JPH10162823A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH10162823A
JPH10162823A JP8334764A JP33476496A JPH10162823A JP H10162823 A JPH10162823 A JP H10162823A JP 8334764 A JP8334764 A JP 8334764A JP 33476496 A JP33476496 A JP 33476496A JP H10162823 A JPH10162823 A JP H10162823A
Authority
JP
Japan
Prior art keywords
alloy
secondary battery
aqueous secondary
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8334764A
Other languages
Japanese (ja)
Other versions
JP3640227B2 (en
Inventor
Akira Kawakami
章 川上
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP33476496A priority Critical patent/JP3640227B2/en
Publication of JPH10162823A publication Critical patent/JPH10162823A/en
Application granted granted Critical
Publication of JP3640227B2 publication Critical patent/JP3640227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery of a high capacity, which is excellent in cycle characteristics. SOLUTION: In a non-aqueous secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte, the negative electrode is made of a silicon alloy or a tin alloy. The silicon alloy is preferably an alloy of Si and Fe or Si and Ni, wherein the content of Si in the silicon alloy is preferably 50mol% or more. The tin alloy is preferably an alloy of Sn and Fe or Sn and Ni, wherein the content of Sn in the tin alloy is preferably 50mol% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、さらに詳しくは、高容量で、かつサイクル特性の優
れた非水二次電池に関する。
The present invention relates to a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery having a high capacity and excellent cycle characteristics.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水二次
電池は、高容量で、かつ高電圧、高エネルギー密度であ
ることから、その発展に対して大きな期待が寄せられて
いる。
2. Description of the Related Art Non-aqueous secondary batteries typified by lithium secondary batteries have high capacity, high voltage, and high energy density, and therefore have great expectations for their development.

【0003】この非水二次電池では、有機溶媒にリチウ
ム塩を溶解させた有機溶媒系の電解液が用いられ、負極
活物質としてリチウムまたはリチウム合金が用いられて
きたが、これらの負極活物質による場合、高容量化を期
待できるが、充電時のリチウムのデンドライト成長によ
り内部短絡を起こしやすく、そのため、電池特性が低下
し、また、安全性に欠けるという問題があった。
In this non-aqueous secondary battery, an organic solvent-based electrolytic solution in which a lithium salt is dissolved in an organic solvent has been used, and lithium or a lithium alloy has been used as a negative electrode active material. In this case, a high capacity can be expected, but there is a problem that an internal short circuit is apt to occur due to the growth of lithium dendrite at the time of charging, which deteriorates battery characteristics and lacks safety.

【0004】そこで、リチウムやリチウム合金に代え
て、リチウムイオンをドープ・脱ドープすることが可能
な活性炭や黒鉛などの炭素材料を負極活物質として用い
ることが検討されている(特公平4−24831号公
報、特公平5−17669号公報など)。
Therefore, it has been studied to use a carbon material such as activated carbon or graphite capable of doping and undoping lithium ions as a negative electrode active material instead of lithium or a lithium alloy (Japanese Patent Publication No. 4-24831). And Japanese Patent Publication No. 5-17669).

【0005】上記黒鉛は、炭素原子6個に対して1個の
リチウムイオンを捕らえることができ、これを単位体積
当たりの容量で示すと830mAh/mlに相当する。
[0005] The above graphite can capture one lithium ion per six carbon atoms, which corresponds to 830 mAh / ml in terms of capacity per unit volume.

【0006】しかし、この黒鉛は、充放電によるリチウ
ムイオンの出入りにより、完全充電(372mAh/g
相当のリチウムを含む状態)時には、完全放電(リチウ
ムを含まない状態)時に対して層間距離が約10%拡大
し、充電、放電を繰り返すと、この伸び縮みにより結晶
が崩壊して特性が劣化する。そのため、黒鉛で500サ
イクル以上の寿命を得るには、通常250mAh/g
(600mAh/ml)以下の範囲内で使用しなければ
ならないという制約があった。
However, this graphite is fully charged (372 mAh / g) due to the entrance and exit of lithium ions due to charge and discharge.
At the time of substantial lithium (state containing lithium), the interlayer distance is increased by about 10% compared to that at the time of complete discharge (state not including lithium). When charging and discharging are repeated, the crystal collapses due to the expansion and contraction, and the characteristics are deteriorated. . Therefore, to obtain a life of 500 cycles or more with graphite, usually 250 mAh / g
(600 mAh / ml) or less.

【0007】そして、この黒鉛よりも高容量のものとし
ては低結晶炭素がある。この低結晶炭素は黒鉛に比べて
炭素−炭素間の結合距離が約20%大きいので、リチウ
ムの挿入量を多くすることができ、しかも充放電中に格
子間隔の伸び縮みがほとんどないので、サイクル寿命も
長くなるものと期待されている。
[0007] As one having a higher capacity than graphite, there is low-crystalline carbon. This low-crystalline carbon has a carbon-carbon bond distance of about 20% longer than graphite, so that the amount of lithium inserted can be increased, and there is almost no expansion or contraction of the lattice spacing during charging and discharging. Life expectancy is expected to be longer.

