JP2009080971A - Anode for lithium ion battery - Google Patents

Anode for lithium ion battery Download PDF

Info

Publication number
JP2009080971A
JP2009080971A JP2007247906A JP2007247906A JP2009080971A JP 2009080971 A JP2009080971 A JP 2009080971A JP 2007247906 A JP2007247906 A JP 2007247906A JP 2007247906 A JP2007247906 A JP 2007247906A JP 2009080971 A JP2009080971 A JP 2009080971A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
active material
electrode active
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007247906A
Other languages
Japanese (ja)
Other versions
JP5252386B2 (en
Inventor
Shinichi Komaba
慎一 駒場
Koji Okushi
浩司 大櫛
Takami Saito
崇実 齋藤
Kyoichi Watanabe
恭一 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Nissan Motor Co Ltd
Original Assignee
Tokyo University of Science
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Nissan Motor Co Ltd filed Critical Tokyo University of Science
Priority to JP2007247906A priority Critical patent/JP5252386B2/en
Publication of JP2009080971A publication Critical patent/JP2009080971A/en
Application granted granted Critical
Publication of JP5252386B2 publication Critical patent/JP5252386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode for a lithium ion battery which can reduce an irreversible capacity when a battery is charged for the first time and improve a charge and discharge efficiency. <P>SOLUTION: The anode for a battery is provided with a current collector, an anode active substance layer which is formed on the surface of the current collector and includes an anode active substance and a binder, The binder is polyacrylate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池用負極に関する。特に本発明は、リチウムイオン二次電池の出力密度を向上させるための改良に関する。   The present invention relates to a negative electrode for a battery. In particular, the present invention relates to an improvement for improving the output density of a lithium ion secondary battery.

近年、環境や燃費の観点から、ハイブリッド自動車や電気自動車、さらには燃料電池自動車が製造・販売され、新たな開発が続けられている。これらのいわゆる電動車両においては、放電・充電ができる電源装置の活用が不可欠である。この電源装置としては、リチウムイオン電池やニッケル水素電池等の二次電池や、電気二重層キャパシタ等が利用される。特に、リチウムイオン二次電池はそのエネルギー密度の高さや繰り返し充放電に対する耐久性の高さから、電動車両に好適と考えられ、各種の開発が鋭意進められている。リチウムイオン二次電池は、一般に、正極活物質を含む正極活物質層が正極集電体の両面に形成された正極と、負極活物質を含む負極活物質層が負極集電体の両面に形成された負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。   In recent years, hybrid vehicles, electric vehicles, and fuel cell vehicles have been manufactured and sold from the viewpoints of environment and fuel efficiency, and new developments are continuing. In these so-called electric vehicles, it is indispensable to use a power supply device capable of discharging and charging. As the power supply device, a secondary battery such as a lithium ion battery or a nickel metal hydride battery, an electric double layer capacitor, or the like is used. In particular, lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charging and discharging, and various developments have been intensively advanced. Generally, in a lithium ion secondary battery, a positive electrode active material layer including a positive electrode active material is formed on both surfaces of a positive electrode current collector, and a negative electrode active material layer including a negative electrode active material is formed on both surfaces of the negative electrode current collector. The negative electrode is connected via an electrolyte layer and is housed in a battery case.

ここで、正極活物質としては、例えば、リチウム−遷移金属複合酸化物などが用いられ、負極活物質としては、例えば黒鉛などの炭素材料が用いられている。また、電解質層に用いられる電解液は、例えばエチレンカーボネート(EC)やプロピレンカーボネート(PC)などの溶媒を含み、特にPCは比較的融点が低く、低温で使用できるために有利である。   Here, for example, a lithium-transition metal composite oxide or the like is used as the positive electrode active material, and a carbon material such as graphite is used as the negative electrode active material. Moreover, the electrolyte solution used for an electrolyte layer contains solvents, such as ethylene carbonate (EC) and propylene carbonate (PC), for example. Since PC has comparatively low melting | fusing point, it can be used at low temperature.

しかしながら、リチウムイオン二次電池用負極として用いられている黒鉛の問題点として、初回サイクルにおける不可逆容量の存在や、プロピレンカーボネート(PC)を電解液として使用した際における溶媒の共挿入によるPCの分解反応、それに伴う黒鉛の崩壊が挙げられる。これは、黒鉛を負極活物質として用いた電池に、電解液の溶媒としてPCを用いると、PCが黒鉛の層間に挿入され、層構造が壊れてしまうためである。これを解決するために、例えば、非特許文献1、非特許文献2には、PC中で黒鉛負極を用いるために、電解液中にエチレンサルファイトやビニレンカーボネートなどの添加剤を添加して、充電時に黒鉛表面を保護する被膜を作製する方法が記載されている。これらの添加剤は黒鉛表面で分解し、PCの黒鉛中への挿入を妨げ、リチウムイオンのみを挿入させると考えられている。
G.H.Wrodnigg et al.,J.Electrochem.Soc.,146,470(1999) C.Jehoulet et al.,Proc.Electrochem.Soc.,97,974(1997)
However, the problems with graphite used as the negative electrode for lithium ion secondary batteries include the presence of irreversible capacity in the first cycle and the decomposition of PC by co-insertion of a solvent when propylene carbonate (PC) is used as the electrolyte. Reaction, and accompanying graphite decay. This is because if a battery using graphite as a negative electrode active material and PC is used as a solvent for the electrolyte, the PC is inserted between the graphite layers and the layer structure is broken. In order to solve this, for example, in Non-Patent Document 1 and Non-Patent Document 2, in order to use a graphite negative electrode in PC, an additive such as ethylene sulfite or vinylene carbonate is added to the electrolytic solution, A method of producing a coating that protects the graphite surface during charging is described. These additives are considered to decompose on the graphite surface, prevent insertion of PC into graphite, and allow only lithium ions to be inserted.
G. H. Wrodnig et al. , J .; Electrochem. Soc. , 146, 470 (1999) C. Jeholet et al. , Proc. Electrochem. Soc. , 97, 974 (1997)

しかしながら、上述の方法では、電解液に高価な添加剤を加える必要があるため、より低コストで簡便な方法が求められている。そこで本発明は、上述の問題を解決し、高容量の電池を作製する手段を提供することを目的とする。   However, in the above method, since it is necessary to add an expensive additive to the electrolytic solution, a simpler method is required at a lower cost. Therefore, an object of the present invention is to solve the above-described problems and provide a means for manufacturing a high-capacity battery.

本発明者らは、上記の課題を解決すべく鋭意研究を行った。そしてその際に、電池用負極の負極活物質層において、ポリアクリル酸やポリアクリル酸塩のようなイオン性高分子で負極活物質の表面を被覆することを試みた。その結果、負極活物質層における結着剤としてポリアクリル酸塩を添加することによって、高価な添加剤を加えることなく、初回サイクルにおける充放電特性が改善されることを見出し、本発明を完成させるに至った。   The present inventors have conducted intensive research to solve the above problems. At that time, an attempt was made to coat the surface of the negative electrode active material with an ionic polymer such as polyacrylic acid or polyacrylate in the negative electrode active material layer of the battery negative electrode. As a result, it has been found that by adding polyacrylate as a binder in the negative electrode active material layer, charge / discharge characteristics in the first cycle can be improved without adding expensive additives, and the present invention is completed. It came to.

すなわち本発明は、集電体と、前記集電体の表面に形成された、負極活物質および結着剤を含む負極活物質層と、を有する電池用負極であって、前記結着剤がポリアクリル酸塩であることを特徴とする、電池用負極である。   That is, the present invention is a battery negative electrode comprising a current collector and a negative electrode active material layer including a negative electrode active material and a binder formed on a surface of the current collector, wherein the binder is A negative electrode for a battery, which is a polyacrylate.

本発明の電池用負極の負極活物質層は、結着剤としてポリアクリル酸塩を含む。これにより、作製されたリチウムイオン二次電池の初回サイクルにおける不可逆容量を抑制することができ、電池の高容量化に寄与しうる。   The negative electrode active material layer of the negative electrode for a battery of the present invention contains polyacrylate as a binder. Thereby, the irreversible capacity | capacitance in the first cycle of the produced lithium ion secondary battery can be suppressed, and it can contribute to the high capacity | capacitance of a battery.

以下、本発明の実施の形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、下記の形態のみに制限されることはない。   Hereinafter, embodiments of the present invention will be described. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following embodiments.

(第1実施形態)
(構成)
本発明は、集電体と、前記集電体の表面に形成された、負極活物質および結着剤を含む負極活物質層と、を有する電池用負極であって、前記結着剤がポリアクリル酸塩であることを特徴とする、電池用負極である。
(First embodiment)
(Constitution)
The present invention is a negative electrode for a battery having a current collector and a negative electrode active material layer containing a negative electrode active material and a binder formed on the surface of the current collector, wherein the binder is a poly A negative electrode for a battery, which is an acrylate.

以下、本発明の電池用負極の構造について説明する。本発明の電池用負極は、集電体の一方の面に負極活物質層が形成されてなる電極である。なお、後述するように、電池用負極の組成は主に、負極活物質、および結着剤である。   Hereinafter, the structure of the negative electrode for a battery of the present invention will be described. The negative electrode for a battery of the present invention is an electrode in which a negative electrode active material layer is formed on one surface of a current collector. As will be described later, the composition of the negative electrode for a battery is mainly a negative electrode active material and a binder.

本発明の電池用負極(以下、単に「負極」とも称する)は、負極活物質層において、前記結着剤がポリアクリル酸塩である点に特徴を有する。   The negative electrode for a battery of the present invention (hereinafter also simply referred to as “negative electrode”) is characterized in that the binder is a polyacrylate in the negative electrode active material layer.

ポリアクリル酸は高分子吸収体としておむつなどに使用される吸水性樹脂として知られている。ポリアクリル酸を結着剤として負極活物質層に用いると、前記ポリアクリル酸が電解液を吸収して膨潤し、黒鉛などの負極活物質の表面を被覆し、これによってPCが黒鉛の層間に入り込むことを防ぐものと考えられる。特に、ポリアクリル酸ナトリウムやポリアクリル酸リチウムなどのポリアクリル酸塩を結着剤として用いると、上述の効果の他に、負極活物質の表面を被覆した樹脂が固体電解質のように機能すると考えられる。   Polyacrylic acid is known as a water absorbent resin used in diapers and the like as a polymer absorber. When polyacrylic acid is used in the negative electrode active material layer as a binder, the polyacrylic acid absorbs the electrolyte and swells, and covers the surface of the negative electrode active material such as graphite, so that the PC is interposed between the graphite layers. It is thought to prevent entry. In particular, when a polyacrylate such as sodium polyacrylate or lithium polyacrylate is used as a binder, in addition to the above effects, the resin covering the surface of the negative electrode active material functions as a solid electrolyte. It is done.

結着剤として用いられるポリアクリル酸塩としては、アルカリ金属またはMg、Beを含むアルカリ土類金属で中和されているポリアクリル酸塩があり、好ましくは、NaまたはLiで中和されている、ポリアクリル酸ナトリウムまたはポリアクリル酸リチウムを用いる。   As a polyacrylate used as a binder, there is a polyacrylate that is neutralized with an alkali metal or an alkaline earth metal containing Mg and Be, preferably neutralized with Na or Li Sodium polyacrylate or lithium polyacrylate is used.

ポリアクリル酸塩は、市販ものを用いてもよく、市販のポリアクリル酸または通常の方法で合成したポリアクリル酸をNaOH、LiOH、KOHなどで中和して用いてもよい。   A commercially available polyacrylic acid salt may be used, and commercially available polyacrylic acid or polyacrylic acid synthesized by a usual method may be neutralized with NaOH, LiOH, KOH or the like.

用いられうるポリアクリル酸塩の重量平均分子量は、好ましくは10,000〜10,000,000、より好ましくは100,000〜5,000,000である。ポリアクリル酸塩の重量平均分子量が上述の範囲であれば、電解液を吸収して膨張し、負極活物質を被覆する効果に優れる。なお、前記分子量は、液体クロマトグラフィーにより測定した重量平均分子量の値を採用するものとする。   The weight average molecular weight of the polyacrylate that can be used is preferably 10,000 to 10,000,000, more preferably 100,000 to 5,000,000. When the weight average molecular weight of the polyacrylate is in the above range, the electrolyte solution is absorbed and expanded, and the effect of covering the negative electrode active material is excellent. In addition, the value of the weight average molecular weight measured by liquid chromatography shall be employ | adopted for the said molecular weight.

負極活物質層における前記結着剤の含有量は、好ましくは負極活物質層の合計質量に対して1〜30質量%であり、より好ましくは1〜20質量%であり、さらに好ましくは1〜10質量%である。前記結着剤の含有量が上記範囲であれば、負極活物質を結着させ、負極活物質の表面を効果的に被覆することができる。   The content of the binder in the negative electrode active material layer is preferably 1 to 30% by mass, more preferably 1 to 20% by mass, and still more preferably 1 to 20% by mass with respect to the total mass of the negative electrode active material layer. 10% by mass. If content of the said binder is the said range, a negative electrode active material can be bound and the surface of a negative electrode active material can be coat | covered effectively.

