば、高電圧を保持した状態で保存した場合や、充電保存と充放電を繰り返し行った場合において、そのリチウム含有遷移金属酸化物と非水電解液との反応を抑制するとともに、平均価数の低い表面部分の遷移金属が非水電解液中に溶出するのを抑制して、高温連続充電保存特性や高温充電保存サイクル寿命特性に優れた非水電解液二次電池を得ることができる。   According to the present invention, when stored in a state in which a high voltage is maintained, or when repeated charge storage and charge / discharge, the reaction between the lithium-containing transition metal oxide and the non-aqueous electrolyte is suppressed, To suppress the transition metal of the surface part with a low average valence from eluting into the non-aqueous electrolyte, and obtain a non-aqueous electrolyte secondary battery with excellent high-temperature continuous charge storage characteristics and high-temperature charge storage cycle life characteristics Can do.

本発明の非水電解液二次電池用正極活物質は、一般式LiMO2(式中MはCo、Ni、およびMnからなる群より選ばれる少なくとも1種である。)で表されるリチウム含有遷移金属酸化物の粒子からなり、その表面における遷移金属の平均価数が粒子内部の平均価数よりも低く、かつ、前記粒子の表面が炭素質物質で被覆されている。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention contains a lithium represented by the general formula LiMO 2 (wherein M is at least one selected from the group consisting of Co, Ni, and Mn). It consists of particles of transition metal oxide, the average valence of the transition metal on the surface is lower than the average valence inside the particle, and the surface of the particle is coated with a carbonaceous material.

ここで、リチウム含有遷移金属酸化物の粒子とは、基本的には、一次粒子を指し、活物質として利用される場合、二次粒子あるいはさらに高次の凝集状態にあってもよい。本発明による正極活物質は、粒子表面における遷移金属の平均価数が粒子内部の平均価数よりも低く、粒子の表面は炭素質物質で被覆されている。しかし、粒子表面および内部の遷移金属の平均価数がほぼ同じで、炭素質物質で被覆されていないものをマイナー成分として含んでいてもよい。   Here, the lithium-containing transition metal oxide particles basically refer to primary particles, and when used as an active material, they may be in secondary particles or in a higher-order aggregated state. In the positive electrode active material according to the present invention, the average valence of the transition metal on the particle surface is lower than the average valence inside the particle, and the surface of the particle is coated with a carbonaceous material. However, the average valence of the transition metal on the particle surface and the inside may be substantially the same and may include a minor component that is not coated with a carbonaceous material.

この正極活物質は、Co、Ni、およびMnからなる群より選ばれる少なくとも1種の遷移金属の塩と、リチウム塩と、炭素原子を含む物質とを混合し、その混合物を酸素濃度1%〜5%の雰囲気下で焼成することによって得ることができる。
前記焼成時の温度は600℃〜1100℃が好ましい。前記混合物における炭素原子を含む物質中に含まれる炭素原子のモル数と、前記遷移金属の塩の遷移金属原子のモル数との比は、0.05〜0.30の範囲が好ましい。
This positive electrode active material is a mixture of at least one transition metal salt selected from the group consisting of Co, Ni, and Mn, a lithium salt, and a material containing a carbon atom, and the mixture has an oxygen concentration of 1% to It can be obtained by firing in a 5% atmosphere.
The firing temperature is preferably 600 ° C to 1100 ° C. The ratio of the number of moles of carbon atoms contained in the carbon-containing substance in the mixture to the number of moles of transition metal atoms in the transition metal salt is preferably in the range of 0.05 to 0.30.

次に、本発明の正極活物質を得るための実施の形態について、以下に詳細に説明する。
原料として用いるリチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウム等を用いることができる。コバルト塩としては、酸化コバルト、水酸化コバルト、炭酸コバルト等を用いることができる。ニッケル塩としては酸化ニッケル、水酸化ニッケル、炭酸ニッケル等を用いることができる。マンガン塩としては酸化マンガン、水酸化マンガン、炭酸マンガン等を用いることができる。
Next, embodiments for obtaining the positive electrode active material of the present invention will be described in detail below.
As a lithium salt used as a raw material, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like can be used. As the cobalt salt, cobalt oxide, cobalt hydroxide, cobalt carbonate, or the like can be used. As the nickel salt, nickel oxide, nickel hydroxide, nickel carbonate or the like can be used. As the manganese salt, manganese oxide, manganese hydroxide, manganese carbonate, or the like can be used.

