JP4031009B2 - Positive electrode for lithium battery and lithium battery using the same - Google Patents

Positive electrode for lithium battery and lithium battery using the same Download PDF

Info

Publication number
JP4031009B2
JP4031009B2 JP2005233843A JP2005233843A JP4031009B2 JP 4031009 B2 JP4031009 B2 JP 4031009B2 JP 2005233843 A JP2005233843 A JP 2005233843A JP 2005233843 A JP2005233843 A JP 2005233843A JP 4031009 B2 JP4031009 B2 JP 4031009B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
active material
electrode
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005233843A
Other languages
Japanese (ja)
Other versions
JP2006086116A (en
JP2006086116A5 (en
Inventor
正隆 武内
千明 外輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005233843A priority Critical patent/JP4031009B2/en
Publication of JP2006086116A publication Critical patent/JP2006086116A/en
Publication of JP2006086116A5 publication Critical patent/JP2006086116A5/ja
Application granted granted Critical
Publication of JP4031009B2 publication Critical patent/JP4031009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電極密度が大きく、体積あたりの充放電容量が大きく、充放電サイクル特性、大電流負荷特性、電解液浸透性に優れたリチウム系電池用正極及びそれを用いたリチウム系電池に関し、特にリチウム系二次電池に用いる高密度正極及びそれを用いたリチウム系二次電池に関する。さらに詳しく言えば、高エネルギー密度リチウム系電池、特に小型携帯機器に重要な体積あたりのエネルギー密度を達成するための高エネルギー密度のリチウム系電池用正極を実現するにあたり、できるだけ少ない添加量で効果を発揮できる特定の炭素繊維を導電助剤として添加したリチウム系電池用正極に関する。   The present invention relates to a positive electrode for a lithium battery having a large electrode density, a large charge / discharge capacity per volume, charge / discharge cycle characteristics, large current load characteristics, excellent electrolyte solution permeability, and a lithium battery using the same. In particular, the present invention relates to a high-density positive electrode used for a lithium-based secondary battery and a lithium-based secondary battery using the same. More specifically, in realizing a high energy density lithium-based battery, particularly a high energy density positive electrode for a lithium-based battery to achieve the energy density per volume, which is important for small portable devices, the effect can be achieved with as little addition as possible. The present invention relates to a positive electrode for a lithium battery to which a specific carbon fiber that can be exhibited is added as a conductive additive.

携帯機器の小型軽量化及び高性能化に伴い、高いエネルギー密度を有する二次電池、二次電池の高容量化が益々求められている。そのような背景下で携帯電話やビデオカメラ等の小型携帯機器用二次電池として、非水系電解液を用いるリチウムイオン電池やリチウムポリマー電池のようなリチウム系二次電池がその高エネルギー密度、高電圧という特徴から多くの機器に使われるようになっている。これらリチウム系二次電池に用いられる正極材料としては高電位での単位質量あたりの充放電容量が大きいコバルト酸リチウムに代表される金属酸化物系化合物が使用され、負極材料としてはリチウムに近い卑な電位で単位質量あたりの充放電容量の大きい黒鉛に代表される炭素材料が用いられている。しかしながらこれらの電極材料は質量あたりの充放電容量が理論値に近いところまで使われており、電池としての質量あたりのエネルギー密度は限界に近づいている。従って、鉄オリビン系化合物や金属硫化物等の新しい高容量正極材料や、酸化スズ、酸化ケイ素、リチウム合金、窒化リチウム、これらと炭素材料の複合材料等の新しい高容量負極材料が盛んに開発されている。   2. Description of the Related Art As mobile devices become smaller and lighter and have higher performance, there is an increasing demand for secondary batteries having high energy density and higher capacities of secondary batteries. Under such circumstances, lithium secondary batteries such as lithium ion batteries and lithium polymer batteries using non-aqueous electrolytes are used as secondary batteries for small portable devices such as mobile phones and video cameras. Due to the characteristic of voltage, it is used in many devices. As a positive electrode material used in these lithium secondary batteries, a metal oxide compound represented by lithium cobaltate having a large charge / discharge capacity per unit mass at a high potential is used, and as a negative electrode material, a base material close to lithium is used. A carbon material represented by graphite having a large charge / discharge capacity per unit mass at a low potential is used. However, these electrode materials are used up to the point where the charge / discharge capacity per mass is close to the theoretical value, and the energy density per mass as a battery is approaching its limit. Therefore, new high-capacity positive electrode materials such as iron olivine compounds and metal sulfides, and new high-capacity negative electrode materials such as tin oxide, silicon oxide, lithium alloy, lithium nitride, and composite materials of these and carbon materials have been actively developed. ing.

また、小型携帯機器に用いられる二次電池としては、よりコンパクトなものが要求され、質量あたりのエネルギー密度だけでなく、体積あたりのエネルギー密度も高いことが要求されている。そこで、電極密度を上げることにより電池容器内の充填量を高め、電極及び電池としての体積あたりのエネルギー密度を高める検討がされ始めた。
例えば、正極材料として主に用いられているコバルト酸リチウム系酸化物の真密度は5.1g/cm3程度であるが、電極密度としては3.3g/cm3未満で用いられており、3.5g/cm3以上のものについての検討がなされている。
Moreover, as a secondary battery used for a small portable device, a more compact battery is required, and not only the energy density per mass but also the energy density per volume is required to be high. Accordingly, studies have been started to increase the filling amount in the battery container by increasing the electrode density, and to increase the energy density per volume of the electrode and the battery.
For example, the true density of lithium cobaltate-based oxide mainly used as a positive electrode material is of the order of 5.1 g / cm 3, as the electrode density is used in less than 3.3 g / cm 3, 3 Investigations have been made with respect to those of 5 g / cm 3 or more.

しかしながら、高電極密度にすることにより、電極内の空孔が減少し、通常、空孔内に存在する電極反応に重要な電解液の不足を招いたり、電解液の電極内の浸透が遅くなるという問題が生じてくる。電極内の電解液不足が生じると、電極反応が遅くなり、エネルギー密度の低下や高速充放電性能が低下するという問題が起こり、また、電解液の浸透性が遅くなると、電池製造時間が長くなり、製造コストアップにつながる。リチウムポリマー電池のような高粘性のポリマー電解液を用いる場合はその問題がより顕著になってくる。
これらの問題を解決するために、正極に添加する炭素系導電助剤をできるだけ少なくして、正極中の活物質量を増加させ、エネルギー密度を向上させる試みがなされている。また、嵩高い炭素系導電助剤量を少なくすることにより、電極密度自身を上げることができる。しかしながら、コバルト酸リチウム系酸化物等の金属酸化物系化合物の導電性は一般的に半導性であり、導電助剤を少なくし過ぎると、電極の導電性が低下し、充放電に支障をきたすため、カーボンブラック等の炭素系導電助剤は従来3質量%程度以上用いられていた。
However, by increasing the electrode density, the number of vacancies in the electrode decreases, which usually leads to a shortage of the electrolyte solution that is important for the electrode reaction existing in the vacancies, and the penetration of the electrolyte solution into the electrode is slowed down. The problem arises. If the electrolyte in the electrode is insufficient, the electrode reaction will be delayed, causing problems such as a decrease in energy density and high-speed charge / discharge performance, and if the electrolyte permeability is slow, the battery manufacturing time will be longer. , Leading to increased manufacturing costs. The problem becomes more prominent when a highly viscous polymer electrolyte such as a lithium polymer battery is used.
In order to solve these problems, attempts have been made to increase the energy density by increasing the amount of active material in the positive electrode by reducing the carbon-based conductive additive added to the positive electrode as much as possible. Further, the electrode density itself can be increased by reducing the amount of bulky carbon-based conductive additive. However, the conductivity of metal oxide compounds such as lithium cobaltate oxide is generally semiconducting. If too little conductive aid is used, the conductivity of the electrode will be reduced, and charging / discharging will be hindered. For this reason, carbon-based conductive additives such as carbon black have been conventionally used in an amount of about 3% by mass or more.

特許第2695180号明細書Japanese Patent No. 2695180 特開2000−208147号公報JP 2000-208147 A

本発明は、高エネルギー密度電池を達成するために必要な高密度電極を実現するにあたり、その問題点である電解液浸透性及び電解液保持性を改善することを目的とする。   An object of the present invention is to improve the electrolyte permeability and electrolyte retention, which are problems in realizing a high-density electrode necessary for achieving a high energy density battery.

本発明者らは、上記リチウム系電池用電極の上記問題点に鑑みて、鋭意検討を重ねた結果、正極活物質、特定の炭素繊維を含む炭素系導電助剤及びバインダーからなり、炭素系導電助剤の量を正極全体の0.1〜2質量%としたリチウム系電池用正極(正極活物質、炭素系導電助剤及びバインダーからなる正極であって、集電体は含まない。)を用いることにより、導電性、電解液浸透性を損なわず、高エネルギー密度で高速充放電性能の良好な高性能のリチウム系電池が得られることを見出し、本発明を完成した。   In view of the above-described problems of the lithium-based battery electrode, the present inventors have made extensive studies and as a result, the positive electrode active material, a carbon-based conductive additive containing a specific carbon fiber, and a binder, A lithium battery positive electrode (a positive electrode composed of a positive electrode active material, a carbon-based conductive auxiliary agent and a binder, and does not include a current collector) in which the amount of the auxiliary agent is 0.1 to 2% by mass of the whole positive electrode. It has been found that by using it, a high-performance lithium-based battery having high energy density and good high-speed charge / discharge performance can be obtained without impairing conductivity and electrolyte permeability, and the present invention has been completed.

リチウム系正極材料に炭素繊維を添加して、電池のサイクル寿命を向上させることはこれまでも検討されている。例えば、特許文献1(特許第2695180号明細書)には、酸化物正極に炭素繊維を添加することにより、充放電サイクルを改善したリチウム二次電池が開示されている。特許文献2(特開2000−208147号公報)にはカーボンブラック等の粉末炭素、黒鉛等の片状炭素、繊維状炭素が混合されている正極が開示されている。しかしながらこれら従来技術では、炭素繊維の添加の目的は電極抵抗低下や電極強度向上であり、電極を高密度にするために炭素繊維を添加するという概念はなく、また、添加量も一般的な5〜10質量%程度で用いられている。   It has been studied so far to improve the cycle life of a battery by adding carbon fiber to a lithium-based positive electrode material. For example, Patent Document 1 (Japanese Patent No. 2695180) discloses a lithium secondary battery in which a charge / discharge cycle is improved by adding carbon fiber to an oxide positive electrode. Patent Document 2 (Japanese Patent Laid-Open No. 2000-208147) discloses a positive electrode in which powder carbon such as carbon black, flake carbon such as graphite, and fibrous carbon are mixed. However, in these prior arts, the purpose of adding carbon fibers is to reduce electrode resistance and improve electrode strength, and there is no concept of adding carbon fibers to increase the density of the electrodes, and the addition amount is also generally 5 It is used at about 10% by mass.