本発明の負極においては、結着剤としてポリアクリル酸塩を含むことにより、ポリアクリル酸塩が負極活物質の表面を被覆する。そのため、特に負極活物質として黒鉛を用いた場合、電解液に接触した場合においても層構造が崩壊することなく良好な電極反応が行われうる。本発明の負極は、電解質層にPCを用いて電池を作製した場合、特に顕著な効果がみられる。   In the negative electrode of the present invention, the polyacrylate covers the surface of the negative electrode active material by including polyacrylate as a binder. Therefore, in particular, when graphite is used as the negative electrode active material, a favorable electrode reaction can be performed without collapsing the layer structure even when it is in contact with the electrolytic solution. The negative electrode of the present invention has a particularly remarkable effect when a battery is produced using PC as the electrolyte layer.

以下、リチウムイオン二次電池に採用される場合を例に挙げて、本発明の電池用負極の構成について説明する。本発明の電池用負極は、負極活物質層において結着剤としてポリアクリル酸塩を用いる点に特徴を有する。集電体、活物質、支持塩(リチウム塩)、イオン伝導性ポリマー、その他必要に応じて添加される化合物の選択について、特に制限はない。使用用途に応じて、従来公知の知見を適宜参照することにより、選択すればよい。   Hereinafter, the configuration of the negative electrode for a battery of the present invention will be described by taking as an example a case where it is employed in a lithium ion secondary battery. The negative electrode for batteries of the present invention is characterized in that polyacrylate is used as a binder in the negative electrode active material layer. There is no particular limitation on the selection of the current collector, active material, supporting salt (lithium salt), ion-conducting polymer, and other compounds added as necessary. Depending on the intended use, it may be selected by appropriately referring to conventionally known knowledge.

[集電体]
集電体は、ニッケル、銅、ステンレス(SUS)などの導電性の材料を用いた箔、メッシュ、エキスパンドグリッド(エキスパンドメタル)、パンチドメタルなどから構成される。メッシュの目開き、線径、メッシュ数などは、特に制限されず、従来公知のものが使用できる。集電体の一般的な厚さは、5〜30μmである。ただし、この範囲を外れる厚さの集電体を用いてもよい。
[Current collector]
The current collector is made of foil, mesh, expanded grid (expanded metal), punched metal, or the like using a conductive material such as nickel, copper, or stainless steel (SUS). The mesh opening, wire diameter, number of meshes, etc. are not particularly limited, and conventionally known ones can be used. The general thickness of the current collector is 5 to 30 μm. However, a current collector having a thickness outside this range may be used.

集電体の大きさは、電池の使用用途に応じて決定される。大型の電池に用いられる大型の電極を作製するのであれば、面積の大きな集電体が用いられる。小型の電極を作製するのであれば、面積の小さな集電体が用いられる。   The size of the current collector is determined according to the intended use of the battery. If a large electrode used for a large battery is manufactured, a current collector having a large area is used. If a small electrode is produced, a current collector with a small area is used.

[負極活物質層]
集電体上には、負極活物質層が形成される。負極活物質層は、充放電反応の中心を担う負極活物質および結着剤を含む層である。なお、結着剤については上述した通りなのでここでは説明を省略する。
[Negative electrode active material layer]
A negative electrode active material layer is formed on the current collector. The negative electrode active material layer is a layer containing a negative electrode active material that plays a central role in charge / discharge reaction and a binder. Since the binder is as described above, the description is omitted here.

負極活物質としては、炭素材料が好ましい。炭素材料としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料(黒鉛)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等が挙げられる。好ましくは、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛である。天然黒鉛は、例えば鱗片状黒鉛、塊状黒鉛などが使用できる。人造黒鉛としては塊状黒鉛、気相成長黒鉛、鱗片状黒鉛、繊維状黒鉛が使用できる。これらのなかで、特に好ましい材料は、鱗片状黒鉛、塊状黒鉛である。鱗片状黒鉛、塊状黒鉛を用いた場合、充填密度が高い等の理由で、特に有利である。場合によっては、2種以上の負極活物質が併用されてもよい。   A carbon material is preferable as the negative electrode active material. Examples of the carbon material include graphite-based carbon materials (graphite) such as natural graphite, artificial graphite, and expanded graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, and hard carbon. Preferably, graphite such as natural graphite, artificial graphite, and expanded graphite is used. As natural graphite, for example, scaly graphite, massive graphite and the like can be used. As the artificial graphite, massive graphite, vapor-grown graphite, flaky graphite, and fibrous graphite can be used. Among these, particularly preferable materials are flake graphite and massive graphite. The use of flaky graphite or massive graphite is particularly advantageous for reasons such as high packing density. In some cases, two or more negative electrode active materials may be used in combination.

負極活物質の平均粒子径は特に制限されないが、好ましくは1〜100μmであり、より好ましくは1〜50μmであり、さらに好ましくは1〜20μmである。ただし、これらの範囲を外れる形態もまた、採用されうる。なお、本願において負極活物質の平均粒子径は、レーザ回折式粒度分布測定(レーザ回折散乱法)により測定された値を採用するものとする。   The average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 50 μm, and further preferably 1 to 20 μm. However, forms outside these ranges can also be employed. In the present application, the average particle diameter of the negative electrode active material is a value measured by laser diffraction particle size distribution measurement (laser diffraction scattering method).

また、負極活物質層における負極活物質の含有量は、好ましくは負極活物質層の合計質量に対して80〜98質量%であり、より好ましくは90〜98質量%である。負極活物質の含有量が上記範囲であれば、エネルギー密度を高くすることができるため好適である。   Further, the content of the negative electrode active material in the negative electrode active material layer is preferably 80 to 98% by mass, more preferably 90 to 98% by mass with respect to the total mass of the negative electrode active material layer. If the content of the negative electrode active material is within the above range, it is preferable because the energy density can be increased.

本発明の電極において、負極活物質層の厚さ(塗布層の片面の厚さ)は、好ましくは、20〜500μmであり、より好ましくは20〜300μmであり、さらに好ましくは20〜150μmである。   In the electrode of the present invention, the thickness of the negative electrode active material layer (the thickness of one surface of the coating layer) is preferably 20 to 500 μm, more preferably 20 to 300 μm, and further preferably 20 to 150 μm. .

負極活物質層には、必要であれば、その他の物質が含まれてもよい。例えば、導電助剤、支持塩(リチウム塩)、イオン伝導性ポリマー等が含まれうる。また、イオン伝導性ポリマーが含まれる場合には、前記ポリマーを重合させるための重合開始剤が含まれてもよい。これらの成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。   The negative electrode active material layer may contain other substances if necessary. For example, a conductive aid, a supporting salt (lithium salt), an ion conductive polymer, and the like can be included. When an ion conductive polymer is included, a polymerization initiator for polymerizing the polymer may be included. The compounding ratio of these components is not particularly limited. The blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.

導電助剤とは、導電性を向上させるために配合される添加物をいう。導電助剤としては、黒鉛などのカーボン粉末や、気相成長炭素繊維(VGCF)などの種々の炭素繊維などが挙げられる。   A conductive assistant means the additive mix | blended in order to improve electroconductivity. Examples of the conductive assistant include carbon powder such as graphite, and various carbon fibers such as vapor grown carbon fiber (VGCF).

支持塩(リチウム塩)としては、Li(CSON(LiBETI)、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。 Examples of the supporting salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N (LiBETI), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.

イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。ここで、前記ポリマーは、本発明の電極が採用される電池の電解質層において用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。   Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers. Here, the polymer may be the same as or different from the ion conductive polymer used in the electrolyte layer of the battery in which the electrode of the present invention is employed, but is preferably the same.

重合開始剤は、イオン伝導性ポリマーの架橋性基に作用して、架橋反応を進行させるために配合される。開始剤として作用させるための外的要因に応じて、光重合開始剤、熱重合開始剤などに分類される。重合開始剤としては、例えば、熱重合開始剤であるアゾビスイソブチロニトリル(AIBN)や、光重合開始剤であるベンジルジメチルケタール(BDK)等が挙げられる。   The polymerization initiator is added to act on the crosslinkable group of the ion conductive polymer to advance the crosslinking reaction. Depending on the external factor for acting as an initiator, it is classified into a photopolymerization initiator, a thermal polymerization initiator and the like. Examples of the polymerization initiator include azobisisobutyronitrile (AIBN), which is a thermal polymerization initiator, and benzyl dimethyl ketal (BDK), which is a photopolymerization initiator.

(製造方法)
本発明の電池用負極の製造方法は特に制限されず、従来公知の知見を適宜参照することにより製造されうる。以下、本発明の電池用負極の製造方法を簡単に説明する。
(Production method)
The method for producing the negative electrode for a battery of the present invention is not particularly limited, and can be produced by appropriately referring to known knowledge. Hereafter, the manufacturing method of the negative electrode for batteries of this invention is demonstrated easily.

電池用負極は、例えば、負極活物質、結着剤および溶媒を含む負極活物質スラリーを調製し、当該負極活物質スラリーを集電体上に塗布し、乾燥させた後プレスすることで作製されうる。   The negative electrode for a battery is produced, for example, by preparing a negative electrode active material slurry containing a negative electrode active material, a binder, and a solvent, applying the negative electrode active material slurry onto a current collector, drying it, and pressing it. sell.

はじめに、所望の負極活物質、結着剤、および必要に応じて他の成分(例えば支持塩(リチウム塩)、イオン伝導性ポリマー、重合開始剤など)を、溶媒中で混合して、負極活物質スラリーを調製する。負極活物質スラリー中に配合される各成分の具体的な形態については、上記の本発明の電極の構成の欄において説明した通りであるため、ここでは詳細な説明を省略する。   First, a desired negative electrode active material, a binder, and, if necessary, other components (for example, a supporting salt (lithium salt), an ion conductive polymer, a polymerization initiator, etc.) are mixed in a solvent to obtain a negative electrode active material. A material slurry is prepared. Since the specific form of each component blended in the negative electrode active material slurry is as described in the column of the configuration of the electrode of the present invention, detailed description is omitted here.

溶媒の種類や混合手段は特に制限されず、従来公知の知見が適宜参照されうる。溶媒の一例を挙げると、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミドなどが用いられうる。結着剤としてアクリル酸塩を採用する場合には、NMP、水を溶媒として用いるとよい。   The kind of solvent and the mixing means are not particularly limited, and conventionally known knowledge can be referred to as appropriate. As an example of the solvent, N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide and the like can be used. When an acrylate is employed as the binder, NMP and water may be used as a solvent.

続いて、負極活物質層を形成するための集電体を準備する。本工程において準備する集電体の具体的な形態については、上記の本発明の電極の構成の欄において説明した通りであるため、ここでは詳細な説明を省略する。   Subsequently, a current collector for forming the negative electrode active material layer is prepared. The specific form of the current collector prepared in this step is the same as that described in the column of the configuration of the electrode of the present invention, and a detailed description thereof will be omitted here.

続いて、上記で調製した負極活物質スラリーを、上記で準備した集電体の表面に塗布し、塗膜を形成する。   Subsequently, the negative electrode active material slurry prepared above is applied to the surface of the current collector prepared above to form a coating film.

負極活物質スラリーを塗布するための塗布手段も特に限定されないが、例えば、自走型コータなどの一般的に用いられている手段が採用されうる。ただし、塗布手段として、インクジェット方式、ドクターブレード方式、またはこれらの組み合わせを用いると、薄い層が形成されうる。   The application means for applying the negative electrode active material slurry is not particularly limited, but generally used means such as a self-propelled coater may be employed. However, when an ink jet method, a doctor blade method, or a combination thereof is used as the application unit, a thin layer can be formed.

その後、集電体の表面に形成された塗膜を乾燥させる。これにより、塗膜中の溶媒が除去される。塗膜を乾燥させるための乾燥手段も特に制限されず、電極製造について従来公知の知見が適宜参照されうる。例えば、加熱処理が例示される。乾燥条件(乾燥時間、乾燥温度など)は、負極活物質スラリーの塗布量やスラリーの溶媒の揮発速度に応じて適宜設定されうる。   Thereafter, the coating film formed on the surface of the current collector is dried. Thereby, the solvent in a coating film is removed. The drying means for drying the coating film is not particularly limited, and conventionally known knowledge about electrode production can be appropriately referred to. For example, heat treatment is exemplified. Drying conditions (drying time, drying temperature, etc.) can be appropriately set according to the coating amount of the negative electrode active material slurry and the volatilization rate of the solvent of the slurry.

その後、上記で準備した塗膜をプレスする。プレス手段については、特に限定されず、従来公知の手段が適宜採用されうる。プレス手段の一例を挙げると、カレンダーロール、平板プレスなどが挙げられる。   Then, the coating film prepared above is pressed. The pressing means is not particularly limited, and conventionally known means can be appropriately employed. If an example of a press means is given, a calendar roll, a flat plate press, etc. will be mentioned.