炭素原子を含む物質としては、ピッチコークスや、カルボキシメチルセルロース、ポリビニルアルコール、ポリエチレンオキサイドなどの水溶性高分子を用いることが好ましい。   As a substance containing a carbon atom, it is preferable to use water-soluble polymers such as pitch coke, carboxymethyl cellulose, polyvinyl alcohol, and polyethylene oxide.

以下、本発明の実施例を説明する。図1に、実施例で作製した円筒型リチウムイオン二次電池の構造を示す。なお、ここでは円筒型電池を作製したが、本発明の電池の形状は、これに限定されるものではない。本発明は、例えば、角型、コイン型、ボタン型、シート型、積層型、扁平型の電池や、電気自動車等に用いる大型電池にも適用できる。   Examples of the present invention will be described below. FIG. 1 shows the structure of a cylindrical lithium ion secondary battery produced in the example. In addition, although the cylindrical battery was produced here, the shape of the battery of this invention is not limited to this. The present invention can be applied to, for example, a rectangular battery, a coin battery, a button battery, a sheet battery, a stacked battery, a flat battery, a large battery used in an electric vehicle, and the like.

《実施例1》
本実施例では、リチウム含有遷移金属酸化物LiCoO2、LiNiO2、LiNi0.5Co0.52、およびLiNi0.3Co0.4Mn0.32において、本発明の効果の確認した。
Example 1
In this example, the effects of the present invention were confirmed in lithium-containing transition metal oxides LiCoO 2 , LiNiO 2 , LiNi 0.5 Co 0.5 O 2 , and LiNi 0.3 Co 0.4 Mn 0.3 O 2 .

[正極活物質の作製]
LiCoO2の原料としては、炭酸リチウムと四酸化三コバルトを用い、炭酸リチウムと四酸化三コバルトのLiとCoのモル比がLi:Co=1:1となるようにそれぞれを量りとり混合した。また、LiNiO2の原料としては、炭酸リチウムと水酸化ニッケルを用い、炭酸リチウムと水酸化ニッケルのLiとNiのモル比がLi:Co=1:1となるようにそれぞれを量りとり混合した。LiNi0.5Co0.52の原料としては、炭酸リチウムと水酸化ニッケルと四酸化三コバルトを用い、炭酸リチウムと水酸化ニッケルと四酸化三コバルトのLiとNiとCoのモル比がLi:Ni:Co=1:0.5:0.5となるようにそれぞれを量りとり混合した。LiNi0.3Co0.4Mn0.32の原料としては、炭酸リチウムと水酸化ニッケルと四酸化三コバルトと酸化マンガンを用い、炭酸リチウムと水酸化ニッケルと四酸化三コバルトと酸化マンガンのLiとNiとCoとMnのモル比がLi:Ni:Co:Mn=1:0.3:0.4:0.3となるようにそれぞれを量りとり混合した。
[Preparation of positive electrode active material]
As raw materials for LiCoO 2 , lithium carbonate and tricobalt tetroxide were used, and each was measured and mixed so that the molar ratio of Li to Co in lithium carbonate and tricobalt tetroxide was Li: Co = 1: 1. Moreover, as a raw material of LiNiO 2 , lithium carbonate and nickel hydroxide were used and weighed and mixed so that the molar ratio of Li to Ni of lithium carbonate and nickel hydroxide was Li: Co = 1: 1. As a raw material for LiNi 0.5 Co 0.5 O 2 , lithium carbonate, nickel hydroxide, and tricobalt tetroxide are used, and the molar ratio of Li, Ni, and Co of lithium carbonate, nickel hydroxide, and tricobalt tetroxide is Li: Ni: Each was measured and mixed so that Co = 1: 0.5: 0.5. LiNi 0.3 Co 0.4 Mn 0.3 O 2 is made of lithium carbonate, nickel hydroxide, tricobalt tetroxide and manganese oxide. Li, Ni and Co of lithium carbonate, nickel hydroxide, tricobalt tetroxide and manganese oxide are used. Each was weighed and mixed so that the molar ratio of Mn was Li: Ni: Co: Mn = 1: 0.3: 0.4: 0.3.

