JP2014239068A - Positive electrode for lithium battery - Google Patents

Positive electrode for lithium battery Download PDF

Info

Publication number
JP2014239068A
JP2014239068A JP2014166393A JP2014166393A JP2014239068A JP 2014239068 A JP2014239068 A JP 2014239068A JP 2014166393 A JP2014166393 A JP 2014166393A JP 2014166393 A JP2014166393 A JP 2014166393A JP 2014239068 A JP2014239068 A JP 2014239068A
Authority
JP
Japan
Prior art keywords
positive electrode
carbon
active material
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014166393A
Other languages
Japanese (ja)
Inventor
敏郎 平井
Toshiro Hirai
敏郎 平井
辻川 知伸
Tomonobu Tsujikawa
知伸 辻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
NTT Facilities Inc
Original Assignee
Toyama Prefecture
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, NTT Facilities Inc filed Critical Toyama Prefecture
Priority to JP2014166393A priority Critical patent/JP2014239068A/en
Publication of JP2014239068A publication Critical patent/JP2014239068A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode for achieving a lithium battery which is high in specific capacity, excellent in discharge characteristics capable of acquiring large current and less in deterioration.SOLUTION: Since a conductive assistant is obtained by forming and coating carbon on a particle surface of a lithium metal oxide, by a chemical vapor deposition method for forming and coating carbon on a lithium metal oxide particle as a positive electrode active material, a raw material for forming carbon is used as solution of an organic compound, inert gas or low reactive gas is supplied as carrier gas together with the solution of the organic compound to a positive electrode active material particle to have a positive electrode for a lithium battery to form carbon. The solution of the organic compound contains carbon and oxygen in a compound molecule.

Description

本発明は、優れた電池特性を実現できるリチウム電池用正極に関するものである。   The present invention relates to a positive electrode for a lithium battery that can realize excellent battery characteristics.

近年、各種電子機器の小型化、高性能化、携帯型化によって、電池の需要が高まっている。それに応じて電池の改良、開発はますます活発化している。また、電池の新しい適用領域も拡大してきている。   In recent years, the demand for batteries has increased due to the downsizing, high performance, and portability of various electronic devices. Accordingly, the improvement and development of batteries are becoming increasingly active. New application areas for batteries are also expanding.

鉛電池、ニッケルカドミウム電池(以下、Ni/Cd電池と称す)だけであった民生用の二次電池市場に、1990年前後から携帯機器の急速な普及とともに高エネルギー密度であるニッケル水素電池(以下、Ni/MH電池と称す)とリチウムイオン電池(以下、Liイオン電池と称す)が開発され普及して大幅なシェアを占めるに至った(非特許文献1参照)。   The nickel-metal hydride battery (hereinafter referred to as “high energy density”) with the rapid spread of mobile devices since around 1990 in the consumer secondary battery market, which was only a lead battery and a nickel cadmium battery (hereinafter referred to as “Ni / Cd battery”). , Ni / MH batteries) and lithium ion batteries (hereinafter referred to as Li ion batteries) have been developed and spread to occupy a significant share (see Non-Patent Document 1).

しかし、携帯電話やノートPCに代表される電子機器は頻繁なモデルチェンジを繰り返し、そのたびに多機能化、小型化していっそうの高エネルギー密度化を二次電池に要求してきている。   However, electronic devices typified by mobile phones and notebook PCs frequently undergo model changes, and each time they are required to have higher energy density by making them more multifunctional and smaller.

また、近年、京都議定書(COP3)などに謳われているように、環境保全、環境負荷低減、物質エネルギーの有効利用が叫ばれるようになり、順次義務化されてきている。二次電池に関しても、規制対象物質の厳格な管理や当該物質を含む電池の使用規制が求められるようになり、電池構成材料のリサイクル化も要求されるようになってきた(例えば、非特許文献2参照)。こうした環境負荷低減、信頼性の確保のためには、電池劣化の進行を極力抑制し、長寿命化を図って物質エネルギーの有効利用を図ることが重要な対策の一つである。   In recent years, as stipulated by the Kyoto Protocol (COP3) and the like, environmental preservation, reduction of environmental burden, and effective use of material energy have been screamed, and it has become mandatory. Regarding secondary batteries, strict management of regulated substances and restrictions on the use of batteries containing such substances have come to be demanded, and recycling of battery constituent materials has also been demanded (for example, non-patent documents). 2). In order to reduce the environmental impact and ensure reliability, it is one of the important measures to suppress the progress of battery deterioration as much as possible and to make effective use of material energy by extending the life.

電池特性を向上させ、電池劣化を抑制する根本的な方策は高機能の電池材料の探索や開発、およびその改質、電池構成法の最適化などが挙げられる。   Fundamental measures to improve battery characteristics and suppress battery deterioration include exploration and development of high-performance battery materials, modification thereof, and optimization of battery construction methods.

Liイオン電池においても、さらなる高性能化を目指して正極活物質では、LiCoOの改質のほか、LiNiO、スピネルLiMn,Co,Ni,Mn三元系リチウム金属酸化物Li(CoMnNi)O(x+y+z=1)、オリビンLiFePOなどが開発されているし、負極についてもグラファイト材料、Si系やSn系合金などが研究されている(非特許文献3および非特許文献4)。 In the Li-ion battery, in addition to the modification of LiCoO 2 , LiNiO 2 , spinel LiMn 2 O 4 , Co, Ni, Mn ternary lithium metal oxide Li (Co x Mn y Ni z) O 2 (x + y + z = 1), to such an olivine LiFePO 4 has been developed, graphite materials also negative, such as Si-based or Sn-based alloys have been studied (non-Patent Document 3 and non Patent Document 4).

正極に関して言えば、上述したように優れた特性の正極活物質を採用することはもちろんであるが、正極が正極活物質だけでなく十分な導電性を確保するための導電助剤、および、これらの粒子を結着、成形するためのバインダーで構成された多孔質電極であることを考えると、電極反応に伴う電子の移動を円滑に進めるための導電助剤の導電率、粒子形状、正極活物質と導電助剤との混合状態も特性向上、劣化抑制の条件となる。   As for the positive electrode, it is a matter of course that a positive electrode active material having excellent characteristics as described above is adopted, but the positive electrode is not only a positive electrode active material, but also a conductive aid for ensuring sufficient conductivity, and these Considering that it is a porous electrode composed of a binder for binding and forming particles of the conductive agent, the conductivity, particle shape, and positive electrode activity of the conductive aid for smoothly moving the electrons accompanying the electrode reaction The mixed state of the substance and the conductive additive is also a condition for improving characteristics and suppressing deterioration.

しかしながら、現実には比重の大きく異なる正極活物質と導電助剤を混合し適正に分散することは非常に困難であり、必然的に導電助剤の含有量が多くなり電池反応に与る正極活物質の含有量が相対的に減少し、特性が十分に向上しないことがしばしばであった。また、電池の充放電に伴うリチウムの正極活物質内への挿入脱離によって膨張収縮の繰り返しが正極活物質と導電助剤との接触状態を悪化させ電池特性の劣化を促進する(非特許文献5)という課題があった。   However, in reality, it is very difficult to mix and disperse properly a positive electrode active material and a conductive auxiliary agent having a large specific gravity, and the content of the conductive auxiliary agent is inevitably increased, and the positive electrode active material which affects the battery reaction is inevitably increased. Often the content of the material was relatively reduced and the properties were not sufficiently improved. In addition, repetitive expansion and contraction due to insertion / desorption of lithium into / from the positive electrode active material accompanying charging / discharging of the battery deteriorates the contact state between the positive electrode active material and the conductive additive, thereby promoting deterioration of battery characteristics (Non-Patent Document) There was a problem of 5).

オーム社編集部、「特集 飛躍する二次電池の世界PartII」、OHM、2006.02,p.32(2006).OHM Co., Ltd., “Special Feature Leaping Secondary Battery World Part II”, OHM, 2006.02, p. 32 (2006). 社団法人電池工業会ホームページ、http://www.baj.or.jp/recycle/industrial.html,2008.5.26.Japan Battery Manufacturers Association homepage, http: // www. baj. or. jp / recycle / industrial. html, 2008.5.26. 岡田重人、「リチウムイオン二次電池第二版」、第3章、日刊工業新聞社、pp.35−37(2000).Okada Shigeto, “Lithium-ion Secondary Battery Second Edition”, Chapter 3, Nikkan Kogyo Shimbun, pp. 35-37 (2000). 日経エレクトロニクス2005.2.28,pp.34−35(2005).Nikkei Electronics 2005.2.28, pp. 34-35 (2005). 田渕光春、竹内友成、鹿野昌弘、辰巳国昭、「Fe含有Li2MnO3系正極の作製と炭素複合化による高出力化の検討」、電池技術委員会資料19−07、電池技術委員会(2007).Mitsuharu Tabuchi, Tomonari Takeuchi, Masahiro Shikano, Kuniaki Tsuji, “Fabrication of Fe-containing Li2MnO3-based cathode and examination of high output by carbon composite”, Battery Technical Committee Document 19-07, Battery Technical Committee (2007).

本発明の課題は、上記現状を改良し、比容量が大きく、大電流取得が可能な放電特性に優れ、かつ劣化が少ないリチウム電池を実現するための正極を提供することにある。   An object of the present invention is to provide a positive electrode for improving the above-mentioned present situation, realizing a lithium battery having a large specific capacity, excellent discharge characteristics capable of acquiring a large current, and little deterioration.

本発明の一態様に係るリチウム電池用正極は、リチウム塩を溶質として溶解した非水有機溶媒を電解液として含むリチウム電池における、リチウムイオンを電気化学的に挿入脱離しうる正極活物質であるリチウム金属酸化物と、導電助剤の炭素材料と、これらの粒子を結着するためのバインダー材料とで構成されるリチウム電池用正極であって、前記導電助剤は、前記リチウム金属酸化物の粒子表面上に炭素を形成し被覆してなるもので、前記正極活物質であるリチウム金属酸化物粒子上に化学気相成長法によって炭素を形成し被覆する。かかる化学気相成長法が、炭素を形成するための原料を有機化合物の溶液とし、これとともに不活性ガスもしくは低反応性ガスをキャリアガスとして、該正極活物質粒子に供給して該炭素を形成するものであり、前記溶液の有機化合物が、炭素及び酸素を化合物分子に含む。   The positive electrode for a lithium battery according to one embodiment of the present invention is lithium, which is a positive electrode active material capable of electrochemically inserting and desorbing lithium ions in a lithium battery containing a nonaqueous organic solvent in which a lithium salt is dissolved as a solute as an electrolyte. A positive electrode for a lithium battery comprising a metal oxide, a carbon material of a conductive auxiliary agent, and a binder material for binding these particles, wherein the conductive auxiliary agent is a particle of the lithium metal oxide. Carbon is formed and coated on the surface, and carbon is formed and coated on the lithium metal oxide particles, which are the positive electrode active material, by chemical vapor deposition. Such a chemical vapor deposition method forms an organic compound solution as a raw material for forming carbon, and supplies the positive active material particles with an inert gas or a low-reactive gas as a carrier gas to form the carbon. The organic compound in the solution contains carbon and oxygen in the compound molecule.

本発明の一態様では、前記有機化合物の溶液は、メタノール、エタノール、エチレングリコール、アセトン、ギ酸、又は酢酸のいずれかであることとしてよい。   In one embodiment of the present invention, the solution of the organic compound may be any of methanol, ethanol, ethylene glycol, acetone, formic acid, or acetic acid.

本発明の一態様では、前記導電助剤となる炭素の重量割合が前記正極活物質重量に対して4wt%以上20wt%以下であることとしてよい。   In one embodiment of the present invention, the weight ratio of carbon serving as the conductive auxiliary agent may be 4 wt% or more and 20 wt% or less with respect to the weight of the positive electrode active material.

本発明の一態様では、前記リチウム電池用正極に関して、あらかじめ正極を構成するリチウム金属酸化物、導電助剤、およびバインダー材料の重量割合を決めておき、正極活物質であるリチウム金属酸化物粒子上に炭素重量割合が正極活物質重量に対して1.5wt%以上15wt%以下の範囲内となるよう導電助剤となる炭素材料を被覆して形成し、前記リチウム電池用正極は、前記導電助剤が被覆して形成された前記正極活物質と、あらかじめ決定した導電助剤の重量に達するに必要な量の炭素と、前記バインダー材料とを混合して作製されることとしてよい。   In one aspect of the present invention, with respect to the positive electrode for a lithium battery, the lithium metal oxide, the conductive additive, and the binder material constituting the positive electrode are preliminarily determined to have a weight ratio on the lithium metal oxide particles that are the positive electrode active material. The carbon battery is coated with a carbon material serving as a conductive aid so that the carbon weight ratio is in the range of 1.5 wt% or more and 15 wt% or less with respect to the weight of the positive electrode active material. The positive electrode active material formed by coating an agent, the amount of carbon necessary to reach a predetermined weight of the conductive auxiliary agent, and the binder material may be mixed.