本発明は、特定の炭素繊維を特定量添加することにより、例えば空隙率が20%以下の高密度電極においても、電解液浸透性を著しく低下せず、従来通り、電極抵抗が低く電極強度の良好な電極が得られるとの知見に基づくものである。   In the present invention, by adding a specific amount of a specific carbon fiber, for example, even in a high-density electrode having a porosity of 20% or less, the electrolyte permeability is not significantly reduced, and the electrode resistance is low and the electrode strength is as usual. This is based on the knowledge that a good electrode can be obtained.

炭素繊維を添加することにより高密度電極の電解液浸透性が向上する理由は、高度に圧縮された活物質材料粒子の間に微細な繊維が適度に分散されることにより、活物質粒子間に微細な空隙が維持されるためと考えられる。   The reason why the electrolyte solution permeability of the high-density electrode is improved by adding the carbon fiber is that fine fibers are appropriately dispersed among the highly compressed active material particles, thereby This is probably because fine voids are maintained.

本発明は、以下に示すリチウム系電池用正極、及びその正極を用いたリチウム系電池を提供するものである。
[1]リチウムイオンを吸蔵放出可能な活物質、炭素系導電助剤、及びバインダーからなるリチウム電池用正極であって、炭素系導電助剤の添加量が正極全体の0.1〜2質量%で、かつ炭素系導電助剤に平均繊維径1〜200nmの炭素繊維が含まれており、炭素繊維が、2000℃以上で熱処理された黒鉛系炭素繊維であり、真密度から計算したリチウムイオンを吸蔵放出可能な活物質の体積が正極体積中で70%以上であることを特徴とするリチウム系電池用正極。
[2]炭素繊維中の金属不純物の総量が30ppm以下である前記1に記載のリチウム系電池用正極。
[3]炭素繊維が、ホウ素を0.1〜100000ppm含有する黒鉛系炭素繊維である前記1または2に記載のリチウム系電池用正極。
[4]炭素繊維の平均アスペクト比が、50〜15000である前記1〜3のいずれかに記載のリチウム系電池用正極。
[5]炭素繊維の平均繊維径が10〜200nmである前記1〜4のいずれかに記載のリチウム系電池用正極。
[6]炭素繊維が、内部に中空構造を有する前記1〜5のいずれかに記載のリチウム系電池用正極。
[7]炭素繊維が、分岐状炭素繊維を含む前記1〜6のいずれかに記載のリチウム系電池用正極。
[8]活物質が、リチウムイオンを吸蔵放出可能な金属酸化物系化合物である前記1〜7のいずれかに記載のリチウム系電池用正極。
[9]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物の平均一次粒子径が0.5〜30μmである前記8に記載のリチウム系電池用正極。
[10]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト系酸化物が60質量%以上含まれ、電極密度が3.7g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[11]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にマンガン系酸化物が60質量%以上含まれ、電極密度が3.2g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[12]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト系酸化物とマンガン系酸化物の混合物が80質量%以上含まれ、電極密度が3.5g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[13]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にニッケル系酸化物が60質量%以上含まれ、電極密度が3.5g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[14]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・ニッケル系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[15]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・マンガン系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[16]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・ニッケル・マンガン系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である前記8または9に記載のリチウム系電池用正極。
[17]リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中に鉄オリビン酸系化合物が60質量%以上含まれる前記8または9に記載のリチウム系電池用正極。
[18]前記1〜17のいずれかに記載のリチウム系電池用正極を構成要素として含むリチウム系電池。
[19]前記1〜17のいずれかに記載のリチウム系電池用正極を構成要素として含むリチウム系二次電池。
[20]非水系電解液及び/または非水系ポリマー電解質を用い、前記非水系電解液及び/または非水系ポリマー電解質に用いられる非水系溶媒にエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びビニレンカーボネートからなる群から選ばれる少なくとも1種が含まれる前記19に記載のリチウム系二次電池。
The present invention provides the following positive electrode for a lithium battery and a lithium battery using the positive electrode.
[1] A positive electrode for a lithium battery comprising an active material capable of occluding and releasing lithium ions, a carbon-based conductive aid, and a binder, wherein the carbon-based conductive aid is added in an amount of 0.1 to 2% by weight based on the total amount of the positive electrode In addition, the carbon-based conductive additive contains carbon fibers having an average fiber diameter of 1 to 200 nm, the carbon fibers are graphite-based carbon fibers that have been heat-treated at 2000 ° C. or higher, and lithium ions calculated from true density A positive electrode for a lithium battery, wherein the volume of the active material capable of occlusion and release is 70% or more in the positive electrode volume.
[2] The positive electrode for a lithium battery as described in 1 above, wherein the total amount of metal impurities in the carbon fiber is 30 ppm or less.
[3] The positive electrode for a lithium battery according to 1 or 2, wherein the carbon fiber is a graphite-based carbon fiber containing 0.1 to 100,000 ppm of boron.
[4] The positive electrode for a lithium battery according to any one of 1 to 3, wherein the average aspect ratio of the carbon fiber is 50 to 15000.
[5] The positive electrode for a lithium battery according to any one of 1 to 4 above, wherein the carbon fiber has an average fiber diameter of 10 to 200 nm.
[6] The positive electrode for a lithium battery according to any one of 1 to 5, wherein the carbon fiber has a hollow structure inside.
[7] The positive electrode for a lithium battery according to any one of 1 to 6, wherein the carbon fiber includes a branched carbon fiber.
[8] The positive electrode for a lithium battery according to any one of 1 to 7, wherein the active material is a metal oxide compound capable of occluding and releasing lithium ions.
[9] The positive electrode for a lithium battery as described in 8 above, wherein the average primary particle diameter of the metal oxide compound which is an active material capable of occluding and releasing lithium ions is 0.5 to 30 μm.
[10] In the above 8 or 9, wherein the metal oxide compound which is an active material capable of occluding and releasing lithium ions contains cobalt oxide in an amount of 60% by mass or more, and the electrode density is 3.7 g / cm 3 or more. The positive electrode for lithium-type batteries as described.
[11] In the above 8 or 9, wherein the metal oxide compound, which is an active material capable of occluding and releasing lithium ions, contains manganese oxide in an amount of 60% by mass or more, and the electrode density is 3.2 g / cm 3 or more. The positive electrode for lithium-type batteries as described.
[12] The metal oxide compound which is an active material capable of occluding and releasing lithium ions contains a mixture of cobalt oxide and manganese oxide in an amount of 80% by mass or more, and the electrode density is 3.5 g / cm 3 or more. 10. The positive electrode for a lithium battery as described in 8 or 9 above.
[13] The metal oxide compound which is an active material capable of occluding and releasing lithium ions contains nickel oxide in an amount of 60% by mass or more, and the electrode density is 3.5 g / cm 3 or more. The positive electrode for lithium-type batteries as described.
[14] The metal oxide compound that is an active material capable of occluding and releasing lithium ions contains cobalt-nickel composite oxide in an amount of 60% by mass or more, and the electrode density is 3.6 g / cm 3 or more. Or the positive electrode for a lithium battery according to 9.
[15] The metal oxide compound which is an active material capable of occluding and releasing lithium ions contains 60% by mass or more of a cobalt / manganese composite oxide, and the electrode density is 3.6 g / cm 3 or more. Or the positive electrode for a lithium battery according to 9.
[16] The metal oxide compound, which is an active material capable of occluding and releasing lithium ions, contains 60% by mass or more of cobalt / nickel / manganese composite oxide, and the electrode density is 3.6 g / cm 3 or more. 10. The positive electrode for a lithium battery according to 8 or 9 above.
[17] The positive electrode for a lithium battery as described in 8 or 9 above, wherein the iron oxide compound is contained in an amount of 60% by mass or more in the metal oxide compound which is an active material capable of occluding and releasing lithium ions.
[18] A lithium battery including the positive electrode for a lithium battery according to any one of 1 to 17 as a constituent element.
[19] A lithium secondary battery including the lithium battery positive electrode according to any one of 1 to 17 as a constituent element.
[20] A non-aqueous electrolyte and / or a non-aqueous polymer electrolyte is used, and ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene are used as the non-aqueous solvent used in the non-aqueous electrolyte and / or non-aqueous polymer electrolyte. 20. The lithium secondary battery according to 19, wherein at least one selected from the group consisting of carbonate, butylene carbonate, and vinylene carbonate is included.

本発明のリチウム系電池用正極は、正極活物質の充填量を多くして、高密度化することが可能であるので、エネルギー密度の高いリチウム系電池、すなわち電池体積当たりの容量の大きい電池とすることができる。
正極が高充填化、高密度化されると、正極内の空孔は減少するため、空孔内に存在する電極反応に重要な電解液の不足を招いたり、電解液の電極内の浸透が遅くなるという問題が生じ、その結果として電極反応の遅延、エネルギー密度の低下、高速充放電性能の低下、電池製造時間が長くなることによる製造コストアップ等につながるが、本発明のリチウム系電池用正極には炭素繊維が包含されており、高密度化しても、電解液の浸透性の低下が抑制されると共に電解液保持性が改善されて上記問題点を解消することができる。
Since the positive electrode for a lithium battery of the present invention can be increased in density by increasing the filling amount of the positive electrode active material, a lithium battery having a high energy density, that is, a battery having a large capacity per battery volume, can do.
When the positive electrode is highly filled and densified, the number of vacancies in the positive electrode decreases, leading to a shortage of the electrolyte solution that is important for the electrode reaction existing in the vacancies or the penetration of the electrolyte solution into the electrode. As a result, the delay of electrode reaction, the decrease of energy density, the decrease of high-speed charge / discharge performance, the increase of the manufacturing cost due to the long battery manufacturing time, etc. The positive electrode contains carbon fiber, and even when the density is increased, the decrease in the permeability of the electrolytic solution is suppressed and the retention of the electrolytic solution is improved, so that the above problems can be solved.