次いで、これらの混合物の1kgに対して、炭素質物質の原料であるカルボキシメチルセルロースの1%水溶液を、上記混合物1kg中に存在する遷移金属原子のモル数に対する、カルボキシメチルセルロース中の炭素原子のモル比が表1に示す量になるように混合した。これらの混合物を100℃において予備乾燥した後、表1に示す酸素濃度雰囲気下において、900℃で24時間焼成し、粉砕、分級して、平均粒径約10μmの正極活物質を作製した。   Next, a 1% aqueous solution of carboxymethyl cellulose, which is a raw material of the carbonaceous material, to 1 kg of these mixtures is a molar ratio of carbon atoms in carboxymethyl cellulose to the number of moles of transition metal atoms present in 1 kg of the mixture. Were mixed so as to have the amounts shown in Table 1. These mixtures were preliminarily dried at 100 ° C., then calcined at 900 ° C. for 24 hours in an oxygen concentration atmosphere shown in Table 1, pulverized and classified to prepare a positive electrode active material having an average particle diameter of about 10 μm.

このようにして得られた正極活物質の粒子表面の遷移金属を、ESCAを用いて分析した。この分析で得られた、遷移金属の平均価数の低い層の厚みを表1に示す。   The transition metal on the particle surface of the positive electrode active material thus obtained was analyzed using ESCA. Table 1 shows the thickness of the layer having a low average valence of the transition metal obtained by this analysis.

[正極板の作製]
上記の方法で得られた正極活物質の100重量部に、導電剤としてアセチレンブラックを1.5重量部混合し、さらに結着剤としてポリフッ化ビニリデン(PVdF)のN−メチル−2−ピロリドン溶液を樹脂分で2重量部加え、撹拌・混合し、ペースト状の正極合剤を得た。正極合剤は、厚さ15μmのアルミニウム箔の集電体の両面に塗布し、乾燥後、圧延を行い、所定寸法に裁断し、正極板を作製した。
[Preparation of positive electrode plate]
100 parts by weight of the positive electrode active material obtained by the above method is mixed with 1.5 parts by weight of acetylene black as a conductive agent, and further a polyvinylidene fluoride (PVdF) N-methyl-2-pyrrolidone solution as a binder. 2 parts by weight of resin was added and stirred and mixed to obtain a paste-like positive electrode mixture. The positive electrode mixture was applied to both surfaces of a current collector of aluminum foil having a thickness of 15 μm, dried, rolled, cut into a predetermined size, and a positive electrode plate was produced.

[負極板の作製]
平均粒径が20μm程度の鱗片状黒鉛を用いて負極板を作製した。前記鱗片状黒鉛の100重量部に、増粘剤としてカルボキシメチルセルロース水溶液を樹脂分で1重量部混合し、さらに結着剤としてスチレンブタジエンゴムを1重量部加え、撹拌・混合し、ペースト状の負極合剤を得た。負極合剤は、厚さ10μmの銅箔の集電体の両面に塗布し、乾燥後、圧延を行い、所定寸法に裁断し、負極板を作製した。
[Preparation of negative electrode plate]
A negative electrode plate was prepared using flaky graphite having an average particle diameter of about 20 μm. 1 part by weight of a carboxymethyl cellulose aqueous solution as a thickener is mixed with 100 parts by weight of the flake graphite, and 1 part by weight of styrene butadiene rubber is added as a binder, followed by stirring and mixing. A mixture was obtained. The negative electrode mixture was applied to both sides of a 10 μm thick copper foil current collector, dried, rolled, and cut into a predetermined size to prepare a negative electrode plate.

[電池の作製]
作製した正極板1と負極板2とを、厚さ20μmの微多孔性ポリエチレン製セパレータ3を介して渦巻状に捲回し、極板群を構成した。正極板1と負極板2には、それぞれ正極リード4及び負極リード5を溶接した。極板群の下部及び上部にそれぞれポリエチレン樹脂製絶縁リング6及び8を装着し、図1に示されるように、耐有機電解質性のステンレス鋼板を加工した電池ケース7内に収納した。負極リード5の他端は、電池ケース7の底部にスポット溶接した。正極リード4の他端は、安全弁を設けたアルミニウム製封口板10にスポット溶接した。非水電解液としては、エチレンカーボネートとエチルメチルカーボネートとの体積比1:3の混合溶媒に1.0mol/lの濃度でLiPF6を溶解したものを用い、その所定量を極板群に注入した後、電池ケース7の開口部を絶縁ガスケット9および封口板10で密封し、実施例1の試験電池とした。
[Production of battery]
The produced positive electrode plate 1 and negative electrode plate 2 were spirally wound through a separator 3 made of microporous polyethylene having a thickness of 20 μm to constitute an electrode plate group. A positive electrode lead 4 and a negative electrode lead 5 were welded to the positive electrode plate 1 and the negative electrode plate 2, respectively. Insulating rings 6 and 8 made of polyethylene resin were attached to the lower and upper parts of the electrode plate group, respectively, and as shown in FIG. 1, they were housed in a battery case 7 processed with an organic electrolyte resistant stainless steel plate. The other end of the negative electrode lead 5 was spot welded to the bottom of the battery case 7. The other end of the positive electrode lead 4 was spot welded to an aluminum sealing plate 10 provided with a safety valve. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3 and injecting a predetermined amount thereof into the electrode plate group is used. After that, the opening of the battery case 7 was sealed with an insulating gasket 9 and a sealing plate 10 to obtain a test battery of Example 1.

