JP5731276B2 - Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery - Google Patents

Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Download PDF

Info

Publication number
JP5731276B2
JP5731276B2 JP2011114558A JP2011114558A JP5731276B2 JP 5731276 B2 JP5731276 B2 JP 5731276B2 JP 2011114558 A JP2011114558 A JP 2011114558A JP 2011114558 A JP2011114558 A JP 2011114558A JP 5731276 B2 JP5731276 B2 JP 5731276B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011114558A
Other languages
Japanese (ja)
Other versions
JP2012004109A (en
Inventor
有美 宋
有美 宋
度炯 朴
度炯 朴
善英 權
善英 權
民漢 金
民漢 金
志▲ヒョン▼ 金
志▲ヒョン▼ 金
景眩 金
景眩 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2012004109A publication Critical patent/JP2012004109A/en
Application granted granted Critical
Publication of JP5731276B2 publication Critical patent/JP5731276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池に関する。   The present invention relates to a positive electrode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery.

最近の携帯用小型電子機器の電源として脚光を浴びているリチウム二次電池は、有機電解液を用いることによって、既存のアルカリ水溶液を用いた電池よりも2倍以上の高い放電電圧を有し、その結果、高エネルギー密度を有する電池である。   Lithium secondary batteries that have been in the limelight as a power source for recent portable small electronic devices have a discharge voltage that is more than twice as high as that of batteries using existing alkaline aqueous solutions by using organic electrolytes. As a result, the battery has a high energy density.

このようなリチウム二次電池は、リチウムを挿入(intercalation)及び脱離(deintercalation)することができる正極活物質を含む正極、及びリチウムを挿入及び脱離することができる負極活物質を含む負極を有する電池セルに電解液を注入して使用される。   Such a lithium secondary battery includes a positive electrode including a positive electrode active material capable of intercalating and deintercalating lithium, and a negative electrode including a negative electrode active material capable of inserting and desorbing lithium. It is used by injecting an electrolyte into the battery cell.

特開2004−273451号公報JP 2004-273451 A

前記正極活物質としてはLiCoOが幅広く使われているが、コバルト(Co)の希少性によって製造費用の増加及び安定的供給の問題が台頭している。そのために、安価なNi(ニッケル)またはMn(マンガン)を用いた正極活物質の開発が進められている。 As the positive electrode active material, LiCoO 2 is widely used. However, due to the scarcity of cobalt (Co), problems of increase in manufacturing cost and stable supply are emerging. For this reason, development of a positive electrode active material using inexpensive Ni (nickel) or Mn (manganese) is in progress.

一方、Ni(ニッケル)を用いた正極活物質は、高容量及び高電圧用の電池に使用するのに適している反面、構造が不安定で容量劣化が発生し、電解液との反応による熱安定性が脆弱であるという問題がある。   On the other hand, a positive electrode active material using Ni (nickel) is suitable for use in a battery for high capacity and high voltage, but its structure is unstable and capacity deterioration occurs, and heat due to reaction with the electrolytic solution. There is a problem that stability is weak.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、電解液との熱安定性が優れ、高容量のリチウム二次電池、その製造方法、及びリチウム二次電池を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery having a high capacity and excellent thermal stability with an electrolytic solution, a method for producing the same, and lithium. It is to provide a secondary battery.

上記課題を解決するために、本発明の第1側面は、10〜60nmの平均直径の空隙を含み、空隙率0.5〜20%のリチウム二次電池用正極活物質を提供する。   In order to solve the above problems, a first aspect of the present invention provides a positive electrode active material for a lithium secondary battery including voids having an average diameter of 10 to 60 nm and a porosity of 0.5 to 20%.

前記空隙は20〜40nmの平均直径を有してもよい。   The voids may have an average diameter of 20-40 nm.

前記正極活物質は下記化学式(1)で表されるリチウム金属酸化物を含んでもよく、具体的には、下記化学式(2)または化学式(3)で表されるリチウム金属酸化物を含んでもよい。   The positive electrode active material may include a lithium metal oxide represented by the following chemical formula (1), and specifically may include a lithium metal oxide represented by the following chemical formula (2) or chemical formula (3). .

(前記化学式(1)において、MはAl、Mg、Ti、Zr、またはこれらの組み合わせであり、0.95≦a≦1.2、0.45≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.35、0≦k≦0.1、x+y+z+k=1である。) (In the chemical formula (1), M is Al, Mg, Ti, Zr, or a combination thereof, and 0.95 ≦ a ≦ 1.2, 0.45 ≦ x ≦ 0.65, 0.15 ≦ y. ≦ 0.25, 0.15 <z ≦ 0.35, 0 ≦ k ≦ 0.1, and x + y + z + k = 1.)

(前記化学式(2)において、0.95≦a≦1.10、0.55≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.25、x+y+z=1である。) (In the chemical formula (2), 0.95 ≦ a ≦ 1.10, 0.55 ≦ x ≦ 0.65, 0.15 ≦ y ≦ 0.25, 0.15 <z ≦ 0.25, x + y + z = 1)

(前記化学式(3)において、0.95≦a≦1.10、0.45≦x≦0.55、0.15≦y≦0.25、0.25<z≦0.35、x+y+z=1である。) (In the chemical formula (3), 0.95 ≦ a ≦ 1.10, 0.45 ≦ x ≦ 0.55, 0.15 ≦ y ≦ 0.25, 0.25 <z ≦ 0.35, x + y + z = 1)

本発明の第2側面は、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)を含む各々の金属原料物質、及び水酸化アンモニウム(NHOH)または水酸化ナトリウム(NaOH)を共沈反応させて沈殿物を製造する段階、前記沈殿物とリチウム原料物質を混合して混合物を得る段階、及び前記混合物を8〜10時間800〜950℃の温度で熱処理する段階を含み、平均直径10〜60nmの空隙を含み、空隙率が0.5〜20%のリチウム二次電池用正極活物質の製造方法を提供する。 The second aspect of the present invention is a coprecipitation reaction of each metal source material containing nickel (Ni), cobalt (Co) and manganese (Mn), and ammonium hydroxide (NH 4 OH) or sodium hydroxide (NaOH). Producing a precipitate, mixing the precipitate with a lithium raw material to obtain a mixture, and heat-treating the mixture at a temperature of 800 to 950 ° C. for 8 to 10 hours, Provided is a method for producing a positive electrode active material for a lithium secondary battery that includes a void of 60 nm and has a porosity of 0.5 to 20%.

前記正極活物質は前記化学式(1)で表されるリチウム金属酸化物を含んでもよい。   The positive electrode active material may include a lithium metal oxide represented by the chemical formula (1).

前記熱処理は800〜900℃未満の温度で行われてもよい。   The heat treatment may be performed at a temperature of 800 to less than 900 ° C.

前記共沈反応は600〜800rpmの反応速度で行われもよく、pH10〜12で行われてもよく、8〜10時間行われてもよく、35〜40℃の温度で行われてもよい。   The coprecipitation reaction may be performed at a reaction rate of 600 to 800 rpm, may be performed at a pH of 10 to 12, may be performed for 8 to 10 hours, or may be performed at a temperature of 35 to 40 ° C.

前記沈殿物とリチウム原料物質は、1:1乃至1:1.1の重量比で混合してもよい。   The precipitate and the lithium source material may be mixed in a weight ratio of 1: 1 to 1: 1.1.

本発明の第3側面は、前記正極活物質を含む正極、負極及び電解液を含むリチウム二次電池を提供する。   The third aspect of the present invention provides a lithium secondary battery including a positive electrode including the positive electrode active material, a negative electrode, and an electrolytic solution.

前記リチウム二次電池は170〜190mAh/gの放電容量を有してもよい。   The lithium secondary battery may have a discharge capacity of 170 to 190 mAh / g.

その他、本発明の側面の具体的な事項は、以下の詳細な説明に含まれている。   In addition, the specific matters of the aspects of the present invention are included in the following detailed description.

以上説明したように本発明による正極活物質は、粒子強度が高くて圧延後の割れを防止し、電解液との熱安定性が優れ、高容量のリチウム二次電池を実現することができる。   As described above, the positive electrode active material according to the present invention has high particle strength, prevents cracking after rolling, has excellent thermal stability with the electrolyte, and can realize a high-capacity lithium secondary battery.

第1実施形態に係るリチウム二次電池を示した概略図である。It is the schematic which showed the lithium secondary battery which concerns on 1st Embodiment. BET法によって測定した実施例1に係る正極活物質の空隙平均大きさ(直径)の分布を示したグラフである。It is the graph which showed distribution of the space | gap average size (diameter) of the positive electrode active material which concerns on Example 1 measured by BET method. 水銀圧入法によって測定した実施例1に係る正極活物質の空隙平均大きさ(直径)の分布を示したグラフである。It is the graph which showed distribution of the space | gap average size (diameter) of the positive electrode active material which concerns on Example 1 measured by the mercury intrusion method. 実施例1に係る正極活物質のFIB分析写真である。2 is a FIB analysis photograph of the positive electrode active material according to Example 1. 比較例1に係る正極活物質のFIB分析写真である。5 is a FIB analysis photograph of a positive electrode active material according to Comparative Example 1. 実施例1に係る正極活物質の粒度分析グラフである。3 is a particle size analysis graph of a positive electrode active material according to Example 1. 比較例1に係る正極活物質の粒度分析グラフである。3 is a particle size analysis graph of a positive electrode active material according to Comparative Example 1. 実施例1及び比較例1に係る各々の正極活物質のDSCグラフである。2 is a DSC graph of each positive electrode active material according to Example 1 and Comparative Example 1.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

以下、第1実施形態に係る正極活物質を説明する。   Hereinafter, the positive electrode active material according to the first embodiment will be described.

前記正極活物質は微細空隙を含み、前記空隙の大きさは10〜60nmの平均直径を有してもよく、具体的には20〜40nmの平均直径を有してもよい。前記空隙が前記範囲の大きさを有する場合、正極活物質の粒子強度が高くなるに伴って圧延後の割れを防止して、電解液との熱安定性を向上できる。ここで、平均直径は、例えば各空隙の球相当径(直径)の算術平均値である。空隙率は、正極活物質の総体積に対する空隙の総体積の割合である。   The positive electrode active material includes fine voids, and the size of the voids may have an average diameter of 10 to 60 nm, specifically, an average diameter of 20 to 40 nm. When the gap has a size in the above range, cracks after rolling can be prevented as the particle strength of the positive electrode active material increases, and the thermal stability with the electrolyte can be improved. Here, the average diameter is, for example, an arithmetic average value of sphere equivalent diameters (diameters) of the respective voids. The porosity is a ratio of the total volume of the voids to the total volume of the positive electrode active material.

前記正極活物質は0.5〜20%の空隙率を有してもよく、具体的には1〜5%の空隙率を有してもよい。前記空隙率が前記範囲を有する場合、正極活物質の粒子強度が高くなるに伴って圧延後の割れを防止して、電解液との熱安定性を向上できる。   The positive electrode active material may have a porosity of 0.5 to 20%, and specifically may have a porosity of 1 to 5%. When the porosity is within the above range, cracking after rolling can be prevented as the particle strength of the positive electrode active material increases, and the thermal stability with the electrolyte can be improved.

前記空隙の大きさ(平均直径)及び空隙率は、BET法によって測定した結果として得られる値である。   The size (average diameter) and porosity of the voids are values obtained as a result of measurement by the BET method.

前記空隙を有する正極活物質は、下記化学式(1)で表されるリチウム金属酸化物を使用してもよい。   As the positive electrode active material having the voids, a lithium metal oxide represented by the following chemical formula (1) may be used.

(前記化学式(1)において、MはAl、Mg、Ti、Zrまたはこれらの組み合わせであり、0.95≦a≦1.2、0.45≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.35、0≦k≦0.1、x+y+z+k=1である。) (In the chemical formula (1), M is Al, Mg, Ti, Zr or a combination thereof, and 0.95 ≦ a ≦ 1.2, 0.45 ≦ x ≦ 0.65, 0.15 ≦ y ≦. 0.25, 0.15 <z ≦ 0.35, 0 ≦ k ≦ 0.1, x + y + z + k = 1.)

前記正極活物質は具体的に、下記化学式(2)または化学式(3)で表されるリチウム金属酸化物を使用してもよい。   Specifically, a lithium metal oxide represented by the following chemical formula (2) or chemical formula (3) may be used as the positive electrode active material.

(前記化学式(2)において、0.95≦a≦1.10、0.55≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.25、x+y+z=1である。) (In the chemical formula (2), 0.95 ≦ a ≦ 1.10, 0.55 ≦ x ≦ 0.65, 0.15 ≦ y ≦ 0.25, 0.15 <z ≦ 0.25, x + y + z = 1)

(前記化学式(3)において、0.95≦a≦1.10、0.45≦x≦0.55、0.15≦y≦0.25、0.25<z≦0.35、x+y+z=1である。) (In the chemical formula (3), 0.95 ≦ a ≦ 1.10, 0.45 ≦ x ≦ 0.55, 0.15 ≦ y ≦ 0.25, 0.25 <z ≦ 0.35, x + y + z = 1)

前記リチウム金属酸化物は、ニッケル(Ni)含有量が前記範囲に含まれる場合に、高容量のリチウム二次電池を実現することができる。   The lithium metal oxide can realize a high-capacity lithium secondary battery when the nickel (Ni) content is included in the above range.

前記リチウム金属酸化物は、リチウム原料物質と、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)等の金属原料物質を粉末状態で混合して熱処理する固相法によって製造されてもよい。   The lithium metal oxide may be manufactured by a solid phase method in which a lithium source material and a metal source material such as nickel (Ni), cobalt (Co), manganese (Mn), etc. are mixed in a powder state and heat-treated.

また、前記リチウム金属酸化物は、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)等の金属原料物質を溶媒中で混合し、これに水酸化アンモニウム(NHOH)または水酸化ナトリウム(NaOH)を添加して共沈器で連続的に混合して沈殿物を生成した後、これにリチウム原料物質を混合して熱処理する共沈法によって製造されてもよい。 The lithium metal oxide is prepared by mixing a metal raw material such as nickel (Ni), cobalt (Co), manganese (Mn) or the like in a solvent, and adding it to ammonium hydroxide (NH 4 OH) or sodium hydroxide ( It may be manufactured by a coprecipitation method in which (NaOH) is added and continuously mixed in a coprecipator to form a precipitate, and then lithium raw material is mixed and heat-treated.

この時、共沈反応は、pH10〜12、反応時間8〜10時間、反応温度35〜40℃、反応速度600〜800rpmの条件で行われてもよい。このように、前記共沈反応は、微細空隙を生成するために多少低い反応速度で行われるが、反応速度が極めて低い場合には粒子が大きくなり過ぎるため、正極活物質組成に応じて反応速度範囲を調節しなければならない。前記の共沈反応の条件範囲で行われる場合、第1実施形態に係る特定範囲の空隙平均大きさ及び空隙率を有する正極活物質の製造が容易になり、これによって粒子強度が高い正極活物質が得られる。   At this time, the coprecipitation reaction may be performed under conditions of pH 10 to 12, reaction time 8 to 10 hours, reaction temperature 35 to 40 ° C., and reaction rate 600 to 800 rpm. As described above, the coprecipitation reaction is performed at a somewhat low reaction rate in order to generate fine voids. However, when the reaction rate is extremely low, the particles become too large, and thus the reaction rate depends on the composition of the positive electrode active material. The range must be adjusted. When carried out in the condition range of the coprecipitation reaction, it becomes easy to produce a positive electrode active material having a specific range of void average size and porosity according to the first embodiment, and thereby a positive electrode active material having high particle strength. Is obtained.

前記沈殿物と前記リチウム原料物質を1:1乃至1:1.1の重量比で混合してもよい。前記範囲で混合する場合、粒子強度が高い正極活物質が得られる。   The precipitate and the lithium source material may be mixed at a weight ratio of 1: 1 to 1: 1.1. When mixing in the said range, a positive electrode active material with high particle strength is obtained.

このような製造方法のうち、望ましくは前記共沈法によって製造する。共沈法によって製造する場合、前記金属原料物質と前記リチウム原料物質との混合がさらによく行われ、微細空隙の形成もさらに有利となる。   Among such production methods, the production is preferably performed by the coprecipitation method. In the case of producing by a coprecipitation method, the metal raw material and the lithium raw material are further mixed, and the formation of fine voids is further advantageous.

前記リチウム原料物質としては、例えば、炭酸リチウム、酢酸リチウム、水酸化リチウムなどが挙げられ、前記金属原料物質としては、例えば、金属含有アセテート、金属含有ナイトレート、金属含有ヒドロキシド、金属含有オキシド、金属含有サルフェートなどが挙げられるが、これに限定されるのではない。前記金属原料物質のうち、望ましくは金属含有サルフェートを使用してもよい。前記溶媒としては、水、エタノール、メタノール、アセトンなどを使用してもよい。   Examples of the lithium raw material include lithium carbonate, lithium acetate, and lithium hydroxide. Examples of the metal raw material include metal-containing acetate, metal-containing nitrate, metal-containing hydroxide, metal-containing oxide, Examples thereof include, but are not limited to, metal-containing sulfates. Of the metal source materials, a metal-containing sulfate may be used. As the solvent, water, ethanol, methanol, acetone or the like may be used.

前記熱処理は、前記固相法及び前記共沈法後の熱処理時に全て800〜950℃、具体的には800〜900℃未満の温度範囲で行われてもよく、8〜10時間行われてもよい。このように、前記熱処理は、微細空隙を生成するために多少低い温度で行われるが、熱処理温度が極めて低い場合には未反応物が増加するため、正極活物質組成に応じて温度範囲を調節しなければならない。前記熱処理が前記の温度及び時間の範囲内で行われる場合には、正極活物質の粒型(grain form)が優れて表面が滑らかで、電解液との熱安定性を向上することができ、高容量及び優れた効率のリチウム二次電池が得られる。   The heat treatment may be performed at a temperature range of 800 to 950 ° C., specifically 800 to less than 900 ° C. during the heat treatment after the solid phase method and the coprecipitation method, or may be performed for 8 to 10 hours. Good. As described above, the heat treatment is performed at a slightly lower temperature in order to generate fine voids. However, when the heat treatment temperature is extremely low, unreacted substances increase. Therefore, the temperature range is adjusted according to the positive electrode active material composition. Must. When the heat treatment is performed within the range of the temperature and time, the grain shape of the positive electrode active material is excellent, the surface is smooth, and the thermal stability with the electrolyte can be improved. A lithium secondary battery having a high capacity and excellent efficiency can be obtained.

以下、前記正極活物質を含むリチウム二次電池について図1を参照して説明する。   Hereinafter, a lithium secondary battery including the positive electrode active material will be described with reference to FIG.

図1は第1実施形態に係るリチウム二次電池を示した概略図である。   FIG. 1 is a schematic view showing a lithium secondary battery according to the first embodiment.

図1を参照すると、第1実施形態に係るリチウム二次電池100は、正極114、正極114と対向する負極112、正極114と負極112との間に配置されているセパレータ113、そして正極114、負極112及びセパレータ113を含浸する電解液(図示せず)を含む電池セルと、前記電池セルを含む電池容器120及び前記電池容器120を密封する密封部材140を有する。   Referring to FIG. 1, a lithium secondary battery 100 according to the first embodiment includes a positive electrode 114, a negative electrode 112 facing the positive electrode 114, a separator 113 disposed between the positive electrode 114 and the negative electrode 112, and a positive electrode 114, The battery cell includes an electrolyte solution (not shown) impregnating the negative electrode 112 and the separator 113, the battery container 120 including the battery cell, and the sealing member 140 that seals the battery container 120.

前記正極114は、集電体及び前記集電体に形成される正極活物質層を含む。前記正極活物質層は、正極活物質、バインダー及び選択的に導電材を含む。   The positive electrode 114 includes a current collector and a positive electrode active material layer formed on the current collector. The positive electrode active material layer includes a positive electrode active material, a binder, and optionally a conductive material.

前記集電体としてはAlを使用してもよいが、これに限定されるのではない。   Al may be used as the current collector, but is not limited thereto.

前記正極活物質としては、前述したような、空隙を含むリチウム金属酸化物を使用してもよい。前記リチウム金属酸化物を正極活物質として用いる場合、高容量のリチウム二次電池を実現することができ、正極活物質の粒子強度が高くなるに伴って圧延後の割れが防止されて、電解液との熱安定性を向上することができる。   As the positive electrode active material, a lithium metal oxide containing voids as described above may be used. When the lithium metal oxide is used as a positive electrode active material, a high-capacity lithium secondary battery can be realized, and cracking after rolling is prevented as the particle strength of the positive electrode active material increases, so that the electrolyte solution And thermal stability can be improved.

前記バインダーは、複数の正極活物質粒子を互いによく付着させ、また正極活物質を集電体によく付着させる役割を果たし、例えば、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリエチレン、ポリプロピレン、スチレン−ブタジエンラバー、アクリレート化されたスチレン−ブタジエンラバー、エポキシ樹脂、ナイロンなどが挙げられるが、これに限定されない。   The binder plays a role of adhering a plurality of positive electrode active material particles to each other and also adhering the positive electrode active material to a current collector, for example, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride. , Carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber , Epoxy resin, nylon and the like, but are not limited thereto.

前記導電材は電極に導電性を与えるために使用されるものであり、構成される電池において、化学変化を起こさずに電子伝導性材料であれば何れのものを使用してもよく、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、銅、ニッケル、アルミニウム、銀などの金属粉末、金属繊維などを使用してもよく、または、ポリフェニレン誘導体などの導電性材料を1種または1種以上を混合して使用してもよい。   The conductive material is used for imparting conductivity to the electrode. In the battery that is configured, any material may be used as long as it is an electron conductive material without causing a chemical change. Natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, copper, nickel, aluminum, silver and other metal powders, metal fibers, etc. may be used, or conductive materials such as polyphenylene derivatives May be used alone or in combination.

前記負極112は、負極集電体及び前記負極集電体上に形成されている負極活物質層を含む。   The negative electrode 112 includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.

前記負極集電体は銅箔を使用してもよい。   The negative electrode current collector may use copper foil.

前記負極活物質層は、負極活物質、バインダー及び選択的に導電材を含む。   The negative active material layer includes a negative active material, a binder, and optionally a conductive material.

前記負極活物質は、リチウムイオンを可逆的に挿入/脱離することができる物質、リチウム金属、リチウム金属の合金、リチウムをドープ及び脱ドープすることができる物質、または遷移金属酸化物を含む。   The negative active material includes a material capable of reversibly inserting / extracting lithium ions, a lithium metal, a lithium metal alloy, a material capable of doping and dedoping lithium, or a transition metal oxide.

前記リチウムイオンを可逆的に挿入/脱離することができる物質は炭素物質であり、リチウム二次電池において一般的に使用する炭素系負極活物質は何れのものを用いてもよく、例えば、結晶質炭素、非晶質炭素またはこれらを共に使用してもよい。前記結晶質炭素の例としては、無定形、板状、鱗片状(flake)、球形または繊維状の天然黒鉛または人造黒鉛のような黒鉛が挙げられ、前記非晶質炭素の例としては、ソフトカーボン(soft carbon:低温焼成炭素)またはハードカーボン(hard carbon)、メゾフェースピッチ炭化物、焼成されたコークスなどが挙げられる。   The material capable of reversibly inserting / extracting lithium ions is a carbon material, and any carbon-based negative electrode active material generally used in lithium secondary batteries may be used. Carbonaceous, amorphous carbon, or these may be used together. Examples of the crystalline carbon include amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon. Examples thereof include carbon (soft carbon), hard carbon, meso-face pitch carbide, and calcined coke.

前記リチウム金属の合金としては、リチウム、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Si、Sb、Pb、In、Zn、Ba、Ra、Ge、Al及びSnからなる群より選択される金属の合金が用いられてもよい。   Examples of the lithium metal alloy include lithium, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. More selected metal alloys may be used.

前記リチウムをドープ及び脱ドープできる物質としては、Si、SiO(0<x<2)、Si−Y合金(前記Yはアルカリ金属、アルカリ土金属、13族元素、14族元素、遷移金属、希土類元素及びこれらの組み合わせからなる群より選択される元素であり、Siではない)、Sn、SnO、Sn−Y(前記Yはアルカリ金属、アルカリ土金属、13族元素、14族元素、遷移金属、希土類元素及びこれらの組み合わせからなる群より選択される元素であり、Snではない)などが挙げられ、またこれらの中の少なくとも一つとSiOを混合して使用してもよい。前記元素Yとしては、Mg、Ca、Sr、Ba、Ra、Sc、Y、Ti、Zr、Hf、Rf、V、Nb、Ta、Db、Cr、Mo、W、Sg、Tc、Re、Bh、Fe、Pb、Ru、Os、Hs、Rh、Ir、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、Sn、In、Ti、Ge、P、As、Sb、Bi、S、Se、Te、Po、及びこれらの組み合わせからなる群より選択されてもよい。 Examples of the material capable of doping and dedoping lithium include Si, SiO x (0 <x <2), Si—Y alloy (where Y is an alkali metal, an alkaline earth metal, a group 13 element, a group 14 element, a transition metal, An element selected from the group consisting of rare earth elements and combinations thereof, not Si), Sn, SnO 2 , Sn—Y (where Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition) These are elements selected from the group consisting of metals, rare earth elements and combinations thereof, and are not Sn), and at least one of these may be used in combination with SiO 2 . As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, It may be selected from the group consisting of S, Se, Te, Po, and combinations thereof.

前記遷移金属酸化物としては、バナジウム酸化物、リチウムバナジウム酸化物などが挙げられる。   Examples of the transition metal oxide include vanadium oxide and lithium vanadium oxide.

前記バインダーは、複数の負極活物質粒子を互いによく付着させ、また負極活物質を電流集電体によく付着させる役割を果たし、その代表的な例としては、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ポリ塩化ビニル、カルボキシル化されたポリ塩化ビニル、ポリビニルフルオライド、エチレンオキシドを含むポリマー、ポリビニルピロリドン、ポリウレタン、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリエチレン、ポリプロピレン、スチレン−ブタジエンラバー、アクリレート化されたスチレン−ブタジエンラバー、エポキシ樹脂、ナイロンなどがあるが、これに限定されるのではない。   The binder plays a role of adhering a plurality of negative electrode active material particles to each other well and adhering the negative electrode active material to a current collector. Typical examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose. , Polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated Examples include, but are not limited to, styrene-butadiene rubber, epoxy resin, and nylon.

前記導電材は電極に導電性を与えるために使用されるものであり、構成される電池において、化学変化を起こさずに電子伝導性材料であれば何れのものを使用してもよく、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維などの炭素系物質、銅、ニッケル、アルミニウム、銀などの金属粉末または金属繊維などの金属系物質、ポリフェニレン誘導体などの導電性ポリマー、またはこれらの混合物を含む導電性材料を使用してもよい。   The conductive material is used for imparting conductivity to the electrode. In the battery that is configured, any material may be used as long as it is an electron conductive material without causing a chemical change. Conductive properties such as natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon materials such as carbon fiber, metal powders such as copper, nickel, aluminum and silver or metal materials such as metal fiber, polyphenylene derivatives, etc. Conductive materials including polymers or mixtures thereof may be used.

前記負極112及び前記正極114は各々活物質、導電材及びバインダーを溶媒中で混合して活物質組成物を製造し、この組成物を集電体に塗布して製造する。   The negative electrode 112 and the positive electrode 114 are each manufactured by mixing an active material, a conductive material, and a binder in a solvent to produce an active material composition, and applying the composition to a current collector.

このような電極製造方法は当該分野に広く知られた内容であるため、本明細書においては詳細な説明は省略する。前記溶媒としてはN−メチルピロリドンなどを使用してもよいが、これに限定されるのではない。   Since such an electrode manufacturing method is widely known in the field, detailed description is omitted in this specification. N-methylpyrrolidone or the like may be used as the solvent, but is not limited thereto.

前記電解液は非水性有機溶媒とリチウム塩を含む。   The electrolytic solution includes a non-aqueous organic solvent and a lithium salt.

前記非水性有機溶媒は、電池の電気化学的反応に関与するイオンが移動できる媒質役割を果たす。前記非水性有機溶媒としては、カーボネート系、エステル系、エテル系、ケトン系、アルコール系及び非陽子性溶媒から選択されてもよい。   The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. The non-aqueous organic solvent may be selected from carbonate-based, ester-based, ether-based, ketone-based, alcohol-based and non-protonic solvents.

前記カーボネート系溶媒としては、例えば、ジメチルカーボネート(dimethylcarbonate、DMC)、ジエチルカーボネート(diethyl carbonate、DEC)、ジプロピルカーボネート(dipropyl carbonate、DPC)、メチルプロピルカーボネート(methylpropyl carbonate、MPC)、エチルプロピルカーボネート(ethylpropyl carbonate、EPC)、メチルエチルカーボネート(methylethyl carbonate、MEC)、エチルメチルカーボネート(ethylmethyl carbonate、EMC)、エチレンカーボネート(ethylene carbonate、EC)、プロピレンカーボネート(propylene carbonate、PC)、ブチレンカーボネート(butylene carbonate、BC)などが使用されてもよい。   Examples of the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (MPC), and the like. ethyl propylene carbonate (EPC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (pr pylene carbonate, PC), butylene carbonate (butylene carbonate, BC) and the like may be used.

特に、鎖状カーボネート化合物及び環状カーボネート化合物を混合して使用する場合、誘電率を高めると共に粘性が小さい溶媒として製造できるため望ましい。この場合、環状カーボネート化合物及び鎖状カーボネート化合物は、約1:1乃至1:9の体積比で混合して使用してもよい。   In particular, a mixture of a chain carbonate compound and a cyclic carbonate compound is desirable because it can be produced as a solvent having a high viscosity and a low viscosity. In this case, the cyclic carbonate compound and the chain carbonate compound may be mixed and used at a volume ratio of about 1: 1 to 1: 9.

また、前記エステル系溶媒としては、例えば、n−メチルアセテート、n−エチルアセテート、n−プロピルアセテート、ジメチルアセテート、メチルプロピオネート、エチルプロピオネート、γ−ブチロラクトン、デカノライド(decanolide)、バレロラクトン、メバロノラクトン(mevalonolactone)、カプロラクトン(caprolactone)等が使用されてもよい。前記エテル溶媒としては、例えば、ジブチルエーテル、テトラグライム、ジグライム、ジメトキシエタン、2−メチルテトラヒドロフラン、テトラヒドロフランなどが用いられてもよく、前記ケトン系溶媒としては、シクロヘキサノンなどが用いられてもよい。また、前記アルコール系溶媒としては、エチルアルコール、イソプロピルアルコールなどが用いられてもよい。   Examples of the ester solvent include n-methyl acetate, n-ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, and valerolactone. Mevalonolactone, caprolactone, etc. may be used. As the ether solvent, for example, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran or the like may be used, and as the ketone solvent, cyclohexanone or the like may be used. In addition, as the alcohol solvent, ethyl alcohol, isopropyl alcohol, or the like may be used.

前記非水性有機溶媒は単独または一つ以上を混合して用いてもよく、一つ以上混合して使用する場合の混合比は、目的とする電池性能に応じて適切に調節してもよい。   The non-aqueous organic solvents may be used singly or as a mixture of one or more, and the mixing ratio when used in a mixture of one or more may be appropriately adjusted according to the intended battery performance.

前記非水性電解液は、エチレンカーボネート、ピロカーボネートなどの過充電防止剤のような添加剤をさらに含んでもよい。   The non-aqueous electrolyte may further include an additive such as an overcharge inhibitor such as ethylene carbonate or pyrocarbonate.

前記リチウム塩は有機溶媒に溶解されて、電池内でリチウムイオンの供給源として作用して基本的なリチウム二次電池の作動を可能にし、正極と負極の間のリチウムイオンの移動を促進する役割を果たす物質である。   The lithium salt is dissolved in an organic solvent and acts as a source of lithium ions in the battery to enable basic lithium secondary battery operation and promote the movement of lithium ions between the positive electrode and the negative electrode It is a substance that fulfills

前記リチウム塩の具体的な例としては、LiPF、LiBF、LiSbF、LiAsF、LiN(SO、LiCSO、LiClO、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y+1SO)(ここで、x及びyは自然数である)、LiCl、LiI、LiB(C(リチウムビスオキサレートボラート(lithiumbis(oxalato)borate、LiBOB)、またはこれらの組み合わせが挙げられる。 Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (SO 3 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bisoxalate borate ( lithiumbis (oxalato) borate, LiBOB), or a combination thereof.

前記リチウム塩の濃度は、約0.1M〜約2.0Mの範囲で使った方がよい。リチウム塩の濃度が前記範囲に含まれると、電解液が適切な電導度及び粘度を有するため、優れた電解液性能を有するようになって、リチウムイオンが効果的に移動することができる。   The concentration of the lithium salt should be in the range of about 0.1M to about 2.0M. When the concentration of the lithium salt is within the above range, the electrolytic solution has appropriate conductivity and viscosity, so that it has excellent electrolytic solution performance, and lithium ions can effectively move.

前記セパレータ113は単一膜または多層膜であってもよく、例えば、ポリエチレン、ポリプロピレン、ポリビニリデンフルオライドまたはこれらの組み合わせで生成されてもよい。   The separator 113 may be a single film or a multilayer film, and may be formed of, for example, polyethylene, polypropylene, polyvinylidene fluoride, or a combination thereof.

前記リチウム二次電池は、4.3V、CC/CV mode及び0.1C rateにおける放電条件で170〜190mAh/gの放電容量を有し、具体的には175〜185mAh/gの放電容量を有してもよい。これによって熱安定性を改善すると同時に、高容量のリチウム二次電池を実現することができる。   The lithium secondary battery has a discharge capacity of 170 to 190 mAh / g under a discharge condition of 4.3 V, CC / CV mode and 0.1 C rate, specifically, a discharge capacity of 175 to 185 mAh / g. May be. As a result, it is possible to improve the thermal stability and at the same time realize a high-capacity lithium secondary battery.

以下、本発明の具体的な実施例を提示する。但し、下記に記載された実施例は本発明を具体的に例示したり説明するためのものに過ぎず、本発明がこれに限定されるのではない。   Hereinafter, specific examples of the present invention will be presented. However, the examples described below are merely for illustrating and explaining the present invention, and the present invention is not limited thereto.

また、ここに記載されない内容は当業者であれば十分に技術的に推察できるため、その説明は省略する。
(正極活物質製造)
Further, since the contents not described here can be sufficiently technically estimated by those skilled in the art, description thereof will be omitted.
(Production of positive electrode active material)

各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々6:2:2のモル比で混合し、これに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約800rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で860℃の温度で約10時間焼成して、リチウム金属酸化物LiNi0.6Co0.2Mn0.2を製造した。 NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M were mixed at a molar ratio of 6: 2: 2, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution were added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 800 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put in a firing container and fired at a rate of 2 ° C./min at a temperature of 860 ° C. for about 10 hours to produce a lithium metal oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 . .

各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々6:2:2のモル比で混合し、これに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約800rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で900℃の温度で約10時間焼成して、リチウム金属酸化物LiNi0.6Co0.2Mn0.2を製造した。 NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M were mixed at a molar ratio of 6: 2: 2, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution were added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 800 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put in a firing container and fired at a rate of 2 ° C./min at a temperature of 900 ° C. for about 10 hours to produce a lithium metal oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 . .

各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々5:2:3のモル比で混合し、これに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約800rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で860℃の温度で約10時間焼成して、リチウム金属酸化物LiNi0.5Co0.2Mn0.3を製造した。 NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M are mixed at a molar ratio of 5: 2: 3, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution are added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 800 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a firing container and fired at a rate of 2 ° C./minute for about 10 hours at a temperature of 860 ° C. to produce a lithium metal oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . .

各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々5:2:3のモル比で混合し、これに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約800rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で900℃の温度で約10時間焼成して、リチウム金属酸化物LiNi0.5Co0.2Mn0.3を製造した。 NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M are mixed at a molar ratio of 5: 2: 3, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution are added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 800 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a firing container and fired at a rate of 2 ° C./minute at a temperature of 900 ° C. for about 10 hours to produce a lithium metal oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . .

[比較例1]
各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々5:2:3のモル比で混合し、ここに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約1000rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で970℃の温度で約15時間焼成して、リチウム金属酸化物LiNi0.5Co0.2Mn0.3を製造した。
[Comparative Example 1]
NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M are mixed at a molar ratio of 5: 2: 3, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution are added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 1000 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a baking container and baked at a temperature of 970 ° C. for about 15 hours at a rate of 2 ° C./min to produce a lithium metal oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . .

[比較例2]
各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々5:2:3のモル比で混合し、これに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約1000rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で1050℃の温度で約15時間焼成して、リチウム金属酸化物LiNi0.5Co0.2Mn0.3を製造した。
[Comparative Example 2]
NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M are mixed at a molar ratio of 5: 2: 3, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution are added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 1000 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put in a firing container and fired at a rate of 2 ° C./min at a temperature of 1050 ° C. for about 15 hours to produce a lithium metal oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . .

[比較例3]
各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々5:2:3のモル比で混合し、ここに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約1000rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で750℃の温度で約15時間焼成して、リチウム金属酸化物LiNi0.5Co0.2Mn0.3を製造した。
[Comparative Example 3]
NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M are mixed at a molar ratio of 5: 2: 3, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution are added to the solution. Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 1000 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a baking container and baked at a temperature of 750 ° C. for about 15 hours at a rate of 2 ° C./min to produce a lithium metal oxide LiNi 0.5 Co 0.2 Mn 0.3 O 2 . .

[比較例4]
各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々6:2:2のモル比で混合し、ここに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約1000rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で970℃の温度で約15時間焼成して、リチウム金属酸化物LiNi0.6Co0.2Mn0.2を製造した。
[Comparative Example 4]
NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M were mixed at a molar ratio of 6: 2: 2, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution were added thereto to Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 1000 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a firing container and fired at a rate of 2 ° C./min at a temperature of 970 ° C. for about 15 hours to produce a lithium metal oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 . .

[比較例5]
各々の濃度が約3MのNiSO、CoSO及びMnSO水溶液を各々6:2:2のモル比で混合し、ここに約7MのNaOH水溶液及び約1MのNHOH水溶液を添加して共沈器で連続的に混合した。前記混合物をpH11で反応時間8時間、反応温度40℃、反応速度約1000rpmで共沈させて(NiCoMn)OH前駆体を得た。前記前駆体を水洗して120℃のオーブンで乾燥させた後、前駆体とLiCOを約1:1.03の重量比になるように簡易混合器を利用して混合した。これから収得した混合物を焼成容器に入れて2℃/分の速度で750℃の温度で約15時間焼成して、リチウム金属酸化物LiNi0.6Co0.2Mn0.2を製造した。
[Comparative Example 5]
NiSO 4 , CoSO 4 and MnSO 4 aqueous solutions each having a concentration of about 3M were mixed at a molar ratio of 6: 2: 2, respectively, and about 7M NaOH aqueous solution and about 1M NH 4 OH aqueous solution were added thereto to Mix continuously in a sink. The mixture was coprecipitated at pH 11 with a reaction time of 8 hours, a reaction temperature of 40 ° C., and a reaction rate of about 1000 rpm to obtain a (NiCoMn) OH 2 precursor. The precursor was washed with water and dried in an oven at 120 ° C., and then the precursor and Li 2 CO 3 were mixed using a simple mixer so that the weight ratio was about 1: 1.03. The mixture obtained from this was put into a firing container and fired at a rate of 2 ° C./min at a temperature of 750 ° C. for about 15 hours to produce a lithium metal oxide LiNi 0.6 Co 0.2 Mn 0.2 O 2 . .

実験例1:正極活物質の空隙大きさ及び空隙率評価
前記実施例1〜4と比較例1〜5で各々製造された正極活物質の空隙の大きさ及び空隙率を測定するためにBET装置(Micrometrics社製、ASAP2020)を利用して、その結果を図2及び下記表1に示した。
Experimental Example 1: Evaluation of Void Size and Porosity of Positive Electrode Active Material A BET apparatus for measuring the size and porosity of the positive electrode active materials manufactured in Examples 1 to 4 and Comparative Examples 1 to 5, respectively. The results are shown in FIG. 2 and Table 1 below using Micrometrics (ASAP2020).

前記BET装置の空隙大きさの測定範囲は1.7〜300nmである。   The measurement range of the void size of the BET device is 1.7 to 300 nm.

図2はBET法によって測定した実施例1に係る正極活物質の空隙大きさ(直径)の分布を示したグラフである。即ち、図2は、空隙の平均直径と、各空隙の量(空隙量)との対応関係を示すグラフである。図2を参照すると、実施例1に係る正極活物質は20〜46nmの空隙平均直径を有し、2.53%の空隙率を有することが分かる。   FIG. 2 is a graph showing the distribution of void size (diameter) of the positive electrode active material according to Example 1 measured by the BET method. That is, FIG. 2 is a graph showing a correspondence relationship between the average diameter of the voids and the amount of each void (gap amount). Referring to FIG. 2, it can be seen that the positive electrode active material according to Example 1 has a void average diameter of 20 to 46 nm and a porosity of 2.53%.

図3は水銀圧入法によって測定した実施例1に係る正極活物質の空隙大きさ(直径)の分布を示したグラフである。即ち、図3は、空隙の平均直径と、各空隙の量(空隙量)との対応関係を示すグラフである。図3を参照すると、実施例1に係る正極活物質は、BET法によって測定した図2のグラフと類似する空隙大きさの分布を有することが確認できる。   FIG. 3 is a graph showing the distribution of pore size (diameter) of the positive electrode active material according to Example 1 measured by mercury porosimetry. That is, FIG. 3 is a graph showing a correspondence relationship between the average diameter of the voids and the amount of each void (gap amount). Referring to FIG. 3, it can be confirmed that the positive electrode active material according to Example 1 has a void size distribution similar to the graph of FIG. 2 measured by the BET method.

実験例2:正極活物質の集束イオンビーム(focus ion beam、FIB)分析写真評価
前記実施例1及び比較例1で各々製造された正極活物質の内部構造をFIB装置(FEI社製、DB235)を利用して分析して、その結果を図4及び図5に各々示した。
Experimental example 2: Focused ion beam (FIB) analysis photograph evaluation of positive electrode active material The internal structure of each of the positive electrode active materials manufactured in Example 1 and Comparative Example 1 was determined as an FIB apparatus (DBEI, manufactured by FEI). The results are shown in FIGS. 4 and 5, respectively.

図4は実施例1に係る正極活物質のFIB分析写真であり、図5は比較例1に係る正極活物質のFIB分析写真である。図4から第1実施形態に係る正極活物質の空隙の大きさ及び空隙率を断面的に確認できる。図5を参照すると、正極活物質の空隙大きさと空隙率が大きいことが確認できる。   4 is a FIB analysis photograph of the positive electrode active material according to Example 1, and FIG. 5 is a FIB analysis photograph of the positive electrode active material according to Comparative Example 1. From FIG. 4, the size of the voids and the porosity of the positive electrode active material according to the first embodiment can be confirmed in cross section. Referring to FIG. 5, it can be confirmed that the positive electrode active material has a large void size and porosity.

実験例3:正極活物質の粒度分析グラフ評価
前記実施例1と比較例1で各々製造された正極活物質の圧延後の割れ防止効果を分析するために粒度分析器(Beckman coulter社製、LSI3 320)を利用して測定して、その結果を図6及び図7に示した。
Experimental Example 3: Evaluation of Particle Size Analysis Graph of Positive Electrode Active Material A particle size analyzer (manufactured by Beckman Coulter, LSI3) was used to analyze the crack prevention effect after rolling of the positive electrode active material produced in Example 1 and Comparative Example 1, respectively. 320) and the results are shown in FIGS.

前記粒度分析器の測定条件は下記表2の通りである。   The measurement conditions of the particle size analyzer are as shown in Table 2 below.

図6は実施例1に係る正極活物質の粒度分析グラフであり、図7は比較例1に係る正極活物質の粒度分析グラフである。即ち、図6は、実施例1に係る正孔活物質の粒子サイズと、各正孔活物質粒子の存在比との対応関係を示すグラフである。図7は、比較例1に係る正孔活物質の粒子サイズと、各正孔活物質粒子の存在比との対応関係を示すグラフである。ここで、粒子サイズは例えば平均直径である。平均直径の定義は空隙の平均直径と同様である。各正孔活物質の存在比は、例えば、全正孔活物質粒子数に対する、各正孔活物質の数の比である。図6を参照すると、第1実施形態によって、特定範囲の空隙大きさ及び空隙率を有する正極活物質の場合、圧延後の粒度分布の変化が大きくないために割れ防止の効果が大きいことが確認でき、これにより第1実施形態に係る正極活物質は粒子強度が高いことが分かる。図7から圧延後の粒度分布の変化が大きいことを確認できるが、これにより、第1実施形態に係る空隙大きさの範囲及び空隙率の範囲を全て逸脱した正極活物質の場合には粒子強度が低くて割れが発生し、このために電解液との反応によって安定性が低下する。   6 is a particle size analysis graph of the positive electrode active material according to Example 1, and FIG. 7 is a particle size analysis graph of the positive electrode active material according to Comparative Example 1. That is, FIG. 6 is a graph showing the correspondence between the particle size of the hole active material according to Example 1 and the abundance ratio of each hole active material particle. FIG. 7 is a graph showing a correspondence relationship between the particle size of the hole active material according to Comparative Example 1 and the abundance ratio of each hole active material particle. Here, the particle size is, for example, an average diameter. The definition of the average diameter is the same as the average diameter of the voids. The abundance ratio of each hole active material is, for example, the ratio of the number of each hole active material to the total number of hole active material particles. Referring to FIG. 6, according to the first embodiment, in the case of a positive electrode active material having a specific range of void size and porosity, it is confirmed that the effect of preventing cracking is large because the change in particle size distribution after rolling is not large. Thus, it can be seen that the positive electrode active material according to the first embodiment has a high particle strength. Although it can be confirmed from FIG. 7 that the change in the particle size distribution after rolling is large, the particle strength in the case of the positive electrode active material that deviates all from the void size range and the porosity range according to the first embodiment. Is low and cracks occur, and for this reason, the stability decreases due to the reaction with the electrolytic solution.

実験例4:正極活物質のDSCグラフ評価
前記実施例1と比較例1で各々製造された正極活物質の熱安定性をDSC測定器(TA Instrument.Inc社製、DSC Q20)を利用して測定して、その結果を図8に示した。
Experimental Example 4: Evaluation of DSC graph of positive electrode active material The thermal stability of the positive electrode active material produced in Example 1 and Comparative Example 1 was measured using a DSC measuring instrument (TASC, Inc., DSC Q20). The measurement results are shown in FIG.

図8は実施例1及び比較例1に係る各々の正極活物質のDSCグラフである。即ち、図8は、温度と熱流量との対応関係を実施例1及び比較例1のそれぞれについて示すグラフである。   FIG. 8 is a DSC graph of each positive electrode active material according to Example 1 and Comparative Example 1. That is, FIG. 8 is a graph showing the correspondence between temperature and heat flow rate for each of Example 1 and Comparative Example 1.

図8を参照すると、第1実施形態によって、特定範囲の空隙大きさ及び空隙率を有する正極活物質の場合、前記空隙大きさ及び空隙率範囲を全て逸脱した正極活物質の場合と比較して、主なピークがより高い温度に移動することが確認でき、これから熱安定性がより優れていることが分かる。   Referring to FIG. 8, according to the first embodiment, in the case of the positive electrode active material having a specific range of void size and porosity, compared to the case of the positive electrode active material that deviates from the void size and porosity range. It can be confirmed that the main peak moves to a higher temperature, which indicates that the thermal stability is more excellent.

<リチウム二次電池製作>
前記実施例1〜4と比較例1〜5で各々製造された正極活物質96重量%、ポリビニリデンフルオライド(PVDF)2重量%、及びアセチレンブラック2重量%を混合した後、N−メチル−2−ピロリドンに分散させてスラリーを製造した。次に、ガラス板(plate)上に前記スラリーを塗布して正極活物質層を製造した。次に、60μmの厚さのアルミニウム箔上に前記正極活物質層を塗布した後、135℃で3時間以上乾燥させた後に圧延して正極を製造した。
<Production of lithium secondary battery>
After mixing 96% by weight of the positive electrode active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 5, 2% by weight of polyvinylidene fluoride (PVDF), and 2% by weight of acetylene black, N-methyl- A slurry was prepared by dispersing in 2-pyrrolidone. Next, the slurry was applied on a glass plate to produce a positive electrode active material layer. Next, the positive electrode active material layer was applied on an aluminum foil having a thickness of 60 μm, dried at 135 ° C. for 3 hours or more, and then rolled to produce a positive electrode.

前記正極の対極(counter electrode)としては金属リチウムを使ってコインタイプの半電池を製作した。この時の電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合体積比が3:7の混合溶液に1.3M濃度のLiPFが溶解されたものを使った。 As a counter electrode of the positive electrode, a coin-type half battery was manufactured using metallic lithium. As an electrolytic solution at this time, a solution in which 1.3 M concentration of LiPF 6 was dissolved in a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) having a mixing volume ratio of 3: 7 was used.

実験例5:リチウム二次電池の充放電特性評価
前記実施例1〜4と比較例1〜5で各々製造された正極活物質を利用して製作された各々のリチウム二次電池の充放電特性を次の方法によって測定し、その結果を下記の表3に示した。
Experimental Example 5: Evaluation of charge / discharge characteristics of lithium secondary battery Charge / discharge characteristics of each lithium secondary battery manufactured using the positive electrode active materials manufactured in Examples 1-4 and Comparative Examples 1-5, respectively. Was measured by the following method, and the results are shown in Table 3 below.

0.1C rateで充電した後、10分レスト(rest)後に0.1C rateで放電させる。その後、0.2Crate、0.5C rate、1.0C rateも同様な方法によって充放電させる。充電及び放電は各々4.3VにCC/CV modeで行って、下記結果は0.1C rateにおける初期容量を示したものである。効率(%)は、0.1C rateにおける初期充電容量に対する初期放電容量の百分率の値である。   After charging at 0.1 C rate, discharge at 0.1 C rate after resting for 10 minutes. Thereafter, 0.2 Crate, 0.5 C rate, and 1.0 C rate are charged and discharged by the same method. Charging and discharging were performed at 4.3 V in CC / CV mode, respectively, and the following results show the initial capacity at 0.1 C rate. Efficiency (%) is a percentage value of the initial discharge capacity with respect to the initial charge capacity at 0.1 C rate.

前記表3により、第1実施形態によって、特定範囲の空隙大きさ及び空隙率を有する正極活物質の場合、高容量のリチウム二次電池が実現可能で、電池効率が優れていることを確認できる。   According to Table 3, according to the first embodiment, in the case of a positive electrode active material having a specific range of void sizes and void ratios, it can be confirmed that a high-capacity lithium secondary battery can be realized and battery efficiency is excellent. .

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

100 リチウム二次電池
112 負極
113 セパレータ
114 正極
120 電池容器
140 密封部材
100 Lithium secondary battery 112 Negative electrode 113 Separator 114 Positive electrode 120 Battery container 140 Sealing member

Claims (10)

下記化学式(2)で表されるリチウム金属酸化物を含み、
前記リチウム金属酸化物の粒子サイズは4〜50μmであり、
20〜40nmの平均直径の空隙を含み、
空隙率が1〜5%であることを特徴とする、リチウム二次電池用正極活物質。
(前記化学式(2)において、0.95≦a≦1.10、0.55≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.25、x+y+z=1である。
Including a lithium metal oxide represented by the following chemical formula (2 ) ,
The particle size of the lithium metal oxide is 4-50 μm,
Including voids with an average diameter of 20-40 nm,
A positive electrode active material for a lithium secondary battery, wherein the porosity is 1 to 5%.
(In the chemical formula (2), 0.95 ≦ a ≦ 1.10, 0.55 ≦ x ≦ 0.65, 0.15 ≦ y ≦ 0.25, 0.15 <z ≦ 0.25, x + y + z = 1 )
ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)を含む各々の金属原料物質、及び水酸化アンモニウム(NHOH)および水酸化ナトリウム(NaOH)を共沈反応させて沈殿物を製造する段階、
前記沈殿物とリチウム原料物質を混合して混合物を得る段階、及び
前記混合物を8〜10時間800〜950℃の温度で熱処理する段階を含み、
下記化学式(2)で表されるリチウム金属酸化物を含み、前記リチウム金属酸化物の粒子サイズは4〜50μmであり、20〜40nm平均直径の空隙を含み、空隙率が1〜5%であることを特徴とするリチウム二次電池用正極活物質の製造方法。
(前記化学式(2)において、0.95≦a≦1.10、0.55≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.25、x+y+z=1である。
A step of producing a precipitate by coprecipitation reaction of each metal source material including nickel (Ni), cobalt (Co) and manganese (Mn), and ammonium hydroxide (NH 4 OH) and sodium hydroxide (NaOH). ,
Mixing the precipitate and the lithium source material to obtain a mixture, and heat-treating the mixture at a temperature of 800 to 950 ° C. for 8 to 10 hours,
A lithium metal oxide represented by the following chemical formula (2 ) is included, the particle size of the lithium metal oxide is 4 to 50 μm, includes voids having an average diameter of 20 to 40 nm, and the porosity is 1 to 5%. The manufacturing method of the positive electrode active material for lithium secondary batteries characterized by the above-mentioned.
(In the chemical formula (2), 0.95 ≦ a ≦ 1.10, 0.55 ≦ x ≦ 0.65, 0.15 ≦ y ≦ 0.25, 0.15 <z ≦ 0.25, x + y + z = 1 )
前記熱処理は800〜900℃未満の温度で行われることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 2, wherein the heat treatment is performed at a temperature of 800 to 900 ° C. 前記共沈反応は600〜800rpmの反応速度で行われることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 2, wherein the coprecipitation reaction is performed at a reaction rate of 600 to 800 rpm. 前記共沈反応はpH10〜12で行われることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 2, wherein the coprecipitation reaction is performed at a pH of 10 to 12. 前記共沈反応は8〜10時間行われることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 2, wherein the coprecipitation reaction is performed for 8 to 10 hours. 前記共沈反応は35〜40℃の温度で行われることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium secondary battery according to claim 2, wherein the coprecipitation reaction is performed at a temperature of 35 to 40C. 前記沈殿物とリチウム原料物質は1:1乃至1:1.1の重量比で混合されることを特徴とする、請求項2に記載のリチウム二次電池用正極活物質の製造方法。   The method according to claim 2, wherein the precipitate and the lithium source material are mixed in a weight ratio of 1: 1 to 1: 1.1. 下記化学式(2)で表されるリチウム金属酸化物を含み、前記リチウム金属酸化物の粒子サイズは4〜50μmであり、平均直径20〜40nmの空隙を含み、空隙率が1〜5%の正極活物質を圧延して製造した正極、
負極、及び
電解液
を含むことを特徴とする、リチウム二次電池。
(前記化学式(2)において、0.95≦a≦1.10、0.55≦x≦0.65、0.15≦y≦0.25、0.15<z≦0.25、x+y+z=1である。
A positive electrode having a lithium metal oxide represented by the following chemical formula (2 ), a particle size of the lithium metal oxide of 4 to 50 μm, a void having an average diameter of 20 to 40 nm, and a porosity of 1 to 5%. A positive electrode produced by rolling an active material,
A lithium secondary battery comprising a negative electrode and an electrolytic solution.
(In the chemical formula (2), 0.95 ≦ a ≦ 1.10, 0.55 ≦ x ≦ 0.65, 0.15 ≦ y ≦ 0.25, 0.15 <z ≦ 0.25, x + y + z = 1 )
前記リチウム二次電池は、前記正極活物質の質量あたり170〜190mAh/gの放電容量を有することを特徴とする、請求項9に記載のリチウム二次電池。   The lithium secondary battery according to claim 9, wherein the lithium secondary battery has a discharge capacity of 170 to 190 mAh / g per mass of the positive electrode active material.
JP2011114558A 2010-06-13 2011-05-23 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery Active JP5731276B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20100055742 2010-06-13
KR10-2010-0055742 2010-06-13
KR10-2011-0032067 2011-04-07
KR1020110032067A KR101309150B1 (en) 2010-06-13 2011-04-07 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Publications (2)

Publication Number Publication Date
JP2012004109A JP2012004109A (en) 2012-01-05
JP5731276B2 true JP5731276B2 (en) 2015-06-10

Family

ID=45503305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114558A Active JP5731276B2 (en) 2010-06-13 2011-05-23 Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP5731276B2 (en)
KR (1) KR101309150B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008582A1 (en) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
JP6358077B2 (en) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP6237331B2 (en) * 2014-02-27 2017-11-29 住友金属鉱山株式会社 Precursor of positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
HUE046586T2 (en) 2014-06-10 2020-03-30 Umicore Nv Positive electrode materials having a superior hardness strength
TWI624974B (en) * 2014-09-26 2018-05-21 Lg化學股份有限公司 Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP6407754B2 (en) * 2015-02-12 2018-10-17 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
KR102167590B1 (en) * 2016-03-24 2020-10-19 주식회사 엘지화학 Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP6500001B2 (en) * 2016-08-31 2019-04-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2019117282A1 (en) 2017-12-15 2019-06-20 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6523508B1 (en) * 2018-03-30 2019-06-05 住友化学株式会社 Lithium mixed metal compound, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing lithium mixed metal compound
US20220106199A1 (en) * 2019-10-02 2022-04-07 Lg Chem, Ltd. Positive Electrode Active Material for Lithium Secondary Battery and Method for Preparing Said Positive Electrode Active Material
KR102362778B1 (en) 2019-11-29 2022-02-11 삼성에스디아이 주식회사 Positive active material precursor, positive active material, method of preparing the same, positive electrode including the same and rechargeable lithium battery including the same
EP4186867A1 (en) * 2020-07-21 2023-05-31 Sumitomo Metal Mining Co., Ltd. Method for producing nickel-containing hydroxide, method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2023008232A1 (en) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034136B2 (en) * 2000-11-14 2012-09-26 株式会社Gsユアサ Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3567131B2 (en) * 2000-12-28 2004-09-22 株式会社東芝 Non-aqueous electrolyte battery
JP2004014296A (en) * 2002-06-06 2004-01-15 Nichia Chem Ind Ltd Positive electrode active material for lithium ion secondary battery
KR100548988B1 (en) * 2003-11-26 2006-02-02 학교법인 한양학원 Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4031009B2 (en) * 2004-08-16 2008-01-09 昭和電工株式会社 Positive electrode for lithium battery and lithium battery using the same
JP4996117B2 (en) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2007335245A (en) * 2006-06-15 2007-12-27 Sanyo Electric Co Ltd Cathode active material, its manufacturing method, and nonaqueous secondary battery
KR101118008B1 (en) * 2008-10-22 2012-03-13 주식회사 엘지화학 Lithium Iron Phosphate Having Olivine Structure and Method for Preparing the Same

Also Published As

Publication number Publication date
KR20110136689A (en) 2011-12-21
JP2012004109A (en) 2012-01-05
KR101309150B1 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
JP5731276B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP6462250B2 (en) Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery including the same
CN111883819A (en) Rechargeable lithium battery
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR101904896B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2015023021A (en) Positive active material for rechargeable lithium battery, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
KR102332440B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9023526B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20120056674A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101610364B1 (en) Positive active material for lithium secondary battery, method of preparing same and a lithium secondary battery comprising the same
KR102201686B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101744091B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN109661740B (en) Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
KR20110136000A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
CN111668462A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US20210043931A1 (en) Positive active material precursor for rechargeable lithium battery, positive active material for rechargeable lithium battery, method of preparing the positive active material, and rechargeable lithium battery including the positive active material
KR20150093056A (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP6366908B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR102194076B1 (en) Positive active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same
KR101557486B1 (en) Lithium secondary battery
EP4159688A2 (en) Positive electrode active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery
KR20180022161A (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
KR20160064878A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250