本発明の一態様では、前記正極活物質粒子上に炭素を形成する方法が、炭素を形成するために正極活物質粒子を放置する温度は350℃以上600℃以下であり、かかる温度に昇温を開始する時点、もしくはそれ以前よりキャリアガスを供給し、正極活物質粒子に炭素を形成する環境を脱酸素状態に置き、原料となる有機化合物溶液は、該正極活物質粒子に対して該キャリアガス供給方向に設置し、その設置量が該正極活物質1g当たり1ml以上であることとしてよい。   In one embodiment of the present invention, in the method for forming carbon on the positive electrode active material particles, the temperature at which the positive electrode active material particles are allowed to stand to form carbon is 350 ° C. or higher and 600 ° C. or lower, and the temperature is increased to such a temperature. The carrier gas is supplied at the time of starting or before that, the environment for forming carbon on the positive electrode active material particles is placed in a deoxygenated state, and the organic compound solution as a raw material is supplied to the positive electrode active material particles with respect to the carrier. It may be installed in the gas supply direction, and the installation amount may be 1 ml or more per 1 g of the positive electrode active material.

本発明の一態様では、前記正極活物質に、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を該金属が正極活物質重量に対して0.01wt%以上5wt%以下となるようあらかじめ加えた後、該正極活物質粒子上に炭素を形成し被覆することとしてよい。   In one embodiment of the present invention, the positive electrode active material includes one or more of chloride, sulfide, carbonate, or acetate of Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb. After the metal is added in advance so as to be 0.01 wt% or more and 5 wt% or less with respect to the weight of the positive electrode active material, carbon may be formed and coated on the positive electrode active material particles.

本発明の一態様では、前記正極活物質であるリチウム金属酸化物表面上に炭素を形成した複合材料を、大気中、300℃以上500℃以下の温度で30分以上2時間以下保持して処理して得た材料を正極材料として用いることとしてよい。   In one embodiment of the present invention, the composite material in which carbon is formed on the surface of the lithium metal oxide that is the positive electrode active material is maintained in the air at a temperature of 300 ° C. to 500 ° C. for 30 minutes to 2 hours. Thus obtained material may be used as the positive electrode material.

本発明の正極複合材料の効果を示す一例としてリチウム電池の正極活物質重量当たりの比容量と電流値との関係を示した図である。It is the figure which showed the relationship between the specific capacity per positive electrode active material weight of a lithium battery, and an electric current value as an example which shows the effect of the positive electrode composite material of this invention. 本発明の正極複合材料の効果を示す一例として正極複合材料の形成炭素割合と正極複合材料とバインダーとで形成された正極を有するリチウム電池の正極活物質重量当たりの比容量との関係を示した図である。As an example showing the effect of the positive electrode composite material of the present invention, the relationship between the carbon ratio of the positive electrode composite material and the specific capacity per weight of the positive electrode active material of the lithium battery having the positive electrode formed of the positive electrode composite material and the binder was shown. FIG. 本発明の正極複合材料の効果を示す一例として正極複合材料の形成炭素割合と正極複合材料と炭素材料、およびバインダーとで形成された正極を有するリチウム電池の正極活物質重量当たりの比容量との関係を示した図である。As an example showing the effect of the positive electrode composite material of the present invention, the formed carbon ratio of the positive electrode composite material and the specific capacity per weight of the positive electrode active material of the lithium battery having the positive electrode formed of the positive electrode composite material, the carbon material, and the binder It is the figure which showed the relationship. 本発明の正極複合材料の効果を示す一例として異なる原料充填量から作製した正極複合材料を用いたリチウム電池の充放電サイクルに伴う正極活物質重量当たりの比容量の変化を示した図である。It is the figure which showed the change of the specific capacity per positive electrode active material weight accompanying the charging / discharging cycle of the lithium battery using the positive electrode composite material produced from the different raw material filling amount as an example which shows the effect of the positive electrode composite material of this invention. 本発明の正極複合材料の効果を示す一例として作製した正極複合材料における正極活物質上に担持したNi触媒量と該正極複合材料を用いたリチウム電池の正極活物質重量当たりの比容量との関係を示した図である。Relationship between the amount of Ni catalyst supported on the positive electrode active material in the positive electrode composite material produced as an example showing the effect of the positive electrode composite material of the present invention and the specific capacity per weight of the positive electrode active material of a lithium battery using the positive electrode composite material FIG. 本発明の正極複合材料の効果を示す一例として異なる触媒担持量から作製した正極複合材料を用いたリチウム電池の充放電サイクルに伴う正極活物質重量当たりの比容量の変化を示した図である。It is the figure which showed the change of the specific capacity per positive electrode active material weight accompanying the charging / discharging cycle of the lithium battery using the positive electrode composite material produced from the different catalyst carrying amount as an example which shows the effect of the positive electrode composite material of this invention. 本発明の正極複合材料の効果を示す一例として正極複合材料の熱処理温度と該正極複合材料を用いたリチウム電池の正極活物質重量当たりの比容量との関係を示した図である。It is the figure which showed the relationship between the heat processing temperature of a positive electrode composite material, and the specific capacity per positive electrode active material weight of the lithium battery using this positive electrode composite material as an example which shows the effect of the positive electrode composite material of this invention. 本発明の正極複合材料の効果を示す一例として正極複合材料の熱処理時間と該正極複合材料を用いたリチウム電池の正極活物質重量当たりの比容量との関係を示した図である。It is the figure which showed the relationship between the heat processing time of a positive electrode composite material, and the specific capacity per positive electrode active material weight of the lithium battery using this positive electrode composite material as an example which shows the effect of the positive electrode composite material of this invention.

かかる構成の正極が効果的となる理由としては、すべての、または一部の導電助剤を直接正極活物質粒子の表面に固着することによって、正極活物質と導電助剤の接触抵抗が大幅に低減でき、正極活物質表面上で起こる電極反応に必要な電子の授受が極めて円滑に進むようになるためと解釈できる。また、正極活物質表面に固着させることによって限られた導電助剤を導電性確保のために効果的に配置させることも可能になると解釈できる。   The reason why the positive electrode having such a configuration is effective is that the contact resistance between the positive electrode active material and the conductive auxiliary agent is greatly increased by fixing all or part of the conductive auxiliary agent directly on the surface of the positive electrode active material particles. It can be interpreted that the transfer of electrons necessary for the electrode reaction occurring on the surface of the positive electrode active material proceeds very smoothly. Moreover, it can be interpreted that it is possible to effectively arrange a limited conductive auxiliary agent for securing conductivity by fixing the positive electrode active material to the surface.

リチウム電池の負極としては、リチウム金属を直接電極とする他、天然グラファイトや、グラファイト化小球体、不定形炭素、PIC(Pseudo Isotropic Carbon)、FMC(Fine Mosaic Carbon)、ポリアセンやポリパラフェニレンなどの高分子化合物を焼成したカーボンなど、リチウムを挿入脱離することができるカーボン材料、Sn系、Si系合金などを選択することができる。ただし、リチウム電池の電池反応が円滑に行われる物質であれば何らこれらに限定されることはない。   As a negative electrode of a lithium battery, in addition to using lithium metal as a direct electrode, natural graphite, graphitized spherules, amorphous carbon, PIC (Pseudo Isotropic Carbon), FMC (Fine Mosaic Carbon), polyacene, polyparaphenylene, etc. Carbon materials that can insert and release lithium, such as carbon obtained by firing a polymer compound, Sn-based alloys, Si-based alloys, and the like can be selected. However, the material is not limited to these as long as the battery reaction of the lithium battery is smoothly performed.

リチウム電池用の正極活物質としては、LiCoO,スピネルLiMnO,LiNiO,オリビン型LiFePO,LiCoMnNi(x+y+z=1)などのリチウム金属酸化物が考えられるが、リチウム電池の電池反応が円滑に行われる物質であれば、何らこれらに限定されることはない。 The positive electrode active material for a lithium battery, LiCoO 2, spinel LiMnO 2, LiNiO 2, but olivine type LiFePO 4, LiCo x Mn y Ni z O 2 (x + y + z = 1) lithium metal oxides such as is contemplated, lithium The substance is not limited to these as long as the battery reaction of the battery is smoothly performed.

また、電解液としては、LiClO,LiAsF,LiPF,LiBF,LiSbF,LiN(SOCF,LiCFSOなどのリチウム塩を溶質として、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソランなどの非水溶媒単独、または混合溶媒に溶解した溶液を用いるが、同様に、リチウム電池の電池反応が円滑に行われる物質であれば何らこれらに限定されることはない。 As the electrolytic solution, as LiClO 4, LiAsF 6, LiPF 6 , LiBF 4, LiSbF 4, LiN (SO 2 CF 3) 2, LiCF 3 solute of lithium salts such as SO 3, ethylene carbonate, propylene carbonate, 1 , 2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, etc. As long as the battery reaction of the lithium battery is smoothly performed, the material is not limited thereto.

本発明の一形態では、正極活物質粒子表面上に直接形成する導電助剤となる炭素の重量割合を正極活物質重量に対して4wt%以上20wt%以下であることを提案する。   In one form of the present invention, it is proposed that the weight ratio of carbon serving as a conductive additive directly formed on the surface of the positive electrode active material particles is 4 wt% or more and 20 wt% or less with respect to the weight of the positive electrode active material.

導電助剤は電池反応に関わる電子の移動を円滑にする役割を果たしており、正極活物質粒子表面上に直接形成する炭素の重量割合が4wt%未満であると電子の円滑な授受が阻害され、実用に供する電流の取得ができない。しかし、導電助剤が20wt%超では、正極活物質の含有割合が低下し、容量自体が低下して実用電池に供することができない。   The conductive auxiliary agent plays a role of facilitating the movement of electrons involved in the battery reaction, and when the weight ratio of carbon directly formed on the surface of the positive electrode active material particles is less than 4 wt%, the smooth transfer of electrons is inhibited, The current for practical use cannot be obtained. However, if the conductive additive exceeds 20 wt%, the content ratio of the positive electrode active material decreases, the capacity itself decreases, and it cannot be used for a practical battery.

本発明の一形態によると導電助剤は正極活物質粒子上に直接形成することで含有する方法を提案するが、電池規格上正極活物質と導電助剤との混合割合が厳密に決められ、かつ正極活物質粒子上に形成する炭素の量を厳密に制御することが困難などの条件では、あらかじめ正極活物質粒子上に直接炭素を形成した量を計測し、この複合粒子に別の同種または異種の導電助剤を混合して規定の混合割合にする方法も提案する。この場合、正極活物質粒子表面上に直接形成する炭素の重量割合は、正極活物質重量に対して1.5wt%以上15wt%以下であることを併せて提案する。当該方法では製造工程が増加するものの、正極活物質粒子表面上に直接形成した炭素が、充放電による活物質の膨張収縮の繰り返しに対しても良好な接触状態を失わないため、導電助剤のすべてを直接正極活物質上に形成した場合と同様の安定した電池特性を提供できる。   According to one embodiment of the present invention, a method is proposed in which the conductive auxiliary agent is contained by directly forming on the positive electrode active material particles, but the mixing ratio of the positive electrode active material and the conductive auxiliary agent is strictly determined according to battery specifications, And under conditions such as it is difficult to strictly control the amount of carbon formed on the positive electrode active material particles, the amount of carbon directly formed on the positive electrode active material particles is measured in advance, A method of mixing different kinds of conductive assistants to a specified mixing ratio is also proposed. In this case, it is also proposed that the weight ratio of carbon directly formed on the surface of the positive electrode active material particles is 1.5 wt% or more and 15 wt% or less with respect to the weight of the positive electrode active material. Although this method increases the number of manufacturing steps, the carbon directly formed on the surface of the positive electrode active material particles does not lose a good contact state even with repeated expansion and contraction of the active material due to charge and discharge. It is possible to provide the same stable battery characteristics as when all are formed directly on the positive electrode active material.

本発明の一形態では、当該炭素/正極活物質複合材料を作製するために、正極活物質であるリチウム金属酸化物粒子上に炭素を直接形成し被覆する方法が化学気相成長法であって、当該炭素を形成するための原料として有機化合物の溶液を選択し、それとともに不活性ガスもしくは低反応性ガスをキャリアガスとして、該正極活物質粒子に供給して該炭素を形成することを提案する。   In one embodiment of the present invention, a chemical vapor deposition method is a method in which carbon is directly formed and coated on lithium metal oxide particles that are a positive electrode active material in order to produce the carbon / positive electrode active material composite material. Proposing to select a solution of an organic compound as a raw material for forming the carbon and to supply the positive electrode active material particles with an inert gas or a low-reactive gas as a carrier gas to form the carbon To do.