1.炭素繊維
一般的にリチウム系電池用正極は数〜数十μmの正極活物質材料粉末をロールプレス等で高圧成形して得るため、粉末間の隙間が少なくなり、電解液の浸透性が大幅に低下する。そこに微細で圧力変形に強い強靱な繊維を添加することにより、電極活物質粉末間に微細な空隙が生じ、電解液が浸透しやすくなる。空隙が生じることにより電極活物質間の粒子間の導電性が損なわれれば、電極性能が低下するため、添加する繊維自身が導電性に優れ、また導電パスを増やすためにできるだけ繊維長は長いことが好ましい。そのような観点から添加する繊維は導電性で強靱で微細な炭素繊維を用いる必要がある。
1. Carbon fiber Generally, a positive electrode for a lithium-based battery is obtained by forming a positive electrode active material powder of several to several tens of μm at a high pressure using a roll press or the like, so that there are fewer gaps between the powders, and the permeability of the electrolyte is greatly increased. descend. By adding fine tough fibers that are fine and resistant to pressure deformation, fine voids are formed between the electrode active material powders, and the electrolytic solution easily permeates. If the inter-particle conductivity between the electrode active materials is impaired due to voids, the electrode performance will deteriorate, so the added fiber itself is excellent in conductivity, and the fiber length should be as long as possible to increase the conductive path Is preferred. From such a viewpoint, it is necessary to use conductive, tough and fine carbon fibers as the fibers to be added.

(1−1)炭素繊維の繊維径
本発明のリチウム系電池用正極に使用する炭素繊維の繊維径は、1〜200nmの範囲であり、好ましくは5〜180nm、さらに好ましくは10〜150nmの範囲である。一般に使用する活物質粒子の平均粒子径は数〜数十μm程度であるため、本発明のリチウム系電池用正極に使用する炭素繊維の繊維径が200nmを超えると電極内の空隙が大きくなり過ぎ電極密度を高くできないため好ましくない。また、繊維径が細過ぎると(1nm未満になると)活物質粒子間に埋没し、目的とする電極内の空隙生成が不能となるため好ましくない。
(1-1) Fiber diameter of carbon fiber The fiber diameter of the carbon fiber used for the positive electrode for a lithium battery of the present invention is in the range of 1 to 200 nm, preferably 5 to 180 nm, more preferably 10 to 150 nm. It is. Since the average particle diameter of the active material particles generally used is about several to several tens of micrometers, if the fiber diameter of the carbon fiber used for the positive electrode for a lithium battery of the present invention exceeds 200 nm, the voids in the electrode become too large. It is not preferable because the electrode density cannot be increased. Further, if the fiber diameter is too thin (less than 1 nm), it is not preferable because it is buried between the active material particles and void generation in the target electrode becomes impossible.

(1−2)炭素繊維の結晶化度
炭素繊維の結晶化度(黒鉛化度)は高い方が望ましい。一般的に炭素材料の黒鉛化度が高いほど、層状構造が発達し、より硬くなり、また導電性も向上し、正極の添加剤として適している。炭素材料を黒鉛化するには高温処理をすればよい。その場合の処理温度は、用いる炭素繊維によっても異なるが、2000℃以上が好ましく、2500℃以上がさらに好ましい。この場合、黒鉛化度を促進させる働きのある黒鉛化助触媒であるホウ素やSiなどを熱処理前に添加しておくと有効である。助触媒の添加量は特に限定されないが、好ましい添加量としては、10質量ppmから50000質量ppmの範囲である。添加量が少なすぎると効果がでず、多すぎると不純物として残るため好ましくない。
(1-2) Carbon fiber crystallinity The carbon fiber has a higher crystallinity (graphitization degree). In general, the higher the degree of graphitization of the carbon material, the more the layered structure develops, the harder it becomes, and the higher the conductivity, and it is suitable as an additive for the positive electrode. In order to graphitize the carbon material, high temperature treatment may be performed. In this case, the treatment temperature varies depending on the carbon fiber used, but is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher. In this case, it is effective to add boron, Si, or the like, which is a graphitization co-catalyst that promotes the degree of graphitization, before the heat treatment. The addition amount of the cocatalyst is not particularly limited, but a preferable addition amount is in the range of 10 ppm to 50,000 ppm by mass. If the addition amount is too small, the effect is not obtained, and if it is too large, it remains as an impurity, which is not preferable.

これら炭素繊維の結晶化度は特に限定されないが、好ましくはX線回折法による平均面間隔d002が0.344nm以下、さらに好ましくは0.339nm以下であって、結晶のC軸方向の厚さLcが40nm以下のものである。 Although crystallinity of the carbon fibers is not particularly limited, preferably the average spacing d 002 is 0.344nm less by X-ray diffraction method, even more preferably less 0.339 nm, C-axis direction of the thickness of the crystal Lc is 40 nm or less.

(1−3)炭素繊維の繊維長及びアスペクト比
炭素繊維の繊維長は特に限定されない。前述したように繊維長は長いほど電極内の導電性、電極の強度、電解液保液性が増し好ましい。特に本発明のように、低添加量の炭素材を有効に使うには、電極内の繊維分散性が損なわれないかぎり、できるだけ長い方がよい。好ましい平均繊維長の範囲は、用いる炭素繊維の種類や繊維径によっても異なるが、2〜100μmであり、5〜100μmのものがさらに好ましい。この平均繊維長の好ましい範囲を平均アスペクト比(繊維径に対する繊維長の割合)で示すと、20〜50000の範囲であり、50〜15000の範囲がさらに好ましい。
(1-3) Carbon fiber fiber length and aspect ratio The carbon fiber fiber length is not particularly limited. As described above, the longer the fiber length, the better the conductivity in the electrode, the strength of the electrode, and the electrolyte solution retention. In particular, as in the present invention, in order to effectively use a carbon material with a low addition amount, it is preferable that the carbon material is as long as possible as long as the fiber dispersibility in the electrode is not impaired. Although the range of a preferable average fiber length changes also with the kind and fiber diameter of carbon fiber to be used, it is 2-100 micrometers, and the thing of 5-100 micrometers is still more preferable. When the preferable range of this average fiber length is shown by an average aspect ratio (ratio of fiber length to fiber diameter), it is in the range of 20 to 50000, and more preferably in the range of 50 to 15000.

炭素繊維に枝分かれ(分岐状)したものが含まれていると、電極全体の導電性、電極の強度、電解液保液性がさらに増すため好ましい。但し分岐状繊維が多すぎると繊維長同様、電極内の分散性が損なわれるため、適度な量含まれていることが好ましい。これら分岐状繊維量は製造法やその後の粉砕処理である程度制御できる。   It is preferable that the carbon fiber is branched (branched) because the conductivity of the entire electrode, the strength of the electrode, and the electrolyte solution retention are further increased. However, if there are too many branched fibers, the dispersibility in the electrode is impaired as with the fiber length. The amount of these branched fibers can be controlled to some extent by the production method and the subsequent pulverization treatment.

(1−4)炭素繊維の製造方法
本発明で用いる炭素繊維の製造方法は特に限定されない。例えば紡糸法等で高分子を繊維状にし、不活性雰囲気中で熱処理する方法や、触媒存在下、高温で有機化合物を反応させる気相成長法などが挙げられる。気相成長法で得られる炭素繊維、いわゆる気相法炭素繊維は、結晶成長方向が繊維軸にほぼ平行であり、黒鉛構造の繊維長方向の結晶性が高くなりやすく、比較的、短繊維径、高導電性、高強度の炭素繊維が得られる。
(1-4) Carbon Fiber Manufacturing Method The carbon fiber manufacturing method used in the present invention is not particularly limited. Examples thereof include a method in which a polymer is formed into a fiber by a spinning method and heat-treated in an inert atmosphere, and a vapor phase growth method in which an organic compound is reacted at a high temperature in the presence of a catalyst. Carbon fibers obtained by vapor phase growth, so-called vapor phase growth carbon fibers, have a crystal growth direction substantially parallel to the fiber axis, and the crystallinity in the fiber length direction of the graphite structure is likely to be high. Highly conductive and high strength carbon fibers can be obtained.

本発明の目的を達成するためには、繊維軸方向に結晶が成長し、繊維が枝分かれをしている気相法炭素繊維が適している。気相法炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共にガス化された有機化合物を吹き込む方法で製造することができる。気相法炭素繊維は、製造した状態のままのもの、800〜1500℃程度で熱処理したもの、2000〜3000℃程度で黒鉛化処理したもののいずれも使用可能である。使用する電極活物質粉末に適したものを用いるが、熱処理さらには黒鉛化処理したものの方が、炭素の結晶性が進んでおり、高導電性及び高耐圧特性を有するため好ましい。   In order to achieve the object of the present invention, vapor grown carbon fibers in which crystals grow in the fiber axis direction and the fibers branch are suitable. The vapor grown carbon fiber can be produced by, for example, a method in which an organic compound gasified with iron serving as a catalyst is blown into a high temperature atmosphere. As the vapor grown carbon fiber, any of those as manufactured, those heat-treated at about 800 to 1500 ° C., and those graphitized at about 2000 to 3000 ° C. can be used. A material suitable for the electrode active material powder to be used is used, but a heat-treated and graphitized one is preferable because the crystallinity of carbon is advanced and it has high conductivity and high pressure resistance.

また、気相法炭素繊維の好ましい形態として、分岐状繊維がある。分岐部分はその部分を含めて繊維全体が互いに連通した中空構造を有し、繊維の円筒部分を構成している炭素層は連続している。中空構造は炭素層が円筒状に巻いている構造であって、完全な円筒でないもの、部分的な切断箇所を有するもの、積層した2層の炭素層が1層に結合したものなどを含む。また、円筒の断面は完全な円に限らず楕円や多角化のものを含む。   Moreover, there exists a branched fiber as a preferable form of vapor grown carbon fiber. The branched portion has a hollow structure in which the entire fiber including the portion is in communication with each other, and the carbon layer constituting the cylindrical portion of the fiber is continuous. The hollow structure is a structure in which the carbon layer is wound in a cylindrical shape, and includes a structure that is not a complete cylinder, a structure having a partial cut portion, and a structure in which two stacked carbon layers are combined into one layer. Further, the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon.