【0008】しかし、この低結晶炭素は理論上最大12
00mAh/g(すなわち、C2 Liの状態)までの高
容量が期待できるものの、現実に開発されているものは
約800mAh/gのものまでである。
However, this low crystalline carbon has a theoretical maximum of 12
Although a high capacity of up to 00 mAh / g (that is, a state of C 2 Li) can be expected, only about 800 mAh / g has been actually developed.

【0009】また、高容量化が期待できるという観点か
ら、リチウム合金(金属間化合物も含む)を負極活物質
として用いることが今なお多く検討されている。その代
表的なものはLi−Al合金であり、このLi−Al合
金では、金属結合したAl−Al骨格をマトリックスと
してLi−Al合金の形成とLi−Al合金からのLi
の離脱を行わせることによって充放電が行われるが、そ
の充放電によって結晶格子間隔が伸び縮みするため、充
放電を繰り返すと、Li−Al合金が微粉末化して負極
の膨潤や電解液の不必要な吸収を引き起し、特性が劣化
するという問題がある。また、このLi−Al合金以外
にも、Li−Pb合金、Li−Sb合金などが提案され
ているが、これらもLi−Al合金と同様の劣化傾向を
示す。
[0009] From the viewpoint that high capacity can be expected, the use of lithium alloys (including intermetallic compounds) as the negative electrode active material is still being studied. A typical example is a Li-Al alloy. In this Li-Al alloy, a Li-Al alloy is formed using a metal-bonded Al-Al skeleton as a matrix, and Li-Al alloy from the Li-Al alloy is formed.
When the charge and discharge are repeated, the Li-Al alloy is pulverized and the negative electrode swells and the electrolyte is not recharged. There is a problem that necessary absorption is caused and characteristics are deteriorated. In addition to the Li-Al alloy, a Li-Pb alloy, a Li-Sb alloy, and the like have been proposed, but these also show the same deterioration tendency as the Li-Al alloy.

【0010】また、合金よりもイオン性が高いMg2
n、Mg2 SiやSi、Sn、GeなどとLiとの化合
物でも同様の劣化が生じ、高容量で、かつ長寿命の負極
材料は得られていない。
Also, Mg 2 S, which has higher ionicity than the alloy,
The same deterioration occurs in a compound of Li with n, Mg 2 Si, Si, Sn, Ge or the like, and a high capacity and long life negative electrode material has not been obtained.

【0011】さらに、容量密度を高め、サイクル特性を
向上させる目的で金属酸化物を用いる試みもなされてい
る。これは負極の出発原料にSiOやSnOを用いるも
のである。この初回の化成反応は下記の式(1)のよう
になる。
Further, attempts have been made to use metal oxides for the purpose of increasing capacity density and improving cycle characteristics. This uses SiO or SnO as a starting material for the negative electrode. The first chemical conversion reaction is as shown in the following formula (1).

【0012】 SiO+6Li+ +6e- → SiLi4 +Li2 O (1)SiO + 6Li + + 6e → SiLi 4 + Li 2 O (1)

【0013】すなわち、1モルのSiOに対し、6当量
のLi+ とe- (電子)が反応し、活物質となるSiL
4 と充放電反応に寄与しないLi2 Oとが生成する。
[0013] That is, with respect to 1 mol of SiO, 6 equiv Li + and e - SiL (electrons) reacts, the active material
i 4 and Li 2 O which does not contribute to the charge / discharge reaction are generated.

【0014】上記式(1)から明らかなように、化成に
は6当量のLi+ とe- が必要であるが、そのうち、2
当量はLi2 Oの生成に消費される。従って、活物質の
生成効率は最大で67%にしかならない。通常は、第2
回目からの充放電で、SiLi4 が100%利用される
ことはないので、初回の充電効率は50%程度にすぎな
い。
As is apparent from the above formula (1), the chemical formation requires 6 equivalents of Li + and e , of which 2
The equivalent is consumed to produce Li 2 O. Therefore, the active material generation efficiency is only 67% at the maximum. Usually the second
Since 100% of SiLi 4 is not used in the second charge / discharge, the initial charge efficiency is only about 50%.

【0015】化成に使用されるLi+ は正極のLiCo
2 、LiMn2 4 などから供給されるので、上記の
ように不可逆容量が大きい場合は電池容量が小さくな
る。
Li + used for chemical conversion is LiCo of the positive electrode.
Since it is supplied from O 2 , LiMn 2 O 4, etc., when the irreversible capacity is large as described above, the battery capacity becomes small.

【0016】[0016]

【発明が解決しようとする課題】上記のように、Li−
Al、Li−Pb、Mg2 Si(Lix )などは高容量
であるが、サイクル特性が悪く、SiOやSnOなどの
金属酸化物はサイクル特性は良いが、化成時の不可逆容
量が大きく、電池に組んだ時に正極中のリチウムイオン
が無駄に使用される。
As described above, Li-
Al, Li-Pb, Mg 2 Si (Li x ) and the like have a high capacity, but have poor cycle characteristics, and metal oxides such as SiO and SnO have good cycle characteristics, but have a large irreversible capacity during chemical formation. When assembled, lithium ions in the positive electrode are wasted.