原料である有機化合物の溶液は、メタノール、エタノール、エチレングリコール、アセトン、ギ酸、酢酸などがもっとも安価で容易に使用できるが、爆発性のない、炭素C、酸素Oを化合物分子に含み、上記反応温度で適度に揮発する有機溶液で、正極活物質粒子表面上に電池反応を円滑にする導電助剤としての機能を満たす炭素を形成することができればよく、何らこれらに限定されることはない。   The solution of the organic compound as the raw material is methanol, ethanol, ethylene glycol, acetone, formic acid, acetic acid, etc., which are the cheapest and can be used easily, but contain carbon C and oxygen O, which are not explosive, in the compound molecule. Any organic solution that volatilizes moderately at temperature can be used as long as carbon that fulfills the function as a conductive additive that facilitates battery reaction can be formed on the surface of the positive electrode active material particles, and is not limited thereto.

かかる有機化合物を原料として用いる理由は、一定の揮発性を有し、分子に炭素Cを含むことにより反応性が高く効率的に炭素を生成でき、かつ分子に含む酸素Oの存在によって基盤であるリチウム金属酸化物の還元分解を抑制できるためである。   The reason why such an organic compound is used as a raw material is based on the presence of oxygen O contained in the molecule, which has a certain volatility, can generate carbon with high reactivity and efficiently by containing carbon C in the molecule. This is because reductive decomposition of the lithium metal oxide can be suppressed.

本発明の一形態では、かかる原料の有機化合物溶液を基盤である正極活物質1g当たり1mlとなるよう、セラミックボートなど非反応性容器に充填し、設定された温度で揮発した該原料が定量的、安定的に基盤材料である正極活物質粒子表面上に供給するために、該基盤材料に対してキャリアガスが供給される方向に原料溶液のボートを配置する。   In one embodiment of the present invention, the raw material that is volatilized at a set temperature is filled quantitatively in a non-reactive container such as a ceramic boat so that the organic compound solution of the raw material is 1 ml per 1 g of the positive electrode active material. In order to stably supply the surface of the positive electrode active material particles as the base material, a boat of the raw material solution is arranged in the direction in which the carrier gas is supplied to the base material.

該原料溶液の容器を配置する位置は、揮発した原料が基盤材料である正極活物質粒子表面近傍に効果的に供給されれば特に限定されることはないが、一例として設置する管状炉から容器のすべて、あるいは一部が露出する場所に配置する。   The position of the container for the raw material solution is not particularly limited as long as the volatilized raw material is effectively supplied to the vicinity of the surface of the positive electrode active material particles as the base material. Place it in a place where all or part of it is exposed.

キャリアガスとしては、アルゴン、窒素などの不活性ガス、あるいは低反応性ガスを用いることができるが、炭素形成反応の進行を阻害せず、定量的、安定的に基盤材料である正極活物質粒子表面上に原料の供給ができれば、何らこれらのガスに限定されることはない。   As the carrier gas, an inert gas such as argon or nitrogen, or a low-reactive gas can be used. However, the positive electrode active material particles that are quantitatively and stably serve as the base material without inhibiting the progress of the carbon-forming reaction. If the raw material can be supplied on the surface, it is not limited to these gases.

本発明の一形態では、かかる原料の供給によって正極活物質粒子表面上に炭素を形成するに当たって、炭素を直接形成するために正極活物質粒子を放置する温度(反応温度)を350℃以上600℃以下とすることを提案する。   In one embodiment of the present invention, when carbon is formed on the surface of the positive electrode active material particles by supplying such raw materials, the temperature (reaction temperature) for leaving the positive electrode active material particles to form carbon directly is 350 ° C. or more and 600 ° C. We propose that:

正極活物質粒子表面上に炭素形成する反応の詳細は不明だが、たとえばメタノールを原料とする場合、
2CHOH→C+CH+2HO・・・(1)
であり、エタノールを原料とする場合には、
OH→C+CH+HO・・・(2)
が考えられる。また、酢酸を原料とすれば
CHCOOH→2C+2HO・・・(3)
が想定される。
Details of the reaction that forms carbon on the surface of the positive electrode active material particles are unknown, but for example, when methanol is used as a raw material,
2CH 3 OH → C + CH 4 + 2H 2 O (1)
When ethanol is used as a raw material,
C 2 H 5 OH → C + CH 4 + H 2 O (2)
Can be considered. If acetic acid is used as a raw material, CH 3 COOH → 2C + 2H 2 O (3)
Is assumed.

しかし、反応温度が350℃未満だと、たとえば原料がメタノールの場合、
CHOH→CO+2H・・・(4)
などの反応によって炭素形成反応の進行が困難になる。一方、反応温度が600℃を超えると、たとえば正極活物質がLiCoOの場合では
2CHOH→2C+2H+2HO・・・(5)
2H+2LiCoO→LiO+CoO+2HO・・・(6)
などの反応によって、炭素形成速度は増加するものの、同時に正極活物質の分解が発生する可能性があり、好ましくない。
However, when the reaction temperature is less than 350 ° C., for example, when the raw material is methanol,
CH 3 OH → CO + 2H 2 (4)
Such a reaction makes it difficult for the carbon formation reaction to proceed. On the other hand, when the reaction temperature exceeds 600 ° C., for example, when the positive electrode active material is LiCoO 2 , 2CH 3 OH → 2C + 2H 2 + 2H 2 O (5)
2H 2 + 2LiCoO 2 → Li 2 O + CoO + 2H 2 O (6)
Although the carbon formation rate is increased by such a reaction, the cathode active material may be decomposed at the same time, which is not preferable.

本発明の一形態によると、室温からかかる温度まで昇温を開始する時期、またはそれ以前より反応場である石英管内にキャリアガスを供給して所定温度に達するまでに酸素を反応系から除去し、該温度で効率的に炭素形成反応を行う。管状炉の温度が設定温度に達するまでのキャリアガスの供給量は、該設定温度に到達するまでに石英管内の酸素がパージされればよく、特に限定されることはないが、実用上の観点から好ましくは毎分30mlの供給量とする。毎分30ml未満だと、所定温度に到達するまでに反応系内の酸素除去が十分に行われない恐れがあり、好ましくない。   According to one aspect of the present invention, oxygen is removed from the reaction system at a time when the temperature rise is started from room temperature to such a temperature, or before the carrier gas is supplied into the quartz tube which is a reaction field and reaches a predetermined temperature. The carbon forming reaction is efficiently performed at the temperature. The supply amount of the carrier gas until the temperature of the tubular furnace reaches the set temperature is not particularly limited as long as the oxygen in the quartz tube is purged until the set temperature is reached. To preferably 30 ml / min. If it is less than 30 ml per minute, oxygen removal in the reaction system may not be sufficiently performed until the predetermined temperature is reached, which is not preferable.

本発明の一形態では炭素形成反応を起こすための原料の設置量を基盤である正極活物質粒子1g当たり1ml以上とする。1ml/g未満だと、炭素形成が十分でなくなり好ましくない。   In one form of this invention, the installation amount of the raw material for causing the carbon forming reaction is set to 1 ml or more per 1 g of the positive electrode active material particles as a base. If it is less than 1 ml / g, carbon formation is not sufficient, which is not preferable.

本発明の一形態ではまた、正極活物質粒子表面上に炭素形成を効果的に進めるため、触媒の使用を提案するものである。すなわち、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの金属を炭素形成の触媒として、それらの金属の塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を適当な手法によって加え、正極活物質粒子表面上に該金属触媒が定着した後、該正極活物質粒子表面上に炭素成長を施す。本発明の一形態では、正極活物質粒子表面上に定着させる金属触媒の量として、正極活物質重量当たり0.01wt%以上5wt%以下を提案する。   One form of the present invention also proposes the use of a catalyst in order to effectively promote carbon formation on the surface of the positive electrode active material particles. Namely, Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb are used as catalysts for carbon formation, and one or more of chlorides, sulfides, carbonates or acetates of these metals are used. In addition, after the metal catalyst is fixed on the surface of the positive electrode active material particles, carbon growth is performed on the surface of the positive electrode active material particles. In one embodiment of the present invention, the amount of the metal catalyst fixed on the surface of the positive electrode active material particles is proposed to be 0.01 wt% or more and 5 wt% or less per weight of the positive electrode active material.

触媒として期待される上記金属の塩化物、硫化物または炭酸化物もしくは酢酸塩を付与するのは、たとえば触媒にニッケル、原料にメタノールを用いる場合、
2CHOH→C+CH+2HO・・・(1)
塩化ニッケルでは、
2NiCl+CH→2Ni+4HCl+C・・・(7)
であり、硫酸ニッケルでは、
2NiSO+CH→2Ni+2HO+2SO+CO・・・(8)
であり、炭酸ニッケルでは、
2Ni(CO+CH→2Ni+2HO+5CO・・・(9)
であり、酢酸ニッケルでは、
2Ni(OCOCH+CH→2Ni+2HO+8C・・・(10)
などの反応によって、触媒であるNi金属に変化する。
For example, when nickel is used as a catalyst and methanol is used as a raw material, the chloride, sulfide, carbonate or acetate of the metal expected as a catalyst is given.
2CH 3 OH → C + CH 4 + 2H 2 O (1)
In nickel chloride,
2NiCl 2 + CH 4 → 2Ni + 4HCl + C (7)
In nickel sulfate,
2NiSO 4 + CH 4 → 2Ni + 2H 2 O + 2SO 2 + CO 2 (8)
In nickel carbonate,
2Ni (CO 3 ) 2 + CH 4 → 2Ni + 2H 2 O + 5CO 2 (9)
In nickel acetate,
2Ni (OCOCH 3 ) 2 + CH 4 → 2Ni + 2H 2 O + 8C (10)
The reaction changes to Ni metal as a catalyst.

上記触媒金属が0.01wt%未満だと、正極活物質粒子表面上に担持される該触媒金属量が不足して炭素形成が効果的に進行せず、一方、5wt%を越えると、正極活物質表面上に担持された触媒量の増加ほど炭素形成量は増加せず、いずれも好ましくない。   When the amount of the catalyst metal is less than 0.01 wt%, the amount of the catalyst metal supported on the surface of the positive electrode active material particles is insufficient and carbon formation does not proceed effectively. As the amount of catalyst supported on the material surface increases, the amount of carbon formation does not increase, which is not preferable.

以下に実施例によって本発明の一形態のリチウム電池用正極およびその製造方法を説明するが、本発明は何らこれに限定されるものではない。   Hereinafter, the positive electrode for a lithium battery according to an embodiment of the present invention and a method for producing the same will be described with reference to examples, but the present invention is not limited thereto.

[実施例1]
リチウム電池用正極活物質としてLiCoO粉末5gをセラミックボートに秤取し、石英管内、管状炉中央部に位置するように該試料ボートを設置した。さらに、別のセラミックボートにメタノールを5ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。この石英管の一端をガス供給管に、他端をガス排気ホースに繋いだ。
[Example 1]
As a positive electrode active material for a lithium battery, 5 g of LiCoO 2 powder was weighed in a ceramic boat, and the sample boat was placed so as to be located in the quartz tube and at the center of the tubular furnace. Further, another ceramic boat was filled with 5 ml of methanol and installed in a quartz tube at a position where the tip of the boat was placed at the end of the tubular furnace in front of the sample boat. One end of this quartz tube was connected to a gas supply tube, and the other end was connected to a gas exhaust hose.

キャリアガスとしてアルゴン(以下Ar)ガスを50ml/minで5分間石英管に供給し、石英管内の酸素をパージした。Arガスの供給を継続しながら管状炉を加熱し炉内温度が450℃に達したらArガスを100ml/minに増加し30分間供給した。所定の時間に達したらArガスの供給を50ml/minに戻すとともに管状炉の加熱ヒーターを停止し、炉内温度を低下する。2時間後に、Arガスの供給を停止し、石英管より試料ボートを取り出し、ボート内の粉末を秤量した。その結果、LiCoO粉末上に形成された炭素は、LiCoO粉末に対し4.68wt%だった。 Argon (hereinafter referred to as Ar) gas as a carrier gas was supplied to the quartz tube at 50 ml / min for 5 minutes to purge oxygen in the quartz tube. The tube furnace was heated while continuing the supply of Ar gas. When the furnace temperature reached 450 ° C., the Ar gas was increased to 100 ml / min and supplied for 30 minutes. When the predetermined time is reached, the supply of Ar gas is returned to 50 ml / min and the heater in the tubular furnace is stopped to lower the furnace temperature. After 2 hours, the supply of Ar gas was stopped, the sample boat was taken out from the quartz tube, and the powder in the boat was weighed. As a result, the carbon formed LiCoO 2 on powder was 4.68Wt% to LiCoO 2 powder.