気相法炭素繊維は、繊維表面に凹凸や乱れがあるものが多く、そのため電極活物質との密着性が向上する利点もある。特に、電極活物質として炭素質粉体粒子を用い、二次電池の負極として使用する場合は、核となる炭素質材料との密着性が向上するため充放電を繰り返しても炭素質材料と導電性補助剤としての役割も兼ねている気相法炭素繊維とが解離せず密着した状態を保つことができ、電子伝導性が保持できサイクル特性が向上する。   Vapor-grown carbon fibers often have irregularities and disturbances on the fiber surface, and thus have the advantage of improving the adhesion with the electrode active material. In particular, when carbonaceous powder particles are used as the electrode active material and used as the negative electrode of a secondary battery, the adhesion with the carbonaceous material serving as the nucleus is improved, so that the carbonaceous material and the conductive material are electrically conductive even after repeated charge and discharge. The vapor grown carbon fiber, which also serves as a chemical auxiliary, can be kept in close contact with the vapor grown carbon fiber, and the electron conductivity can be maintained and the cycle characteristics can be improved.

気相法炭素繊維が分岐状繊維を多く含む場合は、効率よくネットワークを形成することができ、高い電子伝導性や熱伝導性を得やすい。また、活物質を包むように分散することができ、電極の強度を高め、粒子間の接触も良好に保てる。   When the vapor grown carbon fiber contains a lot of branched fibers, a network can be formed efficiently, and high electronic conductivity and thermal conductivity are easily obtained. In addition, the active material can be dispersed so as to wrap, increasing the strength of the electrode and maintaining good contact between the particles.

(1−5)炭素繊維の不純物
炭素繊維は正極に用いられるため、正極の電位で溶出する金属は好ましくない。従って不純物として、Fe、Cu等の金属の総和が100ppm以下が好ましく、30ppm以下がさらに好ましい。
(1-5) Impurities of carbon fibers Since carbon fibers are used for the positive electrode, metals that elute at the potential of the positive electrode are not preferable. Therefore, as impurities, the total sum of metals such as Fe and Cu is preferably 100 ppm or less, and more preferably 30 ppm or less.

(1−6)炭素繊維の添加量
炭素繊維の含有量は、正極中の0.1〜2質量%の範囲がよく、好ましくは0.5〜1.5質量%である。含有量が2質量%を超えると、正極中の電極活物質比率が小さくなるため、電気容量が小さくなる。含有量が0.1質量%未満では正極中での導電性が十分ではなくリチウムイオンの挿入、放出ができにくくなる。含有量をこの範囲に調整するには、製法において同比率となるように添加することにより行うことができる。
(1-6) Addition amount of carbon fiber The content of the carbon fiber is preferably in the range of 0.1 to 2 mass%, preferably 0.5 to 1.5 mass% in the positive electrode. When the content exceeds 2% by mass, the ratio of the electrode active material in the positive electrode becomes small, so that the electric capacity becomes small. If the content is less than 0.1% by mass, the conductivity in the positive electrode is not sufficient, and it becomes difficult to insert and release lithium ions. In order to adjust the content to this range, it can be carried out by adding so as to have the same ratio in the production method.

(1−7)炭素繊維の表面処理
炭素繊維は、電極中での分散状態を制御するために表面処理したものも用いることができる。表面処理の方法は特に限定されないが、酸化処理により含酸素官能基を導入し親水性にしたものや、フッ化処理やシリコン処理により疎水性にしたものが挙げられる。また、フェノール樹脂等のコーティングやメカノケミカル処理等も挙げられる。表面処理しすぎると、炭素繊維の導電性や強度を著しく損なうことになるため、適度な処理が必要である。
(1-7) Surface treatment of carbon fiber Carbon fiber that has been surface treated to control the dispersion state in the electrode can be used. The surface treatment method is not particularly limited, and examples thereof include those made hydrophilic by introducing an oxygen-containing functional group by oxidation treatment, and those made hydrophobic by fluorination treatment or silicon treatment. In addition, a phenol resin coating or a mechanochemical treatment may be used. If the surface treatment is excessively performed, the conductivity and strength of the carbon fiber are remarkably impaired, and therefore an appropriate treatment is required.

酸化処理は、例えば、炭素繊維を空気中で、500℃、1時間程度加熱処理することにより行うことができる。この酸化処理により炭素繊維の親水性度が向上する。   The oxidation treatment can be performed, for example, by heating the carbon fiber in air at 500 ° C. for about 1 hour. This oxidation treatment improves the hydrophilicity of the carbon fiber.

2.リチウム系電池用正極及びそれに用いる活物質材料
本発明の正極に用いるリチウムイオンを吸蔵、放出可能な活物質材料例を以下に示す。
2. Examples of an active material that can occlude and release lithium ions used in the positive electrode of the present invention are shown below.

コバルト酸リチウム等のコバルト系酸化物、マンガン酸リチウム等のマンガン系酸化物、ニッケル酸リチウム等のニッケル系酸化物、五酸化バナジウム等のバナジウム系酸化物及びこれらの複合酸化物や混合物等が現在、リチウムイオン電池の正極活物質材料として用いられ、または検討されている。これら正極も高密度電極化することにより、電池としての高容量化が検討されている。   Cobalt oxides such as lithium cobaltate, manganese oxides such as lithium manganate, nickel oxides such as lithium nickelate, vanadium oxides such as vanadium pentoxide, and complex oxides and mixtures of these It has been used or has been studied as a positive electrode active material for lithium ion batteries. Higher capacity as a battery is being studied by making these positive electrodes into high-density electrodes.

具体的には、コバルト酸リチウムの真密度は約5.1g/cm3であり、現在、電極密度3.3g/cm3未満で使用されているが、これに炭素繊維を添加することにより、電極密度3.7g/cm3でも電解液浸透性の低下を抑えることが可能である。マンガン酸リチウムの真密度は約4.2g/cm3であり、現在、電極密度2.9g/cm3未満で使用されているが、これに炭素繊維を添加することにより、電極密度3.2g/cm3でも電解液浸透性の低下を抑えることが可能である。ニッケル酸リチウムの真密度は約5.0g/cm3であり、現在、電極密度3.2g/cm3以下で使用されているが、これに炭素繊維を添加することにより、電極密度3.5g/cm3でも電解液浸透性の低下を抑えることが可能である。五酸化バナジウムの真密度は約2.9g/cm3であり、現在、電極密度2.0g/cm3以下で使用されているが、これに炭素繊維を添加することにより、電極密度2.3g/cm3でも電解液浸透性の低下を抑えることが可能である。 Specifically, the lithium cobalt oxide has a true density of about 5.1 g / cm 3 and is currently used at an electrode density of less than 3.3 g / cm 3 , but by adding carbon fiber to this, Even at an electrode density of 3.7 g / cm 3 , it is possible to suppress a decrease in electrolyte permeability. The true density of lithium manganate is about 4.2 g / cm 3 , and is currently used at an electrode density of less than 2.9 g / cm 3. By adding carbon fiber to this, an electrode density of 3.2 g Even at / cm 3 , it is possible to suppress a decrease in electrolyte permeability. The true density of lithium nickelate is about 5.0 g / cm 3 , and is currently used at an electrode density of 3.2 g / cm 3 or less, but by adding carbon fiber to this, an electrode density of 3.5 g Even at / cm 3 , it is possible to suppress a decrease in electrolyte permeability. The true density of vanadium pentoxide is about 2.9 g / cm 3 , and is currently used at an electrode density of 2.0 g / cm 3 or less. By adding carbon fiber to this, an electrode density of 2.3 g Even at / cm 3 , it is possible to suppress a decrease in electrolyte permeability.

また、コバルト酸リチウム等のコバルト系酸化物と、マンガン酸リチウム等のマンガン系酸化物との混合物の場合、現在、電極密度3.1g/cm3以下で使用されているが、これに炭素繊維を添加することにより、電極密度3.5g/cm3でも電解液浸透性の低下を抑えることが可能である。 Further, in the case of a mixture of a cobalt-based oxide such as lithium cobaltate and a manganese-based oxide such as lithium manganate, it is currently used at an electrode density of 3.1 g / cm 3 or less. By adding, it is possible to suppress a decrease in electrolyte permeability even at an electrode density of 3.5 g / cm 3 .

本発明の正極活物質材料として用いられるリチウム含有遷移金属酸化物は、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3〜2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3〜2.2の化合物である。なお、主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0〜1.2)、またはLiy24(Nは少なくともMnを含む。y=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。 The lithium-containing transition metal oxide used as the positive electrode active material of the present invention is preferably lithium and at least one transition metal element selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, and W. In which the molar ratio of lithium to transition metal is 0.3 to 2.2. More preferably, the oxide mainly contains at least one transition metal element selected from V, Cr, Mn, Fe, Co, and Ni and lithium, and the molar ratio of lithium to transition metal is 0.3 to 0.3. It is the compound of 2.2. In addition, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained in a range of less than 30 mole percent with respect to the transition metal present mainly. Among the above positive electrode active materials, the general formula Li x MO 2 (M is at least one of Co, Ni, Fe and Mn, x = 0 to 1.2), or Li y N 2 O 4 (N is at least It is preferable to use at least one of materials having a spinel structure represented by y = 0 to 2).

さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0〜1.2、a=0.5〜1)を含む材料、またはLiz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1〜0.2、z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。 Further, the positive electrode active material Li y M a D 1-a O 2 (M is Co, Ni, Fe, at least one of Mn, D is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag , W, Ga, In, Sn, Pb, Sb, Sr, B, P, at least one material other than M, y = 0 to 1.2, a = 0.5 to 1), or Li z (N b E 1-b ) 2 O 4 (N is Mn, E is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, in, Sn, Pb, Sb, Sr It is particularly preferable to use at least one of materials having a spinel structure represented by at least one of B, P and b = 1 to 0.2 and z = 0 to 2).

具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。 Specifically, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co a Ni 1-a O 2, Li x Co b V 1-b O z, Li x Co b Fe 1-b O 2, Li x Mn 2 O 4, Li x Mn c Co 2-c O 4, Li x Mn c Ni 2-c O 4, Li x Mn c V 2-c O 4, Li x Mn c Fe 2- c O 4 (where x = 0.02 to 1.2, a = 0.1 to 0.9, b = 0.8 to 0.98, c = 1.6 to 1.96, z = 2. 01-2.3). The most preferred lithium-containing transition metal oxides, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co a Ni 1-a O 2, Li x Mn 2 O 4, Li x Co b V 1 -b O z (x = 0.02 to 1.2, a = 0.1 to 0.9, b = 0.9 to 0.98, z = 2.01 to 2.3). In addition, the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.