【0017】本発明は、上記のような従来技術の問題点
を解決し、高容量で、かつサイクル特性の優れた非水二
次電池を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a non-aqueous secondary battery having a high capacity and excellent cycle characteristics.

【0018】[0018]

【課題を解決するための手段】本発明は、Si2 Feや
Si2 Niなど、シリコン合金の中でもFeやNiなど
のLiと合金化しない金属との合金を用いることによ
り、化成時の正極のリチウムイオンの利用効率を高め、
かつサイクル中もFeやNiなどのリチウムと合金を作
らない骨格構造を持たせることにより、サイクルに伴っ
て生じる活物質(SiLi4 やSnLi4 など)の微粉
化や凝集によるサイクル劣化を防止し、上記目的を達成
したものである。
According to the present invention, a positive electrode during chemical formation is formed by using an alloy of a metal that does not alloy with Li, such as Fe or Ni, among silicon alloys such as Si 2 Fe or Si 2 Ni. Increase the efficiency of lithium ion use,
In addition, by providing a skeletal structure that does not form an alloy with lithium such as Fe or Ni even during the cycle, cycle deterioration due to pulverization and agglomeration of active materials (SiLi 4 and SnLi 4 ) generated with the cycle is prevented, The above object has been achieved.

【0019】前記式(1)はSiLi4 が生成する反応
であるが、SiとLiとの合金の組成はSiLi4 だけ
ではなく、SiLix (0≦x≦5)で存在する。説明
にあたっては、その代表的な組成のSiLi4 について
のみ例示するが、このSiLi4 以外にも、上記SiL
x (0≦x≦5)に属するSiLi2 やSiLiなど
も含む。
The above formula (1) is a reaction for forming SiLi 4 , and the composition of the alloy of Si and Li is not only SiLi 4 but also SiLi x (0 ≦ x ≦ 5). In the description, it illustrated only SiLi 4 of the typical composition, in addition to this SiLi 4, the SiL
such as i x (0 ≦ x ≦ 5 ) belonging SiLi 2 or SiLi including.

【0020】そこで、まず、上記の化成反応について説
明する。シリコン合金としてSi2Feを例に挙げ、そ
の化成反応を示すと、下記の式(2)のようになる。
Therefore, the above-mentioned chemical conversion reaction will be described first. Taking Si 2 Fe as an example of a silicon alloy and showing its chemical reaction, the following formula (2) is obtained.

【0021】 Si2 Fe+8Li+ +8e- → 2SiLi4 +Fe (2)Si 2 Fe + 8Li + + 8e → 2SiLi 4 + Fe (2)

【0022】上記式(2)に示すように、1モルのSi
2 Feに対して8当量のLi+ とe- が消費され、2モ
ルのSiLi4 と1モルのFeが生成する。電池に有効
な活物質はSiLi4 であり、上記式(2)の左辺で消
費される8当量のLi+ はすべて活物質の生成のために
使われる。
As shown in the above formula (2), 1 mol of Si
Equivalents of Li + and e to 2 Fe are consumed, and 2 mol of SiLi 4 and 1 mol of Fe are produced. The active material that is effective for the battery is SiLi 4 , and the 8 equivalents of Li + consumed on the left side of the above formula (2) are all used for generating the active material.

【0023】前記したSiOやSnOなどの金属酸化物
の場合には使用されたLi+ の1/3が充放電反応に寄
与しないLi2 Oの生成に消費されたのと比べて、本発
明の場合には使用されたLi+ のすべてが活物質の生成
に使用され、リチウムイオンの利用率が向上する。
In the case of the above-mentioned metal oxides such as SiO and SnO, one-third of the used Li + is consumed for producing Li 2 O which does not contribute to the charge / discharge reaction. In some cases, all of the Li + used is used to generate the active material, improving the utilization of lithium ions.

【0024】つぎに、サイクル特性について説明する
と、本発明の場合は、マトリックス(骨格)がFeであ
るため、従来のLi−Al、Li−Pb、Mg2 Siの
時のAlやPb、Mgなどとは異なり、Liと合金を作
らないので安定である。
Next, the cycle characteristics will be described. In the case of the present invention, since the matrix (skeleton) is Fe, Al, Pb, Mg and the like in the case of conventional Li-Al, Li-Pb, Mg 2 Si, etc. Unlike this, it is stable because it does not form an alloy with Li.

【0025】そのため、充放電サイクルにおいて、活物
質のSiLi4 が微粉化や凝集を起こしても、その変化
が微小部分にとどまり、電極全体を変形させることがな
い。その結果、サイクル特性が劣化せず安定なものにな
る。
Therefore, even if SiLi 4 of the active material is pulverized or agglomerated in the charge / discharge cycle, the change remains in a minute portion and the entire electrode is not deformed. As a result, the cycle characteristics are stable without deterioration.