これらの電池について、高温環境下での連続充電保存試験及び充電保存サイクル寿命試験を行った。
高温連続充電保存試験においては、まず、充電電圧4.20V、充電最大電流800mAの条件で、電池を2時間定電圧充電した後、放電電流800mA、放電終止電圧3.0Vの定電流放電を、20℃環境下で2サイクル行い、2サイクル目の放電容量を確認した。その後、60℃環境下で、充電電圧4.20V、充電最大電流800mAで、電池を7日間定電圧充電したまま保存した。こうして定電圧で7日間連続充電保存した電池を再び20℃で、上記と同一条件で2サイクル充放電し、2サイクル目の放電容量を確認した。連続充電保存前の放電容量に対する連続充電保存後の放電容量の割合を容量回復率(以下条件1の容量回復率として表す)として評価を行った。
These batteries were subjected to a continuous charge storage test and a charge storage cycle life test under a high temperature environment.
In the high-temperature continuous charge storage test, first, the battery was charged at a constant voltage for 2 hours under the conditions of a charge voltage of 4.20 V and a maximum charge current of 800 mA, and then a constant current discharge of a discharge current of 800 mA and a discharge end voltage of 3.0 V was performed. Two cycles were performed under a 20 ° C. environment, and the discharge capacity at the second cycle was confirmed. Thereafter, the battery was stored with a constant voltage charged for 7 days at a charging voltage of 4.20 V and a maximum charging current of 800 mA in a 60 ° C. environment. The battery which was continuously charged and stored at a constant voltage for 7 days was charged and discharged again at 20 ° C. under the same conditions as described above, and the discharge capacity at the second cycle was confirmed. The ratio of the discharge capacity after the continuous charge storage to the discharge capacity before the continuous charge storage was evaluated as a capacity recovery rate (hereinafter expressed as a capacity recovery rate under Condition 1).

高温充電保存サイクル寿命試験においては、まず、充電電圧4.20V、充電最大電流800mAの条件で、電池を2時間定電圧充電した後、放電電流800mA、放電終止電圧3.0Vの定電流放電を、20℃環境下で2サイクル行い、2サイクル目の放電容量を確認した。その後、同条件で電池を2時間定電圧充電して、そのまま24時間放置し、その後、放電電流800mA、放電終止電圧3.0Vの定電流放電を行う充放電サイクルを45℃環境下で100サイクル行った。45℃環境下で100サイクル充放電した電池を再び20℃で、サイクル前と同一条件で2サイクル充放電し、2サイクル目の放電容量を確認した。高温充電保存サイクル前の放電容量に対する高温充電保存100サイクル後の放電容量の割合を容量回復率(以下条件2の容量回復率として表す)として評価を行った。   In the high-temperature charge storage cycle life test, first, the battery was charged at a constant voltage for 2 hours under the conditions of a charging voltage of 4.20 V and a charging maximum current of 800 mA, and then a constant current discharge with a discharging current of 800 mA and a discharge end voltage of 3.0 V was performed. Two cycles were performed under an environment of 20 ° C., and the discharge capacity at the second cycle was confirmed. After that, the battery was charged at a constant voltage for 2 hours under the same conditions and left for 24 hours as it was, and then a charge / discharge cycle for discharging with a discharge current of 800 mA and a discharge end voltage of 3.0 V under a 45 ° C. environment at 100 cycles. went. The battery charged and discharged for 100 cycles in a 45 ° C. environment was charged and discharged again at 20 ° C. under the same conditions as before the cycle, and the discharge capacity at the second cycle was confirmed. The ratio of the discharge capacity after 100 cycles of high-temperature charge storage to the discharge capacity before the high-temperature charge storage cycle was evaluated as a capacity recovery rate (hereinafter referred to as a capacity recovery rate of Condition 2).