その他の次世代リチウム電池正極材料として、硫化チタン、硫化モリブデン等の金属硫化物等も盛んに検討され高密度電極化が行われている。本発明では、炭素繊維を添加することにより、電極密度2.0g/cm3でも電解液浸透性の低下を抑えることが可能である。 As other next-generation lithium battery positive electrode materials, metal sulfides such as titanium sulfide and molybdenum sulfide have been actively studied, and high-density electrodes are being formed. In the present invention, by adding carbon fiber, it is possible to suppress a decrease in electrolyte permeability even at an electrode density of 2.0 g / cm 3 .

LiFePO4等の鉄オリビン系化合物は理論容量が高く、鉄を用いており、資源性、環境安全性、耐熱性等に優れており、次世代リチウムイオン正極材料として精力的に検討されている。LiFePO4の真密度は、現在リチウムイオン電池に使用されている正極材料(コバルト酸リチウムなど)より低めであるため、高密度化のニーズはさらに高い。本発明では、炭素繊維を添加することにより、電解液浸透性の低下を抑えることが可能である。また、LiFePO 4 導電性も低く、炭素繊維系導電材料との効率的な複合化必須といえる。 An iron olivine compound such as LiFePO 4 has a high theoretical capacity, uses iron, is excellent in resource, environmental safety, heat resistance, etc., and has been energetically studied as a next-generation lithium ion positive electrode material. Since the true density of LiFePO 4 is lower than that of a positive electrode material (such as lithium cobaltate) currently used in lithium ion batteries, the need for higher density is even higher. In the present invention, by adding carbon fibers, it is possible to suppress a decrease in electrolytic solution permeability. In addition, LiFePO 4 has low conductivity, and it can be said that efficient combination with a carbon fiber-based conductive material is essential.

正極活物質の平均一次粒子径は特に限定されないが、通常0.1〜50μmが好ましく、0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ25〜30μmの粒子群の占める体積が、全体積の18%以下であることがさらに好ましい。比表面積は特に限定されないが、BET法で0.01〜50m2/gが好ましく、特に0.2〜10m2/gが好ましい。 The average primary particle size of the positive electrode active material is not particularly limited, but is usually preferably 0.1 to 50 μm, and the volume of particles of 0.5 to 30 μm is preferably 95% or more. More preferably, the volume occupied by particle groups having a particle size of 3 μm or less is 18% or less of the total volume, and the volume occupied by particle groups of 25 to 30 μm is 18% or less of the total volume. Although the specific surface area is not particularly limited, but is preferably 0.01 to 50 m 2 / g by the BET method, in particular 0.2 to 10 m 2 / g are preferred.

3.電極作製
本発明のリチウム電池用正極の製造方法は特に限定されないが、一般的には前述した正極活物質材料、炭素繊維及びバインダー材料を混合後、金属集電体等の担持基材上に塗布後、乾燥、プレスすることにより製造することができる。
各材料の混合方法としては、(1)正極活物質材料(場合によってはカーボンブラック等の導電助剤を含む。以下同様)と炭素繊維とバインダー材料を一度に混合する方法、(2)正極活物質材料と炭素繊維を混合後、バインダー材料を混合する方法、(3)正極活物質材料とバインダーを混合後、炭素繊維を混合する方法、(4)炭素繊維とバインダー材料を混合後、正極活物質材料を混合する方法等が挙げられる。
3. Electrode production The method for producing a positive electrode for a lithium battery according to the present invention is not particularly limited. Generally, after mixing the above-described positive electrode active material, carbon fiber, and binder material, it is applied onto a supporting substrate such as a metal current collector. Thereafter, it can be produced by drying and pressing.
As a method of mixing each material, (1) a method of mixing a positive electrode active material (including a conductive auxiliary such as carbon black in some cases; the same applies hereinafter), carbon fiber and a binder material at a time, and (2) a positive electrode active material. A method of mixing the material and carbon fiber and then mixing the binder material, (3) A method of mixing the positive electrode active material and the binder, and then mixing the carbon fiber, (4) After mixing the carbon fiber and the binder material, Examples include a method of mixing substance materials.

各々の材料種や組成比、組み合わせ等により電極内の分散状態が異なり、電極抵抗、吸液性等に影響してくるので、条件によって最適な混合法を選択する必要がある。   The dispersion state in the electrode differs depending on the material type, composition ratio, combination, etc., and affects electrode resistance, liquid absorbency, etc., so it is necessary to select an optimal mixing method depending on conditions.

正極活物質材料と炭素繊維を混合する方法は、例えばミキサー等で撹拌すればよい。撹拌方法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等の装置を使用することができる。   The method of mixing the positive electrode active material and the carbon fiber may be agitated with, for example, a mixer. Although the stirring method is not particularly limited, for example, apparatuses such as a ribbon mixer, a screw type kneader, a spartan luzer, a redige mixer, a planetary mixer, and a universal mixer can be used.

正極活物質、炭素繊維またはこれらの混合物にバインダー材料を混合する方法は特に限定されないが、乾式で混合後、溶媒で混練りする方法や、バインダー材料を溶媒で希釈して電極活物質、炭素繊維またはこれらの混合物負極材料と混練りする方法が挙げられる。これら溶媒入り混合物を集電体(基材)上に塗布し、シート化するが、溶媒入り混合物の粘度調整のために、さらにCMC(sodium carboxymethyl cellulose)やポリエチレングリコール等のポリマーのような増粘材を添加してもよい。   The method of mixing the binder material into the positive electrode active material, carbon fiber or a mixture thereof is not particularly limited, but the method of kneading with a solvent after mixing in a dry method, or the method of mixing the binder material with a solvent and diluting the binder material with a solvent, Or the method of knead | mixing with these negative electrode materials is mentioned. These solvent-containing mixtures are coated on a current collector (base material) and formed into a sheet. In order to adjust the viscosity of the solvent-containing mixture, a thickening agent such as a polymer such as CMC (sodium carboxymethyl cellulose) or polyethylene glycol is used. Materials may be added.

バインダー材料については、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマーや、スチレンブタジエンラバー(SBR)等のゴム系等公知のものが使用できる。溶媒には、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーの場合はトルエン、N−メチルピロリドン、アセトン等、SBRの場合は水等、公知のものが使用できる。   As the binder material, known materials such as fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based materials such as styrene butadiene rubber (SBR) can be used. As the solvent, known solvents suitable for each binder, for example, toluene, N-methylpyrrolidone, acetone and the like in the case of a fluorine-based polymer, and water and the like in the case of SBR can be used.

バインダーの使用量は、正極活物質材料を100質量部とした場合、0.5〜20質量部が適当であるが、特に1〜15質量部程度が好ましい。
溶媒添加後の混錬り法は特に限定されないが、例えば、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等公知の装置が使用できる。
When the positive electrode active material is 100 parts by mass, the amount of the binder used is suitably 0.5 to 20 parts by mass, particularly preferably about 1 to 15 parts by mass.
The kneading method after the addition of the solvent is not particularly limited. For example, a known apparatus such as a ribbon mixer, a screw type kneader, a spartan luzer, a redige mixer, a planetary mixer, a universal mixer can be used.

以上の混練りした混合物を集電体に塗布することにより本発明の正極シートを作製できる。
混錬り後の集電体への塗布は、公知の方法により実施できる。例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
集電体としては、アルミニウム、ステンレス、ニッケル、チタン及びそれらの合金、白金、カーボンシートなど公知の材料が使用できる。
The positive electrode sheet of the present invention can be produced by applying the kneaded mixture to a current collector.
Application | coating to the electrical power collector after kneading can be implemented by a well-known method. For example, after applying with a doctor blade or a bar coater, a method of forming with a roll press or the like can be mentioned.
As the current collector, known materials such as aluminum, stainless steel, nickel, titanium and alloys thereof, platinum, and a carbon sheet can be used.

これら塗布した電極シートを公知の方法で乾燥後、ロールプレス、加圧プレス等公知の方法で、正極中の正極活物質の体積割合が80%以上となるように調整しつつ、所望の厚み、密度に成形する。
プレス圧力は、正極中の正極活物質の体積割合が70%以上に調整できる範囲で決めればよい。使用する正極活物質材料によるので一概に言えないが、通常は1ton/cm2以上の加圧を行う。また、電極シート厚みは目的とする電池の形状によって異なり、特に限定されないが、通常は0.5〜1000μm、好ましくは5〜500μmに成形される。
After drying these coated electrode sheets by a known method, a desired thickness while adjusting the volume ratio of the positive electrode active material in the positive electrode to 80% or more by a known method such as a roll press or a pressure press, Mold to density.
The press pressure may be determined within a range in which the volume ratio of the positive electrode active material in the positive electrode can be adjusted to 70% or more. Since it depends on the positive electrode active material used, it cannot be generally stated, but usually a pressure of 1 ton / cm 2 or more is applied. The thickness of the electrode sheet varies depending on the shape of the target battery and is not particularly limited, but is usually 0.5 to 1000 μm, preferably 5 to 500 μm.

4.電池作製
本発明の電池は、本発明の炭素繊維を含有する正極を用いたものであり、公知の方法により製造することができる。特に、炭素繊維を含有する高密度正極は、リチウムイオン電池やリチウムポリマー電池等の高エネルギー密度の非水系二次電池の正極として好ましく用いることができる。リチウムイオン電池及び/またはリチウムポリマー電池の代表的な製造方法を以下に述べる。
4). Battery Production The battery of the present invention uses the positive electrode containing the carbon fiber of the present invention, and can be produced by a known method. In particular, a high-density positive electrode containing carbon fiber can be preferably used as a positive electrode of a high energy density non-aqueous secondary battery such as a lithium ion battery or a lithium polymer battery. A typical method for producing a lithium ion battery and / or a lithium polymer battery will be described below.