【0026】[0026]

【発明の実施の形態】本発明において、負極に用いるシ
リコン合金は、SiとFe、Ni、W、MoなどのLi
と合金を作らない金属との合金であり、そのようなその
ようなシリコン合金の具体例としては、上記例示のSi
2 Fe以外にも、たとえばSi2 Ni、SiFe、Si
Ni、SiW、SiMoなどが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a silicon alloy used for a negative electrode is composed of Si and Li such as Fe, Ni, W and Mo.
And a metal that does not form an alloy. Specific examples of such a silicon alloy include Si, as described above.
In addition to 2Fe, for example, Si 2 Ni, SiFe, Si
Ni, SiW, SiMo and the like can be mentioned.

【0027】また、スズ合金も、SnとFeやNiなど
のLiと合金を作らない金属との合金であり、そのよう
なスズ合金の具体例としては、たとえばSn2 Fe、S
2Niなどが挙げられる。
The tin alloy is also an alloy of Sn and a metal which does not form an alloy with Li, such as Fe or Ni. Specific examples of such a tin alloy include, for example, Sn 2 Fe, S
n 2 Ni and the like.

【0028】そして、これらの合金も、前記Si2 Fe
の場合と同様の効果を期待できる。たとえば、Si2
iの場合も、その化成反応は、下記の式(3)のように Si2 Ni+8Li+ +8e- → 2SiLi4 +Fe (3) 1モルのSi2 Niに対して8当量のLi+ とe- が消
費され、2モルのSiLi4 と1モルのNiが生成し、
SiLi4 は活物質として作用し、Niは充放電サイク
ル時のマトリックスとして作用する。そして、この化成
反応で消費された8当量のLi+ はすべて活物質(Si
Li4 )の生成に使用されて、リチウムイオンの利用率
が向上し、充放電サイクルにおいてマトリックスとなる
Niは、Liと合金を作らないので、サイクル特性が劣
化せず安定なものになる。
These alloys also have the above-mentioned Si 2 Fe
The same effect as in the case of can be expected. For example, Si 2 N
Also in the case of i, the chemical conversion reaction is as follows : Si 2 Ni + 8Li + + 8e → 2SiLi 4 + Fe (3) As shown in the following formula (3), 8 equivalents of Li + and e are added to 1 mol of Si 2 Ni. Consumed to produce 2 moles of SiLi 4 and 1 mole of Ni,
SiLi 4 acts as an active material, and Ni acts as a matrix during charge / discharge cycles. Then, 8 equivalents of Li + consumed in this chemical conversion reaction are all active materials (Si
Li 4 ) is used to generate lithium ions, thereby improving the utilization rate of lithium ions. Ni, which forms a matrix in a charge / discharge cycle, does not form an alloy with Li, so that the cycle characteristics do not deteriorate and become stable.

【0029】また、Sn2 FeやSn2 Niなどのスズ
合金の場合も、その化成反応は、下記の式(4)や式
(5)のように、 Sn2 Fe+8Li+ +8e- → 2SnLi4 +Fe (4) Sn2 Ni+8Li+ +8e- → 2SnLi4 +Fe (5) 1モルのSn2 FeやSn2 Niに対して8当量のLi
+ とe- が消費され、2モルのSnLi4 と1モルのF
eやNiが生成し、SnLi4 は活物質として作用し、
FeやNiは充放電サイクル時のマトリックスとして作
用する。そして、この化成反応で消費された8当量のL
+ はすべて活物質(SnLi4 )の生成に使用され、
リチウムイオンの利用率が向上し、充放電サイクルにお
いてマトリックスとなるFeやNiは、Liと合金を作
らないので、サイクル特性が劣化せず安定なものにな
る。
Also, in the case of tin alloys such as Sn 2 Fe and Sn 2 Ni, the chemical reaction is carried out according to the following equations (4) and (5): Sn 2 Fe + 8Li + + 8e → 2SnLi 4 + Fe (4) Sn 2 Ni + 8Li + + 8e → 2SnLi 4 + Fe (5) 8 equivalents of Li with respect to 1 mol of Sn 2 Fe or Sn 2 Ni
+ And e - are consumed, 2 mol of SnLi 4 and 1 mol of F
e and Ni are generated, SnLi 4 acts as an active material,
Fe and Ni act as a matrix during a charge / discharge cycle. Then, 8 equivalents of L consumed in this conversion reaction
i + is used to generate active material (SnLi 4 ),
Since the utilization rate of lithium ions is improved and Fe or Ni serving as a matrix in a charge / discharge cycle does not form an alloy with Li, the cycle characteristics are stable without deterioration.