(第2実施形態)
第2実施形態では、上記の第1実施形態の電池用負極を用いて、電池を構成する。
(Second Embodiment)
In 2nd Embodiment, a battery is comprised using the negative electrode for batteries of said 1st Embodiment.

すなわち、本発明の第2実施形態は、正極、電解質層、および負極がこの順に積層されてなる少なくとも1つの単電池層を有する電池であって、前記負極が本発明の電極である、電池である。本発明の負極を、少なくとも1つの電極として含む電池は、本発明の技術的範囲に属する。ただし、好ましくは、電池を構成する電極の全てが本発明の電極である。かような構成を採用することにより、電池の容量および出力を効果的に向上させうる。   That is, the second embodiment of the present invention is a battery having at least one unit cell layer in which a positive electrode, an electrolyte layer, and a negative electrode are laminated in this order, and the negative electrode is the electrode of the present invention. is there. A battery including the negative electrode of the present invention as at least one electrode belongs to the technical scope of the present invention. However, preferably, all of the electrodes constituting the battery are the electrodes of the present invention. By adopting such a configuration, the capacity and output of the battery can be effectively improved.

本発明の二次電池の構造としては、特に限定されず、形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池など、従来公知のいずれの形態・構造にも適用し得るものである。また、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、(内部並列接続タイプ)電池および双極型(内部直列接続タイプ)電池のいずれにも適用し得るものである。   The structure of the secondary battery of the present invention is not particularly limited, and when it is distinguished by the form and structure, any conventionally known form such as a stacked (flat) battery or a wound (cylindrical) battery is used.・ Applicable to structures. Further, when viewed in terms of electrical connection form (electrode structure) in a lithium ion secondary battery, it can be applied to both (internal parallel connection type) batteries and bipolar (internal series connection type) batteries. .

本発明では、積層型(扁平型)電池構造を採用することで簡単な熱圧着などのシール技術により長期信頼性を確保でき、コスト面や作業性の点では有利である。   In the present invention, long-term reliability can be ensured by a simple sealing technique such as thermocompression bonding by adopting a laminated (flat) battery structure, which is advantageous in terms of cost and workability.

したがって、以下の説明では、本発明の(内部並列接続タイプ)リチウムイオン二次電池及び双極型(内部直列接続タイプ)のリチウムイオン二次電池につき図面を用いてごく簡単に説明するが、決してこれらに制限されるべきものではない。   Therefore, in the following description, the (internal parallel connection type) lithium ion secondary battery and the bipolar type (internal series connection type) lithium ion secondary battery of the present invention will be described very simply with reference to the drawings. Should not be limited to.

図1は、本発明のリチウムイオン電池の代表的な一実施形態である、扁平型(積層型)のリチウムイオン二次電池(以下、単に非双極型リチウムイオン二次電池、または非双極型二次電池ともいう)の全体構造を模式的に表した断面概略図である。   FIG. 1 shows a flat type (stacked type) lithium ion secondary battery (hereinafter simply referred to as a non-bipolar lithium ion secondary battery or a non-bipolar type secondary battery), which is a typical embodiment of the lithium ion battery of the present invention. 1 is a schematic cross-sectional view schematically showing the entire structure of a secondary battery.

図1に示すように、本実施形態の非双極型リチウムイオン二次電池10では、電池外装材22に高分子−金属を複合したラミネートフィルムを用いて、その周辺部の全部を熱融着にて接合することにより、発電要素(電池要素)17を収納し密封した構成を有している。ここで、発電要素(電池要素)17は、正極集電体11の両面に正極(正極活物質層)12が形成された正極板、電解質層13、および負極集電体14の両面(発電要素の最下層および最上層用は片面)に負極(負極活物質層)15が形成された負極板を積層した構成を有している。この際、一の正極板片面の正極(正極活物質層)12と前記一の正極板に隣接する一の負極板片面の負極(負極活物質層)15とが電解質層13を介して向き合うようにして、正極板、電解質層13、負極板の順に複数積層されている。   As shown in FIG. 1, in the non-bipolar lithium ion secondary battery 10 of this embodiment, a laminate film composed of a polymer and a metal is used for the battery exterior material 22, and the entire periphery is heat-sealed. The power generation element (battery element) 17 is housed and sealed by joining together. Here, the power generation element (battery element) 17 includes a positive electrode plate in which positive electrodes (positive electrode active material layers) 12 are formed on both surfaces of the positive electrode current collector 11, an electrolyte layer 13, and both surfaces of the negative electrode current collector 14 (power generation elements). The lowermost layer and the uppermost layer have a structure in which a negative electrode plate having a negative electrode (negative electrode active material layer) 15 formed thereon is laminated on one side. At this time, the positive electrode (positive electrode active material layer) 12 on one surface of one positive electrode plate and the negative electrode (negative electrode active material layer) 15 on one surface of one negative electrode plate adjacent to the one positive electrode plate face each other through the electrolyte layer 13. Thus, a plurality of layers of the positive electrode plate, the electrolyte layer 13, and the negative electrode plate are laminated in this order.

これにより、隣接する正極(正極活物質層)12、電解質層13、および負極(負極活物質層)15は、一つの単電池層16を構成する。したがって、本実施形態のリチウムイオン二次電池10は、単電池層16が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。なお、発電要素(電池要素;積層体)17の両最外層に位置する最外層正極集電体11aには、いずれも片面のみに正極(正極活物質層)12が形成されている。なお、図1と正極板と負極板の配置を変えることで、発電要素(電池要素)17の両最外層に最外層負極集電体(図示せず)が位置するようにし、該最外層負極集電体の場合にも片面のみに負極(負極活物質層)15が形成されているようにしてもよい。   As a result, the adjacent positive electrode (positive electrode active material layer) 12, electrolyte layer 13, and negative electrode (negative electrode active material layer) 15 constitute one unit cell layer 16. Therefore, it can be said that the lithium ion secondary battery 10 of the present embodiment has a configuration in which a plurality of single battery layers 16 are stacked and electrically connected in parallel. Note that the positive electrode (positive electrode active material layer) 12 is formed only on one side of the outermost layer positive electrode current collector 11 a located in both outermost layers of the power generation element (battery element; laminate) 17. In addition, by changing the arrangement of the positive electrode plate and the negative electrode plate in FIG. 1, the outermost negative electrode current collector (not shown) is positioned in both outermost layers of the power generation element (battery element) 17, and the outermost layer negative electrode Also in the case of the current collector, the negative electrode (negative electrode active material layer) 15 may be formed only on one side.

また、上記の各電極板(正極板及び負極板)と導通される正極タブ18および負極タブ19が、正極端子リード20および負極端子リード21を介して各電極板の正極集電体11及び負極集電体14に超音波溶接や抵抗溶接等により取り付けられ、上記熱融着部に挟まれて上記の電池外装材22の外部に露出される構造を有している。   Further, the positive electrode tab 18 and the negative electrode tab 19 that are electrically connected to the respective electrode plates (positive electrode plate and negative electrode plate) are connected to the positive electrode current collector 11 and the negative electrode of each electrode plate via the positive electrode terminal lead 20 and the negative electrode terminal lead 21. It is attached to the current collector 14 by ultrasonic welding, resistance welding, or the like, and has a structure that is sandwiched between the heat fusion parts and exposed to the outside of the battery exterior material 22.

図2は、本発明のリチウムイオン電池の他の代表的な一実施形態である双極型の扁平型(積層型)のリチウムイオン二次電池(以下、単に双極型リチウムイオン二次電池、または双極型二次電池とも称する)の全体構造を模式的に表わした概略断面図である。   FIG. 2 shows another typical embodiment of the lithium ion battery of the present invention, a bipolar flat type (stacked type) lithium ion secondary battery (hereinafter simply referred to as a bipolar lithium ion secondary battery, or bipolar). 1 is a schematic cross-sectional view schematically showing the entire structure of a secondary battery.

図2に示すように、本実施形態の双極型リチウムイオン二次電池30は、実際に充放電反応が進行する略矩形の発電要素(電池要素)37が、電池外装材42の内部に封止された構造を有する。図2に示すように、本実施形態の双極型二次電池30の発電要素(電池要素)37は、1枚または2枚以上で構成される双極型電極34で電解質層35を挟み、隣合う双極型電極34の正極(正極活物質層)32と負極(負極活物質層)33とが対向するようになっている。ここで、双極型電極34は、集電体31の片面に正極(正極活物質層)32を設け、もう一方の面に負極(負極活物質層)33を設けた構造を有している。すなわち、双極型二次電池30では、集電体31の片方の面上に正極(正極活物質層)32を有し、他方の面上に負極(負極活物質層)33を有する双極型電極34を、電解質層35を介して複数枚積層した構造の発電要素(電池要素)37を具備してなるものである。   As shown in FIG. 2, in the bipolar lithium ion secondary battery 30 of the present embodiment, a substantially rectangular power generation element (battery element) 37 in which a charge / discharge reaction actually proceeds is sealed inside the battery exterior material 42. Has a structured. As shown in FIG. 2, the power generation element (battery element) 37 of the bipolar secondary battery 30 of the present embodiment is adjacent to each other with the electrolyte layer 35 sandwiched between bipolar electrodes 34 composed of one or two or more sheets. A positive electrode (positive electrode active material layer) 32 and a negative electrode (negative electrode active material layer) 33 of the bipolar electrode 34 are opposed to each other. Here, the bipolar electrode 34 has a structure in which a positive electrode (positive electrode active material layer) 32 is provided on one surface of the current collector 31 and a negative electrode (negative electrode active material layer) 33 is provided on the other surface. That is, in the bipolar secondary battery 30, a bipolar electrode having a positive electrode (positive electrode active material layer) 32 on one surface of the current collector 31 and a negative electrode (negative electrode active material layer) 33 on the other surface. A power generation element (battery element) 37 having a structure in which a plurality of 34 are stacked via an electrolyte layer 35 is provided.

隣接する正極(正極活物質層)32、電解質層35および負極(負極活物質層)33は、一つの単電池層(=電池単位ないし単セル)36を構成する。従って、双極型二次電池30は、単電池層36が積層されてなる構成を有するともいえる。また、電解質層35からの電解液の漏れによる液絡を防止するために単電池層36の周辺部にはシール部(絶縁層)43が配置されている。該シール部(絶縁層)43を設けることで隣接する集電体31間を絶縁し、隣接する電極(正極32及び負極33)間の接触による短絡を防止することもできる。   The adjacent positive electrode (positive electrode active material layer) 32, electrolyte layer 35, and negative electrode (negative electrode active material layer) 33 constitute one single battery layer (= battery unit or single cell) 36. Therefore, it can be said that the bipolar secondary battery 30 has a configuration in which the single battery layers 36 are stacked. Further, a seal portion (insulating layer) 43 is disposed around the unit cell layer 36 in order to prevent liquid junction due to leakage of the electrolyte from the electrolyte layer 35. By providing the seal portion (insulating layer) 43, the adjacent current collectors 31 can be insulated and a short circuit due to contact between the adjacent electrodes (the positive electrode 32 and the negative electrode 33) can be prevented.

なお、発電要素(電池要素)37の最外層に位置する正極側電極34a及び負極側電極34bは、双極型電極構造でなくてもよく、集電体31a、31b(または端子板)に必要な片面のみの正極(正極活物質層)32または負極(負極活物質層)33を配置した構造としてもよい。発電要素(電池要素)37の最外層に位置する正極側の最外層集電体31aには、片面のみに正極(正極活物質層)32が形成されているようにしてもよい。同様に、発電要素(電池要素)37の最外層に位置する負極側の最外層集電体31bには、片面のみに負極(負極活物質層)33が形成されているようにしてもよい。また、双極型リチウムイオン二次電池30では、上下両端の正極側最外層集電体31a及び負極側最外層集電体31bにそれぞれ正極タブ38および負極タブ39が、必要に応じて正極端子リード40及び負極端子リード41を介して接合されている。但し、正極側最外層集電体31aが延長されて正極タブ38とされ、電池外装材42であるラミネートシートから導出されていてもよい。同様に、負極側最外層集電体31bが延長されて負極タブ39とされ、同様に電池外装材42であるラミネートシートから導出される構造としてもよい。   The positive electrode 34a and the negative electrode 34b located in the outermost layer of the power generation element (battery element) 37 may not have a bipolar electrode structure, and are necessary for the current collectors 31a and 31b (or terminal plates). It is good also as a structure which has arrange | positioned the positive electrode (positive electrode active material layer) 32 or the negative electrode (negative electrode active material layer) 33 of only one side. A positive electrode (positive electrode active material layer) 32 may be formed on only one side of the positive electrode side outermost layer current collector 31 a located in the outermost layer of the power generation element (battery element) 37. Similarly, a negative electrode (negative electrode active material layer) 33 may be formed only on one side of the outermost current collector 31b on the negative electrode side located in the outermost layer of the power generation element (battery element) 37. In the bipolar lithium ion secondary battery 30, the positive electrode tab 38 and the negative electrode tab 39 are provided on the positive electrode side outermost layer current collector 31 a and the negative electrode side outermost layer current collector 31 b at both the upper and lower ends, respectively. 40 and the negative terminal lead 41 are joined. However, the positive electrode side outermost layer current collector 31 a may be extended to form a positive electrode tab 38, and may be derived from a laminate sheet that is the battery exterior material 42. Similarly, the negative electrode side outermost layer current collector 31b may be extended to form a negative electrode tab 39, which may be similarly derived from a laminate sheet that is the battery outer packaging material 42.