上記で作製した正極シートを所望の形状に加工し、黒鉛負極シートやリチウム金属負極シートと組み合わせて、正極シート/セパレータ/負極シートに積層し、正極と負極が触れないようにし、コイン型、角型、円筒型、シート型等の容器の中に収納する。積層、収納で水分や酸素を吸着した可能性がある場合はこのまま減圧及びまたは低露点(−50℃以下)不活性雰囲気中で再度乾燥後、低露点の不活性雰囲気内に移す。ついで電解液を注入し容器を封印することにより、リチウムイオン電池またはリチウムポリマー電池が作製できる。   The positive electrode sheet prepared above is processed into a desired shape, combined with a graphite negative electrode sheet or a lithium metal negative electrode sheet, and laminated on the positive electrode sheet / separator / negative electrode sheet so that the positive electrode and the negative electrode are not in contact with each other. Store in a container such as a mold, cylinder, or sheet mold. If there is a possibility that moisture or oxygen has been adsorbed during stacking and storage, it is dried again in an inert atmosphere under reduced pressure and / or a low dew point (-50 ° C. or lower), and then transferred to an inert atmosphere with a low dew point. Subsequently, a lithium ion battery or a lithium polymer battery can be produced by injecting an electrolytic solution and sealing the container.

セパレータは公知のものが使用できるが、薄くて強度が高いという観点から、ポリエチレンやポリプロピレン性の多孔性のマイクロポーラスフィルムが好ましい。多孔度は、イオン伝導という観点から高い方がよいが、高すぎると強度の低下や正極と負極の短絡の原因となるので、通常は30〜90%、好ましくは50〜80%で用いられる。また厚みもイオン伝導、電池容量という観点から薄い方がよいが、薄すぎると強度の低下や正極と負極の短絡の原因となるので、通常は5〜100μm、好ましくは5〜50μmで用いられる。これらマイクロポーラスフィルムは二種以上の併用や不織布等の他のセパレータと併用して用いることができる。   A known separator can be used, but from the viewpoint of being thin and having high strength, a polyethylene or polypropylene porous microporous film is preferable. The porosity is preferably as high as possible from the viewpoint of ionic conduction, but if it is too high, it will cause a decrease in strength and a short circuit between the positive electrode and the negative electrode, so it is usually used at 30 to 90%, preferably 50 to 80%. The thickness is preferably thin from the viewpoints of ionic conduction and battery capacity, but if it is too thin, it causes a decrease in strength and a short circuit between the positive electrode and the negative electrode, and therefore it is usually 5-100 μm, preferably 5-50 μm. These microporous films can be used in combination of two or more kinds or other separators such as a nonwoven fabric.

非水系二次電池、特にリチウムイオン電池及び/またはリチウムポリマー電池における電解液及び電解質は、公知の有機電解液、無機固体電解質、高分子固体電解質が使用できる。   As an electrolyte and an electrolyte in a non-aqueous secondary battery, particularly a lithium ion battery and / or a lithium polymer battery, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used.

有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2−メトキシテトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ−ブチロラクトン;N−メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。   Examples of organic electrolytes include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, and ethylene glycol phenyl ether. Ether; formamide, N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethyl Acetamide, N, N-dimethylpropionamide, hexamethylphosphorylamide Amides such as dimethyl sulfoxide, sulfolane, etc .; dialkyl ketones such as methyl ethyl ketone, methyl isobutyl ketone; ethylene oxide, propylene oxide, tetrahydrofuran, 2-methoxytetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolane, etc. Cyclic ethers; carbonates such as ethylene carbonate and propylene carbonate; γ-butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred. Furthermore, preferably ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, vinylene carbonate, esters such as γ-butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, Acetonitrile, tetrahydrofuran, etc. are mentioned, Especially preferably, carbonate type nonaqueous solvents, such as ethylene carbonate and propylene carbonate, can be used. These solvents can be used alone or in admixture of two or more.

これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。 Lithium salts are used as solutes (electrolytes) for these solvents. Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.

高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
Examples of the polymer solid electrolyte include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative.
There are no restrictions on the selection of members necessary for battery configuration other than those described above.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらになんら制限されるものではない。
下記例で用いた物性等は以下の方法により測定した。
The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.
The physical properties used in the following examples were measured by the following methods.

1.平均粒子径:
レーザー回析散乱式粒度分布測定装置マイクロトラックHRA(日機装(株)製)を用いて測定した。
1. Average particle size:
It measured using the laser diffraction scattering type particle size distribution measuring apparatus Microtrac HRA (made by Nikkiso Co., Ltd.).

2.比表面積:
比表面積測定装置NOVA−1200(ユアサアイオニクス(株)製)を用いて、一般的な比表面積の測定方法であるBET法により測定した。
2. Specific surface area:
Using a specific surface area measuring device NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), the measurement was performed by the BET method, which is a general method for measuring the specific surface area.

3.電池評価方法:
(1)炭素繊維含有正極の作製
正極活物質、電気化学工業(株)製アセチレンブラック(以下、ABと略すことがある。)、及び炭素繊維を、所定の組成比で乾式、羽根つき高速小形ミキサー(IKミキサー)で10000rpmで30秒×2回混合し、正極材混合物を調製した。これに呉羽化学工業(株)製KFポリマーL#1320(ポリビニリデンフルオライド(以下、PVDFと略すことがある。)を12質量%含有したN−メチルピロリドン(以下、NMPと略すことがある。)溶液)を、正極材混合物とPVDFの質量比が97:3になるように加え、プラネタリーミキサーにて混練りし、正極混練りペーストとした。
3. Battery evaluation method:
(1) Production of carbon fiber-containing positive electrode A positive electrode active material, acetylene black (hereinafter sometimes abbreviated as AB) manufactured by Denki Kagaku Kogyo Co., Ltd., and carbon fiber are dried at a predetermined composition ratio, high-speed small bladed A positive electrode material mixture was prepared by mixing at 10000 rpm for 30 seconds × 2 times with a mixer (IK mixer). This may be abbreviated as N-methylpyrrolidone (hereinafter, abbreviated as NMP) containing 12% by mass of KF polymer L # 1320 (polyvinylidene fluoride (hereinafter abbreviated as PVDF)) manufactured by Kureha Chemical Industry Co., Ltd. ) Solution) was added so that the mass ratio of the positive electrode material mixture and PVDF was 97: 3, and kneaded with a planetary mixer to obtain a positive electrode kneaded paste.

ついで、上記正極混練りペーストにNMPをさらに加え、粘度を調整した後、正極用として昭和電工(株)製圧延アルミニウム箔(厚み25μm)に、それぞれドクターブレードを用いて所定の厚みに塗布した。これを120℃で、1時間真空乾燥し、18mmΦに打ち抜いた。さらに、打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102〜3×102N/mm2(1×103〜3×103kg/cm2)となるようにプレスし、厚さ約100μmで、所望の電極密度とした。その後、真空乾燥器で120℃、12時間乾燥し、評価用とした。 Next, NMP was further added to the positive electrode kneaded paste to adjust the viscosity, and then applied to a rolled aluminum foil (thickness 25 μm) manufactured by Showa Denko KK to a predetermined thickness using a doctor blade. This was vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mmΦ. Further, the punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 × 10 2 to 3 × 10 2 N / mm 2 (1 × 10 3 to 3 × 10 3 kg / cm 2 ) with respect to the electrode. To a desired electrode density with a thickness of about 100 μm. Then, it dried for 120 hours and 120 degreeC with the vacuum dryer, and it was for evaluation.

(2)メソカーボンマイクロビーズ(以下、MCMBと略すことがある。)黒鉛負極の作製
上記(1)で作製した炭素繊維含有正極と組み合わせる負極を以下の方法で作製した。大阪ガス(株)製メソカーボンマイクロビーズ黒鉛(平均粒径17μm、比表面積1.8m2/g)、電気化学工業(株)製アセチレンブラック(AB)を質量比95:5で乾式、羽根つき高速小形ミキサー(IKミキサー)で10000rpmで30秒×2回混合し、負極材混合物を調製した。これに呉羽化学工業(株)製KFポリマーL#9210(ポリビニリデンフルオライド(PVDF)を10質量%含有したN−メチルピロリドン(NMP)溶液)を負極材混合物とPVDFの質量比が95:5になるように加え、プラネタリーミキサーにて混練りし、負極混練りペーストとした。
(2) Mesocarbon microbeads (hereinafter sometimes abbreviated as MCMB) Production of graphite negative electrode A negative electrode combined with the carbon fiber-containing positive electrode produced in (1) above was produced by the following method. Osaka Gas Co., Ltd. Mesocarbon Microbead Graphite (average particle size 17 μm, specific surface area 1.8 m 2 / g), Denki Kagaku Kogyo Co., Ltd. acetylene black (AB) dry at a mass ratio of 95: 5, with blades The mixture was mixed at 10000 rpm for 30 seconds × 2 times with a high-speed small mixer (IK mixer) to prepare a negative electrode material mixture. To this, KF polymer L # 9210 (N-methylpyrrolidone (NMP) solution containing 10% by weight of polyvinylidene fluoride (PVDF)) manufactured by Kureha Chemical Industry Co., Ltd. has a mass ratio of the negative electrode material mixture to PVDF of 95: 5. In addition, the mixture was kneaded with a planetary mixer to obtain a negative electrode kneaded paste.

上記の負極混練りペーストにNMPをさらに加え、粘度を調整した後、日本製箔(株)製圧延銅箔(厚み20μm)に、それぞれドクターブレードを用いて所定の厚みに塗布した。これを120℃で、1時間真空乾燥し、18mmΦに打ち抜いた。さらに、打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102〜3×102N/mm2(1×103〜3×103kg/cm2)となるようにプレスした。その後、真空乾燥器で120℃、12時間乾燥し、評価用とした。厚さ約100μm、電極密度は約1.5g/cm3であった。 NMP was further added to the negative electrode kneaded paste to adjust the viscosity, and then applied to a rolled copper foil (thickness 20 μm) manufactured by Nippon Foil Co., Ltd. to a predetermined thickness using a doctor blade. This was vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mmΦ. Further, the punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 × 10 2 to 3 × 10 2 N / mm 2 (1 × 10 3 to 3 × 10 3 kg / cm 2 ) with respect to the electrode. It pressed so that it might become. Then, it dried for 120 hours and 120 degreeC with the vacuum dryer, and it was for evaluation. The thickness was about 100 μm, and the electrode density was about 1.5 g / cm 3 .

(3)電解液浸透時間評価
25℃の大気中で、上記(1)で作製した正極(18mmΦ)上に25℃の大気中で、各種電解液とほぼ同等の粘度を有し、揮発性の低いプロピレンカーボネート(以下、PCと略すことがある。)を電解液としてマイクロシリンジで3μl滴下し、PCが電極内に浸透する時間を測定した。測定は三回ずつ行い、その平均値を評価値とした。
(3) Evaluation of electrolyte penetration time In the atmosphere at 25 ° C., the positive electrode (18 mmΦ) prepared in (1) above has a viscosity almost equal to that of various electrolytes in the atmosphere at 25 ° C. and is volatile. 3 μl of low propylene carbonate (hereinafter sometimes abbreviated as “PC”) was dropped as an electrolyte with a microsyringe, and the time required for the PC to penetrate into the electrode was measured. The measurement was performed three times, and the average value was used as the evaluation value.