上記のようにして求めた高温環境下での連続充電保存試験及び充電保存サイクル寿命試験の評価結果を表1に示す。   Table 1 shows the evaluation results of the continuous charge storage test and the charge storage cycle life test under the high temperature environment obtained as described above.

Figure 2005332629
Figure 2005332629

表1の結果から明らかなように、リチウム含有遷移金属酸化物粒子の表面において、遷移金属の平均価数が低く、かつ、表面が炭素質物質で被覆されているNo.1−3、1−7、1−11、及び1−15の電池は、上記のような平均価数の低い層と、炭素質被膜の両方を備えていないNo.1−1〜2、1−4〜6、1−8〜10、1−12〜14の電池と比べて、高温環境下での連続充電保存特性及び充電保存サイクル寿命特性が著しく向上していた。これは、平均価数の低い表面部分を炭素質物質で被覆することにより、高電圧を保持した状態で保存した場合や、充電保存と充放電を繰り返し行った場合においても、そのリチウム含有遷移金属酸化物と非水電解液との反応を抑制するとともに、平均価数の低い表面部分の遷移金属が非水電解液中に溶出するのを抑制して、容量低下や放電特性低下を防止したためと考えられる。   As is apparent from the results in Table 1, on the surface of the lithium-containing transition metal oxide particles, the average valence of the transition metal is low and the surface is coated with a carbonaceous material. The batteries of 1-3, 1-7, 1-11, and 1-15 are No. 1 that do not include both the above-described low average valence layer and the carbonaceous film. Compared with the batteries of 1-1-2, 1-4-6, 1-8-10, 1-12-14, the continuous charge storage characteristics and the charge storage cycle life characteristics in a high temperature environment were remarkably improved. . This is because the surface portion with a low average valence is coated with a carbonaceous material, so that the lithium-containing transition metal can be stored even when stored in a state where a high voltage is maintained, or when charging and discharging are repeated. This is because the reaction between the oxide and the non-aqueous electrolyte is suppressed, and the transition metal on the surface portion with a low average valence is prevented from eluting into the non-aqueous electrolyte, thereby preventing the capacity and discharge characteristics from being reduced. Conceivable.

《実施例2》
本実施例では、リチウム含有遷移金属酸化物LiCoO2において、その粒子の表面における遷移金属の平均価数が粒子内部の平均価数よりも低く、かつ、表面が炭素質物質で被覆されている正極活物質を得るための、焼成時の酸素濃度と混合する炭素量について検討した。
Example 2
In this example, in lithium-containing transition metal oxide LiCoO 2 , the average valence of the transition metal on the surface of the particle is lower than the average valence inside the particle, and the surface is coated with a carbonaceous material In order to obtain an active material, the oxygen concentration during firing and the amount of carbon to be mixed were examined.

正極活物質のLiCoO2の原料として、炭酸リチウムと四酸化三コバルトを用いた。炭酸リチウムと四酸化三コバルトをLiとCoのモル比がLi:Co=1:1となるようにそれぞれを量りとり混合した。次いで、この混合物の1kgに対して、炭素質物質の原料であるカルボキシメチルセルロースの1%水溶液を、上記混合物1kg中に存在するCo原子モル数に対する、カルボキシメチルセルロース中の炭素原子のモル比率が表2に示す量になるように混合した。このようにして得た混合物を、100℃で予備乾燥後、表2に示す酸素濃度雰囲気下において、900℃で24時間焼成し、粉砕、分級して、正極活物質を作製した。
以下、実施例1と同様にして正極を作製し、電池を組み立て、実施例2の試験電池とした。
Lithium carbonate and tricobalt tetroxide were used as raw materials for the positive electrode active material LiCoO 2 . Lithium carbonate and tricobalt tetroxide were weighed and mixed so that the molar ratio of Li and Co was Li: Co = 1: 1. Next, the molar ratio of carbon atoms in carboxymethyl cellulose to 1 kg aqueous solution of carboxymethyl cellulose, which is the raw material of the carbonaceous material, with respect to 1 kg of the mixture is shown in Table 2 with respect to the number of moles of Co atoms present in 1 kg of the mixture. It mixed so that it might become the quantity shown in. The mixture thus obtained was pre-dried at 100 ° C., then calcined at 900 ° C. for 24 hours in an oxygen concentration atmosphere shown in Table 2, pulverized and classified to prepare a positive electrode active material.
Hereinafter, a positive electrode was produced in the same manner as in Example 1, a battery was assembled, and a test battery of Example 2 was obtained.