また、双極型リチウムイオン二次電池30でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素(電池要素;積層体)37部分を電池外装材(外装パッケージ)42に減圧封入し、正極タブ38及び負極タブ39を電池外装材42の外部に取り出した構造とするのがよい。この双極型リチウムイオン二次電池30の基本構成は、複数積層した単電池層(単セル)36が直列に接続された構成ともいえるものである。   In the bipolar lithium ion secondary battery 30, the power generation element (battery element; laminated body) 37 portion is used as a battery exterior material (exterior package) 42 in order to prevent external impact and environmental degradation during use. It is preferable to have a structure in which the positive electrode tab 38 and the negative electrode tab 39 are taken out of the battery exterior material 42 by being sealed under reduced pressure. The basic configuration of the bipolar lithium ion secondary battery 30 can be said to be a configuration in which a plurality of stacked single battery layers (single cells) 36 are connected in series.

上記した通り、非双極型リチウムイオン二次電池と双極型リチウムイオン二次電池の各構成要件および製造方法に関しては、リチウムイオン二次電池内の電気的な接続形態(電極構造)が異なることを除いては、基本的には同様である。また、本発明の非双極型リチウムイオン二次電池および/または双極型リチウムイオン二次電池を用いて、組電池や車両を構成することもできる。   As described above, regarding each constituent requirement and manufacturing method of the non-bipolar lithium ion secondary battery and the bipolar lithium ion secondary battery, the electrical connection form (electrode structure) in the lithium ion secondary battery is different. Except for this, it is basically the same. Moreover, an assembled battery and a vehicle can also be comprised using the non-bipolar lithium ion secondary battery and / or bipolar lithium ion secondary battery of this invention.

[リチウムイオン二次電池の外観構成]
図3は、本発明に係るリチウムイオン電池の代表的な実施形態である積層型の扁平な非双極型あるいは双極型のリチウムイオン二次電池の外観を表した斜視図である。
[Appearance structure of lithium ion secondary battery]
FIG. 3 is a perspective view showing an appearance of a stacked flat non-bipolar or bipolar lithium ion secondary battery which is a typical embodiment of the lithium ion battery according to the present invention.

図3に示すように、積層型の扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素(電池要素)57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素(電池要素)57は、正極タブ58及び負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素(電池要素)57は、先に説明した図1あるいは図2に示す非双極型あるいは双極型のリチウムイオン二次電池10、30の発電要素(電池要素)17、37に相当するものであり、正極(正極活物質層)12、32、電解質層13、35および負極(負極活物質層)15、33で構成される単電池層(単セル)16、36が複数積層されたものである。   As shown in FIG. 3, the stacked flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power from both sides thereof. Has been pulled out. The power generation element (battery element) 57 is wrapped by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element (battery element) 57 includes a positive electrode tab 58 and a negative electrode tab 59. It is sealed in a state where it is pulled out to the outside. Here, the power generation element (battery element) 57 corresponds to the power generation elements (battery elements) 17 and 37 of the non-bipolar or bipolar lithium ion secondary batteries 10 and 30 shown in FIG. 1 or FIG. A plurality of unit cell layers (single cells) 16 and 36 composed of positive electrodes (positive electrode active material layers) 12 and 32, electrolyte layers 13 and 35, and negative electrodes (negative electrode active material layers) 15 and 33 are laminated. It is a thing.

なお、本発明のリチウムイオン電池は、図1、2に示すような積層型の扁平な形状のものに制限されるものではなく、巻回型のリチウムイオン電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。   The lithium ion battery of the present invention is not limited to the stacked flat shape shown in FIGS. 1 and 2, and the wound lithium ion battery has a cylindrical shape. It is not particularly limited, for example, such a cylindrical shape may be transformed into a rectangular flat shape. In the said cylindrical shape thing, a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict | limit.

また、図3に示すタブ58、59の取り出しに関しても、特に制限されるものではなく、正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図3に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。   3 is not particularly limited, and the positive electrode tab 58 and the negative electrode tab 59 may be pulled out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be pulled out. However, the present invention is not limited to the one shown in FIG. 3, for example. Further, in a wound type lithium ion battery, instead of a tab, for example, a terminal may be formed using a cylindrical can (metal can).

本発明のリチウムイオン電池は、電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの大容量電源として、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に好適に利用することができる。   The lithium ion battery of the present invention is used as a power source for driving a vehicle or an auxiliary power source that requires a high volume energy density and a high volume output density as a large capacity power source for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, a hybrid fuel cell vehicle, etc. It can be suitably used.

以下、本実施形態のリチウムイオン二次電池10、30、50を構成する部材について簡単に説明する。ただし、負極を構成する成分については上記で説明した通りであるため、ここでは説明を省略する。また、本発明の技術的範囲が下記の形態のみに制限されることはなく、従来公知の形態が同様に採用されうる。   Hereafter, the member which comprises the lithium ion secondary battery 10, 30, 50 of this embodiment is demonstrated easily. However, since the component which comprises a negative electrode is as having demonstrated above, description is abbreviate | omitted here. Further, the technical scope of the present invention is not limited to the following forms, and conventionally known forms can be similarly adopted.

[正極]
正極12、32は、集電体の一方の面に正極活物質層が形成されてなる電極である。正極の集電体は、非双極型電池においてはアルミニウムが用いられる。双極型電池においてはステンレスを用いる。
[Positive electrode]
The positive electrodes 12 and 32 are electrodes in which a positive electrode active material layer is formed on one surface of a current collector. The positive electrode current collector is made of aluminum in a non-bipolar battery. Stainless steel is used for bipolar batteries.

正極活物質としては、リチウム−遷移金属複合酸化物が好ましく、例えば、LiMnなどのLi−Mn系複合酸化物やLiNiOなどのLi−Ni系複合酸化物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。 As the positive electrode active material, a lithium-transition metal composite oxide is preferable, and examples thereof include a Li—Mn composite oxide such as LiMn 2 O 4 and a Li—Ni composite oxide such as LiNiO 2 . In some cases, two or more positive electrode active materials may be used in combination.

正極活物質の平均粒子径は、特に制限されないが、好ましくは10μm以下であり、より好ましくは5μm以下であり、さらに好ましくは1μm以下である。ただし、これらの範囲を外れる形態もまた、採用されうる。なお、本願において、正極活物質の粒子径は、レーザ回折散乱法により測定された値を採用するものとする。   The average particle diameter of the positive electrode active material is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, and further preferably 1 μm or less. However, forms outside these ranges can also be employed. In addition, in this application, the particle diameter of a positive electrode active material shall employ | adopt the value measured by the laser diffraction scattering method.

正極活物質層には、必要であれば、その他の物質が含まれてもよい。例えば、結着剤、導電助剤、支持塩(リチウム塩)、イオン伝導性ポリマーなどが含まれうる。結着剤としては、ポリフッ化ビニリデン(PVdF)、合成ゴム系結着剤等が挙げられる。結着剤を用いることによって、導電助剤に活物質が固着され、安定に保持されうる。   The positive electrode active material layer may contain other substances if necessary. For example, a binder, a conductive additive, a supporting salt (lithium salt), an ion conductive polymer, and the like can be included. Examples of the binder include polyvinylidene fluoride (PVdF) and a synthetic rubber-based binder. By using the binder, the active material is fixed to the conductive additive and can be stably held.

導電助剤、支持塩(リチウム塩)、イオン伝導性ポリマーなどの成分は負極活物質層の場合と同様である。正極活物質層に含まれる成分の配合比は、特に限定されず、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。   Components such as a conductive additive, a supporting salt (lithium salt), and an ion conductive polymer are the same as in the case of the negative electrode active material layer. The compounding ratio of the components contained in the positive electrode active material layer is not particularly limited, and can be adjusted by appropriately referring to known knowledge about the lithium ion secondary battery.

[電解質層]
電解質層13、35を構成する電解質としては、電解液を含む多孔性フィルムセパレータまたはポリマー電解質が用いられうる。特に、本発明の電極の効果は、電解質層に電解液を含むときに顕著である。
[Electrolyte layer]
As the electrolyte constituting the electrolyte layers 13 and 35, a porous film separator containing a liquid electrolyte or a polymer electrolyte can be used. In particular, the effect of the electrode of the present invention is remarkable when the electrolyte layer contains an electrolytic solution.

電解液は、可塑剤である有機溶媒に支持塩であるリチウム塩が溶解した形態を有する。可塑剤として用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)やプロピレンカーボネート(PC)等のカーボネート類が例示される。   The electrolytic solution has a form in which a lithium salt that is a supporting salt is dissolved in an organic solvent that is a plasticizer. Examples of the organic solvent that can be used as the plasticizer include carbonates such as ethylene carbonate (EC), dimethyl carbonate (DMC), and propylene carbonate (PC).

本発明の電池においては、好ましくは、電解液の少なくとも一部がPCである。従来電解液にPCを用いた場合、電解液に添加剤などを加えるなどの処理を行わないかぎり、負極活物質の材質に制限があったが、本発明によれば上述の処理をせずにPCを含む電解液を用いることができる。有機溶媒中のPCの含有量の下限値は、特に制限されないが、5体積%である。PCの含有量が上述の範囲であれば、低温で高い性能を与える電池が製造できる。   In the battery of the present invention, preferably, at least a part of the electrolytic solution is PC. Conventionally, when PC is used as the electrolytic solution, the material of the negative electrode active material is limited unless a treatment such as adding an additive to the electrolytic solution is performed, but according to the present invention, the above treatment is not performed. An electrolytic solution containing PC can be used. The lower limit of the content of PC in the organic solvent is not particularly limited, but is 5% by volume. If the PC content is in the above range, a battery that provides high performance at low temperatures can be produced.

また、支持塩(リチウム塩)としては、LiBETI等の電極の活物質層に添加されうる化合物が同様に採用されうる。   Further, as the supporting salt (lithium salt), a compound that can be added to the active material layer of the electrode, such as LiBETI, can be similarly employed.

一方、ポリマー電解質は、電解液を含むゲル電解質と、電解液を含まない真性ポリマー電解質に分類される。   On the other hand, the polymer electrolyte is classified into a gel electrolyte containing an electrolytic solution and an intrinsic polymer electrolyte containing no electrolytic solution.

ゲル電解質は、イオン伝導性ポリマーからなるマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。マトリックスポリマーとして用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系高分子には、リチウム塩などの電解質塩がよく溶解しうる。   The gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer made of an ion conductive polymer. Examples of the ion conductive polymer used as the matrix polymer include polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyacrylonitrile (PAN), and polyvinylidene fluoride-hexafluoropropylene (PVdF-HEP). And poly (methyl methacrylate (PMMA) and copolymers thereof, etc. In such polyalkylene oxide polymers, electrolyte salts such as lithium salts can be well dissolved.

なお、電解質層13、35が液体電解質やゲル電解質から構成される場合には、電解質層17にセパレータを用いてもよい。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。   In the case where the electrolyte layers 13 and 35 are composed of a liquid electrolyte or a gel electrolyte, a separator may be used for the electrolyte layer 17. Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.

真性ポリマー電解質は、上記のマトリックスポリマーに支持塩(リチウム塩)が溶解してなる構成を有し、可塑剤である有機溶媒を含まない。従って、電解質層13、35が真性ポリマー電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上しうる。本発明の電極は、特に、ポリエチレンオキシド(PEO)などのポリマー電解質を用いて電池を作製すると、出力、容量の向上の効果が顕著である。   The intrinsic polymer electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layers 13 and 35 are made of an intrinsic polymer electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery can be improved. In particular, when the battery of the present invention is produced using a polymer electrolyte such as polyethylene oxide (PEO), the effect of improving the output and capacity is remarkable.

ゲル電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。   The matrix polymer of the gel electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.

[絶縁層]
シール部(絶縁層)43としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性などを有するものであればよく、例えば、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴムなどが用いられうる。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性などの観点から、ウレタン樹脂、エポキシ樹脂が好ましい。
[Insulation layer]
The sealing portion (insulating layer) 43 has insulating properties, sealing properties against falling off of the solid electrolyte, sealing properties against moisture permeation from the outside (sealing properties), heat resistance at the battery operating temperature, and the like. For example, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber or the like can be used. Of these, urethane resins and epoxy resins are preferred from the viewpoints of corrosion resistance, chemical resistance, ease of production (film forming properties), economy, and the like.