得られた粉末をめのう乳鉢で軽く攪拌した後、4.7511gを秤取し、めのう乳鉢に移して8分間らいかい機で混合し、これに0.1477gのテフロン(登録商標)粉末を加えさらに2分間混合して粗シート化し、ロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。作製した正極は、LiCoO92.6wt%、炭素4.3wt%、テフロン3wt%、厚さ約0.57mm、重量0.19g〜0.20gであった。 After the obtained powder was lightly stirred in an agate mortar, 4.7511 g was weighed, transferred to an agate mortar and mixed for 8 minutes with a rake machine, and 0.1477 g of Teflon (registered trademark) powder was added thereto. After mixing for 2 minutes to form a rough sheet, the sheet was formed into a sheet with a roll molding machine, and then punched out with a punch to produce a positive electrode. The produced positive electrode was 92.6 wt% LiCoO 2, 4.3 wt% carbon, 3 wt% Teflon, a thickness of about 0.57 mm, and a weight of 0.19 g to 0.20 g.

比較のため、Ni網をセラミックボート上に置き、これを石英管内に設置し、円筒炉に該石英管を設置した。Arガスをキャリアガス、原料をアセチレンガスとして、まずArガスを50ml/min供給し、5分後に円筒炉の昇温を開始し設定温度を600℃として該設定温度に達したらArガス供給を150ml/minにするとともにアセチレンガス(以下Cガス)30ml/minの供給を開始した。10分後に、Cガスの供給を停止しArガス供給を50ml/minに戻した。約2時間後、炉内温度が100℃以下になったらArガス供給を停止し、試料ボートを取り出して本特許で作製した正極活物質上の炭素とほぼ同じ形状の炭素0.1586gを得た。LiCoO94.6wt%、該炭素12wt%、テフロン粉末6wt%、計3.004gとなるようそれぞれを秤取し、まずLiCoOとAB(アセチレンブラック)との混合をらいかい機で8分、これにテフロン粉末を加えて2分間混合し、同様にしてポンチで打ち抜き正極を作製した。 For comparison, a Ni net was placed on a ceramic boat, installed in a quartz tube, and the quartz tube was installed in a cylindrical furnace. First, Ar gas is supplied at 50 ml / min using Ar gas as the carrier gas and the raw material is acetylene gas. After 5 minutes, the temperature of the cylindrical furnace is started to rise to 600 ° C. When the set temperature is reached, 150 ml of Ar gas is supplied. / Min and supply of 30 ml / min of acetylene gas (hereinafter C 2 H 2 gas) was started. After 10 minutes, the supply of C 2 H 2 gas was stopped and the Ar gas supply was returned to 50 ml / min. After about 2 hours, when the furnace temperature became 100 ° C. or less, the Ar gas supply was stopped, and the sample boat was taken out to obtain 0.1586 g of carbon having substantially the same shape as the carbon on the positive electrode active material produced in this patent. . LiCoO 2 94.6 wt%, the carbon 12 wt%, Teflon powder 6 wt%, each weighed out to a total of 3.004 g, first mixing LiCoO 2 and AB (acetylene black) for 8 minutes with a trickling machine, Teflon powder was added thereto and mixed for 2 minutes, and punched with a punch in the same manner to produce a positive electrode.

作製した正極と、負極としてリチウム金属、電解液として1M LiPF−エチレンカーボネート/ジメチルカーボネート(体積比1/1)、セパレータとしてジュラガード2502からなる2032型コインセルAおよびBを作製して電池特性を評価した。試験電池AおよびBの特性評価は、21℃の恒温槽に試験電池を設置し、自動充放電試験装置によって充放電電圧範囲3.0V〜4.3V、充電電流値1mA、充電と放電との間に10分間の休止を設ける条件で行った。 Produced 2032 type coin cells A and B consisting of the produced positive electrode, lithium metal as the negative electrode, 1M LiPF 6 -ethylene carbonate / dimethyl carbonate (volume ratio 1/1) as the electrolyte, and Dura-Gard 2502 as the separator, and the battery characteristics were improved. evaluated. The characteristics of the test batteries A and B are as follows: a test battery is installed in a constant temperature bath at 21 ° C., and the charge / discharge voltage range is 3.0 V to 4.3 V, the charge current value is 1 mA, and the charge and discharge are performed by an automatic charge / discharge test device. The test was performed under the condition of providing a 10-minute pause in between.

図1に試験電池AおよびBの各放電電流値での容量を示した。   FIG. 1 shows the capacity of each of the test batteries A and B at each discharge current value.

すなわち、図1は、横軸に放電電流値、縦軸に試験電池の比容量(正極活物質重量当たりの放電容量)を示した図であり、図1の曲線1は本発明の試験電池Aの特性であり、曲線2は比較例である試験電池Bの特性を示している。   That is, FIG. 1 is a graph showing the discharge current value on the horizontal axis and the specific capacity of the test battery (discharge capacity per weight of the positive electrode active material) on the vertical axis, and curve 1 in FIG. 1 indicates the test battery A of the present invention. Curve 2 shows the characteristics of test battery B as a comparative example.

図1で明らかなように、本発明の試験電池Aは、低電流で比容量が大きく、かつ大電流でも大きな比容量を維持する優れた電池特性を示した。   As can be seen from FIG. 1, the test battery A of the present invention exhibited excellent battery characteristics with a large specific capacity at a low current and a large specific capacity even at a large current.

これに対して比較例として示した試験電池Bでは、試験した放電電流全般での比容量は本発明の試験電池Aに比べて小さくなり好ましくないことがわかった。   On the other hand, in the test battery B shown as a comparative example, it was found that the specific capacity in the whole discharge current tested was smaller than that of the test battery A of the present invention, which was not preferable.

[実施例2]
リチウム電池用正極活物質としてLiCoO粉末5gをセラミックボートに秤取し、石英管内、管状炉中央部に位置するように該試料ボートを設置した。さらに、別のセラミックボート1台または2台に原料としてメタノールまたは酢酸10mlを充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。
[Example 2]
As a positive electrode active material for a lithium battery, 5 g of LiCoO 2 powder was weighed in a ceramic boat, and the sample boat was placed so as to be located in the quartz tube and at the center of the tubular furnace. Furthermore, one or two other ceramic boats were filled with 10 ml of methanol or acetic acid as a raw material, and placed in a quartz tube at a position where the tip of the boat was placed at the end of the tubular furnace in front of the sample boat.

キャリアガスとしてアルゴン(以下Ar)ガスを用い、炉内温度を450℃に設定し、その設定時間(反応時間)を表1の通りに設定した以外は上記実施例1と同様の手法によってLiCoO粒子表面上に炭素を形成した。 LiCoO 2 was prepared in the same manner as in Example 1 except that argon (hereinafter referred to as Ar) gas was used as the carrier gas, the furnace temperature was set to 450 ° C., and the set time (reaction time) was set as shown in Table 1. Carbon was formed on the particle surface.

Figure 2014239068
Figure 2014239068

得られた複合材料粉末をめのう乳鉢で軽く攪拌した後、4.85gを秤取し、めのう乳鉢に写して6分間らいかい機で混合し、これに0.15gのテフロン粉末を加えさらに2分間混合して粗シート化し、ロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。   The obtained composite material powder was lightly stirred in an agate mortar, and 4.85 g was weighed out, transferred to an agate mortar and mixed for 6 minutes with a milling machine, and 0.15 g of Teflon powder was added thereto for another 2 minutes. After mixing and forming into a rough sheet and forming into a sheet with a roll forming machine, a positive electrode was produced by punching with a punch.

作製した正極と、負極としてリチウム金属、電解液として1M LiPF−エチレンカーボネート/ジメチルカーボネート(体積比1/1)、セパレータとしてジュラガード2502からなる2032型コインセルを作製して電池特性を評価した。試験電池の特性評価は、21℃の恒温槽に試験電池を設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値2.5mA(同1.88mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を2回繰り返し、2回目の放電容量を評価した。 A 2032 type coin cell composed of the produced positive electrode, lithium metal as the negative electrode, 1M LiPF 6 -ethylene carbonate / dimethyl carbonate (volume ratio 1/1) as the electrolyte, and Duraguard 2502 as the separator was produced, and battery characteristics were evaluated. The test battery was evaluated by installing the test battery in a constant temperature bath at 21 ° C., charging it to 4.3 V with a current value of 1 mA (0.75 mA / cm 2 per positive electrode) using an automatic charge / discharge test device, and resting for 10 minutes. Thereafter, the battery was discharged to 3.0 V at a current value of 2.5 mA (1.88 mA / cm 2 ) and rested for 10 minutes. This charge / discharge operation was repeated twice to evaluate the second discharge capacity.

図2に試験電池の放電容量を示した。   FIG. 2 shows the discharge capacity of the test battery.

すなわち、図2は、横軸に複合材料のLiCoOに対する形成炭素の重量割合を、縦軸に対応する複合材料を正極に用いた試験電池の比容量(正極活物質重量当たりの放電容量)を示した図であり、図2の曲線3は形成炭素量に対する比容量の変化を示している。 That is, FIG. 2 shows the weight ratio of formed carbon to LiCoO 2 of the composite material on the horizontal axis, and the specific capacity (discharge capacity per weight of the positive electrode active material) of the test battery using the composite material corresponding to the vertical axis as the positive electrode. FIG. 2 shows a curve 3 showing a change in specific capacity with respect to the amount of carbon formed.

図2で明らかなように、本発明の提案する、正極活物質粒子表面上に直接形成した炭素割合がLiCoO重量に対して4wt%以上20wt%以下の範囲では比容量が100mAh/g以上となり優れた特性を示すことが明らかになった。 As apparent from FIG. 2, when the proportion of carbon directly formed on the surface of the positive electrode active material particles proposed by the present invention is in the range of 4 wt% to 20 wt% with respect to 2 wt% of LiCoO, the specific capacity is 100 mAh / g or more. It has become clear that it exhibits excellent properties.

これに対し、4wt%未満または20wt%超の重量割合の場合、十分な比容量を示さず好ましくないことがわかった。   On the other hand, it has been found that a weight ratio of less than 4 wt% or more than 20 wt% is not preferable because it does not show a sufficient specific capacity.

[実施例3]
リチウム電池用正極活物質としてLiCoO粉末5gをセラミックボートに秤取し、石英管内、管状炉中央部に位置するように該試料ボートを設置した。さらに、別のセラミックボートにメタノールを5ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。この石英管の一端をガス供給管に、他端をガス排気ホースに繋ぐ。
[Example 3]
As a positive electrode active material for a lithium battery, 5 g of LiCoO 2 powder was weighed in a ceramic boat, and the sample boat was placed so as to be located in the quartz tube and at the center of the tubular furnace. Further, another ceramic boat was filled with 5 ml of methanol and installed in a quartz tube at a position where the tip of the boat was placed at the end of the tubular furnace in front of the sample boat. One end of the quartz tube is connected to a gas supply tube, and the other end is connected to a gas exhaust hose.

キャリアガスとしてアルゴン(以下Ar)ガスを用い、炉内温度を450℃に設定し、その設定時間(反応時間)を表1の通りに設定した以外は上記実施例1と同様の手法によってLiCoO粒子表面上に炭素を形成した。 LiCoO 2 was prepared in the same manner as in Example 1 except that argon (hereinafter referred to as Ar) gas was used as the carrier gas, the furnace temperature was set to 450 ° C., and the set time (reaction time) was set as shown in Table 1. Carbon was formed on the particle surface.

Figure 2014239068
Figure 2014239068

これとは別に、Ni網をセラミックボート上に置き、これを石英管内に設置し、円筒炉に該石英管を設置した。Arガスをキャリアガス、原料をアセチレンガスとして、まずArガスを50ml/min供給し、5分後に円筒炉の昇温を開始し設定温度を600℃として該設定温度に達したらArガス供給を150ml/minにするとともにアセチレンガス(以下Cガス)30ml/minの供給を開始した。10分後に、Cガスの供給を停止しArガス供給を50ml/minに戻した。約2時間後、炉内温度が100℃以下になったらArガス供給を停止し、試料ボートを取り出して本特許の複合材料の炭素とほぼ同じ形状の炭素を得た。これを何度か繰り返して必要量の炭素を得た。 Separately, a Ni net was placed on a ceramic boat, this was installed in a quartz tube, and the quartz tube was installed in a cylindrical furnace. First, Ar gas is supplied at 50 ml / min using Ar gas as the carrier gas and the raw material is acetylene gas. After 5 minutes, the temperature of the cylindrical furnace is started to rise to 600 ° C. When the set temperature is reached, 150 ml of Ar gas is supplied. / Min and supply of 30 ml / min of acetylene gas (hereinafter C 2 H 2 gas) was started. After 10 minutes, the supply of C 2 H 2 gas was stopped and the Ar gas supply was returned to 50 ml / min. After about 2 hours, when the furnace temperature became 100 ° C. or lower, the Ar gas supply was stopped, and the sample boat was taken out to obtain carbon having substantially the same shape as the carbon of the composite material of this patent. This was repeated several times to obtain the required amount of carbon.