(4)リチウムイオン電池試験セル作製
下記のようにして3極セルを作製した。なお以下の操作は露点−80℃以下の乾燥アルゴン雰囲気下で実施した。
ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製したアルミニウム箔付き正極と上記(3)で作製した銅箔付き負極をセパレータ(ポリプロピレン製マイクロポーラスフィルム(セルガード2400)、25μm)で挟み込んで積層した。さらにリファレンス用の金属リチウム箔(50μm)を同様に積層した。これに電解液を加えて試験用セルとした。
(4) Production of lithium ion battery test cell A triode cell was produced as follows. The following operation was carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
In a polypropylene screw-attached lid cell (inner diameter: about 18 mm), the positive electrode with aluminum foil prepared in (2) above and the negative electrode with copper foil prepared in (3) above were separated by a separator (polypropylene microporous film (cell guard). 2400) and 25 μm). Further, a reference metal lithium foil (50 μm) was laminated in the same manner. An electrolytic solution was added thereto to obtain a test cell.

(5)電解液
エチレンカーボネート(以下、ECと略すことがある。)8質量部及びメチルエチルカーボネート(以下、MECと略すことがある。)12質量部の混合品で、電解質としてLiPF6を1.2モル/リットル溶解した。
(5) the electrolyte of ethylene carbonate (hereinafter sometimes abbreviated as EC.) 8 parts by mass and methyl ethyl carbonate (hereinafter, may be abbreviated to MEC.) With a mixed product of 12 parts by weight, the LiPF 6 1 as an electrolyte .2 mol / liter dissolved.

(6)充放電サイクル試験
電流密度0.6mA/cm2(0.3C相当)で定電流定電圧充放電試験を行った。
充電はレストポテンシャルから4.2Vまで0.6mA/cm2でCC(コンスタントカレント:定電流)充電を行った。次に4.2VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させた。
放電は0.6mA/cm2(0.3C相当)でCC放電を行い、電圧2.7Vでカットオフした。
(6) Charge / Discharge Cycle Test A constant current / constant voltage charge / discharge test was conducted at a current density of 0.6 mA / cm 2 (equivalent to 0.3 C).
Charging was performed by CC (constant current: constant current) at 0.6 mA / cm 2 from the rest potential to 4.2 V. Next, it switched to CV (constant volt | bolt: constant voltage) charge by 4.2V, and stopped when the electric current value fell to 25.4 microamperes.
As the discharge, CC discharge was performed at 0.6 mA / cm 2 (corresponding to 0.3 C), and cut off at a voltage of 2.7 V.

4.正極中の正極活物質の体積割合(%):
下記式に基づいて算出した。

Figure 0004031009
電極体積は、電極の寸法より算出した。電極中の正極活物質質量は、正極活物質、炭素材料、バインダー材料の混合比から求めた正極活物質質量%を実測した電極質量に乗じて算出した。
4). Volume ratio (%) of positive electrode active material in positive electrode:
It calculated based on the following formula.
Figure 0004031009
The electrode volume was calculated from the dimensions of the electrode. The mass of the positive electrode active material in the electrode was calculated by multiplying the measured electrode mass by the mass% of the positive electrode active material obtained from the mixing ratio of the positive electrode active material, the carbon material, and the binder material.

実施例1:各種電極の電解液浸透性評価
以下に示す正極活物質材料及び炭素繊維を用い、上記3(1)〜(2)の方法で表1に示す12種のLiCoO2系正極及び6種のLi2Mn24系正極を作製し、上記3(3)の方法でPC浸透時間を測定した。電極の組成、密度及び結果を表1に示す。
Example 1 Electrolyte Permeability Evaluation of Various Electrodes Using the positive electrode active material and carbon fiber shown below, the 12 types of LiCoO 2 positive electrodes shown in Table 1 and 6 by the above methods 3 (1) to (2) and 6 A seed Li 2 Mn 2 O 4 positive electrode was prepared, and the PC permeation time was measured by the method 3 (3) above. The composition, density and results of the electrodes are shown in Table 1.

<正極活物質材料>
LiCoO2:日本化学工業(株)製、平均粒径:20μm、
Li2Mn24:三井金属鉱業(株)製、平均粒径:17μm。
<炭素繊維>
CF:気相成長黒鉛繊維、
平均繊維径(SEM画像解析より):150nm、
平均繊維長(SEM画像解析より):8μm、
平均アスペクト比:53、
分岐度(SEM画像解析より繊維長1μm当たりの分岐数を算出;以下同様)
:約0.1個/μm、
X線C0:0.6767nm、Lc:48.0nm。
CF−S:気相成長黒鉛繊維、
平均繊維径(SEM画像解析より):120nm、
平均繊維長(SEM画像解析より):12μm、
平均アスペクト比:100、
分岐度:約0.02個/μm、
X線C0:0.6767nm、Lc:48.0nm。
NF:気相成長黒鉛ナノファイバー、
平均繊維径(SEM画像解析より):80nm、
平均繊維長(SEM画像解析より):6μm、
平均アスペクト比:75、
分岐度:0.1個/μm、
X線C0:0.6801nm、Lc:35.0nm。
NT:気相成長黒鉛ナノチューブ、
平均繊維径(SEM画像解析より):25nm、
平均繊維長(SEM画像解析より):5μm、
平均アスペクト比:200、
分岐度:0.1個/μm、
X線C0:0.6898nm、Lc:30.0nm。
<Positive electrode active material>
LiCoO 2 : manufactured by Nippon Chemical Industry Co., Ltd., average particle size: 20 μm,
Li 2 Mn 2 O 4 : Mitsui Metal Mining Co., Ltd. average particle size: 17 μm.
<Carbon fiber>
CF: vapor-grown graphite fiber,
Average fiber diameter (from SEM image analysis): 150 nm,
Average fiber length (from SEM image analysis): 8 μm,
Average aspect ratio: 53,
Branching degree (calculated from SEM image analysis, the number of branches per 1 μm fiber length; the same applies hereinafter)
: About 0.1 / μm,
X-ray C 0: 0.6767nm, Lc: 48.0nm .
CF-S: Vapor growth graphite fiber,
Average fiber diameter (from SEM image analysis): 120 nm,
Average fiber length (from SEM image analysis): 12 μm,
Average aspect ratio: 100,
Branching degree: about 0.02 piece / μm,
X-ray C 0: 0.6767nm, Lc: 48.0nm .
NF: Vapor growth graphite nanofiber,
Average fiber diameter (from SEM image analysis): 80 nm,
Average fiber length (from SEM image analysis): 6 μm,
Average aspect ratio: 75,
Branching degree: 0.1 / μm,
X-ray C 0: 0.6801nm, Lc: 35.0nm .
NT: Vapor growth graphite nanotube,
Average fiber diameter (from SEM image analysis): 25 nm,
Average fiber length (from SEM image analysis): 5 μm,
Average aspect ratio: 200,
Branching degree: 0.1 / μm,
X-ray C 0: 0.6898nm, Lc: 30.0nm .

Figure 0004031009
Figure 0004031009

表1から明らかなように、炭素繊維を添加することにより、正極材の電解液浸透時間は炭素繊維未添加品に比較して大幅に短縮されている。具体的には、LiCoO2正極において炭素繊維未添加品を基準とした浸透時間の短縮度合いを比較すると、浸透時間が20〜31%にまで短縮されている。LiMn24を用いた場合も浸透時間が短縮されている。 As is apparent from Table 1, by adding carbon fiber, the electrolyte solution permeation time of the positive electrode material is significantly shortened as compared with the product without carbon fiber. Specifically, when the degree of reduction of the penetration time based on the non-added carbon fiber in the LiCoO 2 positive electrode is compared, the penetration time is reduced to 20 to 31%. The penetration time is also shortened when LiMn 2 O 4 is used.

実施例2:リチウムイオン電池試験セルの充放電サイクル特性
実施例1と同様に調製した正極を前記の負極と組み合わせ、前記の電池評価方法に従い、サイクル特性の評価を行った。結果を表2に示す。
Example 2: Charging / discharging cycle characteristics of a lithium ion battery test cell A positive electrode prepared in the same manner as in Example 1 was combined with the negative electrode, and the cycle characteristics were evaluated according to the battery evaluation method. The results are shown in Table 2.

Figure 0004031009
Figure 0004031009

表2から明らかなように、炭素繊維未添加品は電極密度を上げることによりサイクル特性は著しく低下する。一方、各種炭素繊維を添加した電極は電極密度を上げることにより、体積あたりの容量(体積容量密度)は向上し、サイクル特性低下もあまり起こっていない。   As is apparent from Table 2, the cycle characteristics of the carbon fiber-free product are significantly reduced by increasing the electrode density. On the other hand, the electrode to which various carbon fibers are added increases the capacity per volume (volume capacity density) by increasing the electrode density, and the cycle characteristics do not deteriorate much.