[タブ]
タブ(正極タブ18、38および負極タブ19、39)の材質は、非双極型電池では正極タブにアルミニウム、負極タブには銅、ニッケル、ステンレス、これらの合金などを用いる事ができる。双極型電池では特に制限されず、バイポーラ電池用のタブとして従来用いられている公知の材質が用いられうる。例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等が例示される。
[tab]
As for the material of the tabs (positive electrode tabs 18 and 38 and negative electrode tabs 19 and 39), in the non-bipolar battery, aluminum can be used for the positive electrode tab, and copper, nickel, stainless steel, and alloys thereof can be used for the negative electrode tab. The bipolar battery is not particularly limited, and a known material conventionally used as a tab for a bipolar battery can be used. Examples thereof include aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof.

(第3実施形態)
第3実施形態では、上記の第2実施形態の電池を用いて組電池を構成する。
(Third embodiment)
In 3rd Embodiment, an assembled battery is comprised using the battery of said 2nd Embodiment.

本発明の組電池は、本発明のリチウムイオン二次電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。なお、本発明の組電池では、本発明の非双極型リチウムイオン二次電池と双極型リチウムイオン二次電池を用いて、これらを直列に、並列に、または直列と並列とに、複数個組み合わせて、組電池を構成することもできる。   The assembled battery of the present invention is formed by connecting a plurality of lithium ion secondary batteries of the present invention. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series. In the assembled battery of the present invention, the non-bipolar lithium ion secondary battery and the bipolar lithium ion secondary battery of the present invention are used, and these are combined in series, in parallel, or in series and in parallel. Thus, an assembled battery can be configured.

また、図4は、本発明に係る組電池の代表的な実施形態の外観図であって、図4Aは組電池の平面図であり、図4Bは組電池の正面図であり、図4Cは組電池の側面図である。   4 is an external view of a typical embodiment of the assembled battery according to the present invention, FIG. 4A is a plan view of the assembled battery, FIG. 4B is a front view of the assembled battery, and FIG. It is a side view of an assembled battery.

図4に示すように、本発明に係る組電池300は、本発明のリチウムイオン二次電池が複数、直列に又は並列に接続して装脱着可能な小型の組電池250を形成し、この装脱着可能な小型の組電池250をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池300を形成することもできる。図4Aは、組電池の平面図、図4Bは正面図、図4Cは側面図を示しているが、作成した装脱着可能な小型の組電池250は、バスバーのような電気的な接続手段を用いて相互に接続し、この組電池250は接続治具310を用いて複数段積層される。何個の非双極型ないし双極型のリチウムイオン二次電池を接続して組電池250を作製するか、また、何段の組電池250を積層して組電池300を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。   As shown in FIG. 4, an assembled battery 300 according to the present invention forms a small assembled battery 250 in which a plurality of lithium ion secondary batteries of the present invention are connected in series or in parallel to be detachable. A plurality of detachable small assembled batteries 250 are connected in series or in parallel, and have a large capacity and a large output suitable for a vehicle drive power supply and an auxiliary power supply that require high volume energy density and high volume output density. The assembled battery 300 can also be formed. 4A is a plan view of the assembled battery, FIG. 4B is a front view, and FIG. 4C is a side view. The small assembled battery 250 that can be attached and detached is provided with an electrical connection means such as a bus bar. The assembled battery 250 is stacked in a plurality of stages using the connection jig 310. How many non-bipolar or bipolar lithium ion secondary batteries are connected to produce the assembled battery 250, and how many assembled batteries 250 are stacked to produce the assembled battery 300 are mounted. What is necessary is just to determine according to the battery capacity and output of the vehicle (electric vehicle) to be.

(第4実施形態)
第4実施形態では、上記の第2実施形態の電池10、または第3実施形態の組電池300を搭載して車両を構成する。
(Fourth embodiment)
In 4th Embodiment, the battery 10 of said 2nd Embodiment or the assembled battery 300 of 3rd Embodiment is mounted, and a vehicle is comprised.

本発明の車両は、本発明のリチウムイオン電池またはこれらを複数個組み合わせてなる組電池を搭載したことを特徴とするものである。本発明の高容量正極を用いると高エネルギー密度の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。言い換えれば、本発明のリチウムイオン電池またはこれらを複数個組み合わせてなる組電池は、車両の駆動用電源として用いられうる。本発明のリチウムイオン電池またはこれらを複数個組み合わせてなる組電池を車両、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。   The vehicle of the present invention is characterized in that the lithium ion battery of the present invention or an assembled battery formed by combining a plurality of these is mounted. When the high-capacity positive electrode of the present invention is used, a battery having a high energy density can be configured. Therefore, when such a battery is mounted, a plug-in hybrid electric vehicle having a long EV travel distance or an electric vehicle having a long charge travel distance can be configured. In other words, the lithium ion battery of the present invention or an assembled battery formed by combining a plurality of these can be used as a power source for driving a vehicle. The lithium ion battery of the present invention or an assembled battery formed by combining a plurality of these is a vehicle, for example, a car, a hybrid car, a fuel cell car, an electric car (all are four-wheeled vehicles (passenger cars, commercial vehicles such as trucks and buses, This is because it can be used for motorcycles (including motorcycles) and tricycles (in addition to mini vehicles, etc.)) to provide a long-life and highly reliable vehicle. However, the application is not limited to automobiles. For example, it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.

図5は、本発明の組電池を搭載した車両の概念図である。   FIG. 5 is a conceptual diagram of a vehicle equipped with the assembled battery of the present invention.

図5に示したように、組電池300を電気自動車400のような車両に搭載するには、電気自動車400の車体中央部の座席下に搭載する。座席下に搭載すれば、車内空間およびトランクルームを広く取ることができるからである。なお、組電池300を搭載する場所は、座席下に限らず、後部トランクルームの下部でもよいし、車両前方のエンジンルームでも良い。以上のような組電池300を用いた電気自動車400は高い耐久性を有し、長期間使用しても十分な出力を提供しうる。さらに、燃費、走行性能に優れた電気自動車、ハイブリッド自動車を提供できる。本発明の組電池を搭載した車両としては、図5に示すような電気自動車のほか、ハイブリッド自動車、燃料電池自動車などに幅広く適用できるものである。   As shown in FIG. 5, in order to mount the assembled battery 300 on a vehicle such as the electric vehicle 400, the battery pack 300 is mounted under the seat at the center of the vehicle body of the electric vehicle 400. This is because if it is installed under the seat, the interior space and the trunk room can be widened. The place where the assembled battery 300 is mounted is not limited to the position under the seat, but may be a lower part of the rear trunk room or an engine room in front of the vehicle. The electric vehicle 400 using the assembled battery 300 as described above has high durability and can provide sufficient output even when used for a long period of time. Furthermore, it is possible to provide electric vehicles and hybrid vehicles that are excellent in fuel efficiency and running performance. A vehicle equipped with the assembled battery of the present invention can be widely applied to a hybrid vehicle, a fuel cell vehicle and the like in addition to an electric vehicle as shown in FIG.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例に示す形態のみに制限されるわけではない。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited to only the forms shown in the following examples.

<実施例1>
<負極の作製>
負極活物質である天然黒鉛(平均粒子径3μm)(90質量%)、結着剤であるポリアクリル酸リチウム(PAALi)(重量平均分子量75万)(10質量%)からなる固形分に対し、スラリー粘度調整溶媒である水を適量添加して、負極活物質スラリーを調製した。
<Example 1>
<Production of negative electrode>
For the solid content consisting of natural graphite (average particle size 3 μm) (90 mass%) as the negative electrode active material and lithium polyacrylate (PAALi) (weight average molecular weight 750,000) (10 mass%) as the binder, An appropriate amount of water as a slurry viscosity adjusting solvent was added to prepare a negative electrode active material slurry.

一方、負極用の集電体として、ニッケルメッシュを準備した。準備した集電体の一方の表面に、上記で調製した負極活物質スラリーをドクターブレード法により塗布し、塗膜を形成させた。次いでこの塗膜を乾燥させた。負極活物質層の厚さは140μmであった。   On the other hand, a nickel mesh was prepared as a current collector for the negative electrode. The negative electrode active material slurry prepared above was applied to one surface of the prepared current collector by the doctor blade method to form a coating film. The coating film was then dried. The thickness of the negative electrode active material layer was 140 μm.

<正極および参照極の作製>
正極および参照極として、厚さ100μmのリチウム金属箔を準備した。
<Preparation of positive electrode and reference electrode>
A lithium metal foil having a thickness of 100 μm was prepared as a positive electrode and a reference electrode.

<電解液の調製>
エチレンカーボネート(EC)およびジメチルカーボネート(DMC)を体積比1:1で混合し、電解液用の溶媒とした。次いで、この電解液用の溶媒に、リチウム塩であるLiClOを1Mの濃度になるように添加して、電解液を調製した。
<Preparation of electrolyte>
Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 to obtain a solvent for the electrolytic solution. Subsequently, LiClO 4 which is a lithium salt was added to the electrolyte solution so as to have a concentration of 1M to prepare an electrolyte solution.

<ビーカー型電池の作製>
上記で作製した試験用の負極62、正極61、参照極63、および電解液64を用いて図6に示すようなビーカー型電池60を作製した。参照極63は負極62の電位を決定する際の基準として用いた。
<Production of beaker type battery>
A beaker type battery 60 as shown in FIG. 6 was prepared using the test negative electrode 62, the positive electrode 61, the reference electrode 63, and the electrolytic solution 64 prepared above. The reference electrode 63 was used as a standard for determining the potential of the negative electrode 62.

<充放電評価>
上記で作製したビーカー型電池の充放電評価を行った。負極活物質に対して50mA/gの電流になるように設定し、0Vまで定電流充電を行った。充電後、活物質に対して50mA/gの電流になるように設定し、2Vまで定電流放電を行った。
<Evaluation of charge / discharge>
The beaker type battery produced above was evaluated for charge and discharge. It set so that it might become a 50 mA / g electric current with respect to a negative electrode active material, and the constant current charge was performed to 0V. After charging, the current was set to 50 mA / g with respect to the active material, and constant current discharge was performed up to 2V.

<実施例2>
結着剤としてポリアクリル酸ナトリウム(PAANa)(重量平均分子量75万)(10質量%)を用いたこと以外は上記の実施例1と同様の手法によりビーカー型電池を作製した。
<Example 2>
A beaker type battery was produced in the same manner as in Example 1 except that sodium polyacrylate (PAANA) (weight average molecular weight 750,000) (10% by mass) was used as the binder.

<比較例1>
結着剤としてポリフッ化ビニリデン(PVdF)(重量平均分子量10万)(10質量%)を用いたこと以外は上記の実施例1と同様の手法によりビーカー型電池を作製した。
<Comparative Example 1>
A beaker type battery was produced in the same manner as in Example 1 except that polyvinylidene fluoride (PVdF) (weight average molecular weight 100,000) (10% by mass) was used as the binder.

<実施例3>
電解液用の溶媒にプロピレンカーボネート(PC)を用いたこと以外は上記の実施例1と同様の手法によりビーカー型電池を作製した。
<Example 3>
A beaker type battery was produced in the same manner as in Example 1 except that propylene carbonate (PC) was used as the solvent for the electrolytic solution.

<実施例4>
結着剤としてポリアクリル酸ナトリウム(PAANa)(重量平均分子量75万)(10質量%)を用いたこと以外は上記の実施例3と同様の手法によりビーカー型電池を作製した。
<Example 4>
A beaker type battery was produced in the same manner as in Example 3 except that sodium polyacrylate (PAANA) (weight average molecular weight 750,000) (10 mass%) was used as the binder.

<比較例2>
結着剤としてポリフッ化ビニリデン(PVdF)(重量平均分子量10万)(10質量%)を用いたこと以外は上記の実施例3と同様の手法によりビーカー型電池を作製した。
<Comparative example 2>
A beaker type battery was produced in the same manner as in Example 3 except that polyvinylidene fluoride (PVdF) (weight average molecular weight 100,000) (10 mass%) was used as the binder.

上記で作製したビーカー型電池の初回充電容量、初回放電容量、および初回充放電効率を下記の表1に示す。また、実施例1、2、および比較例1で作製した電池の充放電曲線を図7に、実施例3、4、および比較例2で作製した電池の充放電曲線を図8にそれぞれ示す。   The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency of the beaker type battery produced above are shown in Table 1 below. Moreover, the charging / discharging curve of the battery produced in Example 1, 2 and the comparative example 1 is shown in FIG. 7, and the charging / discharging curve of the battery produced in Example 3, 4 and the comparative example 2 is shown in FIG.