作製した炭素/LiCoO複合材料、炭素、およびテフロン粉末を、LiCoO80 wt%、炭素15wt%、テフロン粉末5wt%の割合になるよう秤取し、めのう乳鉢にてテフロン粉末を除いた粉末を6分間混合し、その後これにテフロン粉末を加えて2分間混合して粗シート化し、ロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。 The prepared carbon / LiCoO 2 composite material, carbon, and Teflon powder are weighed to a ratio of LiCoO 2 80 wt%, carbon 15 wt%, and Teflon powder 5 wt%, and the powder obtained by removing the Teflon powder in an agate mortar is used. After mixing for 6 minutes, Teflon powder was added thereto and mixed for 2 minutes to form a rough sheet. After forming into a sheet with a roll forming machine, a positive electrode was produced by punching with a punch.

こうして作製した正極を用い、実施例1と同じ負極、電解液材料を用いて2032型コイン電池を作製した。   Using the positive electrode thus prepared, a 2032 type coin battery was manufactured using the same negative electrode and electrolyte material as in Example 1.

それぞれの試験電池は、21℃に設定した恒温槽中に設置し、自動充放電装置によって、1mA(0.75mA/cm、正極面積当たり。以下同じ)の定電流で4.3Vまで充電し、10分間の休止の後、3.84mA(2.89mA/cm)の定電流で3.0Vまで放電し、10分間の休止を行った。この充放電を繰り返して電池の放電容量を測定した。 Each test battery is installed in a thermostat set at 21 ° C., and charged to 4.3 V at a constant current of 1 mA (0.75 mA / cm 2 , per positive electrode area, the same applies hereinafter) by an automatic charging / discharging device. After 10 minutes of rest, the battery was discharged to 3.0 V at a constant current of 3.84 mA (2.89 mA / cm 2 ), and rested for 10 minutes. This charge / discharge was repeated to measure the discharge capacity of the battery.

結果を図3に示す。すなわち、図3は横軸に複合材料のLiCoOに対する形成炭素の重量割合を、縦軸に対応する複合材料を正極に用いた試験電池の比容量(正極活物質重量当たりの放電容量)を示した図であり、図3の曲線4は形成炭素量に対する比容量の変化を示したものである。 The results are shown in FIG. That is, FIG. 3 shows the weight ratio of formed carbon to LiCoO 2 of the composite material on the horizontal axis, and the specific capacity (discharge capacity per weight of the positive electrode active material) of the test battery using the composite material corresponding to the vertical axis as the positive electrode. The curve 4 in FIG. 3 shows the change in specific capacity with respect to the amount of carbon formed.

図3より明らかなように、本発明の複合材料において正極活物質表面に直接形成する炭素重量割合は正極活物質重量に対して1.5wt%以上15wt%以下で比容量が70mAh/g以上と優れた特性を示すことがわかった。これに対して、正極活物質重量に対して形成炭素量が1.5wt%未満、または15wt%を超えると比容量は70mAh/g未満と低くなり、好ましくないことがわかった。   As is clear from FIG. 3, the carbon weight ratio directly formed on the surface of the positive electrode active material in the composite material of the present invention is 1.5 wt% or more and 15 wt% or less with respect to the weight of the positive electrode active material, and the specific capacity is 70 mAh / g or more. It was found to show excellent properties. On the other hand, it was found that when the amount of carbon formed was less than 1.5 wt% or more than 15 wt% with respect to the weight of the positive electrode active material, the specific capacity was as low as less than 70 mAh / g, which was not preferable.

[実施例4]
LiCoO粉末5gを入れたセラミックボートを石英管内に設置し、さらに、別のセラミックボートに酢酸を5ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。
[Example 4]
A ceramic boat containing 5 g of LiCoO 2 powder is placed in a quartz tube, and another ceramic boat is filled with 5 ml of acetic acid, and the tip of the boat is placed at the end of the tube furnace in front of the sample boat in the quartz tube. did.

上記実施例と同様の手順によってキャリアガスとしてアルゴン(以下Ar)ガスを50ml/minで5分間石英管に供給して石英管内の酸素をパージし、石英管を設置した管状炉を表3に示す所定温度に設定した。所定温度に到達したらArガスを100ml/minに増加した。同条件を20分間維持した後、Arガスの供給を50ml/minに減少した。2時間後にArガス供給を停止し、試料ボートを石英管より取り出して表3に示す5種類の複合材料13〜17を作製した。   Table 3 shows a tubular furnace in which argon (hereinafter referred to as Ar) gas as a carrier gas is supplied to a quartz tube at a rate of 50 ml / min for 5 minutes to purge oxygen in the quartz tube, and the quartz tube is installed. A predetermined temperature was set. When the predetermined temperature was reached, the Ar gas was increased to 100 ml / min. After maintaining the same conditions for 20 minutes, the supply of Ar gas was reduced to 50 ml / min. After 2 hours, the Ar gas supply was stopped, and the sample boat was taken out of the quartz tube to produce five types of composite materials 13 to 17 shown in Table 3.

Figure 2014239068
Figure 2014239068

得られた試料13〜17について、生成炭素のLiCoOに対する重量割合を求め、X線回折測定を実施して基盤のLiCoOの分解の有無を確認した。LiCoO重量に対する形成炭素割合(%)とLiCoOの分解を示す指標として分解生成物であるLiCOの回折ピークの有無を表3に示した。 The obtained samples 13 to 17, it obtains a weight ratio LiCoO 2 generated carbon, to confirm the presence or absence of decomposition of LiCoO 2 foundation to implement an X-ray diffraction measurement. Table 3 shows the proportion of carbon formed (%) relative to the weight of LiCoO 2 and the presence or absence of a diffraction peak of Li 2 CO 3 as a decomposition product as an index indicating the decomposition of LiCoO 2 .

表3から明らかなように、試料14から試料16では4%以上の炭素が形成されており、LiCoOの顕著な分解も認められず、本発明で提案する温度範囲350℃以上600℃以下が妥当な範囲であることが確認された。これに対し、反応温度が300℃の試料13では、LiCoOの分解は認められないものの炭素の形成がほとんど起こっておらず、好ましくないことがわかった。また、反応温度が650℃の試料17では、一定量の炭素形成量が得られたものの、LiCoOの分解が認められ、同様に好ましくないことがわかった。 As is clear from Table 3, in Samples 14 to 16, 4% or more of carbon was formed, and no significant decomposition of LiCoO 2 was observed. It was confirmed that it was within a reasonable range. On the other hand, it was found that Sample 13 having a reaction temperature of 300 ° C. was not preferable because the decomposition of LiCoO 2 was not observed but almost no carbon was formed. Further, in Sample 17 having a reaction temperature of 650 ° C., although a certain amount of carbon formation was obtained, decomposition of LiCoO 2 was observed, and it was found that this was also not preferable.

[実施例5]
LiCoO粉末10gを入れたセラミックボートを石英管内に設置し、さらに、別のセラミックボートに酢酸を表4に示す量を充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。
[Example 5]
A ceramic boat containing 10 g of LiCoO 2 powder was placed in the quartz tube, and another ceramic boat was filled with acetic acid in the amount shown in Table 4, and the tip of the boat was placed in the quartz tube at the end of the tubular furnace in front of the sample boat. Installed at a position where

管状炉の温度を350℃に設定し、上記実施例4と同様の手順で試料ボートのLiCoO粒子表面上に炭素を形成し、複合材料18〜20を作製した。得られた試料18〜20について、生成炭素のLiCoOに対する重量割合を求め表4に示した。 The temperature of the tubular furnace was set to 350 ° C., carbon was formed on the surface of the LiCoO 2 particles of the sample boat in the same procedure as in Example 4, and composite materials 18 to 20 were produced. With respect to the obtained samples 18 to 20, the weight ratio of generated carbon to LiCoO 2 was determined and shown in Table 4.

該試料4.75gを秤取し、らいかい機で6分間試料を混合した後、これにテフロン粉末0.25gを加え、さらに2分間混合して粗シートを作製した。該粗シートをロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。   4.75 g of the sample was weighed, and the sample was mixed for 6 minutes with a coarse machine, and then 0.25 g of Teflon powder was added thereto, and further mixed for 2 minutes to prepare a coarse sheet. The rough sheet was formed into a sheet with a roll forming machine, and then punched with a punch to produce a positive electrode.

Figure 2014239068
Figure 2014239068

作製した正極を用い、実施例1と同じ負極、電解液材料を用いて2032型コイン電池を作製した。   Using the produced positive electrode, a 2032 type coin battery was produced using the same negative electrode and electrolyte material as in Example 1.

コインセルは、21℃の恒温槽に設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値16mA(同12mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を繰り返し、各電池のサイクル特性を評価した。 The coin cell is installed in a constant temperature bath at 21 ° C., charged to 4.3 V at a current value of 1 mA (0.75 mA / cm 2 per positive electrode) by an automatic charge / discharge test apparatus, and after a pause of 10 minutes, a current value of 16 mA ( At 12 mA / cm 2 ), the battery was discharged to 3.0 V and rested for 10 minutes. This charge / discharge operation was repeated, and the cycle characteristics of each battery were evaluated.

結果を図4に示す。   The results are shown in FIG.

すなわち、図4は充放電サイクルに伴う各試験電池の比容量の変化を示したものであり、曲線5〜7は、表4に示す試料18〜20を用いて作製した正極の試験電池の比容量の変化を示す。   That is, FIG. 4 shows the change in specific capacity of each test battery in accordance with the charge / discharge cycle, and the curves 5 to 7 show the ratio of the positive test batteries prepared using the samples 18 to 20 shown in Table 4. Indicates the change in capacity.

図4から明らかなように、本発明の原料(酢酸)をLiCoO1gに対して1ml以上設置して作製した試料の曲線6および7では優れた比容量を示した。これに対して、LiCoO1g当たり酢酸を1ml未満しか仕込まずに作製した試料の曲線5では、小さな比容量で推移し、好ましくないことがわかった。 As is clear from FIG. 4, curves 6 and 7 of the sample prepared by installing 1 ml or more of the raw material (acetic acid) of the present invention with respect to 1 g of LiCoO 2 showed excellent specific capacity. On the other hand, it was found that the curve 5 of the sample prepared with less than 1 ml of acetic acid per gram of LiCoO 2 changed with a small specific capacity, which was not preferable.

[実施例6]
塩化ニッケル六水和物NiCl・6HOと蒸留水から表5に示す濃度のNiCl水溶液100mlを調製し、これにLiCoO5gを混合して10分間攪拌した。これをろ過して得られた粉末を乾燥し、表面上にNiClを定着したLiCoO粉末を得た。LiCoO粒子上に定着したNiの重量割合は水溶液に浸漬したLiCoO重量と得られた粉末の重量との差から算定した。
[Example 6]
100 ml of a NiCl 2 aqueous solution having a concentration shown in Table 5 was prepared from nickel chloride hexahydrate NiCl 2 .6H 2 O and distilled water, and 5 g of LiCoO 2 was mixed therewith and stirred for 10 minutes. The powder obtained by filtering this was dried to obtain LiCoO 2 powder having NiCl 2 fixed on the surface. The weight ratio of Ni fixed on the LiCoO 2 particles was calculated from the difference between the weight of LiCoO 2 immersed in the aqueous solution and the weight of the obtained powder.

得られた粉末5gを秤取し、セラミック製試料ボートに移して該ボートを石英管内に設置し、さらに、別のセラミックボートにメタノールを5ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。   5 g of the obtained powder was weighed, transferred to a ceramic sample boat, the boat was installed in a quartz tube, and another ceramic boat was filled with 5 ml of methanol, and the quartz tube was placed in the tube furnace in front of the sample boat. The boat was installed at a position where the tip of the boat was at the end.

管状炉の温度を350℃に設定し、上記実施例4と同様の手順で試料ボートのLiCoO粒子表面上に炭素を形成し、複合材料21〜25を作製した。得られた試料21〜25について、生成炭素のLiCoOに対する重量割合を求め表5に示した。 The temperature of the tubular furnace was set to 350 ° C., carbon was formed on the surface of the LiCoO 2 particles of the sample boat in the same procedure as in Example 4, and composite materials 21 to 25 were produced. The obtained samples 21-25 showed weight ratio LiCoO 2 product carbon determined Table 5.

Figure 2014239068
Figure 2014239068

該試料4.75gを秤取し、らいかい機で6分間試料を混合した後、これにテフロン粉末0.25gを加え、さらに2分間混合して粗シートを作製した。該粗シートをロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。   4.75 g of the sample was weighed, and the sample was mixed for 6 minutes with a coarse machine, and then 0.25 g of Teflon powder was added thereto, and further mixed for 2 minutes to prepare a coarse sheet. The rough sheet was formed into a sheet with a roll forming machine, and then punched with a punch to produce a positive electrode.