【0030】上記のシリコン合金において、Siは50
モル%以上であることが好ましい。これはSiの比率を
大きくすることにより反応するLiの量を多くし、容量
を大きくすることができるという理由による。また、ス
ズ合金においても、Snは50モル%以上であることが
好ましい。これもシリコン合金の場合と同様にSiの比
率を大きくすることにより反応するLiの量を多くし、
容量を大きくすることができるという理由による。
In the above silicon alloy, Si is 50
It is preferably at least mol%. This is because the amount of Li that reacts by increasing the ratio of Si can be increased, and the capacity can be increased. Also in the tin alloy, Sn is preferably at least 50 mol%. This also increases the amount of Li that reacts by increasing the ratio of Si, as in the case of the silicon alloy,
This is because the capacity can be increased.

【0031】本発明において、正極活物質としては、特
に限定されることなく各種のものを使用することができ
るが、特にリチウムコバルト酸化物、リチウムマンガン
酸化物、リチウムニッケル酸化物(これらは、通常、そ
れぞれLiCoO2 、LiMn2 4 、LiNiO2
どで表すが、これらのLiとCoの比、LiとMnの
比、LiとNiの比は化学量論組成からずれている場合
が多い)などのリチウム含有遷移金属酸化物が好適に用
いられる。
In the present invention, as the positive electrode active material, various materials can be used without any particular limitation. In particular, lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide (these are usually , And LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 , respectively, and the ratio of Li to Co, the ratio of Li to Mn, and the ratio of Li to Ni often deviate from the stoichiometric composition. Is preferably used.

【0032】そして、正極は、上記正極活物質に、必要
に応じて、たとえば、りん(鱗)状黒鉛、アセチレンブ
ラック、カーボンブラックなどの導電助剤と、たとえ
ば、ポリフッ化ビニリデン、テトラフルオロエチレン、
エチレンプロピレンジエンターポリマーなどのバインダ
ーを加えて調製した正極合剤を加圧成形するか、あるい
はさらに溶剤を加えてペースト状にし、それを金属箔
(たとえば、アルミニウム箔、チタン箔、白金箔など)
などからなる集電体上に塗布、乾燥する工程を経て作製
される。ただし、正極の作製方法は上記例示のものに限
定されることはない。
The positive electrode is formed by adding a conductive auxiliary such as phosphorus (scale) graphite, acetylene black or carbon black to the positive electrode active material, if necessary, for example, polyvinylidene fluoride, tetrafluoroethylene, or the like.
The positive electrode mixture prepared by adding a binder such as ethylene propylene diene terpolymer is pressed or formed into a paste by adding a solvent, and the paste is formed into a metal foil (for example, aluminum foil, titanium foil, platinum foil, etc.).
It is produced through a process of applying and drying on a current collector made of such as. However, the method for producing the positive electrode is not limited to the above-described example.

【0033】負極は、たとえば、上記シリコン合金また
はスズ合金、あるいは、それらの合金と、りん(鱗)状
黒鉛、アセチレンブラック、カーボンブラックなどの導
電助剤と、結着剤との混合物を含んだ電極体を作製し、
それを電池に組み込み、電池組立後の第1回目の充電時
の化成反応によって作製される。ただし、このような電
池内での化成反応を経る方法によることなく、あらかじ
め電池外で負極としての状態に仕上げておいてもよい。
そして、この負極の形としては、コイン電池、ボタン形
電池の場合は上記組成の負極合剤を加圧成形する工程を
経て作製したペレット状のものを用い、円筒型電池や角
型電池の場合は上記組成の負極合剤に溶剤などを加えて
ペースト状に調製し、そのペーストを銅箔やニッケル箔
などに塗布し、乾燥する工程を経て作製されるシート状
のものを用いることが多い。ただし、負極の作製方法や
その形態などは上記例示に限定されるものではない。
The negative electrode contains, for example, a mixture of the above-mentioned silicon alloy or tin alloy, or an alloy thereof, a conductive auxiliary such as phosphorus (scale) graphite, acetylene black, carbon black, and a binder. Make an electrode body,
It is assembled in a battery and is produced by a chemical reaction at the time of the first charging after the battery is assembled. However, the anode may be finished outside the battery in advance without using a method of performing a chemical reaction inside the battery.
As the shape of the negative electrode, a coin-shaped battery, a button-shaped battery, a pellet-shaped one produced through a step of pressure-molding a negative electrode mixture of the above composition, and a cylindrical battery or a prismatic battery are used. In many cases, a sheet is prepared by adding a solvent or the like to the negative electrode mixture having the above composition to prepare a paste, applying the paste to a copper foil or a nickel foil, and drying the paste. However, the method for manufacturing the negative electrode and the form thereof are not limited to the above examples.