図7で、電解液にEC:DMCを使用した実施例1、2と比較例1との結果を比較すると、結着剤としてPVdFを使用した比較例1に比べて、PAALiまたはPAANaを使用した実施例1、2では、0.8V付近の不可逆容量が減少していることがわかる。また、表1から、結着剤にPVdFを用いた比較例では、ポリアクリル酸塩を用いた実施例1、2よりも初回の充電容量が大きいことがわかる。放電容量に大きな差はみられなかった。そのため、実施例1、2では比較例1に比べて高い充放電効率が得られた。   In FIG. 7, the results of Examples 1 and 2 using EC: DMC as the electrolyte and Comparative Example 1 were compared. As a result, PAALi or PAANA was used compared to Comparative Example 1 using PVdF as the binder. In Examples 1 and 2, it turns out that the irreversible capacity | capacitance of 0.8V vicinity has decreased. Moreover, it can be seen from Table 1 that in the comparative example using PVdF as the binder, the initial charge capacity is larger than those in Examples 1 and 2 using polyacrylate. There was no significant difference in discharge capacity. Therefore, in Examples 1 and 2, higher charge / discharge efficiency was obtained than in Comparative Example 1.

図8から、電解液にPCを使用した実施例3、4と比較例2との結果を比較すると、結着剤としてPVdFを使用した比較例2では、初回充電時に黒鉛の崩壊と思われるプラトーが見られ、表1から充電容量も理論的な容量の3倍程度となっていることがわかる。また、放電容量は、理論容量の3分の1程度であり、黒鉛構造が崩壊していることが示唆される。一方、結着剤としてPAALiまたはPAANaを使用した実施例3、4では、充放電効率が比較例2よりも高く、PCを用いた場合でも充放電が良好に行われていることがわかる。   From FIG. 8, comparing the results of Examples 3 and 4 using PC as the electrolytic solution and Comparative Example 2, in Comparative Example 2 using PVdF as the binder, a plateau that is considered to be the collapse of graphite at the first charge. From Table 1, it can be seen that the charging capacity is about three times the theoretical capacity. Moreover, the discharge capacity is about one third of the theoretical capacity, which suggests that the graphite structure has collapsed. On the other hand, in Examples 3 and 4 using PAALi or PAANA as a binder, the charge / discharge efficiency is higher than that of Comparative Example 2, and it can be seen that charge / discharge is performed well even when PC is used.

図9の(a)および(b)は、電解液にEC:DMCを使用した場合の、充放電サイクルの前および30サイクル後の表面をそれぞれ示す。図9の(c)および(d)は、電解液にPCを使用した場合の1サイクル後および10サイクル後の表面をそれぞれ示す。図9から、本発明の負極は、充放電のサイクル後であっても黒鉛の構造が維持されることが確認された。   (A) and (b) of FIG. 9 show the surfaces before and after the charge / discharge cycle when EC: DMC is used as the electrolytic solution, respectively. FIGS. 9C and 9D show the surfaces after 1 cycle and 10 cycles, respectively, when PC is used as the electrolytic solution. From FIG. 9, it was confirmed that the negative electrode of the present invention maintained the graphite structure even after the charge / discharge cycle.

このように、本発明の負極を用いると、高価な添加剤を用いることなくPCを含む電解液中で良好な充放電曲線が得られ、高効率の電池が作製されうる。   Thus, when the negative electrode of the present invention is used, a good charge / discharge curve can be obtained in an electrolytic solution containing PC without using an expensive additive, and a highly efficient battery can be produced.

本発明のリチウムイオン電池の代表的な一実施形態である積層型の扁平な非双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。1 is a schematic cross-sectional view schematically showing an outline of a laminated flat non-bipolar lithium ion secondary battery which is a typical embodiment of a lithium ion battery of the present invention. 本発明のリチウムイオン電池の代表的な他の一実施形態である積層型の扁平な双極型リチウムイオン二次電池の概要を模式的に表した断面概略図である。It is the cross-sectional schematic which represented typically the outline | summary of the laminated flat bipolar lithium ion secondary battery which is another typical embodiment of the lithium ion battery of this invention. 本発明に係るリチウムイオン電池の代表的な実施形態である積層型の扁平なリチウムイオン二次電池の外観を模式的に表した斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view schematically showing an appearance of a stacked flat lithium ion secondary battery that is a typical embodiment of a lithium ion battery according to the present invention. 本発明に係る組電池の代表的な実施形態を模式的に表した外観図であって、図4Aは組電池の平面図であり、図4Bは組電池の正面図であり、図4Cは組電池の側面図である。4A and 4B are external views schematically showing typical embodiments of the assembled battery according to the present invention, in which FIG. 4A is a plan view of the assembled battery, FIG. 4B is a front view of the assembled battery, and FIG. It is a side view of a battery. 本発明の組電池を搭載した車両の概念図である。It is a conceptual diagram of the vehicle carrying the assembled battery of this invention. 実施例で作製した電池の概略図である。It is the schematic of the battery produced in the Example. 実施例1、2および比較例1で作製した電池の初回サイクルの充放電曲線である。It is a charging / discharging curve of the first cycle of the battery produced in Examples 1, 2 and Comparative Example 1. 実施例3、4および比較例2で作製した電池の初回サイクルの充放電曲線である。It is a charging / discharging curve of the first cycle of the battery produced in Examples 3 and 4 and Comparative Example 2. 実施例1、実施例3で作製した電池の充放電のサイクル前後での負極の断面のSEM写真である。2 is a SEM photograph of a cross section of a negative electrode before and after a charge / discharge cycle of batteries produced in Example 1 and Example 3. FIG.

符号の説明Explanation of symbols

10 非双極型リチウムイオン二次電池、
11 正極集電体、
11a 最外層正極集電体、
12、32 正極(正極活物質層)、
13、35 電解質層、
14 負極集電体、
15、33 負極(負極活物質層)、
16、36 単電池層(=電池単位ないし単セル)、
17、37、57 発電要素(電池要素;積層体)、
18、38、58 正極タブ、
19、39、59 負極タブ、
20、40 正極端子リード、
21、41 負極端子リード、
22、42、52 電池外装材(たとえばラミネートフィルム)、
30 双極型リチウムイオン二次電池、
31 集電体、
31a 正極側の最外層集電体、
31b 負極側の最外層集電体、
34 双極型電極、
34a、34b 最外層に位置する電極、
43 シール部(絶縁層)、
50 リチウムイオン二次電池、
60 ビーカー型電池、
61 正極、
62 負極、
63 参照極、
64 電解液、
250 小型の組電池、
300 組電池、
310 接続治具、
400 電気自動車。
10 Non-bipolar lithium ion secondary battery,
11 positive electrode current collector,
11a Outermost layer positive electrode current collector,
12, 32 positive electrode (positive electrode active material layer),
13, 35 electrolyte layer,
14 negative electrode current collector,
15, 33 negative electrode (negative electrode active material layer),
16, 36 single battery layer (= battery unit or single cell),
17, 37, 57 Power generation element (battery element; laminate),
18, 38, 58 positive electrode tab,
19, 39, 59 negative electrode tab,
20, 40 Positive terminal lead,
21, 41 Negative terminal lead,
22, 42, 52 Battery exterior material (for example, laminate film),
30 Bipolar lithium ion secondary battery,
31 current collector,
31a The outermost layer current collector on the positive electrode side,
31b The outermost layer current collector on the negative electrode side,
34 Bipolar electrode,
34a, 34b The electrode located in the outermost layer,
43 Sealing part (insulating layer),
50 lithium ion secondary battery,
60 beaker type battery,
61 positive electrode,
62 negative electrode,
63 Reference electrode,
64 electrolyte,
250 small battery pack,
300 battery packs,
310 connection jig,
400 Electric car.

Claims (7)

集電体と、前記集電体の表面に形成された、負極活物質および結着剤を含む負極活物質層と、を有する電池用負極であって、
前記結着剤がポリアクリル酸塩であることを特徴とする、電池用負極。
A negative electrode for a battery, comprising: a current collector; and a negative electrode active material layer including a negative electrode active material and a binder formed on a surface of the current collector,
A negative electrode for a battery, wherein the binder is a polyacrylate.
前記ポリアクリル酸塩がNaまたはLiで中和されているポリアクリル酸塩である、請求項1に記載の電池用負極。   The negative electrode for a battery according to claim 1, wherein the polyacrylate is a polyacrylate that is neutralized with Na or Li. 前記負極活物質が黒鉛である、請求項1または2に記載の電池用負極。   The negative electrode for a battery according to claim 1, wherein the negative electrode active material is graphite. 正極、電解質層、および負極がこの順に積層されてなる少なくとも1つの単電池層を有するリチウムイオン二次電池であって、
前記負極が、請求項1〜3のいずれか1項に記載の電池用負極である、リチウムイオン二次電池。
A lithium ion secondary battery having at least one single cell layer in which a positive electrode, an electrolyte layer, and a negative electrode are laminated in this order,
The lithium ion secondary battery whose said negative electrode is a negative electrode for batteries of any one of Claims 1-3.
前記電解質層が、電解液を含み、前記電解液の少なくとも一部がプロピレンカーボネートである、請求項4に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 4, wherein the electrolyte layer includes an electrolytic solution, and at least a part of the electrolytic solution is propylene carbonate. 請求項4または5に記載のリチウムイオン二次電池を用いた組電池。   An assembled battery using the lithium ion secondary battery according to claim 4. 請求項4または5に記載のリチウムイオン二次電池、または請求項6に記載の組電池を搭載した車両。   A vehicle equipped with the lithium ion secondary battery according to claim 4 or 5 or the assembled battery according to claim 6.
JP2007247906A 2007-09-25 2007-09-25 Negative electrode for lithium ion battery Active JP5252386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247906A JP5252386B2 (en) 2007-09-25 2007-09-25 Negative electrode for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247906A JP5252386B2 (en) 2007-09-25 2007-09-25 Negative electrode for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2009080971A true JP2009080971A (en) 2009-04-16
JP5252386B2 JP5252386B2 (en) 2013-07-31