作製した正極を用い、実施例1と同じ負極、電解液材料を用いて2032型コイン電池を作製した。   Using the produced positive electrode, a 2032 type coin battery was produced using the same negative electrode and electrolyte material as in Example 1.

コインセルは、21℃の恒温槽に設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値16mA(同12mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を2回繰り返し、2回目の放電容量を測定した。 The coin cell is installed in a constant temperature bath at 21 ° C., charged to 4.3 V at a current value of 1 mA (0.75 mA / cm 2 per positive electrode) by an automatic charge / discharge test apparatus, and after a pause of 10 minutes, a current value of 16 mA ( At 12 mA / cm 2 ), the battery was discharged to 3.0 V and rested for 10 minutes. This charge / discharge operation was repeated twice, and the second discharge capacity was measured.

結果を図5に示す。   The results are shown in FIG.

すなわち、図5の曲線8は各試験電池の正極に使用したLiCoO重量当たりのNi担持量(wt%)とLiCoO重量当たりの比容量の関係を示したものである。図5から明らかなように、本発明の提案になるNi担持量が0.01wt%以上5wt%以下の場合、比容量はいずれも60mAh/g以上であり良好な特性を示した。これに対し、Ni担持量が0.01wt%未満、または5wt%を上回る場合はいずれも比容量は60mAh/g未満となり好ましくないことがわかった。 That is, the curve 8 in FIG. 5 shows the relationship between the Ni carrying amount (wt%) per LiCoO 2 weight used in the positive electrode of each test battery and the specific capacity per LiCoO 2 weight. As is apparent from FIG. 5, when the Ni loading proposed by the present invention is 0.01 wt% or more and 5 wt% or less, the specific capacity is 60 mAh / g or more, and good characteristics are exhibited. On the other hand, it was found that the specific capacity was less than 60 mAh / g when the Ni loading was less than 0.01 wt% or more than 5 wt%.

[実施例7]
正極活物質としてLiCoO20gと塩基性炭酸ニッケルNiCO・2Ni(OH)・4HO(分子量:376.18)を表6に示す量とを混合し、該混合粉体と蒸留水300mlとを1リットルのプラスチックボトルに入れ、さらにこれに混合媒体として直径10mmのジルコニアボールを100g充填して封口し、回転ポットミル架台に設置し、5時間回転して混合を行った。ミルが終了したら、ボトル内の材料をふるいにかけてジルコニアボールを除去した後、ろ過、乾燥して混合粉体を得た。Ni担持量は、塩基性炭酸ニッケルの重量より算出して表6に示した。
[Example 7]
As a positive electrode active material, 20 g of LiCoO 2 and basic nickel carbonate NiCO 3 · 2Ni (OH) 2 · 4H 2 O (molecular weight: 376.18) are mixed with the amounts shown in Table 6, and the mixed powder and 300 ml of distilled water are mixed. Were put in a 1 liter plastic bottle, filled with 100 g of zirconia balls having a diameter of 10 mm as a mixing medium, sealed, placed on a rotating pot mill base, and mixed by rotating for 5 hours. When the mill was completed, the material in the bottle was sieved to remove the zirconia balls, and then filtered and dried to obtain a mixed powder. The amount of Ni supported was calculated from the weight of basic nickel carbonate and shown in Table 6.

得られた粉末5gを秤取し、セラミック製試料ボートに移して該ボートを石英管内に設置し、さらに、別のセラミックボートにギ酸を5ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。   5 g of the obtained powder was weighed, transferred to a ceramic sample boat, the boat was installed in a quartz tube, and another ceramic boat was filled with 5 ml of formic acid, and the quartz tube was placed in the tubular furnace in front of the sample boat. The boat was installed at a position where the tip of the boat was at the end.

管状炉の温度を450℃に設定し、上記実施例4と同様の手順で試料ボートのLiCoO粒子表面上に炭素を形成し、複合材料26〜30を作製した。得られた試料26〜30について、生成炭素のLiCoOに対する重量割合を求め表6に示した。 The temperature of the tubular furnace was set to 450 ° C., carbon was formed on the surface of the LiCoO 2 particles of the sample boat in the same procedure as in Example 4, and composite materials 26 to 30 were produced. For the obtained samples 26 to 30, the weight ratio of produced carbon to LiCoO 2 was determined and shown in Table 6.

Figure 2014239068
Figure 2014239068

LiCoO90wt%、炭素(導電助剤)7wt%、バインダー3wt%の構成割合にするため、該試料、アセチレンブラック(以下、AB)、およびテフロン粉末を合計5gとなるよう秤取し、らいかい機でテフロン粉末以外の粉末を6分間混合した後、これにテフロン粉末(3wt%、0.15g)を加えてさらに2分間混合し粗シートを作製した。該粗シートをロール成形機でシート化した後、ポンチで打ち抜き正極を作製した。 The sample, acetylene black (hereinafter referred to as AB), and Teflon powder are weighed to a total of 5 g in order to obtain a composition ratio of 90 wt% LiCoO 2, 7 wt% carbon (conducting aid), and 3 wt% binder. A powder other than Teflon powder was mixed for 6 minutes with a machine, and then Teflon powder (3 wt%, 0.15 g) was added thereto and further mixed for 2 minutes to prepare a coarse sheet. The rough sheet was formed into a sheet with a roll forming machine, and then punched with a punch to produce a positive electrode.

作製した正極を用い、実施例1と同じ負極、電解液材料を用いて2032型コイン電池を作製した。   Using the produced positive electrode, a 2032 type coin battery was produced using the same negative electrode and electrolyte material as in Example 1.

コインセルは、21℃の恒温槽に設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値5.49mA(同4.12mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を繰り返し、放電容量の変化を測定した。 The coin cell is placed in a constant temperature bath at 21 ° C., charged to 4.3 V at a current value of 1 mA (0.75 mA / cm 2 per positive electrode) by an automatic charge / discharge test apparatus, and after a pause of 10 minutes, a current value of 5. The battery was discharged at 49 mA (4.12 mA / cm 2 ) to 3.0 V and rested for 10 minutes. This charge / discharge operation was repeated, and the change in discharge capacity was measured.

結果を図6に示す。   The results are shown in FIG.

すなわち、図6は充放電サイクルに伴う各試験電池の正極活物質当たりの比容量の変化を示したものであり、曲線9〜13は、表6に示す試料26〜30を用いて作製した正極の試験電池の比容量の変化を示す。   That is, FIG. 6 shows a change in specific capacity per positive electrode active material of each test battery with charge / discharge cycles, and curves 9 to 13 are positive electrodes prepared using samples 26 to 30 shown in Table 6. The change of the specific capacity of the test battery is shown.

図6から明らかなように、本発明のNi触媒をLiCoOに対して0.01wt%以上5wt%以下担持した場合の試料を正極として作製した試験電池の曲線10〜12では優れた比容量を示した。これに対して、Ni触媒をLiCoOに対して0.01wt%未満しか担持しなかった試料の曲線9、および0.5wt%超を担持した試料の曲線13では、小さな比容量で推移し、好ましくないことがわかった。 As is clear from FIG. 6, the curves 10 to 12 of the test battery produced using the sample in which the Ni catalyst of the present invention is supported at 0.01 wt% or more and 5 wt% or less with respect to LiCoO 2 have an excellent specific capacity. Indicated. On the other hand, the curve 9 of the sample supporting Ni catalyst with less than 0.01 wt% relative to LiCoO 2 and the curve 13 of the sample supporting more than 0.5 wt% transitioned with a small specific capacity, It turned out to be undesirable.

[実施例8]
リチウム電池用正極活物質としてLiCoO粉末20gをセラミックボートに秤取し、石英管内、管状炉中央部に位置するように該試料ボートを設置した。さらに、別のセラミックボートにエタノールを20ml充填し、石英管内、該試料ボートの手前管状炉の端部にボート先端がかかる位置に設置した。
[Example 8]
As a positive electrode active material for a lithium battery, 20 g of LiCoO 2 powder was weighed in a ceramic boat, and the sample boat was placed so as to be located in the quartz tube and at the center of the tubular furnace. Furthermore, another ceramic boat was filled with 20 ml of ethanol and installed in a quartz tube at a position where the tip of the boat was placed at the end of the tubular furnace in front of the sample boat.

キャリアガスとしてアルゴン(以下Ar)ガスを用い、管状炉の設定温度を450℃、15分間維持する以外、実施例1と同様の手法によってLiCoO上に炭素を形成した複合材料を作製した。LiCoO粉末上に形成された炭素は、LiCoO粉末に対し7.01wt%だった。 A composite material in which carbon was formed on LiCoO 2 was produced in the same manner as in Example 1 except that argon (hereinafter referred to as Ar) gas was used as the carrier gas and the set temperature of the tubular furnace was maintained at 450 ° C. for 15 minutes. Carbon formed on LiCoO 2 on powder was 7.01Wt% to LiCoO 2 powder.

該複合材料粉末のX線回折を測定したところ、LiCoOの回折ピークとともに、LiCO、Coの回折ピークも存在し、基盤のLiCoOの一部が還元分解していることがわかった。 The measured X-ray diffraction of the composite powder, with the diffraction peak of LiCoO 2, a diffraction peak of Li 2 CO 3, Co also exists, a part of LiCoO 2 foundation was found to be reduced and decomposed .

得られた該複合材料を4分割し、それぞれをアルミナ坩堝に入れて大気中、表7に示す温度で1時間熱処理し試料31〜34を得た。試料の処理前後の重量差からLiCoO上の形成炭素を表7に示す値として求めた。得られた粉末のX線回折測定も行い、LiCoO分解の状態を示すものとしてCoのピークの結果を表7に示した。 The obtained composite material was divided into four parts, and each was put in an alumina crucible and heat-treated in the atmosphere at the temperature shown in Table 7 for 1 hour to obtain Samples 31 to 34. The formed carbon on LiCoO 2 was determined as the value shown in Table 7 from the weight difference before and after the treatment of the sample. The X-ray diffraction measurement of the obtained powder was also performed, and the results of the Co peak are shown in Table 7 as indicating the state of LiCoO 2 decomposition.

Figure 2014239068
Figure 2014239068

得られた粉末と上記実施例3のNi網で作製した炭素とを合計4.85gとなるよう秤取し、めのう乳鉢に移して6分間らいかい機で混合し、これに0.15gのテフロン粉末を加えさらに2分間混合して粗シート化し、ロール成形機でシート化した後、ポンチで打ち抜きLiCoO90wt%、炭素が7wt%、バインダー3wt%の構成となる正極を作製した。 The obtained powder and the carbon produced in the Ni net of Example 3 were weighed to a total of 4.85 g, transferred to an agate mortar and mixed for 6 minutes with a milling machine, and 0.15 g of Teflon was added thereto. Powder was added and mixed for another 2 minutes to form a rough sheet, which was then formed into a sheet with a roll molding machine, and then punched with a punch to prepare LiCoO 2 90 wt%, carbon 7 wt%, and binder 3 wt%.

コインセルは、21℃の恒温槽に設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値1.33mA(同1.0mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を2回繰り返し、2回目の放電容量を測定した。 The coin cell is installed in a constant temperature bath of 21 ° C., charged to 4.3 V at a current value of 1 mA (0.75 mA / cm 2 per positive electrode) by an automatic charge / discharge test apparatus, and after a pause of 10 minutes, a current value of 1. The battery was discharged at 33 mA (1.0 mA / cm 2 ) to 3.0 V and rested for 10 minutes. This charge / discharge operation was repeated twice, and the second discharge capacity was measured.

結果を図7に示す。   The results are shown in FIG.

図7は横軸に熱処理温度、縦軸に電池の正極活物質重量当たりの比容量を示すグラフであり、曲線14は本実施例の試験電池の関係を示したものである。   FIG. 7 is a graph showing the heat treatment temperature on the horizontal axis and the specific capacity per weight of the positive electrode active material of the battery on the vertical axis, and the curve 14 shows the relationship of the test battery of this example.

図7から明らかなように、本発明の熱処理温度が300℃、500℃ではいずれも90mAh/g以上であり優れた比容量を示した。また、これらの熱処理温度ではLiCoOの分解生成物もほとんどなくなっていた。これに対して、熱処理温度が250℃、600℃では90mAh/g未満の小さな比容量となり、好ましくないことがわかった。 As is apparent from FIG. 7, when the heat treatment temperatures of the present invention were 300 ° C. and 500 ° C., both were 90 mAh / g or more, indicating an excellent specific capacity. In addition, almost no decomposition products of LiCoO 2 existed at these heat treatment temperatures. On the other hand, when the heat treatment temperatures were 250 ° C. and 600 ° C., the specific capacity was less than 90 mAh / g, which was not preferable.