【0034】非水電解質としては、有機溶媒を使用した
液状電解質、ポリマー電解質などの固体電解質のいずれ
も使用することができる。上記の液状電解質、すなわ
ち、電解液としては、たとえば1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、プロピレンカーボネー
ト、エチレンカーボネート、γ−ブチロラクトン、テト
ラヒドロフラン、1,3−ジオキソラン、ジエチレンカ
ーボネート、ジメチルカーボネート、エチルメチルカー
ボネートなどの単独または2種以上の混合溶媒に、たと
えばLiCF3 SO3 、LiC4 9 SO3 、LiCl
4 、LiPF6、LiBF4 などの溶質を単独でまた
は2種以上を溶解させて調製した有機溶媒系の電解液が
用いられる。
As the non-aqueous electrolyte, any of a liquid electrolyte using an organic solvent and a solid electrolyte such as a polymer electrolyte can be used. As the above liquid electrolyte, that is, as an electrolytic solution, for example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, diethylene carbonate, dimethyl In a single solvent or a mixed solvent of two or more kinds such as carbonate and ethyl methyl carbonate, for example, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCl
An organic solvent-based electrolyte prepared by dissolving solutes such as O 4 , LiPF 6 , and LiBF 4 alone or by dissolving two or more thereof is used.

【0035】[0035]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

【0036】実施例1 平均粒径15μmのSi2 Fe粉末100mgを加圧成
形して、直径16mmで厚さ0.1mmの円盤状に成形
したものを負極に用いた。
Example 1 100 mg of Si 2 Fe powder having an average particle diameter of 15 μm was press-formed and formed into a disk having a diameter of 16 mm and a thickness of 0.1 mm.

【0037】正極には平均粒径6μmのLiCoO2
末200mgにりん状黒鉛10mgとポリテトラフルオ
ロエチレン10mgとを混合し、加圧成形して直径16
mmで厚さ1.0mmの円盤状に成形したものを用い
た。
For the positive electrode, 10 mg of phosphorous graphite and 10 mg of polytetrafluoroethylene were mixed with 200 mg of LiCoO 2 powder having an average particle size of 6 μm, and the mixture was pressed and molded to a diameter of 16 μm.
What was formed into a disk shape having a thickness of 1.0 mm and a thickness of 1.0 mm was used.

【0038】セパレータとしてはポリエチレン多孔薄膜
とポリエチレン不織布とを重ね合わせたものを用い、非
水電解質としてはエチレンカーボネートとメチルエチル
カーボネートとの体積比1:1の混合溶媒にLiPF6
を1モル/リットル溶解させて調製した液状電解質、す
なわち、有機溶媒系の電解液を用い、前記正極と負極と
の間に上記セパレータを挟み、正極、セパレータ、負極
を押さえ、上記電解液中で3mAで20時間充電を行
い、以後、放電は3mAで3.0Vまで、充電は3mA
で4.2Vまでの定電流充放電を繰り返した。
As a separator, a laminated polyethylene porous thin film and a polyethylene nonwoven fabric are used. As a non-aqueous electrolyte, LiPF 6 is mixed with a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 1.
Using a liquid electrolyte prepared by dissolving 1 mol / liter, ie, an organic solvent-based electrolyte, sandwiching the separator between the positive electrode and the negative electrode, pressing the positive electrode, the separator, and the negative electrode, The battery is charged at 3 mA for 20 hours, and thereafter, the discharge is performed at 3 mA to 3.0 V, and the charge is performed at 3 mA.
And repeated constant current charging and discharging up to 4.2V.

【0039】比較例1 実施例1で用いたSi2 Feに代えてSi粉末50mg
を加圧成形して直径16mmで厚さ0.1mmの円盤状
に成形したものを負極に用い、それ以外は実施例1と同
様にし非水二次電池を作製し、実施例1と同様の条件で
充放電を行った。
Comparative Example 1 50 mg of Si powder was used instead of Si 2 Fe used in Example 1.
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that a negative electrode was formed by pressing into a disk having a diameter of 16 mm and a thickness of 0.1 mm. Charge and discharge were performed under the conditions.

【0040】比較例2 実施例1で用いたSi2 Feに代えてSiO2 粉末10
0mgを加圧成形して直径16mmで、厚さ0.2mm
の円盤状に成形したものを負極に用い、それ以外は実施
例1と同様にして非水二次電池を作製し、実施例1と同
様の条件で充放電を行った。
Comparative Example 2 Instead of Si 2 Fe used in Example 1, SiO 2 powder 10
0mg is press molded and 16mm in diameter, 0.2mm in thickness
A non-aqueous secondary battery was produced in the same manner as in Example 1 except that the disk-shaped product was used as the negative electrode, and charged and discharged under the same conditions as in Example 1.

【0041】上記実施例1と比較例1〜2の電池の初回
の充電と初回の放電の様子を図1に示す。また、上記実
施例1と比較例1〜2の電池のサイクル特性を図2に示
す。
FIG. 1 shows the state of the first charging and the first discharging of the batteries of Example 1 and Comparative Examples 1 and 2. FIG. 2 shows the cycle characteristics of the batteries of Example 1 and Comparative Examples 1 and 2.

【0042】図1に示すように、実施例1は初回の放電
で約60mAhの電気量が充電され、初回の放電で約6
0mAhの電気量が取り出せる。2回目以降も、図2に
示すように充放電量は約60mAhで安定なサイクル特
性を示し、サイクル特性が優れていた。
As shown in FIG. 1, in the first embodiment, about 60 mAh of electricity is charged in the first discharge, and about 6 mAh is charged in the first discharge.
An electric quantity of 0 mAh can be taken out. Even after the second time, as shown in FIG. 2, the charge / discharge amount was about 60 mAh, showing stable cycle characteristics, and the cycle characteristics were excellent.