Claims (20)

リチウムイオンを吸蔵放出可能な活物質、炭素系導電助剤、及びバインダーからなるリチウム電池用正極であって、炭素系導電助剤の添加量が正極全体の0.1〜2質量%で、かつ炭素系導電助剤に平均繊維径1〜200nmの炭素繊維が含まれており、炭素繊維が、2000℃以上で熱処理された黒鉛系炭素繊維であり、真密度から計算したリチウムイオンを吸蔵放出可能な活物質の体積が正極体積中で70%以上であることを特徴とするリチウム系電池用正極。 A positive electrode for a lithium battery comprising an active material capable of occluding and releasing lithium ions, a carbon-based conductive aid, and a binder, wherein the amount of carbon-based conductive aid added is 0.1 to 2 mass% of the total positive electrode, and Carbon-based conductive aid contains carbon fibers with an average fiber diameter of 1 to 200 nm, and the carbon fibers are graphite-based carbon fibers that have been heat-treated at 2000 ° C. or higher, and can occlude and release lithium ions calculated from true density. A positive electrode for a lithium-based battery, wherein the volume of the active material is 70% or more in the positive electrode volume . 炭素繊維中の金属不純物の総量が30ppm以下である請求項1に記載のリチウム系電池用正極。   The positive electrode for a lithium-based battery according to claim 1, wherein the total amount of metal impurities in the carbon fiber is 30 ppm or less. 炭素繊維が、ホウ素を0.1〜100000ppm含有する黒鉛系炭素繊維である請求項1または2に記載のリチウム系電池用正極。 The positive electrode for a lithium-based battery according to claim 1 or 2 , wherein the carbon fiber is a graphite-based carbon fiber containing 0.1 to 100,000 ppm of boron. 炭素繊維の平均アスペクト比が、50〜15000である請求項1〜のいずれかに記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to any one of claims 1 to 3 , wherein the carbon fiber has an average aspect ratio of 50 to 15000. 炭素繊維の平均繊維径が10〜200nmである請求項1〜のいずれかに記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to any one of claims 1 to 4 , wherein the carbon fiber has an average fiber diameter of 10 to 200 nm. 炭素繊維が、内部に中空構造を有する請求項1〜のいずれかに記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to any one of claims 1 to 5 , wherein the carbon fiber has a hollow structure therein. 炭素繊維が、分岐状炭素繊維を含む請求項1〜のいずれかに記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to any one of claims 1 to 6 , wherein the carbon fiber includes a branched carbon fiber. 活物質が、リチウムイオンを吸蔵放出可能な金属酸化物系化合物である請求項1〜のいずれかに記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to any one of claims 1 to 7 , wherein the active material is a metal oxide compound capable of occluding and releasing lithium ions. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物の平均一次粒子径が0.5〜30μmである請求項に記載のリチウム系電池用正極。 The positive electrode for a lithium battery according to claim 8 , wherein an average primary particle diameter of the metal oxide compound which is an active material capable of occluding and releasing lithium ions is 0.5 to 30 µm. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト系酸化物が60質量%以上含まれ、電極密度が3.7g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Metal oxide-based compounds cobalt oxide in the lithium ion is capable of absorbing and releasing active material contained more than 60 wt%, the electrode density of claim 8 or 9 is 3.7 g / cm 3 or more Positive electrode for lithium batteries. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にマンガン系酸化物が60質量%以上含まれ、電極密度が3.2g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Metal oxide-based compounds, manganese-based oxide in a lithium ion is capable of absorbing and releasing active material contained more than 60 wt%, the electrode density of claim 8 or 9 is 3.2 g / cm 3 or more Positive electrode for lithium batteries. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト系酸化物とマンガン系酸化物の混合物が80質量%以上含まれ、電極密度が3.5g/cm3以上である請求項またはに記載のリチウム系電池用正極。 A metal oxide compound which is an active material capable of occluding and releasing lithium ions contains a mixture of cobalt oxide and manganese oxide in an amount of 80% by mass or more, and the electrode density is 3.5 g / cm 3 or more. Item 10. The positive electrode for a lithium battery according to Item 8 or 9 . リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にニッケル系酸化物が60質量%以上含まれ、電極密度が3.5g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Nickel oxide contains 60 mass% or more of lithium ion in the metal oxide-based compound is capable of absorbing and releasing active material, the electrode density of claim 8 or 9 is 3.5 g / cm 3 or more Positive electrode for lithium batteries. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・ニッケル系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Metal oxide-based compounds cobalt-nickel-based composite oxide in a lithium ion is capable of absorbing and releasing active material contained 60% by mass or more, according to claim 8 or 9 electrode density of 3.6 g / cm 3 or more A positive electrode for a lithium-based battery as described in 1. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・マンガン系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Metal oxide-based compounds cobalt-manganese-based composite oxide in a lithium ion is capable of absorbing and releasing active material contained 60% by mass or more, according to claim 8 or 9 electrode density of 3.6 g / cm 3 or more A positive electrode for a lithium-based battery as described in 1. リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中にコバルト・ニッケル・マンガン系複合酸化物が60質量%以上含まれ、電極密度が3.6g/cm3以上である請求項またはに記載のリチウム系電池用正極。 Metal oxide-based compounds of cobalt-nickel-manganese-based composite oxide in a lithium ion is capable of absorbing and releasing active material contained 60% by mass or more, according to claim 8 electrode density of 3.6 g / cm 3 or more Or the positive electrode for a lithium battery according to 9 . リチウムイオンを吸蔵放出可能な活物質である金属酸化物系化合物中に鉄オリビン酸系化合物が60質量%以上含まれ請求項またはに記載のリチウム系電池用正極。 Positive electrode for lithium batteries according to the lithium ion in the metal oxide-based compound according to claim 8 or 9 iron olivine acid compound is Ru contains more than 60% by mass is capable of absorbing and releasing active material. 請求項1〜17のいずれかに記載のリチウム系電池用正極を構成要素として含むリチウム系電池。 Lithium battery comprising as a component a positive electrode for lithium battery according to any one of claims 1 to 17. 請求項1〜17のいずれかに記載のリチウム系電池用正極を構成要素として含むリチウム系二次電池。 Lithium secondary battery comprising as a component a positive electrode for lithium battery according to any one of claims 1 to 17. 非水系電解液及び/または非水系ポリマー電解質を用い、前記非水系電解液及び/または非水系ポリマー電解質に用いられる非水系溶媒にエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、及びビニレンカーボネートからなる群から選ばれる少なくとも1種が含まれる請求項19に記載のリチウム系二次電池。 A non-aqueous electrolyte and / or a non-aqueous polymer electrolyte is used, and ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, butylene are used as the non-aqueous solvent used in the non-aqueous electrolyte and / or non-aqueous polymer electrolyte. The lithium secondary battery according to claim 19 , comprising at least one selected from the group consisting of carbonate and vinylene carbonate.
JP2005233843A 2004-08-16 2005-08-12 Positive electrode for lithium battery and lithium battery using the same Active JP4031009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233843A JP4031009B2 (en) 2004-08-16 2005-08-12 Positive electrode for lithium battery and lithium battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004236575 2004-08-16
JP2005233843A JP4031009B2 (en) 2004-08-16 2005-08-12 Positive electrode for lithium battery and lithium battery using the same

Publications (3)

Publication Number Publication Date
JP2006086116A JP2006086116A (en) 2006-03-30
JP2006086116A5 JP2006086116A5 (en) 2007-02-22
JP4031009B2 true JP4031009B2 (en) 2008-01-09

Family

ID=36164409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233843A Active JP4031009B2 (en) 2004-08-16 2005-08-12 Positive electrode for lithium battery and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP4031009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380885B2 (en) 2019-09-13 2022-07-05 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11462730B2 (en) 2019-09-13 2022-10-04 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888411B2 (en) * 2008-02-13 2012-02-29 ソニー株式会社 Positive electrode and non-aqueous electrolyte battery
JP5098146B2 (en) * 2005-10-14 2012-12-12 株式会社Gsユアサ Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
CN101427403B (en) 2006-04-21 2011-03-23 住友化学株式会社 Positive electrode active material powder
JP2008041502A (en) * 2006-08-08 2008-02-21 Sony Corp Positive electrode for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous secondary battery
US20080248375A1 (en) 2007-03-26 2008-10-09 Cintra George M Lithium secondary batteries
EP2131422B1 (en) * 2007-03-29 2020-05-27 Mitsubishi Materials Corporation Positive electrode-forming material, component thereof, method for producing the same, and rechargeable lithium-ion battery
US9023526B2 (en) 2010-06-13 2015-05-05 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101309150B1 (en) * 2010-06-13 2013-09-17 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2012086186A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
TWI565128B (en) 2011-02-16 2017-01-01 Showa Denko Kk Lithium battery electrode and lithium battery
WO2012124256A1 (en) * 2011-03-15 2012-09-20 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode using same, and method for producing positive electrode active material
US9105928B2 (en) 2011-11-25 2015-08-11 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP5924925B2 (en) * 2011-12-16 2016-05-25 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive electrode for secondary battery and secondary battery
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery
US9647264B2 (en) 2012-09-04 2017-05-09 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
PL2950375T3 (en) 2013-01-25 2020-07-27 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
US11205773B2 (en) 2014-03-28 2021-12-21 Teijin Limited Fibrous carbon-containing electrode mixture layer for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries comprising same, and nonaqueous electrolyte secondary battery
JP6237546B2 (en) * 2014-09-11 2017-11-29 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR102101006B1 (en) * 2015-12-10 2020-04-14 주식회사 엘지화학 Positive electrode for secondary battery and secondary battery comprising the same
JP2018018883A (en) 2016-07-26 2018-02-01 日本電産株式会社 Electrical equipment
JP7107809B2 (en) * 2018-10-18 2022-07-27 トヨタ自動車株式会社 Positive electrode for secondary battery
JPWO2021172441A1 (en) * 2020-02-28 2021-09-02
JP7362586B2 (en) 2020-09-29 2023-10-17 プライムアースEvエナジー株式会社 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of positive electrode for lithium ion secondary battery
KR20230029985A (en) 2020-10-21 2023-03-03 아사히 가세이 가부시키가이샤 Non-aqueous alkali metal storage element and positive electrode coating solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380885B2 (en) 2019-09-13 2022-07-05 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
US11462730B2 (en) 2019-09-13 2022-10-04 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP2006086116A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4031009B2 (en) Positive electrode for lithium battery and lithium battery using the same
JP3930002B2 (en) High density electrode and battery using the electrode
KR101275049B1 (en) Positive electrode for a lithium battery and lithium battery employing the same
JP4084353B2 (en) Method for producing composition for negative electrode material for lithium battery
KR101183937B1 (en) High density electrode and battery using the electrode
JP4798750B2 (en) High density electrode and battery using the electrode
TWI344714B (en) High density electrode and battery using the electrode
JP3958781B2 (en) Negative electrode for lithium secondary battery, method for producing negative electrode composition, and lithium secondary battery
KR101887952B1 (en) Negative-electrode material for lithium-ion secondary battery
JP2008016456A (en) Negative electrode material for lithium battery and lithium battery
KR101276145B1 (en) Method for producing anode for lithium secondary battery and anode composition, and lithium secondary battery
EP3361537A1 (en) Negative electrode material, negative electrode, and lithium ion secondary battery
JP6614439B2 (en) Negative electrode for power storage element and power storage element
US20150349341A1 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method thereof
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP6607388B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
KR102229459B1 (en) Cathode additives for lithium secondary battery and method for preparing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Ref document number: 4031009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350