[実施例9]
実施例8と同様にしてLiCoO20g上に炭素を形成した複合材料を作製した。LiCoO粉末上に形成された炭素は、LiCoO粉末に対し8.04wt%だった。
[Example 9]
A composite material in which carbon was formed on 20 g of LiCoO 2 was produced in the same manner as in Example 8. Carbon formed on LiCoO 2 on powder was 8.04Wt% to LiCoO 2 powder.

該複合材料粉末のX線回折を測定したところ、LiCoOの回折ピークとともに、LiCO、Coの回折ピークも存在し、基盤のLiCoOの一部が還元分解していることがわかった。 The measured X-ray diffraction of the composite powder, with the diffraction peak of LiCoO 2, a diffraction peak of Li 2 CO 3, Co also exists, a part of LiCoO 2 foundation was found to be reduced and decomposed .

得られた該複合材料を4分割し、それぞれをアルミナ坩堝に入れて大気中、450℃で表8に示す時間熱処理し試料35〜38を得た。試料の処理前後の重量差からLiCoO上の形成炭素を表7に示す値として求めた。得られた粉末のX線回折測定も行い、LiCoO分解の状態を示すものとしてCoのピークの結果を表8に示した。 The obtained composite material was divided into four parts, and each was put in an alumina crucible and heat-treated in the atmosphere at 450 ° C. for the time shown in Table 8 to obtain Samples 35 to 38. The formed carbon on LiCoO 2 was determined as the value shown in Table 7 from the weight difference before and after the treatment of the sample. The X-ray diffraction measurement of the obtained powder was also performed, and the results of the Co peak are shown in Table 8 as indicating the state of LiCoO 2 decomposition.

Figure 2014239068
Figure 2014239068

得られた粉末と上記実施例3のNi網で作製した炭素とを合計4.85gとなるよう秤取し(ただし、試料35の場合は試料35のみ秤取)、めのう乳鉢に移して6分間らいかい機で混合し、これに0.15gのテフロン粉末を加えさらに2分間混合して粗シート化し、ロール成形機でシート化した後、ポンチで打ち抜きLiCoO90wt%、炭素が7wt%、バインダー3wt%の構成となる正極を作製した。 The obtained powder and the carbon produced by the Ni net of Example 3 above are weighed to a total of 4.85 g (however, in the case of sample 35, only sample 35 is weighed) and transferred to an agate mortar for 6 minutes. Mix with a cracking machine, add 0.15 g of Teflon powder to this and mix for 2 minutes to make a rough sheet. After forming into a sheet with a roll molding machine, punch out with LiCoO 2 90 wt%, carbon 7 wt%, binder A positive electrode having a composition of 3 wt% was produced.

コインセルは、21℃の恒温槽に設置し、自動充放電試験装置によって電流値1mA(正極当たり0.75mA/cm)で4.3Vまで充電し、10分間の休止の後、電流値1.88mA(同1.4mA/cm)で3.0Vまで放電し10分間休止した。この充放電操作を2回繰り返し、2回目の放電容量を測定した。 The coin cell is installed in a constant temperature bath of 21 ° C., charged to 4.3 V at a current value of 1 mA (0.75 mA / cm 2 per positive electrode) by an automatic charge / discharge test apparatus, and after a pause of 10 minutes, a current value of 1. The battery was discharged at 88 mA (1.4 mA / cm 2 ) to 3.0 V and rested for 10 minutes. This charge / discharge operation was repeated twice, and the second discharge capacity was measured.

結果を図8に示す。   The results are shown in FIG.

図8は横軸に熱処理時間(分)、縦軸に電池の正極活物質重量当たりの比容量を示すグラフであり、曲線15は本実施例の試験電池の関係を示したものである。   FIG. 8 is a graph showing the heat treatment time (minutes) on the horizontal axis and the specific capacity per weight of the positive electrode active material of the battery on the vertical axis, and the curve 15 shows the relationship of the test battery of this example.

図8から明らかなように、本発明の熱処理時間が30分、120分(2時間)ではいずれも80mAh/g以上であり優れた比容量を示した。また、これらの熱処理時間ではLiCoOの分解生成物もなくなっていた。これに対して、熱処理温度が20分、150分(2.5時間)では80mAh/g未満の小さな比容量となり、好ましくないことがわかった。 As is apparent from FIG. 8, the heat treatment time of the present invention was 30 minutes or 120 minutes (2 hours), both of which were 80 mAh / g or more, indicating an excellent specific capacity. Moreover, the decomposition products of LiCoO 2 disappeared during these heat treatment times. In contrast, when the heat treatment temperature was 20 minutes or 150 minutes (2.5 hours), the specific capacity was less than 80 mAh / g, which was not preferable.

本発明は以下の態様を取り得る。本発明の一態様では、リチウム塩を溶質として溶解した非水有機溶媒を電解液として含むリチウム電池について、正極活物質であるリチウム金属酸化物と、導電助剤の炭素材料と、これらの粒子を結着するためのバインダー材料とで構成され、かつ、導電助剤のすべてがリチウム金属酸化物の粒子表面上に炭素を直接形成し被覆してなる正極を提案するものである。   The present invention can take the following aspects. In one embodiment of the present invention, for a lithium battery including a nonaqueous organic solvent dissolved as a solute as a lithium salt as an electrolyte, a lithium metal oxide that is a positive electrode active material, a carbon material that is a conductive additive, and these particles The present invention proposes a positive electrode which is composed of a binder material for binding, and in which all of the conductive assistant is formed by directly forming carbon on the surface of the lithium metal oxide particles.

また、リチウム金属酸化物粒子上に導電助剤である炭素を直接形成し被覆する簡易で効果的な方法として化学気相成長法を提案する。当該方法において本発明では、炭素を形成するための原料に有機化合物の溶液を提案する。これとともに不活性ガスもしくは低反応性ガスをキャリアガスとして、該リチウム金属酸化物粒子に供給して該炭素を形成する。本発明の一態様では、導電助剤として形成した炭素の重量割合が正極活物質重量に対して4wt%以上20wt%以下であることを提案する。   In addition, a chemical vapor deposition method is proposed as a simple and effective method for directly forming and coating carbon as a conductive additive on lithium metal oxide particles. In this method, the present invention proposes a solution of an organic compound as a raw material for forming carbon. At the same time, an inert gas or a low-reactive gas is used as a carrier gas to supply the lithium metal oxide particles to form the carbon. In one embodiment of the present invention, it is proposed that the weight ratio of carbon formed as a conductive additive is 4 wt% or more and 20 wt% or less with respect to the weight of the positive electrode active material.

さらに本発明の一態様では、あらかじめ正極を構成するリチウム金属酸化物、導電助剤、およびバインダー材料の重量割合を決めておき、正極活物質であるリチウム金属酸化物粒子上に該重量割合の範囲内となるよう導電助剤となる炭素材料を直接表面上に固着被覆して形成し、その生成割合を算出した上で、必要ならば該混合割合を満たすようこれに同種または異種の導電助剤を必要量加えて混合し、正極を製造することを提案するものである。この場合、正極活物質表面に直接形成する炭素重量割合は正極活物質重量に対して1.5wt%以上15wt%以下となるように材料を作製することを提案する。   Furthermore, in one embodiment of the present invention, the weight ratio of the lithium metal oxide, the conductive additive, and the binder material constituting the positive electrode is determined in advance, and the range of the weight ratio on the lithium metal oxide particles that are the positive electrode active material. A carbon material as a conductive auxiliary agent is directly fixed and coated on the surface so as to be inside, and the generation ratio is calculated, and if necessary, the same or different conductive auxiliary agent is satisfied so as to satisfy the mixing ratio. It is proposed that a positive electrode is produced by adding a necessary amount of and mixing. In this case, it is proposed to produce the material so that the carbon weight ratio directly formed on the surface of the positive electrode active material is 1.5 wt% or more and 15 wt% or less with respect to the weight of the positive electrode active material.

本発明の一態様では、リチウム金属酸化物粒子上に炭素を直接形成するために、リチウム金属酸化物を設置する温度を350℃以上600℃以下とし、かかる温度に昇温を開始する時点、もしくはそれ以前よりキャリアガスを供給し、正極活物質粒子に炭素を形成する環境を脱酸素状態に置き、原料となる有機化合物溶液は、該正極活物質粒子に対して該キャリアガス供給方向に設置し、その設置量を該正極活物質1g当たり1ml以上とする方法を提案する。   In one embodiment of the present invention, in order to directly form carbon on the lithium metal oxide particles, the temperature at which the lithium metal oxide is installed is set to 350 ° C. or more and 600 ° C. or less, and the temperature is increased to such a temperature, or Before that, the carrier gas is supplied, the environment for forming carbon on the positive electrode active material particles is placed in a deoxygenated state, and the organic compound solution as a raw material is installed in the carrier gas supply direction with respect to the positive electrode active material particles. A method is proposed in which the installation amount is 1 ml or more per 1 g of the positive electrode active material.

本発明の一態様では、リチウム電池用正極に用いる炭素/リチウム金属酸化物の複合材料の製造方法に関して、当該リチウム金属酸化物粒子上に直接炭素を形成する場合、その炭素形成のためにあらかじめ当該リチウム金属酸化物粒子上に金属触媒を担持する方法を提案する。   In one embodiment of the present invention, when carbon is directly formed on the lithium metal oxide particles, the carbon / lithium metal oxide composite material used for the positive electrode for a lithium battery is directly formed for the carbon formation. A method for supporting a metal catalyst on lithium metal oxide particles is proposed.

すなわち、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの金属を炭素形成の触媒として、それらの金属の塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を適当な手法によって加え、正極活物質粒子表面上に該金属触媒が定着した後、該正極活物質粒子表面上に炭素成長を施す。本発明の一態様では、正極活物質粒子表面上に定着させる金属触媒の量として、正極活物質重量当たり0.01wt%以上5wt%以下を提案するものである。   Namely, Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb are used as catalysts for carbon formation, and one or more of chlorides, sulfides, carbonates or acetates of these metals are used. In addition, after the metal catalyst is fixed on the surface of the positive electrode active material particles, carbon growth is performed on the surface of the positive electrode active material particles. In one aspect of the present invention, the amount of the metal catalyst to be fixed on the surface of the positive electrode active material particles is proposed to be 0.01 wt% or more and 5 wt% or less per weight of the positive electrode active material.

本発明の一態様としてのこの提案を実現する手法としていくつかの手法が考えられるが、具体例の一つとして、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの金属塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を溶質として溶解した水溶液に、正極活物質粒子を浸漬し乾燥して該正極活物質粒子表面上に炭素成長の触媒を付与する。該水溶液の濃度および該水溶液に浸漬する正極活物質の量は上述する定着金属量が実現されれば特に限定されることはないが、一例として水溶液の濃度を0.05wt%以上10wt%以下、正極活物質の浸漬量を10g/リットル以上500g/リットル以下とすることができる。該水溶液への正極活物質粒子の浸漬時間は特に限定されないが、一例として1分間以上1時間以内とすることができる。   Several methods are conceivable as a method for realizing this proposal as one aspect of the present invention. As one specific example, metal chloride of Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb is used. The positive electrode active material particles are dipped in an aqueous solution in which one or a plurality of oxides, sulfides, carbonates or acetates are dissolved as solutes, and dried to give a catalyst for carbon growth on the surfaces of the positive electrode active material particles. The concentration of the aqueous solution and the amount of the positive electrode active material immersed in the aqueous solution are not particularly limited as long as the amount of the fixing metal described above is realized. As an example, the concentration of the aqueous solution is 0.05 wt% or more and 10 wt% or less. The immersion amount of the positive electrode active material can be 10 g / liter or more and 500 g / liter or less. Although the immersion time of the positive electrode active material particles in the aqueous solution is not particularly limited, as an example, it can be 1 minute or more and 1 hour or less.

別の方法としては、正極活物質に、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの金属塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を混合し、これらの粉末とジルコニアボールとをアルミナポットに充填し、ポットミルで混合する。この場合、該金属化合物が不溶の溶液を一緒に充填すると混合が容易になり、好ましい。該金属化合物と正極活物質との混合割合は上述する担持量が実現されれば特に限定されることはないが、一例として正極活物質に対して0.06wt%以上30wt%以下とすることができる。   Another method is to mix one or more of metal chlorides or sulfides, carbonates or acetates of Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb into the positive electrode active material. These powders and zirconia balls are filled in an alumina pot and mixed in a pot mill. In this case, it is preferable that the solution in which the metal compound is insoluble is filled together because mixing becomes easy. The mixing ratio of the metal compound and the positive electrode active material is not particularly limited as long as the supported amount described above is realized, but as an example, the mixing ratio may be 0.06 wt% or more and 30 wt% or less with respect to the positive electrode active material. it can.

この正極活物質の一定量と原料として有機化合物溶液を石英管内に設定し、一定温度で一定時間、乾燥Arガス、乾燥窒素ガス、乾燥ヘリウムガスなどのキャリアガスを管内に供給して該正極活物質粒子表面上に導電助剤である炭素を固着形成する。   An amount of the positive electrode active material and an organic compound solution as a raw material are set in a quartz tube, and a carrier gas such as dry Ar gas, dry nitrogen gas, or dry helium gas is supplied into the tube at a constant temperature for a predetermined time. Carbon, which is a conductive additive, is fixedly formed on the surface of the material particles.

また、有機化合物溶液を原料として正極活物質表面上に炭素を形成した複合材料に関して、原料によっては、基盤となる正極活物質が還元分解される可能性がある。もし、たとえ少量でも正極活物質が還元分解されれば、粒子表面へのLiイオンのインターカレーションが進みにくくなり電池特性の大幅な低下が懸念されることになる。 In addition, regarding a composite material in which carbon is formed on the surface of a positive electrode active material using an organic compound solution as a raw material, the base positive electrode active material may be reduced and decomposed depending on the raw material. If the positive electrode active material is reduced and decomposed even with a small amount, intercalation of Li + ions to the particle surface is difficult to proceed, and there is a concern that the battery characteristics may be greatly deteriorated.

本発明の一態様ではまた、この懸念を払拭するために作製した複合材料の後処理を提案する。すなわち、本発明ではいったん正極活物質であるリチウム金属酸化物表面上に炭素を形成した複合材料を大気中で300℃以上500℃以下の温度で30分以上2時間以下保持して処理する。こうして処理した複合材料を正極活物質としてリチウム電池に活用する。   One aspect of the present invention also proposes a post-treatment of the composite material made to alleviate this concern. That is, in the present invention, the composite material in which carbon is once formed on the surface of the lithium metal oxide, which is a positive electrode active material, is treated in the air at a temperature of 300 ° C. to 500 ° C. for 30 minutes to 2 hours. The composite material thus treated is utilized for a lithium battery as a positive electrode active material.

上記のように、正極活物質粒子上に導電助剤である炭素を直接形成し被覆する正極を適用することによって、比容量が大きく、大電流取得が可能な放電特性に優れ、かつ劣化が少ないリチウム電池を実現することができる。   As described above, by applying a positive electrode that directly forms and coats carbon as a conductive auxiliary agent on the positive electrode active material particles, the specific capacity is large, the discharge characteristics capable of acquiring a large current are excellent, and the deterioration is small. A lithium battery can be realized.

以上述べたように本発明によれば、電池の放電容量が大きく、かつ充放電サイクルの経過後も優れた容量維持を示すリチウム電池特性を実現でき、環境保全とエネルギー有効利用に大きな貢献を果たすことになる。   As described above, according to the present invention, the battery has a large discharge capacity, and can realize lithium battery characteristics exhibiting excellent capacity maintenance even after the charge / discharge cycle has elapsed, thereby greatly contributing to environmental conservation and effective use of energy. It will be.

Claims (7)

リチウム塩を溶質として溶解した非水有機溶媒を電解液として含むリチウム電池における、リチウムイオンを電気化学的に挿入脱離しうる正極活物質であるリチウム金属酸化物と、導電助剤の炭素材料と、これらの粒子を結着するためのバインダー材料とで構成されるリチウム電池用正極であって、
前記導電助剤は、前記リチウム金属酸化物の粒子表面上に炭素を形成し被覆してなるもので、前記正極活物質であるリチウム金属酸化物粒子上に炭素を形成し被覆する化学気相成長法が、炭素を形成するための原料を有機化合物の溶液とし、これとともに不活性ガスもしくは低反応性ガスをキャリアガスとして、該正極活物質粒子に供給して該炭素を形成するものであり、
前記有機化合物の溶液が、炭素及び酸素を化合物分子に含む
ことを特徴とするリチウム電池用正極。
Lithium metal oxide, which is a positive electrode active material capable of electrochemically inserting and desorbing lithium ions, in a lithium battery containing a non-aqueous organic solvent in which a lithium salt is dissolved as a solute as an electrolyte, A lithium battery positive electrode composed of a binder material for binding these particles,
The conductive auxiliary agent is formed by coating carbon on the surface of the lithium metal oxide particles, and chemical vapor deposition for forming and coating the carbon on the lithium metal oxide particles as the positive electrode active material. The method uses a raw material for forming carbon as a solution of an organic compound, together with an inert gas or a low-reactive gas as a carrier gas, and supplies the positive electrode active material particles to form the carbon.
The positive electrode for a lithium battery, wherein the organic compound solution contains carbon and oxygen in compound molecules.
前記有機化合物の溶液は、メタノール、エタノール、エチレングリコール、アセトン、ギ酸、又は酢酸のいずれかである
ことを特徴とする請求項1に記載のリチウム電池用正極。
The positive electrode for a lithium battery according to claim 1, wherein the solution of the organic compound is any one of methanol, ethanol, ethylene glycol, acetone, formic acid, or acetic acid.
前記導電助剤となる炭素の重量割合が前記正極活物質重量に対して4wt%以上20wt%以下である
ことを特徴とする請求項1又は2に記載のリチウム電池用正極。
The positive electrode for a lithium battery according to claim 1 or 2, wherein a weight ratio of carbon serving as the conductive auxiliary agent is 4 wt% or more and 20 wt% or less with respect to the weight of the positive electrode active material.
前記リチウム電池用正極に関して、あらかじめ正極を構成するリチウム金属酸化物、導電助剤、およびバインダー材料の重量割合を決めておき、正極活物質であるリチウム金属酸化物粒子上に炭素重量割合が正極活物質重量に対して1.5wt%以上15wt%以下の範囲内となるよう導電助剤となる炭素材料を被覆して形成し、
前記リチウム電池用正極は、前記導電助剤が被覆して形成された前記正極活物質と、必要量の炭素と、前記バインダー材料とを混合して作製される
ことを特徴とする請求項1又は2に記載のリチウム電池用正極。
Regarding the positive electrode for a lithium battery, the weight ratio of the lithium metal oxide, the conductive additive, and the binder material constituting the positive electrode is determined in advance, and the weight ratio of carbon on the positive electrode active material lithium metal oxide particles is positive electrode active material. A carbon material serving as a conductive auxiliary agent is coated and formed so as to be within a range of 1.5 wt% or more and 15 wt% or less with respect to the substance weight,
The positive electrode for a lithium battery is produced by mixing the positive electrode active material formed by coating the conductive auxiliary agent, a required amount of carbon, and the binder material. 2. The positive electrode for a lithium battery according to 2.
前記正極活物質粒子上に炭素を形成する方法が、炭素を形成するために正極活物質粒子を放置する温度は350℃以上600℃以下であり、かかる温度に昇温を開始する時点、もしくはそれ以前よりキャリアガスを供給し、正極活物質粒子に炭素を形成する環境を脱酸素状態に置き、原料となる有機化合物溶液は、該正極活物質粒子に対して該キャリアガス供給方向に設置し、その設置量が該正極活物質1g当たり1ml以上である
ことを特徴とする請求項1乃至4のいずれか1項に記載のリチウム電池用正極。
In the method of forming carbon on the positive electrode active material particles, the temperature at which the positive electrode active material particles are allowed to stand to form carbon is 350 ° C. or higher and 600 ° C. or lower. Supply the carrier gas from before, place the environment for forming carbon in the positive electrode active material particles in a deoxygenated state, the organic compound solution as a raw material is installed in the carrier gas supply direction with respect to the positive electrode active material particles, The installation amount is 1 ml or more per 1 g of the positive electrode active material. The positive electrode for a lithium battery according to any one of claims 1 to 4.
前記正極活物質に、Fe,Ni,Co,Cu,Sn,Zn,Cr,In,Sbの塩化物または硫化物または炭酸塩もしくは酢酸塩の1種あるいは複数種を該金属が正極活物質重量に対して0.01wt%以上5wt%以下となるようあらかじめ加えた後、該正極活物質粒子上に炭素を形成し被覆する
ことを特徴とする請求項1乃至5のいずれか1項に記載のリチウム電池用正極。
In the positive electrode active material, one or more of Fe, Ni, Co, Cu, Sn, Zn, Cr, In, and Sb chloride or sulfide, carbonate or acetate is used as the weight of the positive electrode active material. 6. The lithium according to claim 1, wherein carbon is formed and coated on the positive electrode active material particles after being added in advance so as to be 0.01 wt% or more and 5 wt% or less. Battery positive electrode.
前記正極活物質であるリチウム金属酸化物表面上に炭素を形成した複合材料を、大気中、300℃以上500℃以下の温度で30分以上2時間以下保持して処理して得た材料を正極材料として用いる
ことを特徴とする請求項1乃至6のいずれか1項に記載のリチウム電池用正極。
A material obtained by treating a composite material in which carbon is formed on the surface of the lithium metal oxide, which is the positive electrode active material, in the atmosphere at a temperature of 300 ° C. to 500 ° C. for 30 minutes to 2 hours is processed. It uses as a material. The positive electrode for lithium batteries of any one of the Claims 1 thru | or 6 characterized by the above-mentioned.
JP2014166393A 2014-08-19 2014-08-19 Positive electrode for lithium battery Pending JP2014239068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166393A JP2014239068A (en) 2014-08-19 2014-08-19 Positive electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166393A JP2014239068A (en) 2014-08-19 2014-08-19 Positive electrode for lithium battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008264407A Division JP2010092817A (en) 2008-10-10 2008-10-10 Cathode for lithium cell

Publications (1)

Publication Number Publication Date
JP2014239068A true JP2014239068A (en) 2014-12-18

Family

ID=52136025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166393A Pending JP2014239068A (en) 2014-08-19 2014-08-19 Positive electrode for lithium battery

Country Status (1)

Country Link
JP (1) JP2014239068A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298847A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte battery, and method for manufacturing the same
JP2004179008A (en) * 2002-11-27 2004-06-24 Mitsui Mining Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2004234977A (en) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP2005116273A (en) * 2003-10-06 2005-04-28 National Institute Of Advanced Industrial & Technology Positive electrode material for lithium secondary battery
JP2005332629A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2006244984A (en) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007109533A (en) * 2005-10-14 2007-04-26 Gs Yuasa Corporation:Kk Manufacturing method of positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery equipped with the same
JP2007527844A (en) * 2004-03-09 2007-10-04 カナトゥ オイ Single-walled, multilayered, functionalized and doped carbon nanotubes, and composites thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298847A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Positive electrode active material for nonaqueous electrolyte battery, and method for manufacturing the same
JP2004179008A (en) * 2002-11-27 2004-06-24 Mitsui Mining Co Ltd Positive electrode material for lithium secondary battery and its manufacturing method
JP2004234977A (en) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP2005116273A (en) * 2003-10-06 2005-04-28 National Institute Of Advanced Industrial & Technology Positive electrode material for lithium secondary battery
JP2007527844A (en) * 2004-03-09 2007-10-04 カナトゥ オイ Single-walled, multilayered, functionalized and doped carbon nanotubes, and composites thereof
JP2005332629A (en) * 2004-05-18 2005-12-02 Matsushita Electric Ind Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2006244984A (en) * 2004-08-26 2006-09-14 Matsushita Electric Ind Co Ltd Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2007109533A (en) * 2005-10-14 2007-04-26 Gs Yuasa Corporation:Kk Manufacturing method of positive electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery equipped with the same

Similar Documents

Publication Publication Date Title
JP6003831B2 (en) Sulfide solid electrolyte material, sulfide glass, lithium solid battery, and method for producing sulfide solid electrolyte material
JP5128018B1 (en) Nonaqueous electrolyte secondary battery
JP5610178B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2002358953A (en) Positive electrode for lithium secondary battery and its manufacturing method
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
Shi et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches
JP2022081638A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
KR20180044285A (en) POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4989670B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery positive electrode active material manufacturing method, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide
TWI572561B (en) Lithium manganate particles for nonaqueous electrolyte storage batteries and methods for producing the same, and nonaqueous electrolyte batteries
JP6233828B2 (en) Negative electrode for lithium ion battery, lithium ion battery comprising the negative electrode
CN103107361B (en) Rechargeable nonaqueous electrolytic battery
JP2010092817A (en) Cathode for lithium cell
JP7245465B2 (en) Electrode slurry for non-aqueous electrolyte secondary batteries
JP6911644B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary batteries
JP2017045632A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
Hou et al. Facile synthesis of LiCo1/3Ni1/3Mn1/3O2/Al (OH) 3 composite as a high-performance cathode material for lithium ion cells
JP5741969B2 (en) Lithium composite compound particle powder and method for producing the same, non-aqueous electrolyte secondary battery
JP2014239068A (en) Positive electrode for lithium battery
JP5895223B2 (en) Method for producing positive electrode for lithium battery
KR20090103134A (en) Cathode active material for lithium secondary and method for preparing thereof and lithium secondary battery containing the same for cathode
JP2010165657A (en) Positive electrode active substance for nonaqueous electrolyte secondary battery, method of manufacturing the positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150908