Family

ID=40655573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247906A Active JP5252386B2 (en) 2007-09-25 2007-09-25 Negative electrode for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5252386B2 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
WO2012133034A1 (en) 2011-03-25 2012-10-04 学校法人東京理科大学 Battery electrode and lithium ion secondary battery provided with same
WO2013176232A1 (en) * 2012-05-25 2013-11-28 日本ゼオン株式会社 Lithium ion secondary battery
WO2014065407A1 (en) 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
WO2015190367A1 (en) * 2014-06-10 2015-12-17 東亞合成株式会社 Electrode for non-aqueous electrolyte secondary cell, production method for same, and non-aqueous electrolyte secondary cell
WO2016063882A1 (en) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing high-molecular compound, and method for producing negative electrode
KR20160145672A (en) 2014-04-21 2016-12-20 와코 쥰야꾸 고교 가부시키가이샤 Binder for lithium cell
JP2017143043A (en) * 2016-02-12 2017-08-17 株式会社豊田自動織機 Polymer compound, intermediate composition, negative electrode, power storage device, slurry for negative electrode, polymer compound manufacturing method, and negative electrode manufacturing method
WO2017183398A1 (en) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 Polymeric compound, intermediate composition, negative electrode, electrical storage device, and method for producing polymeric compound
US9893358B2 (en) 2013-10-29 2018-02-13 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2018143383A1 (en) 2017-02-03 2018-08-09 富士フイルム和光純薬株式会社 Binder agent composition for lithium battery electrode, and electrode using same
WO2018143382A1 (en) 2017-02-03 2018-08-09 富士フイルム和光純薬株式会社 Binder agent composition for lithium battery
KR101933085B1 (en) * 2011-10-26 2018-12-28 넥세온 엘티디 An electrode composition for a secondary battery cell
JP2019509596A (en) * 2016-03-08 2019-04-04 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat A L’Energie Atomique Et Aux Energies Alternatives A lithium ion battery comprising a binder comprising a first polymer that is one of a first polyacrylate or a derivative thereof and a second polymer that is a second polyacrylate or a carboxymethylcellulose or one of derivatives thereof. Electrode and ink for producing the electrode
US10351672B2 (en) 2016-02-18 2019-07-16 Kabushiki Kaisha Toyota Jidoshokki Polymer compound formed by condensing polyacrylic acid, polyamine and aromatic monoamine, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
JP2020071944A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 Nonaqueous electrolyte lithium ion secondary battery
US10707490B2 (en) 2014-11-25 2020-07-07 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electricity storage device, slurry for negative electrodes, method for producing polymer compound, and method for producing negative electrode
WO2020149682A1 (en) 2019-01-17 2020-07-23 주식회사 엘지화학 Anode and lithium secondary battery comprising same
WO2020179830A1 (en) 2019-03-04 2020-09-10 国立大学法人大阪大学 Binder for electrochemical devices, electrode mixture, electrode, electrochemical device and secondary battery
WO2021131409A1 (en) 2019-12-27 2021-07-01 国立大学法人大阪大学 Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mix, electrode, electrochemical device, and secondary battery
WO2023282683A1 (en) 2021-07-09 2023-01-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023282684A1 (en) 2021-07-09 2023-01-12 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, manufacturing method of anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023055216A1 (en) 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Negative electrode pre-dispersion solution, negative electrode composition including same, negative electrode for lithium secondary battery including negative electrode composition, lithium secondary battery including negative electrode, and method for producing negative electrode composition
WO2023055215A1 (en) 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery including same, lithium secondary battery including anode, and preparation method for anode composition
KR20230049029A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230049031A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, manufacturing method of negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20230048997A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023059151A1 (en) 2021-10-07 2023-04-13 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery including same, lithium secondary battery including negative electrode, and method for preparing negative electrode composition
WO2023059149A1 (en) 2021-10-07 2023-04-13 주식회사 엘지에너지솔루션 Anode pre-dispersion solution, anode composition comprising same, anode for lithium secondary battery comprising anode composition, lithium secondary battery comprising anode, and method for manufacturing anode composition
WO2023068601A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, lithium secondary battery including anode, and manufacturing method for anode for lithium secondary battery
WO2023068838A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, lithium secondary battery comprising anode, and method for preparing anode composition
WO2023068880A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode pre-dispersion solution, anode composition comprising same, anode for lithium secondary battery comprising anode composition, lithium secondary battery comprising anode, and method for preparing anode composition
KR20230069008A (en) 2021-11-11 2023-05-18 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondarty battery comprising same, lithium secondarty battery comprising negative electrode, and method for preparing negative electrode composition
KR20230070878A (en) 2021-11-15 2023-05-23 주식회사 엘지에너지솔루션 Cap assmbly for cylindrical secondary battery and cylindrical secondary battery comprising the same
KR20230070859A (en) 2021-11-15 2023-05-23 주식회사 엘지에너지솔루션 Manufacturing method of electrode for lithium secondary batterry, apparatus for manufacturing electrode for lithium secondary batterry, electrode for lithium secondary batterry, and lithium secondary batterry comprising same
WO2023096307A1 (en) 2021-11-29 2023-06-01 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, method for manufacturing lithium secondary battery, and lithium secondary battery
WO2023101426A1 (en) 2021-12-03 2023-06-08 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, manufacturing method for anode for lithium secondary battery, and lithium secondary battery including anode
KR20230086324A (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Detecting method for jelly roll electrode assembly, apparatus for jelly roll electrode assembly and jelly roll electrode assembly
WO2023106835A1 (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Jelly-roll electrode assembly and cylindrical lithium secondary battery comprising same
WO2023106834A1 (en) 2021-12-09 2023-06-15 주식회사 엘지에너지솔루션 Lithium secondary battery
WO2023113330A1 (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023113462A1 (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery comprising same, and lithium secondary battery comprising anode
KR20230091058A (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20230095848A (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023120966A1 (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023121218A1 (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Pre-lithiation method for negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230099032A (en) 2021-12-27 2023-07-04 주식회사 엘지에너지솔루션 Manufacturing method of cylindrical lithium secondary battery, appratus for manufacturing cylindrical lithium secondary battery and cylindrical lithium secondary battery
KR20230108777A (en) 2022-01-11 2023-07-19 주식회사 엘지에너지솔루션 Lithium metal powder, negative electrode composition comprising same, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode and manufacturing method of lithium secondary battery
KR20230114730A (en) 2022-01-25 2023-08-01 주식회사 엘지에너지솔루션 Transffering laminate, pre-lithiation method for electrode for lithium secondary battery, and lithium secondary battery comprising electrode
KR20230114731A (en) 2022-01-25 2023-08-01 주식회사 엘지에너지솔루션 Pre-lithiation method for electrode for lithium secondary battery, electrode intermediate, and lithium secondary battery comprising electrode
WO2023146258A1 (en) 2022-01-28 2023-08-03 주식회사 엘지에너지솔루션 Lithium secondary battery comprising separator
WO2023149746A1 (en) 2022-02-04 2023-08-10 주식회사 엘지에너지솔루션 Method for manufacturing anode for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023153715A1 (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Pre-lithiation method for lithium secondary battery anode, anode intermediate, and lithium secondary battery comprising anode
WO2023153716A1 (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Transfer laminate, method for manufacturing anode for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20230120555A (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023153666A1 (en) 2022-02-11 2023-08-17 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023167449A1 (en) 2022-03-02 2023-09-07 주식회사 엘지에너지솔루션 Method for manufacturing lithium secondary battery and lithium secondary battery
WO2023182852A1 (en) 2022-03-25 2023-09-28 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023182701A1 (en) 2022-03-25 2023-09-28 주식회사 엘지에너지솔루션 Anode slurry, preparation method for anode slurry, anode for lithium secondary battery including anode slurry, and method for manufacturing anode for lithium secondary battery
KR20230155213A (en) 2022-05-03 2023-11-10 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230156664A (en) 2022-05-06 2023-11-14 주식회사 엘지에너지솔루션 Pre-lithiation method of electrode, pre-lithiated electrode and pre-lithiation apparatus
KR20230156661A (en) 2022-05-06 2023-11-14 주식회사 엘지에너지솔루션 Manufacturing method of electrode assembly, electrode assembly and lithium secondary battery comprising same
KR20230161897A (en) 2022-05-19 2023-11-28 주식회사 엘지에너지솔루션 Manufacturing method of electrode for lithium secondary battery and lithium secondary battery comprising electrode
KR20240000396A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20240000400A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240000398A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240000399A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240000397A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240009896A (en) 2022-07-13 2024-01-23 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240010697A (en) 2022-07-14 2024-01-24 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240019734A (en) 2022-08-04 2024-02-14 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240018820A (en) 2022-08-03 2024-02-14 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery
KR20240019489A (en) 2022-08-04 2024-02-14 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery
KR20240031194A (en) 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240031193A (en) 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240031926A (en) 2022-08-31 2024-03-08 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240034667A (en) 2022-09-07 2024-03-14 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same and lithium secondary battery comprising negative electrode
KR20240035351A (en) 2022-09-07 2024-03-15 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240040662A (en) 2022-09-21 2024-03-28 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370661A (en) * 1991-06-20 1992-12-24 Toshiba Battery Co Ltd Secondary battery with nonaqueous solvent
JP2002050360A (en) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd Lithium ion secondary battery electrode binder and its usage
JP2002304986A (en) * 2001-04-03 2002-10-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003217573A (en) * 2002-01-22 2003-07-31 Hitachi Powdered Metals Co Ltd Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry
JP2004362859A (en) * 2003-06-03 2004-12-24 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2006210208A (en) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251223A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370661A (en) * 1991-06-20 1992-12-24 Toshiba Battery Co Ltd Secondary battery with nonaqueous solvent
JP2002050360A (en) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd Lithium ion secondary battery electrode binder and its usage
JP2002304986A (en) * 2001-04-03 2002-10-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003217573A (en) * 2002-01-22 2003-07-31 Hitachi Powdered Metals Co Ltd Slurry for forming negative electrode film of non- aqueous secondary battery and control method of slurry
JP2004362859A (en) * 2003-06-03 2004-12-24 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2006210208A (en) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008251223A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of lithium ion secondary battery, and lithium ion secondary battery

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
WO2012133034A1 (en) 2011-03-25 2012-10-04 学校法人東京理科大学 Battery electrode and lithium ion secondary battery provided with same
KR20140044802A (en) 2011-03-25 2014-04-15 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 Battery electrode and lithium ion secondary battery provided with same
US9276262B2 (en) 2011-03-25 2016-03-01 Tokyo University Of Science Educational Foundation Administrative Organization Battery electrode and lithium ion secondary battery provided with same
KR101933085B1 (en) * 2011-10-26 2018-12-28 넥세온 엘티디 An electrode composition for a secondary battery cell
WO2013176232A1 (en) * 2012-05-25 2013-11-28 日本ゼオン株式会社 Lithium ion secondary battery
KR20150021018A (en) * 2012-05-25 2015-02-27 제온 코포레이션 Lithium ion secondary battery
KR101978462B1 (en) 2012-05-25 2019-05-14 제온 코포레이션 Lithium ion secondary battery
JPWO2013176232A1 (en) * 2012-05-25 2016-01-14 日本ゼオン株式会社 Lithium ion secondary battery
WO2014065407A1 (en) 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
US10862127B2 (en) 2012-10-26 2020-12-08 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
US10044040B2 (en) 2012-10-26 2018-08-07 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
EP3327048A1 (en) 2012-10-26 2018-05-30 Wako Pure Chemical Industries, Ltd. Use of a cross-linked polyacrylic acid in a binder for a lithium cell
US9893358B2 (en) 2013-10-29 2018-02-13 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20160145672A (en) 2014-04-21 2016-12-20 와코 쥰야꾸 고교 가부시키가이샤 Binder for lithium cell
US10854881B2 (en) 2014-04-21 2020-12-01 Tokyo University Of Science Foundation Binder for lithium cell
JPWO2015190367A1 (en) * 2014-06-10 2017-04-20 東亞合成株式会社 Non-aqueous electrolyte secondary battery electrode, method for producing the same, and non-aqueous electrolyte secondary battery
US10454111B2 (en) 2014-06-10 2019-10-22 Toagosei Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery
WO2015190367A1 (en) * 2014-06-10 2015-12-17 東亞合成株式会社 Electrode for non-aqueous electrolyte secondary cell, production method for same, and non-aqueous electrolyte secondary cell
WO2016063882A1 (en) * 2014-10-21 2016-04-28 株式会社 豊田自動織機 High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing high-molecular compound, and method for producing negative electrode
JPWO2016063882A1 (en) * 2014-10-21 2017-07-13 株式会社豊田自動織機 Polymer compound, intermediate composition, negative electrode, power storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
US9966607B2 (en) 2014-10-21 2018-05-08 Kabushiki Kaisha Toyota Jidoshokki High-molecular compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode method for producing high-molecular compound, and method for producing negative electrode
US10707490B2 (en) 2014-11-25 2020-07-07 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electricity storage device, slurry for negative electrodes, method for producing polymer compound, and method for producing negative electrode
US10538625B2 (en) 2016-02-12 2020-01-21 Kabushiki Kaisha Toyota Jidoshokki Polymer compound, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
JP2017143043A (en) * 2016-02-12 2017-08-17 株式会社豊田自動織機 Polymer compound, intermediate composition, negative electrode, power storage device, slurry for negative electrode, polymer compound manufacturing method, and negative electrode manufacturing method
US10351672B2 (en) 2016-02-18 2019-07-16 Kabushiki Kaisha Toyota Jidoshokki Polymer compound formed by condensing polyacrylic acid, polyamine and aromatic monoamine, intermediate composition, negative electrode, electrical storage device, slurry for negative electrode, method for producing polymer compound, and method for producing negative electrode
JP2019509596A (en) * 2016-03-08 2019-04-04 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat A L’Energie Atomique Et Aux Energies Alternatives A lithium ion battery comprising a binder comprising a first polymer that is one of a first polyacrylate or a derivative thereof and a second polymer that is a second polyacrylate or a carboxymethylcellulose or one of derivatives thereof. Electrode and ink for producing the electrode
JP7046822B2 (en) 2016-03-08 2022-04-04 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ For lithium ion batteries comprising a binder comprising a first polymer which is one of the first polyacrylates or derivatives thereof and a second polymer which is one of the second polyacrylates or carboxymethyl cellulose or derivatives thereof. Electrodes and inks for manufacturing the electrodes
JP2017195107A (en) * 2016-04-21 2017-10-26 株式会社豊田自動織機 Polymer compound, intermediate composition, negative electrode, power storage device, and method for producing polymer compound
WO2017183398A1 (en) * 2016-04-21 2017-10-26 株式会社 豊田自動織機 Polymeric compound, intermediate composition, negative electrode, electrical storage device, and method for producing polymeric compound
US10875964B2 (en) 2016-04-21 2020-12-29 Kabushiki Kaisha Toyota Jidoshokki Polymeric binder of polyacrylic acid, polyfunctional amine, and linking benzene ring
KR20190110520A (en) 2017-02-03 2019-09-30 후지필름 와코 준야쿠 가부시키가이샤 Binder Composition for Lithium Batteries
KR20190110521A (en) 2017-02-03 2019-09-30 후지필름 와코 준야쿠 가부시키가이샤 Binder composition for lithium battery electrodes and electrode using the same
WO2018143383A1 (en) 2017-02-03 2018-08-09 富士フイルム和光純薬株式会社 Binder agent composition for lithium battery electrode, and electrode using same
WO2018143382A1 (en) 2017-02-03 2018-08-09 富士フイルム和光純薬株式会社 Binder agent composition for lithium battery
US11258066B2 (en) 2017-02-03 2022-02-22 Fujifilm Wako Pure Chemical Corporation Binder agent composition for lithium battery
JP2020071944A (en) * 2018-10-30 2020-05-07 トヨタ自動車株式会社 Nonaqueous electrolyte lithium ion secondary battery
WO2020149682A1 (en) 2019-01-17 2020-07-23 주식회사 엘지화학 Anode and lithium secondary battery comprising same
EP4340089A2 (en) 2019-01-17 2024-03-20 LG Energy Solution, Ltd. Negative electrode and lithium secondary battery including same
KR20210111340A (en) 2019-03-04 2021-09-10 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 Binder for electrochemical device, electrode mixture, electrode, electrochemical device and secondary battery
WO2020179830A1 (en) 2019-03-04 2020-09-10 国立大学法人大阪大学 Binder for electrochemical devices, electrode mixture, electrode, electrochemical device and secondary battery
WO2021131409A1 (en) 2019-12-27 2021-07-01 国立大学法人大阪大学 Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mix, electrode, electrochemical device, and secondary battery
WO2023282683A1 (en) 2021-07-09 2023-01-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023282684A1 (en) 2021-07-09 2023-01-12 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, manufacturing method of anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20230010171A (en) 2021-07-09 2023-01-18 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230010172A (en) 2021-07-09 2023-01-18 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023055216A1 (en) 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Negative electrode pre-dispersion solution, negative electrode composition including same, negative electrode for lithium secondary battery including negative electrode composition, lithium secondary battery including negative electrode, and method for producing negative electrode composition
WO2023055215A1 (en) 2021-10-01 2023-04-06 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery including same, lithium secondary battery including anode, and preparation method for anode composition
KR20230047932A (en) 2021-10-01 2023-04-10 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode
WO2023059015A1 (en) 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230048997A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230049031A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, manufacturing method of negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
WO2023059016A1 (en) 2021-10-05 2023-04-13 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for manufacturing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230049029A (en) 2021-10-05 2023-04-12 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023059151A1 (en) 2021-10-07 2023-04-13 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery including same, lithium secondary battery including negative electrode, and method for preparing negative electrode composition
WO2023059149A1 (en) 2021-10-07 2023-04-13 주식회사 엘지에너지솔루션 Anode pre-dispersion solution, anode composition comprising same, anode for lithium secondary battery comprising anode composition, lithium secondary battery comprising anode, and method for manufacturing anode composition
KR20230050258A (en) 2021-10-07 2023-04-14 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230050259A (en) 2021-10-07 2023-04-14 주식회사 엘지에너지솔루션 Negative pre-dispersion composition, negative electrode composition comprising same, negative electrode for lithium secondary battery comprising negative electrode composition, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023068838A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, lithium secondary battery comprising anode, and method for preparing anode composition
WO2023068880A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode pre-dispersion solution, anode composition comprising same, anode for lithium secondary battery comprising anode composition, lithium secondary battery comprising anode, and method for preparing anode composition
KR20230057975A (en) 2021-10-22 2023-05-02 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230057988A (en) 2021-10-22 2023-05-02 주식회사 엘지에너지솔루션 Negative pre-dispersion composition, negative electrode composition comprising same, negative electrode for lithium secondary battery comprising negative electrode composition, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
KR20230058287A (en) 2021-10-22 2023-05-03 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, lithium secondary battery comprising negative electrode, and method for preparing negative electrode for lithium secondary battery
WO2023068601A1 (en) 2021-10-22 2023-04-27 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, lithium secondary battery including anode, and manufacturing method for anode for lithium secondary battery
KR20230069008A (en) 2021-11-11 2023-05-18 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondarty battery comprising same, lithium secondarty battery comprising negative electrode, and method for preparing negative electrode composition
WO2023085691A1 (en) 2021-11-11 2023-05-19 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery comprising same, lithium secondary battery comprising anode, and method for preparing anode composition
KR20230070859A (en) 2021-11-15 2023-05-23 주식회사 엘지에너지솔루션 Manufacturing method of electrode for lithium secondary batterry, apparatus for manufacturing electrode for lithium secondary batterry, electrode for lithium secondary batterry, and lithium secondary batterry comprising same
KR20230070878A (en) 2021-11-15 2023-05-23 주식회사 엘지에너지솔루션 Cap assmbly for cylindrical secondary battery and cylindrical secondary battery comprising the same
WO2023096307A1 (en) 2021-11-29 2023-06-01 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, method for manufacturing lithium secondary battery, and lithium secondary battery
KR20230081966A (en) 2021-11-29 2023-06-08 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, manufacturing method of lithium secondary battery and lithium secondary battery
WO2023101426A1 (en) 2021-12-03 2023-06-08 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, manufacturing method for anode for lithium secondary battery, and lithium secondary battery including anode
KR20230084060A (en) 2021-12-03 2023-06-12 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, manufacturing method of negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20230086324A (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Detecting method for jelly roll electrode assembly, apparatus for jelly roll electrode assembly and jelly roll electrode assembly
WO2023106835A1 (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Jelly-roll electrode assembly and cylindrical lithium secondary battery comprising same
KR20230086616A (en) 2021-12-08 2023-06-15 주식회사 엘지에너지솔루션 Jelly roll electrode assembly and cylindrical lithium secondary battery comprising same
WO2023106834A1 (en) 2021-12-09 2023-06-15 주식회사 엘지에너지솔루션 Lithium secondary battery
KR20230087402A (en) 2021-12-09 2023-06-16 주식회사 엘지에너지솔루션 Lithium secondary battery
WO2023113330A1 (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023113462A1 (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery comprising same, and lithium secondary battery comprising anode
KR20230091016A (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20230091058A (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20230090931A (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same and lithium secondary battery comprising negative electrode
WO2023113464A1 (en) 2021-12-15 2023-06-22 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
KR20230095848A (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode, and method for preparing negative electrode composition
WO2023120966A1 (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Anode composition, lithium secondary battery anode comprising same, and lithium secondary battery comprising anode
WO2023121218A1 (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Pre-lithiation method for negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230095798A (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode
KR20230095579A (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Pre-lithiation method for negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023121257A1 (en) 2021-12-22 2023-06-29 주식회사 엘지에너지솔루션 Anode composition, anode comprising same for lithium secondary battery, lithium secondary battery comprising anode, and method for preparing anode composition
KR20230099032A (en) 2021-12-27 2023-07-04 주식회사 엘지에너지솔루션 Manufacturing method of cylindrical lithium secondary battery, appratus for manufacturing cylindrical lithium secondary battery and cylindrical lithium secondary battery
KR20230108777A (en) 2022-01-11 2023-07-19 주식회사 엘지에너지솔루션 Lithium metal powder, negative electrode composition comprising same, negative electrode for lithium secondary battery comprising same, lithium secondary battery comprising negative electrode and manufacturing method of lithium secondary battery
KR20230114730A (en) 2022-01-25 2023-08-01 주식회사 엘지에너지솔루션 Transffering laminate, pre-lithiation method for electrode for lithium secondary battery, and lithium secondary battery comprising electrode
KR20230114731A (en) 2022-01-25 2023-08-01 주식회사 엘지에너지솔루션 Pre-lithiation method for electrode for lithium secondary battery, electrode intermediate, and lithium secondary battery comprising electrode
WO2023146254A1 (en) 2022-01-25 2023-08-03 주식회사 엘지에너지솔루션 Transfer laminate, method for pre-lithiation of electrode for lithium secondary battery, and lithium secondary battery comprising electrode
WO2023146256A1 (en) 2022-01-25 2023-08-03 주식회사 엘지에너지솔루션 Method for prelithiating electrode for lithium secondary battery, electrode intermediate, and lithium secondary battery including electrode
WO2023146258A1 (en) 2022-01-28 2023-08-03 주식회사 엘지에너지솔루션 Lithium secondary battery comprising separator
KR20230116704A (en) 2022-01-28 2023-08-04 주식회사 엘지에너지솔루션 Lithium secondary battery comprising a separator
WO2023149746A1 (en) 2022-02-04 2023-08-10 주식회사 엘지에너지솔루션 Method for manufacturing anode for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20230118514A (en) 2022-02-04 2023-08-11 주식회사 엘지에너지솔루션 Manufacturing method for negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2023153715A1 (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Pre-lithiation method for lithium secondary battery anode, anode intermediate, and lithium secondary battery comprising anode
WO2023153716A1 (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Transfer laminate, method for manufacturing anode for lithium secondary battery, anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20230120555A (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230120255A (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Pre-lithiation method for negative electrode for lithium secondary battery, negative electrode intermediate, and lithium secondary battery comprising negative electrode
KR20230120254A (en) 2022-02-09 2023-08-17 주식회사 엘지에너지솔루션 Transfer laminate, manufacturing method of negative electrode for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
WO2023153666A1 (en) 2022-02-11 2023-08-17 주식회사 엘지에너지솔루션 Anode for lithium secondary battery, and lithium secondary battery comprising anode
KR20230121361A (en) 2022-02-11 2023-08-18 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
WO2023167449A1 (en) 2022-03-02 2023-09-07 주식회사 엘지에너지솔루션 Method for manufacturing lithium secondary battery and lithium secondary battery
KR20230129914A (en) 2022-03-02 2023-09-11 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery
WO2023182852A1 (en) 2022-03-25 2023-09-28 주식회사 엘지에너지솔루션 Anode composition, anode for lithium secondary battery, and lithium secondary battery comprising anode
WO2023182701A1 (en) 2022-03-25 2023-09-28 주식회사 엘지에너지솔루션 Anode slurry, preparation method for anode slurry, anode for lithium secondary battery including anode slurry, and method for manufacturing anode for lithium secondary battery
KR20230139409A (en) 2022-03-25 2023-10-05 주식회사 엘지에너지솔루션 Negative electrode slurry, manufacturing method of negative electrode slurry, negative electrode for lithium secondary battery comprising negative electrode slurry and manufacturing method of negative electrode for lithium secondary battery
KR20230139067A (en) 2022-03-25 2023-10-05 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20230155213A (en) 2022-05-03 2023-11-10 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230156664A (en) 2022-05-06 2023-11-14 주식회사 엘지에너지솔루션 Pre-lithiation method of electrode, pre-lithiated electrode and pre-lithiation apparatus
KR20230156661A (en) 2022-05-06 2023-11-14 주식회사 엘지에너지솔루션 Manufacturing method of electrode assembly, electrode assembly and lithium secondary battery comprising same
KR20230161897A (en) 2022-05-19 2023-11-28 주식회사 엘지에너지솔루션 Manufacturing method of electrode for lithium secondary battery and lithium secondary battery comprising electrode
KR20240000396A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20240000400A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240000398A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240000399A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240000397A (en) 2022-06-23 2024-01-02 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240009896A (en) 2022-07-13 2024-01-23 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240010697A (en) 2022-07-14 2024-01-24 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240018820A (en) 2022-08-03 2024-02-14 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery
KR20240019734A (en) 2022-08-04 2024-02-14 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240019489A (en) 2022-08-04 2024-02-14 주식회사 엘지에너지솔루션 Manufacturing method of lithium secondary battery and lithium secondary battery
KR20240031194A (en) 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240031193A (en) 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240031926A (en) 2022-08-31 2024-03-08 주식회사 엘지에너지솔루션 Negative electrode active material, manufacturing method of negative electrode active material, negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode
KR20240034667A (en) 2022-09-07 2024-03-14 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same and lithium secondary battery comprising negative electrode
KR20240035351A (en) 2022-09-07 2024-03-15 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20240040662A (en) 2022-09-21 2024-03-28 주식회사 엘지에너지솔루션 Negative electrode composition, negative electrode for lithium secondary battery comprising same, and lithium secondary battery comprising negative electrode

Also Published As

Publication number Publication date
JP5252386B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5252386B2 (en) Negative electrode for lithium ion battery
JP5167703B2 (en) Battery electrode
JP5135664B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5103857B2 (en) Secondary battery electrode and secondary battery using the same
JP5526481B2 (en) Secondary battery and manufacturing method thereof
JP5136706B2 (en) Cathode material for non-aqueous electrolyte lithium ion battery and battery using the same
JP5218808B2 (en) Lithium ion battery
JP5601361B2 (en) Battery electrode
JP5309421B2 (en) Lithium ion secondary battery
US20120100413A1 (en) Secondary battery and assembled battery
WO2013094004A1 (en) Lithium secondary battery
JP5420852B2 (en) Lithium ion battery electrode
JP2007109636A (en) Electrode for battery
JP2010160983A (en) Nonaqueous electrolyte secondary battery and its electrode
JP2007287446A (en) Lithium ion secondary battery
JP2014232666A (en) Nonaqueous electrolyte secondary battery
JP2007257862A (en) Electrode for secondary battery, and secondary battery
JP2004362859A (en) Lithium-ion secondary battery
JP2006294272A (en) Secondary battery, battery pack, and vehicle mounting these
JP2007280806A (en) Electrode for battery
JP2006261041A (en) Non-aqueous electrolyte battery and manufacturing method of electrode for non-aqueous electrolyte battery
JP7236039B2 (en) NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE DEVICE AND METHOD FOR MANUFACTURING NONAQUEOUS ELECTROLYTE ELECTRIC STORAGE DEVICE
JP2010067581A (en) Electrode and its manufacturing method
JP5359131B2 (en) Positive electrode for secondary battery
JP2009009858A (en) Electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

R150 Certificate of patent or registration of utility model

Ref document number: 5252386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250