実施例2の電池について、実施例1と同様に高温環境下での連続充電保存試験、及び充電保存サイクル寿命試験を行い、それぞれの初期容量と容量回復率を求めた。これらの電池の初期放電容量と、高温環境下での連続充電保存試験及び充電保存サイクル寿命試験の評価結果を表2に示す。   About the battery of Example 2, the continuous charge preservation | save test in the high temperature environment and the charge preservation | save cycle life test were done like Example 1, and each initial capacity and capacity | capacitance recovery rate were calculated | required. Table 2 shows the initial discharge capacities of these batteries and the evaluation results of the continuous charge storage test and the charge storage cycle life test under a high temperature environment.

Figure 2005332629
Figure 2005332629

表2の結果から明らかなように、混合する炭素量が5モル%以上で、焼成時の酸素濃度が0.5%〜5%の範囲であるNo.2−1〜5、2−7〜9、2−12〜14、2−17〜19の電池においては、高温環境下での連続充電保存特性及び充電保存サイクル寿命特性が著しく向上した。焼成時の酸素濃度を10%にしたNo.2−21〜25の電池は、十分な向上効果を得ることができなかった。この理由としては、酸素濃度10%になると、遷移金属の平均価数が低い層を粒子の表面に形成できなかったためと考えられる。粒子表面の遷移金属を、ESCAを用いて分析したところ、遷移金属の平均価数の低い層は観測されなかった。   As is apparent from the results in Table 2, the amount of carbon to be mixed is 5 mol% or more, and the oxygen concentration during firing is in the range of 0.5% to 5%. In the batteries of 2-1 to 5, 2-7 to 9, 2-12 to 14, and 2-17 to 19, the continuous charge storage characteristics and the charge storage cycle life characteristics under a high temperature environment were remarkably improved. No. 1 in which the oxygen concentration during firing was 10%. The batteries of 2-21 to 25 could not obtain a sufficient improvement effect. This is probably because when the oxygen concentration was 10%, a layer having a low average valence of the transition metal could not be formed on the surface of the particles. When the transition metal on the particle surface was analyzed using ESCA, a layer having a low average valence of the transition metal was not observed.

ところで、酸素濃度が0.5%のNo.2−1〜5の電池や、酸素濃度が1%〜5%で、混合する炭素量が50mモル%のNo.2−10、2−15、2−20の電池は、高温環境下での連続充電保存特性及び充電保存サイクル寿命特性は著しく向上したが、初期容量が低下してしまった。これは、焼成時の酸素濃度が低すぎることや、還元剤として作用する炭素量が多くなることにより、合成に必要な酸素が不足し、遷移金属の平均価数の低い層が内部まで形成され、リチウム含有遷移金属酸化物LiCoO2の結晶性が低下したためと考えられる。初期容量の低下を最小限に抑制するためには、遷移金属の平均価数の低い層の厚みは100nm以下が好ましい。 By the way, no. No. 2-1-5 batteries and No. 1 having an oxygen concentration of 1% to 5% and a carbon content of 50 mmol%. In the batteries 2-10, 2-15, and 2-20, the continuous charge storage characteristics and the charge storage cycle life characteristics under a high temperature environment were remarkably improved, but the initial capacity was lowered. This is because the oxygen concentration at the time of firing is too low and the amount of carbon acting as a reducing agent increases, so that the oxygen necessary for synthesis is insufficient, and a layer with a low average valence of transition metal is formed to the inside. This is presumably because the crystallinity of the lithium-containing transition metal oxide LiCoO 2 was lowered. In order to suppress a decrease in the initial capacity to a minimum, the thickness of the layer having a low average valence of the transition metal is preferably 100 nm or less.

また、混合する炭素量が2モル%のNo.2−1、2−6、2−11、2−16の電池においては、高温環境下での連続充電保存特性及び充電保存サイクル寿命特性の著しい向上効果は得られなかった。これは、被覆する炭素量が少ないためと考えられる。   Further, No. 2 having a carbon content of 2 mol% was mixed. In the batteries of 2-1, 2-6, 2-11, and 2-16, the remarkable effect of improving the continuous charge storage characteristics and the charge storage cycle life characteristics under a high temperature environment was not obtained. This is presumably because the amount of carbon to be coated is small.