【0043】これに対して、比較例1は初回の充電量が
約60mAhで実施例1とほぼ同じであるが、放電量は
約40mAhと少なくなり、以後サイクルを繰り返す
と、図2に示すように容量が極端に少なくなる。これ
は、負極中でSiLi2 が微粉化して行くためであると
考えられる。
On the other hand, in Comparative Example 1, the initial charge amount is about 60 mAh, which is almost the same as that of Example 1, but the discharge amount is reduced to about 40 mAh, and when the cycle is repeated thereafter, as shown in FIG. The capacity becomes extremely small. This is considered to be because SiLi 2 is pulverized in the negative electrode.

【0044】また、比較例2は初回の充電量が約60m
Ahで実施例1とほぼ同じであるが、初回の放電量は約
40mAhと実施例1の約60mAhに比べて少なかっ
た。ただし、2回目以降は、図2に示すように充放電量
が約40mAhで安定していた。比較例1の場合はSi
Li2 の微粉化でサイクル劣化が起こったが、比較例2
の場合は初回の充電でLi2 Oが生成し、このLi2
がサイクル特性に良い影響を与え、サイクル劣化を抑制
したことによるものと推定される。
In Comparative Example 2, the initial charge amount was about 60 m.
Ah was almost the same as Example 1, but the initial discharge amount was about 40 mAh, which was smaller than about 60 mAh in Example 1. However, after the second time, the charge / discharge amount was stable at about 40 mAh as shown in FIG. In the case of Comparative Example 1, Si
Although cycle deterioration occurred by pulverization of Li 2 , Comparative Example 2
In the case of the first charge, Li 2 O is generated by the first charge, and this Li 2 O
Has a good effect on the cycle characteristics, and is presumed to be due to suppression of cycle deterioration.

【0045】上記のように、実施例1が高容量であった
のは、初回の充電でSiLix とFeが生成し、Feの
生成に電気を使わなくてよいため、約60mAhを充電
することができ、かつ約60mAhを放電することがで
きたものと推定される。
As described above, Example 1 had a high capacity because SiLi x and Fe were generated during the first charge, and electricity was not required to generate Fe. Therefore, about 60 mAh was charged. It is estimated that about 60 mAh was able to be discharged.

【0046】また、実施例1のサイクル劣化が生じなか
ったのは、比較例2において生成したLi2 Oのする作
用をFeが行い、SiLix が微粉化しても、電池の充
放電特性に悪影響が及ぶのを防止したためであると考え
られる。
The reason that the cycle deterioration of Example 1 did not occur is that even when Fe performed the function of Li 2 O generated in Comparative Example 2 and SiLi x was pulverized, the charge / discharge characteristics of the battery were adversely affected. It is thought that this is because the occurrence of

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
高容量で、かつサイクル特性の優れた非水二次電池を提
供することができる。
As described above, according to the present invention,
A non-aqueous secondary battery having high capacity and excellent cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1と比較例1〜2の電池の初回の充放電
挙動を示す図である。
FIG. 1 is a diagram showing initial charge / discharge behaviors of batteries of Example 1 and Comparative Examples 1 and 2.

【図2】実施例1と比較例1〜2の電池のサイクル特性
を示す図である。
FIG. 2 is a diagram showing cycle characteristics of batteries of Example 1 and Comparative Examples 1 and 2.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解質を有する非水二
次電池において、上記負極が、シリコン合金またはスズ
合金を含むことを特徴とする非水二次電池。
1. A non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode contains a silicon alloy or a tin alloy.
【請求項2】 シリコン合金が、SiとFeからなる合
金またはSiとNiからなる合金である請求項1記載の
非水二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the silicon alloy is an alloy composed of Si and Fe or an alloy composed of Si and Ni.
【請求項3】 スズ合金が、SnとFeからなる合金ま
たはSnとNiからなる合金である請求項1記載の非水
二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the tin alloy is an alloy composed of Sn and Fe or an alloy composed of Sn and Ni.
【請求項4】 シリコン合金のSiの含有比率が50モ
ル%以上ある請求項1または2記載の非水二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the silicon content of the silicon alloy is 50 mol% or more.
【請求項5】 スズ合金のSnの含有比率が50モル%
以上である請求項1または3記載の非水二次電池。
5. A tin alloy containing 50 mol% of Sn.
The non-aqueous secondary battery according to claim 1 or 3, which is as described above.
JP33476496A 1996-11-29 1996-11-29 Non-aqueous secondary battery Expired - Fee Related JP3640227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33476496A JP3640227B2 (en) 1996-11-29 1996-11-29 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33476496A JP3640227B2 (en) 1996-11-29 1996-11-29 Non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004341514A Division JP3835806B2 (en) 2004-11-26 2004-11-26 Manufacturing method of non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH10162823A true JPH10162823A (en) 1998-06-19
JP3640227B2 JP3640227B2 (en) 2005-04-20