これらの結果より、初期の容量低下を招くことなく、高温環境下での連続充電保存特性及び充電保存サイクル寿命特性を著しく向上させる正極活物質を得るためには、焼成時の酸素濃度は1%〜5%、混合する炭素量は5〜30モル%が最適であることがわかった。   From these results, in order to obtain a positive electrode active material that significantly improves continuous charge storage characteristics and charge storage cycle life characteristics in a high temperature environment without causing an initial capacity reduction, the oxygen concentration during firing is 1%. It was found that the optimal amount of carbon to be mixed is 5 to 30 mol%.

上記実施例においては、リチウム含有遷移金属酸化物LiCoO2、LiNiO2、LiNi0.5Co0.52、およびLiNi0.3Co0.4Mn0.32の実験結果を示した。しかし、他の一般式LiMO2で表され、前記式においてMがCo、Ni、およびMnからなる群より選ばれる少なくとも1種を含むリチウム含有遷移金属酸化物であれば、同様の効果が得られる。 In the above embodiment, showing a lithium-containing transition metal oxide LiCoO 2, LiNiO 2, LiNi 0.5 Co 0.5 O 2, and LiNi 0.3 Co 0.4 Mn 0.3 O 2 of the experimental results. However, the same effect can be obtained as long as it is a lithium-containing transition metal oxide represented by another general formula LiMO 2 and in which M is at least one selected from the group consisting of Co, Ni, and Mn. .

さらに、上記実施例においては、被覆する炭素質物質の原料としてカルボキシメチルセルロースを用いた実験結果を示したが、ピッチコークスや、ポリビニルアルコール、ポリエチレンオキサイドなどでも同様の効果が得られる。
また、上記各実施例においては、電解質の塩濃度を1mol/lとしたが、塩濃度を0.5〜2.0mol/lのものを用いても同様の効果が得られる。
Furthermore, in the said Example, although the experimental result using carboxymethylcellulose as a raw material of the carbonaceous material to coat | cover was shown, the same effect is acquired also with pitch coke, polyvinyl alcohol, polyethylene oxide, etc.
In each of the above examples, the salt concentration of the electrolyte is 1 mol / l, but the same effect can be obtained even when the salt concentration is 0.5 to 2.0 mol / l.

上記各実施例においては、電解液として炭酸エチレンと炭酸ジエチルの混合溶媒を用いたが、他の非水溶媒例えば、プロピレンカーボネートなどの環状エステル、テトラヒドロフランなどの環状エーテル、ジメトキシエタンなどの鎖状エーテル、プロピオン酸メチルなどの鎖状エステルなどの非水溶媒や、これら多元系混合溶媒を用いても同様の効果が得られる。   In each of the above examples, a mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution. However, other nonaqueous solvents such as cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, and chain ethers such as dimethoxyethane. The same effect can be obtained by using a non-aqueous solvent such as a chain ester such as methyl propionate or a multicomponent mixed solvent.

本発明による正極活物質を用いた非水電解二次電池は、携帯用電子機器をはじめ各種の用途に有用である。   The non-aqueous electrolytic secondary battery using the positive electrode active material according to the present invention is useful for various applications including portable electronic devices.

本発明の実施例における円筒形電池の一部を断面にした正面図である。It is the front view which made a part of cylindrical battery in the example of the present invention a section.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレータ
4 正極リード
5 負極リード
6 下部絶縁リング
7 電池ケース
8 上部絶縁リング
9 ガスケット
10 封口板
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode lead 5 Negative electrode lead 6 Lower insulating ring 7 Battery case 8 Upper insulating ring 9 Gasket 10 Sealing plate

Claims (3)

一般式LiMO2(式中MはCo、Ni、およびMnからなる群より選ばれる少なくとも1種である。)で表されるリチウム含有遷移金属酸化物の粒子からなり、その表面における遷移金属の平均価数が粒子内部の平均価数よりも低く、かつ、前記粒子の表面が炭素質物質で被覆されていることを特徴とする非水電解液二次電池用正極活物質。 It is composed of lithium-containing transition metal oxide particles represented by the general formula LiMO 2 (wherein M is at least one selected from the group consisting of Co, Ni, and Mn), and the average of transition metals on the surface thereof A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the valence is lower than the average valence inside the particle, and the surface of the particle is coated with a carbonaceous material. Co、Ni、およびMnからなる群より選ばれる少なくとも1種の遷移金属の塩と、リチウム塩と、炭素原子を含む物質とを混合し、その混合物を酸素濃度1%〜5%の雰囲気下で焼成する工程を有する非水電解液二次電池用正極活物質の製造方法。   A salt of at least one transition metal selected from the group consisting of Co, Ni, and Mn, a lithium salt, and a substance containing a carbon atom are mixed, and the mixture is mixed in an atmosphere having an oxygen concentration of 1% to 5%. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which has the process to bake. 前記混合物における前記炭素原子を含む物質中に含まれる炭素原子のモル数と、前記遷移金属の塩の遷移金属原子のモル数との比が、0.05〜0.30である請求項2記載の非水電解液二次電池用正極活物質の製造方法。   The ratio between the number of moles of carbon atoms contained in the substance containing carbon atoms in the mixture and the number of moles of transition metal atoms in the salt of the transition metal is 0.05 to 0.30. The manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries.
JP2004148004A 2004-05-18 2004-05-18 Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method Pending JP2005332629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148004A JP2005332629A (en) 2004-05-18 2004-05-18 Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148004A JP2005332629A (en) 2004-05-18 2004-05-18 Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005332629A true JP2005332629A (en) 2005-12-02

Family

ID=35487130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148004A Pending JP2005332629A (en) 2004-05-18 2004-05-18 Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005332629A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031987A (en) * 2004-07-13 2006-02-02 Matsushita Electric Ind Co Ltd Manufacturing method for positive electrode active material for nonaqueous electrolyte secondary batteries
CN101210901B (en) * 2006-12-29 2011-04-20 比亚迪股份有限公司 Method for determining valence of cobalt element cladded at ball nickel surface after charging
JP2014239068A (en) * 2014-08-19 2014-12-18 富山県 Positive electrode for lithium battery
JP2016516267A (en) * 2013-03-15 2016-06-02 ナノ ワン マテリアルズ コーポレーション Complexation precursor formulation methodology for industrial production of layered lithium mixed oxide fine and ultrafine powders and nanopowders for battery applications
JP2016524576A (en) * 2013-03-15 2016-08-18 ナノ ワン マテリアルズ コーポレーション Complexation precursor formulation methodology for industrial production of fine and ultrafine powders of lithium metal oxides and nanopowder for battery applications
US9774034B2 (en) 2013-11-29 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Lithium-manganese composite oxide and secondary battery
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006031987A (en) * 2004-07-13 2006-02-02 Matsushita Electric Ind Co Ltd Manufacturing method for positive electrode active material for nonaqueous electrolyte secondary batteries
CN101210901B (en) * 2006-12-29 2011-04-20 比亚迪股份有限公司 Method for determining valence of cobalt element cladded at ball nickel surface after charging
US10374232B2 (en) 2013-03-15 2019-08-06 Nano One Materials Corp. Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders for lithium metal oxides for battery applications
JP2019023159A (en) * 2013-03-15 2019-02-14 ナノ ワン マテリアルズ コーポレーション Fine powder and ultrafine powder of lithium metal oxide for battery use and complex formation precursor compounding methodology concerning industrial production of nanopowder
JP2016524576A (en) * 2013-03-15 2016-08-18 ナノ ワン マテリアルズ コーポレーション Complexation precursor formulation methodology for industrial production of fine and ultrafine powders of lithium metal oxides and nanopowder for battery applications
JP2016516267A (en) * 2013-03-15 2016-06-02 ナノ ワン マテリアルズ コーポレーション Complexation precursor formulation methodology for industrial production of layered lithium mixed oxide fine and ultrafine powders and nanopowders for battery applications
US10608248B2 (en) 2013-10-04 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
US9865867B2 (en) 2013-10-04 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Lithium manganese composite oxide, secondary battery, and electrical device
US9774034B2 (en) 2013-11-29 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Lithium-manganese composite oxide and secondary battery
JP2014239068A (en) * 2014-08-19 2014-12-18 富山県 Positive electrode for lithium battery
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery

Similar Documents

Publication Publication Date Title
US11108043B2 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP4839633B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US7504180B2 (en) Positive electrode material for lithium secondary battery and process for producing the same
JP5232631B2 (en) Non-aqueous electrolyte battery
JP5731276B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2009076468A (en) Nonaqueous electrolyte secondary battery
US6291103B1 (en) Positive active material for rechargeable lithium battery
JP2021508154A (en) Positive electrode active material for secondary batteries, manufacturing method thereof, and lithium secondary batteries containing them
JP7416436B2 (en) A method for producing a positive electrode material for a lithium secondary battery, and a positive electrode material for a lithium secondary battery manufactured thereby
JP2006344509A (en) Lithium secondary battery
JP2007299668A (en) Positive electrode active material for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using it
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6582750B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2017045633A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2005332629A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2008130287A (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2006147500A (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
JP2018195419A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225