Family

ID=18280978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33476496A Expired - Fee Related JP3640227B2 (en) 1996-11-29 1996-11-29 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3640227B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO2000051196A1 (en) * 1999-02-22 2000-08-31 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and material for negative plate used therefor
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
JP2002198091A (en) * 2000-12-27 2002-07-12 Hyogo Prefecture Negative electrode for lithium secondary cell and lithium secondary cell using the same
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US6555272B2 (en) 1998-09-11 2003-04-29 Nippon Steel Corporation Lithium secondary battery and active material for negative electrode in lithium secondary battery
WO2003090296A1 (en) * 2002-04-19 2003-10-30 Sony Corporation Cell
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
US6835496B1 (en) * 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
CN1319191C (en) * 2005-09-06 2007-05-30 天津力神电池股份有限公司 Method for preparing negative pole material of lithium ion cell high-capacity tin composite
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007258183A (en) * 2007-05-11 2007-10-04 Ube Ind Ltd Nonaqueous secondary battery
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
CN100386905C (en) * 2006-05-26 2008-05-07 清华大学 Metal particle-cladded active carbon microsphere cathode composite materials and method for preparing same
US7781099B2 (en) 2002-07-04 2010-08-24 Gs Yuasa Corporation Non-aqueous electrolyte secondary cell
WO2010098452A1 (en) 2009-02-27 2010-09-02 日本ゼオン株式会社 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN112331815A (en) * 2020-11-04 2021-02-05 四川大学 Three-dimensional micro-nano composite porous iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and one-step preparation method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508577A (en) * 1998-03-26 2002-03-19 ミネソタ マイニング アンド マニュファクチャリング カンパニー Tin alloy electrode composition for lithium batteries
JP2000011984A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US6835496B1 (en) * 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
US6555272B2 (en) 1998-09-11 2003-04-29 Nippon Steel Corporation Lithium secondary battery and active material for negative electrode in lithium secondary battery
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
US6576366B1 (en) 1999-02-22 2003-06-10 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
WO2000051196A1 (en) * 1999-02-22 2000-08-31 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and material for negative plate used therefor
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002198091A (en) * 2000-12-27 2002-07-12 Hyogo Prefecture Negative electrode for lithium secondary cell and lithium secondary cell using the same
WO2002071512A1 (en) * 2001-03-06 2002-09-12 Sanyo Electric Co., Ltd. Electrode for lithium secondary cell and lithium secondary cell
US7160646B2 (en) 2001-03-06 2007-01-09 Sanyo Electric Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
WO2003090296A1 (en) * 2002-04-19 2003-10-30 Sony Corporation Cell
US7214445B2 (en) 2002-04-19 2007-05-08 Sony Corporation Battery
US7781099B2 (en) 2002-07-04 2010-08-24 Gs Yuasa Corporation Non-aqueous electrolyte secondary cell
EP1604415A1 (en) * 2003-03-26 2005-12-14 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
EP1604415A4 (en) * 2003-03-26 2009-01-28 Canon Kk Electrode material for lithium secondary battery and electrode structure having the electrode material
WO2004086539A1 (en) 2003-03-26 2004-10-07 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure having the electrode material
CN1319191C (en) * 2005-09-06 2007-05-30 天津力神电池股份有限公司 Method for preparing negative pole material of lithium ion cell high-capacity tin composite
CN100386905C (en) * 2006-05-26 2008-05-07 清华大学 Metal particle-cladded active carbon microsphere cathode composite materials and method for preparing same
JP2007258183A (en) * 2007-05-11 2007-10-04 Ube Ind Ltd Nonaqueous secondary battery
JP4702321B2 (en) * 2007-05-11 2011-06-15 宇部興産株式会社 Non-aqueous secondary battery
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
WO2010098452A1 (en) 2009-02-27 2010-09-02 日本ゼオン株式会社 Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
CN112331815A (en) * 2020-11-04 2021-02-05 四川大学 Three-dimensional micro-nano composite porous iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and one-step preparation method thereof
CN112331815B (en) * 2020-11-04 2021-09-10 四川大学 Iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and preparation method thereof

Also Published As

Publication number Publication date
JP3640227B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5232631B2 (en) Non-aqueous electrolyte battery
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
WO2005064714A1 (en) Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
WO2000033399A1 (en) Non-aqueous electrolyte secondary cell
JP3062304B2 (en) Non-aqueous solvent secondary battery
JPH08279357A (en) Lithium secondary battery and its manufacture
JP3016627B2 (en) Non-aqueous solvent secondary battery
JPH10321225A (en) Lithium secondary battery, and portable electric equipment, electronic equipment, electric vehicle and power storing device using this lithium semiconductor battery
JP3393243B2 (en) Non-aqueous electrolyte secondary battery
JP2002042864A (en) Nonaqueous electrolyte secondary battery
JP2004327078A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPH10125309A (en) Nonaqueous secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP3835807B2 (en) Manufacturing method of non-aqueous secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP2001015168A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees