JP2012074167A - Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery - Google Patents

Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery Download PDF

Info

Publication number
JP2012074167A
JP2012074167A JP2010216351A JP2010216351A JP2012074167A JP 2012074167 A JP2012074167 A JP 2012074167A JP 2010216351 A JP2010216351 A JP 2010216351A JP 2010216351 A JP2010216351 A JP 2010216351A JP 2012074167 A JP2012074167 A JP 2012074167A
Authority
JP
Japan
Prior art keywords
electrode
ion secondary
lithium ion
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010216351A
Other languages
Japanese (ja)
Other versions
JP5632246B2 (en
Inventor
Yoshiharu Konno
義治 今野
Kenichi Shinmyo
健一 新明
Motoharu Ataka
元晴 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010216351A priority Critical patent/JP5632246B2/en
Publication of JP2012074167A publication Critical patent/JP2012074167A/en
Application granted granted Critical
Publication of JP5632246B2 publication Critical patent/JP5632246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which can be manufactured readily, and offers a sufficient battery performance even in the case of using solid or gel electrolyte.SOLUTION: The electrode for a lithium ion secondary battery comprises a polyanion type lithium salt. The lithium ion secondary battery includes the electrode. The method of manufacturing the electrode for a lithium ion secondary battery comprises the steps of: mixing an electrode active material and polyanion type lithium salt solution to prepare a mixture, drying and pulverizing the mixture into powder; and mixing the powder, a binder and a conducting agent to prepare a paste for the electrode.

Description

本発明は、リチウムイオン二次電池用電極及びその製造方法、並びに該電極を用いたリチウムイオン二次電池に関する。   The present invention relates to an electrode for a lithium ion secondary battery, a manufacturing method thereof, and a lithium ion secondary battery using the electrode.

リチウムイオン二次電池は、鉛蓄電池、ニッケル水素電池に比べて、エネルギー密度及び起電力が高いという特徴を有するため、小型、軽量化が要求される携帯電話やノートパソコン等の電源として広く使用されている。現在、これらの機器に使用されているリチウムイオン二次電池の多くには、電解液として、リチウム塩を有機溶媒に溶解させた非水系電解液が使用されている。
しかしながら、非水系電解液を使用した二次電池は、有機溶媒の液漏れに伴う充放電サイクル寿命特性の低下や、負極から正極方向に成長するデンドライドの析出に伴う内部短絡発生などの危険性を有しており、最悪の場合、発火事故の原因ともなる。一方で、近年は、リチウムイオン二次電池を電力貯蔵用の大型定置用電源や電気自動車用の電源として利用することが期待されており、リチウムイオン二次電池のさらなる高エネルギー密度化と安全性の向上が強く望まれている。
Lithium ion secondary batteries are characterized by high energy density and electromotive force compared to lead-acid batteries and nickel metal hydride batteries, so they are widely used as power sources for mobile phones and laptop computers that require small size and light weight. ing. Currently, in many of the lithium ion secondary batteries used in these devices, a nonaqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used as the electrolytic solution.
However, secondary batteries using non-aqueous electrolytes have a risk of deterioration of charge / discharge cycle life characteristics due to leakage of organic solvent and occurrence of internal short circuit due to precipitation of dendrites growing from the negative electrode to the positive electrode. In the worst case, it may cause a fire accident. On the other hand, in recent years, it has been expected that lithium ion secondary batteries will be used as large stationary power sources for power storage and power sources for electric vehicles. Improvement is strongly desired.

そこで、電解質として固体又はゲル状のものを利用する系が考案され、さかんに研究が進められている。これらの電解質を使用することにより、電解液の揮発拡散や液漏れが防止されるため、電池としての信頼性、安全性が向上する。さらに、電解質自体を薄膜化、積層化することが容易となるため、プロセス性の向上とパッケージの簡略化が期待されている。
リチウムイオン二次電池の基本構造は、電解液又は固体もしくはゲル状電解質と、正極活物質を含む正極と、負極活物質を含む負極とから構成されている。正極及び負極は、活物質を含む組成物を集電体に塗布して乾燥させることで作製され、前記組成物は集電体の片面及び両面のいずれに塗布されても良い。両面塗布の場合に、電極は積層構造を有し、これによりリチウムイオン二次電池の大容量化が可能となる。
Therefore, a system utilizing a solid or gel electrolyte is devised, and research is being conducted rapidly. By using these electrolytes, volatile diffusion and leakage of the electrolytic solution are prevented, so that reliability and safety as a battery are improved. Furthermore, since the electrolyte itself can be easily thinned and laminated, it is expected to improve processability and simplify the package.
The basic structure of a lithium ion secondary battery includes an electrolytic solution or a solid or gel electrolyte, a positive electrode including a positive electrode active material, and a negative electrode including a negative electrode active material. The positive electrode and the negative electrode are produced by applying a composition containing an active material to a current collector and drying it, and the composition may be applied to either one or both sides of the current collector. In the case of double-sided coating, the electrode has a laminated structure, which makes it possible to increase the capacity of the lithium ion secondary battery.

リチウムイオン二次電池において電解液を使用する場合には、電解液が電極の細孔部にまで浸透するため、リチウムイオンが効率よく移動できる。しかし、固体又はゲル状電解質を使用する場合には、固体又はゲル状であるがゆえに、これら電解質と電極との間の界面抵抗が大きくなり、充放電特性が不充分となって電池の大容量化が困難であるという問題点があった。   When using an electrolytic solution in a lithium ion secondary battery, the electrolytic solution penetrates into the pores of the electrode, so that lithium ions can move efficiently. However, when a solid or gel electrolyte is used, since it is solid or gel, the interfacial resistance between the electrolyte and the electrode is increased, resulting in insufficient charge / discharge characteristics and a large capacity of the battery. There was a problem that it was difficult to make it.

そこで、これら問題点を解決しようとする技術が種々検討されている。特許文献1には、固体電解質と電極活物質との間に、この固体電解質と電極活物質を含む中間層が設けられたリチウムイオン二次電池が開示されている。また、特許文献2には、固体電解質を加熱融解したものを電極に塗布し、電極と電極を貼り合わせて得られたリチウムイオン二次電池が開示されている。これら特許文献では、電極と固体電解質との間の界面抵抗を低減できるため、充放電特性の改善やエネルギー密度の増加などの電池特性の向上が可能であるとされている。   Therefore, various techniques for solving these problems have been studied. Patent Document 1 discloses a lithium ion secondary battery in which an intermediate layer including the solid electrolyte and the electrode active material is provided between the solid electrolyte and the electrode active material. Patent Document 2 discloses a lithium ion secondary battery obtained by applying a heat-melted solid electrolyte to an electrode and bonding the electrode together. In these patent documents, since the interface resistance between the electrode and the solid electrolyte can be reduced, it is said that the battery characteristics such as the improvement of the charge / discharge characteristics and the increase of the energy density can be improved.

特開2000−164252号公報JP 2000-164252 A 特開2001−140725号公報JP 2001-140725 A

しかし、これら特許文献で開示されているリチウムイオン二次電池は、製造時に固体電解質又は電極表面に、さらに電解質材料を塗布するという手法が必要であり、製造方法が煩雑で、しかも界面抵抗の低減や電池の大容量化も不十分であるという問題点があった。   However, the lithium ion secondary batteries disclosed in these patent documents require a technique in which an electrolyte material is further applied to the solid electrolyte or electrode surface at the time of production, and the production method is complicated and the interface resistance is reduced. In addition, there is a problem that the capacity of the battery is not sufficient.

本発明は上記事情に鑑みてなされたものであり、簡便に製造でき、固体電解質又はゲル状電解質を使用した場合であっても、充分な電池性能が得られるリチウムイオン二次電池を提供することを課題とする。   The present invention has been made in view of the above circumstances, and provides a lithium ion secondary battery that can be easily manufactured and can provide sufficient battery performance even when a solid electrolyte or a gel electrolyte is used. Is an issue.

上記課題を解決するため、
本発明は、ポリアニオン型リチウム塩を含有することを特徴とするリチウムイオン二次電池用電極を提供する。
本発明のリチウムイオン二次電池用電極においては、前記ポリアニオン型リチウム塩が、ポリカルボン酸リチウム塩及びポリスルホン酸リチウム塩からなる群から選択される一種以上であることが好ましい。
また、本発明は、上記本発明の電極を備えたことを特徴とするリチウムイオン二次電池を提供する。
また、本発明は、上記本発明のリチウムイオン二次電池用電極の製造方法であって、電極活物質及びポリアニオン型リチウム塩水溶液を混合し、得られた混合物を乾燥及び粉砕して粉体を作製する工程と、該粉体、結着剤及び導電剤を混合して電極用ペーストを作製する工程と、を有することを特徴とするリチウムイオン二次電池用電極の製造方法を提供する。
To solve the above problem,
The present invention provides an electrode for a lithium ion secondary battery comprising a polyanion type lithium salt.
In the lithium ion secondary battery electrode of the present invention, the polyanion type lithium salt is preferably at least one selected from the group consisting of a polycarboxylic acid lithium salt and a polysulfonic acid lithium salt.
The present invention also provides a lithium ion secondary battery comprising the electrode of the present invention.
The present invention also relates to a method for producing an electrode for a lithium ion secondary battery according to the present invention, wherein an electrode active material and a polyanion type lithium salt aqueous solution are mixed, and the resulting mixture is dried and pulverized to obtain a powder. There is provided a method for producing an electrode for a lithium ion secondary battery, comprising a step of producing, and a step of producing an electrode paste by mixing the powder, a binder and a conductive agent.

本発明によれば、簡便に製造でき、固体電解質又はゲル状電解質を使用した場合であっても、充分な電池性能が得られるリチウムイオン二次電池が得られる。   According to the present invention, a lithium ion secondary battery can be obtained that can be easily manufactured and can provide sufficient battery performance even when a solid electrolyte or a gel electrolyte is used.

本発明のリチウムイオン二次電池用電極の製造方法を例示するフローチャートである。It is a flowchart which illustrates the manufacturing method of the electrode for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a lithium ion secondary battery of the present invention.

以下、本発明について詳しく説明する。
<リチウムイオン二次電池用電極>
本発明のリチウムイオン二次電池用電極は、ポリアニオン型リチウム塩を含有することを特徴とする。ここで、「ポリアニオン型リチウム塩を含有する」とは、電極の構成成分としてポリアニオン型リチウム塩が含まれることを指し、例えば、電極表面にポリアニオン型リチウム塩が単に付着している場合など、電極からのポリアニオン型リチウム塩の脱離を自在に行える場合を除く。
このような電極を使用することで、固体電解質又はゲル状電解質を使用した場合であっても、充分な電池性能が得られるリチウムイオン二次電池が得られる。また、かかるリチウムイオン二次電池は、簡便に製造できる。
The present invention will be described in detail below.
<Electrode for lithium ion secondary battery>
The electrode for a lithium ion secondary battery of the present invention is characterized by containing a polyanionic lithium salt. Here, “containing a polyanion-type lithium salt” means that a polyanion-type lithium salt is included as a component of the electrode. For example, when the polyanion-type lithium salt is simply attached to the electrode surface, the electrode Excludes cases where polyanion-type lithium salts can be freely detached from
By using such an electrode, it is possible to obtain a lithium ion secondary battery capable of obtaining sufficient battery performance even when a solid electrolyte or a gel electrolyte is used. Such a lithium ion secondary battery can be easily manufactured.

本発明のリチウムイオン二次電池用電極としては、前記ポリアニオン型リチウム塩を含有する電極用ペーストが集電体上に塗布され、乾燥されたものを、好ましいものとして例示できる。   As a lithium ion secondary battery electrode of the present invention, a preferable example is one in which the electrode paste containing the polyanionic lithium salt is applied on a current collector and dried.

ポリアニオン型リチウム塩は、特に限定されず、ポリマー構造中に複数のアニオン部及び該アニオン部と塩を形成するリチウムカチオン(リチウムイオン、Li)を含むものであれば、いずれも好適に使用できる。好ましいものとしては、酸のリチウム塩である部位を複数含むものが例示でき、該酸としては、カルボン酸及びスルホン酸が例示できる。
すなわち、ポリアニオン型リチウム塩の好ましいものとしては、ポリカルボン酸リチウム塩及びポリスルホン酸リチウム塩が例示できる。
The polyanionic lithium salt is not particularly limited, and any polyanionic lithium salt can be suitably used as long as it includes a plurality of anion portions and a lithium cation (lithium ion, Li + ) that forms a salt with the anion portion in the polymer structure. . Preferred examples include those containing a plurality of sites that are lithium salts of acids, and examples of the acids include carboxylic acids and sulfonic acids.
That is, preferable examples of the polyanion type lithium salt include polycarboxylic acid lithium salt and polysulfonic acid lithium salt.

前記ポリカルボン酸リチウム塩の好ましいものとしては、ポリ((メタ)アクリル酸リチウム)、ポリマレイン酸リチウム、ポリフマル酸リチウム、ポリムコン酸リチウム、ポリソルビン酸リチウム、ポリ(アクリロニトリル−ブタジエン−アクリル酸リチウム)共重合体、ポリ(tert−ブチルアクリレート−エチルアクリレート−メタクリル酸リチウム)共重合体、ポリ(エチレン−アクリル酸リチウム)共重合体、ポリ(メチルメタクリレート−メタクリル酸リチウム)共重合体が例示でき、ポリ(アクリル酸リチウム)がより好ましい。なお、本明細書において、「(メタ)アクリル酸」は、「アクリル酸」及び「メタクリル酸」の双方を指すものとする。   Preferred examples of the lithium polycarboxylic acid salt include poly ((meth) lithium acrylate), lithium polymaleate, lithium polyfumarate, lithium polymuconate, lithium polysorbate, and poly (acrylonitrile-butadiene-lithium acrylate) copolymer. Examples thereof include poly (tert-butyl acrylate-ethyl acrylate-lithium methacrylate) copolymer, poly (ethylene-lithium acrylate) copolymer, and poly (methyl methacrylate-lithium methacrylate) copolymer. Lithium acrylate) is more preferred. In the present specification, “(meth) acrylic acid” refers to both “acrylic acid” and “methacrylic acid”.

前記ポリスルホン酸リチウム塩の好ましいものとしては、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸リチウム)、ポリ(スチレンスルホン酸リチウム)、ポリ(ビニルスルホン酸リチウム)、ポリ(パーフルオロスルホン酸リチウム)が例示できる。ポリ(パーフルオロスルホン酸リチウム)としては、ポリ(パーフルオロアルケンスルホン酸リチウムや、下記一般式(1)で表されるものが例示できる。   Preferred examples of the lithium polysulfonate include poly (2-acrylamido-2-methyl-1-propanesulfonate), poly (lithium styrenesulfonate), poly (lithium vinylsulfonate), and poly (perfluorosulfone). Lithium acid) can be exemplified. Examples of poly (lithium perfluorosulfonate) include poly (lithium perfluoroalkene sulfonate) and those represented by the following general formula (1).

Figure 2012074167
(式中、m及びnはそれぞれ独立して1以上の整数である。)
Figure 2012074167
(In the formula, m and n are each independently an integer of 1 or more.)

前記ポリアニオン型リチウム塩は、一種を単独で使用しても良いし、二種以上を併用しても良い。二種以上を併用する場合には、その組み合わせ及び比率は目的に応じて適宜選択すれば良い。   The polyanion type lithium salt may be used alone or in combination of two or more. When two or more kinds are used in combination, the combination and ratio may be appropriately selected according to the purpose.

本発明のリチウムイオン二次電池用電極としては、前記ポリアニオン型リチウム塩で被覆された電極活物質を含有するものが例示できる。そして、かかる電極活物質を含むこと以外は、従来の電極と同様の構成とすることができ、例えば、かかる電極活物質、導電剤、結着剤等が配合されてなる電極用ペーストが、集電体上に塗布され、乾燥されたものが例示できる。電極用ペーストが乾燥され、形成された層は、集電体の片面のみに設けられていても良いし、両面に設けられていても良い。   Examples of the electrode for a lithium ion secondary battery of the present invention include those containing an electrode active material coated with the polyanion type lithium salt. The composition can be the same as that of the conventional electrode except that such an electrode active material is included. For example, an electrode paste containing such an electrode active material, a conductive agent, a binder, and the like is collected. The thing apply | coated and dried on the electrical conductor can be illustrated. The layer formed by drying the electrode paste may be provided only on one side of the current collector, or may be provided on both sides.

前記電極活物質のうち、正極用活物質としては、エネルギー密度が高く、リチウムイオンの可逆的な脱離及び進入を可能とする機能に優れた、リチウムを含有する遷移金属酸化物が好ましい。このような正極用活物質として、具体的には、LiCoO等のコバルト複合酸化物;LiMnO等のマンガン複合酸化物;LiNiO等のニッケル複合酸化物;これら酸化物からなる群から選択される二種以上の混合物;LiNiO等のニッケル複合酸化物においてニッケル(Ni)の一部がコバルト(Co)やマンガン(Mn)に置換された複合酸化物;LiFePO、LiFeVO等の鉄複合酸化物等が例示できる。 Among the electrode active materials, the positive electrode active material is preferably a lithium-containing transition metal oxide having a high energy density and an excellent function of allowing reversible desorption and entry of lithium ions. Specifically, as such a positive electrode active material, a cobalt composite oxide such as LiCoO 2 ; a manganese composite oxide such as LiMn 2 O 4 ; a nickel composite oxide such as LiNiO 2 ; a group consisting of these oxides A mixture of two or more selected; a composite oxide in which a part of nickel (Ni) is substituted with cobalt (Co) or manganese (Mn) in a nickel composite oxide such as LiNiO 2 ; LiFePO 4 , LiFeVO 4, etc. Examples thereof include iron complex oxides.

前記電極活物質のうち、負極用活物質としては、リチウムイオンの可逆的な進入及び脱離を可能とする材料であれば特に限定されないが、好ましいものとして炭素材料が例示できる。そして、かかる炭素材料として具体的には、天然黒鉛、アモルファスカーボン、グラファイト、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、樹脂単体を炭化処理した炭素材等が例示できる。   Among the electrode active materials, the negative electrode active material is not particularly limited as long as it is a material that allows reversible entry and detachment of lithium ions, but a carbon material can be exemplified as a preferable material. Specific examples of such carbon materials include natural graphite, amorphous carbon, graphite, mesocarbon microbeads, mesophase pitch-based carbon fibers, and carbon materials obtained by carbonizing a resin simple substance.

前記電極活物質の平均粒径は、0.5〜50μmであることが好ましく、1〜30μmであることがより好ましい。   The average particle diameter of the electrode active material is preferably 0.5 to 50 μm, and more preferably 1 to 30 μm.

前記導電剤は、各種カーボンブラックであれば特に限定されない。具体的には、アセチレンブラック、ケッチェンブラック、気相法炭素繊維(VGCF)等が例示できる。
前記導電剤は、負極の場合、添加しなくても良い。
The conductive agent is not particularly limited as long as it is various carbon blacks. Specific examples include acetylene black, ketjen black, vapor grown carbon fiber (VGCF), and the like.
In the case of a negative electrode, the conductive agent may not be added.

前記結着剤は、前記活物質及び導電剤を集電体に結着させるものであれば特に限定されない。具体的には、ポリフッ化ビニリデン(PVDF)、スチレンブタジエン共重合ゴム(SBR)、ポリテトラフルオロエチレン(PTFE)、ポリイミド等が例示できる。   The binder is not particularly limited as long as it binds the active material and the conductive agent to the current collector. Specific examples include polyvinylidene fluoride (PVDF), styrene butadiene copolymer rubber (SBR), polytetrafluoroethylene (PTFE), and polyimide.

前記集電体のうち、正極集電体の材質としては、例えば、アルミニウムが好ましく、負極集電体の材質としては、例えば、銅が好ましい。   Among the current collectors, the positive electrode current collector is preferably made of aluminum, for example, and the negative electrode current collector is preferably made of copper, for example.

本発明のリチウムイオン二次電池用電極は、あらかじめポリアニオン型リチウム塩を含有しているので、固体電解質又はゲル状電解質を使用した場合であっても、得られるリチウムイオン二次電池は、これら電解質と電極との間の界面抵抗が効果的に抑制され、充放電特性に優れるなど、充分な電池性能を有する。   Since the electrode for a lithium ion secondary battery of the present invention contains a polyanion-type lithium salt in advance, even when a solid electrolyte or a gel electrolyte is used, the obtained lithium ion secondary battery is prepared by using these electrolytes. Interfacial resistance between the electrode and the electrode is effectively suppressed, and the battery performance is sufficient, such as excellent charge / discharge characteristics.

<リチウムイオン二次電池用電極の製造方法>
本発明のリチウムイオン二次電池用電極は、例えば、前記電極活物質及びポリアニオン型リチウム塩水溶液を混合し、得られた混合物を乾燥及び粉砕して粉体を作製する工程と、該粉体、結着剤及び導電剤を混合して電極用ペーストを作製する工程と、を有する方法で製造できる。
前記製造方法の一例について、フローチャートを図1に示す。
<Method for producing electrode for lithium ion secondary battery>
The electrode for a lithium ion secondary battery of the present invention includes, for example, a step of mixing the electrode active material and a polyanion-type lithium salt aqueous solution, and drying and pulverizing the obtained mixture to produce a powder; And a step of preparing a paste for an electrode by mixing a binder and a conductive agent.
A flowchart of an example of the manufacturing method is shown in FIG.

前記電極活物質と混合するポリアニオン型リチウム塩は、電極活物質100質量部に対して0.001〜20質量部であることが好ましく、0.01〜10質量部であることがより好ましい。   The polyanionic lithium salt mixed with the electrode active material is preferably 0.001 to 20 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.

前記電極活物質及びポリアニオン型リチウム塩水溶液を混合する方法は、特に限定されず、ボールミル、ホモジナイザー、スターラー、超音波分散機、自公転ミキサー等を使用する方法が例示できる。
得られた混合物は、乾燥機を使用して乾燥させれば良く、乾燥温度は水を除去できるように、例えば、80〜100℃程度とすれば良い。また、乾燥は、常圧下及び減圧下のいずれで行っても良い。そして、乾燥時間は、乾燥温度に応じて適宜調節すれば良い。
混合物の粉砕は、例えば、粉砕機や乳鉢を使用して行えば良い。
The method for mixing the electrode active material and the polyanionic lithium salt aqueous solution is not particularly limited, and examples thereof include a method using a ball mill, a homogenizer, a stirrer, an ultrasonic disperser, a self-revolving mixer, and the like.
The obtained mixture may be dried using a dryer, and the drying temperature may be, for example, about 80 to 100 ° C. so that water can be removed. The drying may be performed under normal pressure or reduced pressure. And drying time should just adjust suitably according to drying temperature.
The mixture may be pulverized using, for example, a pulverizer or a mortar.

前記混合物を乾燥及び粉砕して得られた粉体は、前記ポリアニオン型リチウム塩で被覆された電極活物質が主成分であると考えられる。かかる粉体の平均粒径は、混合に供する前の前記電極活物質の平均粒径と同様であることが好ましい。   The powder obtained by drying and pulverizing the mixture is considered to be mainly composed of the electrode active material coated with the polyanionic lithium salt. The average particle size of the powder is preferably the same as the average particle size of the electrode active material before being subjected to mixing.

前記粉体、結着剤及び導電剤を混合して電極用ペーストを作製する工程は、従来と同様の方法で行うことができる。例えば、前記粉体、結着剤及び導電剤を、溶媒存在下で混合し、電極用ペーストを作製する方法が例示できる。   The step of preparing the electrode paste by mixing the powder, the binder, and the conductive agent can be performed by a method similar to the conventional method. For example, a method of preparing the electrode paste by mixing the powder, the binder and the conductive agent in the presence of a solvent can be exemplified.

前記結着剤の配合量は、特に限定されないが、前記電極活物質100質量部に対して1〜30質量部であることが好ましい。
また、前記導電剤の配合量も特に限定されないが、前記結着剤の配合量と同様で良い。
Although the compounding quantity of the said binder is not specifically limited, It is preferable that it is 1-30 mass parts with respect to 100 mass parts of said electrode active materials.
Further, the blending amount of the conductive agent is not particularly limited, but may be the same as the blending amount of the binder.

混合時に使用する溶媒は、各配合成分と反応しないものであれば特に限定されない。溶媒は、例えば、前記結着剤の種類に応じて選択することが好ましく、結着剤がPVDFである場合には、好ましいものとしてN−メチル−2−ピロリドン(NMP)が例示でき、結着剤がSBR又はPTFEである場合には、好ましいものとして水が例示できる。   The solvent used at the time of mixing will not be specifically limited if it does not react with each compounding component. The solvent is preferably selected according to, for example, the type of the binder. When the binder is PVDF, N-methyl-2-pyrrolidone (NMP) can be exemplified as a preferable binder. When the agent is SBR or PTFE, water can be exemplified as a preferable one.

本発明のリチウムイオン二次電池用電極は、例えば、前記電極用ペーストを前記集電体上に塗布して、乾燥させることで得られる。
電極用ペーストの塗布方法は特に限定されないが、電極用ペーストを均一に塗布できる方法が好ましく、ドクターブレード、アプリケーター、バーコータ等を使用する塗布方法が例示できる。
乾燥は、常圧下及び減圧下のいずれで行っても良い。
乾燥温度は、電極用ペーストの溶媒成分を除去できる温度であれば良く、例えば、80〜140℃とすることが好ましい。乾燥時間は、乾燥温度に応じて適宜調節すれば良い。
The electrode for a lithium ion secondary battery of the present invention can be obtained, for example, by applying the electrode paste on the current collector and drying it.
The method for applying the electrode paste is not particularly limited, but a method capable of uniformly applying the electrode paste is preferable, and examples thereof include a doctor blade, an applicator, a bar coater and the like.
Drying may be performed under normal pressure or reduced pressure.
The drying temperature should just be the temperature which can remove the solvent component of the paste for electrodes, for example, it is preferable to be 80-140 degreeC. What is necessary is just to adjust drying time suitably according to drying temperature.

乾燥後の電極において、集電体上の前記電極用ペーストから形成される層の厚さは、目的とする電池容量に応じて適宜調節すれば良いが、通常は20〜300μmであることが好ましい。そして、かかる層の厚さは、例えば、電極用ペーストの塗布量で調節でき、さらに、ロールプレス機等のプレス機を使用して、乾燥中又は乾燥後の電極用ペーストを圧縮成形することでも調節できる。   In the electrode after drying, the thickness of the layer formed from the electrode paste on the current collector may be appropriately adjusted according to the target battery capacity, but is usually preferably 20 to 300 μm. . The thickness of the layer can be adjusted by, for example, the amount of the electrode paste applied, and further, by using a press machine such as a roll press machine, the electrode paste during or after drying may be compression molded. Can be adjusted.

前記電極用ペーストは、目的とする電池の構成に応じて、集電体の片面のみに塗布しても良いし、両面に塗布しても良い。   The electrode paste may be applied to only one side of the current collector or may be applied to both sides depending on the configuration of the target battery.

<リチウムイオン二次電池及びその製造方法>
本発明のリチウムイオン二次電池は、上記本発明の電極を備えたことを特徴とし、固体電解質又はゲル状電解質を備えたものが好適である。
本発明のリチウムイオン二次電池は、本発明の電極を備えたこと以外は、従来のリチウムイオン二次電池と同様の構成とすることができ、例えば、その形状は、円筒型、角型、コイン型、シート型等、種々のものに調節できる。
<Lithium ion secondary battery and manufacturing method thereof>
The lithium ion secondary battery of the present invention is characterized by including the electrode of the present invention, and preferably includes a solid electrolyte or a gel electrolyte.
The lithium ion secondary battery of the present invention can have the same configuration as that of the conventional lithium ion secondary battery except that the electrode of the present invention is provided. For example, the shape thereof is cylindrical, rectangular, Various types such as a coin type and a sheet type can be adjusted.

図2は、本発明のリチウムイオン二次電池を例示する概略断面図である。
ここに示すリチウムイオン二次電池1は、コイン型であり、ケース14内において正極11、電解質膜12及び負極13がこの順に積層され、この積層体が絶縁性ガスケット15を介してキャップ16で密封され、概略構成されている。ただし、ここに示すリチウムイオン二次電池は、本発明の一例を示すに過ぎず、本発明はここに示すものに何ら限定されるものではない。
FIG. 2 is a schematic cross-sectional view illustrating a lithium ion secondary battery of the present invention.
The lithium ion secondary battery 1 shown here is a coin type, and a positive electrode 11, an electrolyte membrane 12 and a negative electrode 13 are stacked in this order in a case 14, and this stacked body is sealed with a cap 16 via an insulating gasket 15. And is roughly structured. However, the lithium ion secondary battery shown here is merely an example of the present invention, and the present invention is not limited to the one shown here.

本発明のリチウムイオン二次電池は、公知の方法に従って、例えば、グローブボックス内又は乾燥空気雰囲気下で、電解質及び本発明の電極を使用して製造すれば良い。   What is necessary is just to manufacture the lithium ion secondary battery of this invention using an electrolyte and the electrode of this invention according to a well-known method, for example in a glove box or dry air atmosphere.

本発明のリチウムイオン二次電池は、上記本発明の電極を使用することにより、固体電解質又はゲル状電解質を使用した場合であっても、例えば製造時において、電解質又は電極表面に、さらに電解質材料を塗布する等の操作が不要なので、従来のリチウムイオン二次電池よりも簡便に製造できる。そして、電極がポリアニオン型リチウム塩を含有していることにより、充分な電池性能が得られ、大容量化も容易である。   The lithium ion secondary battery of the present invention uses the electrode of the present invention, so that even when a solid electrolyte or a gel electrolyte is used, the electrolyte material is further added to the electrolyte or the electrode surface, for example, at the time of production. Therefore, it can be manufactured more easily than conventional lithium ion secondary batteries. And since an electrode contains polyanion-type lithium salt, sufficient battery performance is obtained and large capacity | capacitance is also easy.

以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.

<原料・部材の製造>
[製造例1]
(ポリ(アクリル酸リチウム)(PAc−Li)の製造)
ポリアクリル酸(PAc)(10.0g、138.8mmol)を丸底フラスコに量り取り、これを100mLの蒸留水に溶解させた。水酸化リチウム・一水和物(LiOH・HO)(5.99g、139.5mmol)を60mLの蒸留水に溶かした溶液を、これにゆっくりと滴下した。室温で24時間撹拌した後、ロータリーエバポレーターで得られた溶液を濃縮した。濃縮した溶液を500mLのメタノールにゆっくりと滴下し、析出した固体をメタノールで洗浄することで、白色のPAc−Liを得た。
<Manufacture of raw materials and components>
[Production Example 1]
(Production of poly (lithium acrylate) (PAc-Li))
Polyacrylic acid (PAc) (10.0 g, 138.8 mmol) was weighed into a round bottom flask and dissolved in 100 mL of distilled water. A solution of lithium hydroxide monohydrate (LiOH.H 2 O) (5.99 g, 139.5 mmol) dissolved in 60 mL of distilled water was slowly added dropwise thereto. After stirring for 24 hours at room temperature, the solution obtained on a rotary evaporator was concentrated. The concentrated solution was slowly added dropwise to 500 mL of methanol, and the precipitated solid was washed with methanol to obtain white PAc-Li.

[製造例2]
(ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸リチウム)(PAMPS−Li)の製造)
ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)(PAMPS)15質量%水溶液(33.3g、24.1mmol)を丸底フラスコに量り取り、水酸化リチウム・一水和物(LiOH・HO)(1.05g、24.6mmol)を60mLの蒸留水に溶かした溶液を、これにゆっくりと滴下した。室温で24時間撹拌した後、ロータリーエバポレーターで溶液を濃縮した。濃縮した溶液を400mLの2−プロパノールにゆっくりと滴下し、析出した固体を2−プロパノールで洗浄することで、淡黄色のポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸リチウム(PAMPS−Li)を得た。
[Production Example 2]
(Production of poly (2-acrylamido-2-methyl-1-propanesulfonic acid lithium) (PAMPS-Li))
A 15% by mass aqueous solution (33.3 g, 24.1 mmol) of poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) was weighed into a round bottom flask, and lithium hydroxide monohydrate (LiOH A solution of H 2 O) (1.05 g, 24.6 mmol) dissolved in 60 mL of distilled water was slowly added dropwise thereto. After stirring for 24 hours at room temperature, the solution was concentrated on a rotary evaporator. The concentrated solution was slowly added dropwise to 400 mL of 2-propanol, and the precipitated solid was washed with 2-propanol to obtain a pale yellow poly (2-acrylamido-2-methyl-1-propanesulfonate lithium (PAMPS- Li) was obtained.

[製造例3]
(電解質膜の製造)
濃度が10質量%のPVdF−HFP(ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体)テトラヒドロフラン溶液(5.0g)、製造例1で得られたPAc−Li(0.45g)、BFO(C(0.82g)、有機溶媒としてエチエンカーボネート(EC)及びγ−ブチロラクトン(GBL)の混合溶媒(EC:GBL=30:70(体積比))(4.5g)をサンプル瓶に量り取り、テトラヒドロフラン(5mL)を加えた後、48時間攪拌した。PAc−Liが完全に溶解していることを確認した後、得られた溶液をポリテトラフルオロエチレン製のシャーレ(直径5.0cm)にキャスティングした。次いで、前記シャーレを真空デシケータ内に移し、ここに乾燥窒素を2L/分の流量で流しながら24時間以上乾燥させることによって、固体電解質膜を得た。
[Production Example 3]
(Manufacture of electrolyte membrane)
PVdF-HFP (polyvinylidene fluoride-hexafluoropropylene copolymer) tetrahydrofuran solution (5.0 g) having a concentration of 10% by mass, PAc-Li (0.45 g) obtained in Production Example 1, BF 3 O (C 2 H 5 ) 2 (0.82 g), and a mixed solvent (EC: GBL = 30: 70 (volume ratio)) (4.5 g) of an ethylene solvent (EC) and γ-butyrolactone (GBL) as an organic solvent is a sample. The solution was weighed into a bottle and tetrahydrofuran (5 mL) was added, followed by stirring for 48 hours. After confirming that PAc-Li was completely dissolved, the obtained solution was cast into a petri dish (diameter: 5.0 cm) made of polytetrafluoroethylene. Next, the petri dish was transferred into a vacuum desiccator, and dried for 24 hours or more while flowing dry nitrogen at a flow rate of 2 L / min to obtain a solid electrolyte membrane.

<電極の製造>
[実施例1]
(PAc−Liを含有する電極の製造)
正極用活物質であるコバルト酸リチウム(LiCoO)(日本化学工業社製セルシードC−5H、平均粒径6.7μm)10gと、製造例1で得られたPAc−Liの1質量%水溶液10gとを秤量し、これを自公転ミキサーで1分間混合して、コバルト酸リチウムがPAc−Liで被覆された正極用の混合物を得た。
また、負極用活物質であるグラファイト(日本黒鉛工業社製CGB−10、平均粒径12.13μm)10gと、製造例1で得られたPAc−Liの1質量%水溶液10gとを秤量し、これを自公転ミキサーで1分間混合して、グラファイトがPAc−Liで被覆された負極用の混合物を得た。
次いで、得られた正極用及び負極用の前記混合物を、それぞれ乾燥機を使用して80℃で1時間乾燥させた後、乳鉢で粉砕して、正極用及び負極用の粉体を得た。この時、粉体の平均粒径は、活物質の元の平均粒径と同等程度とした。
次いで、得られた正極用の粉体8.9g、ポリフッ化ビニリデン(PVDF)(クレハ社製KFポリマー#1120、N−メチル−2−ピロリドン(NMP)溶媒、固形分12質量%)を固形分換算で0.6g、アセチレンブラック(電気化学工業社製デンカブラック)0.5g、NMP10gを秤量して、自公転ミキサーで1分間混合し、さらに超音波ホモジナイザーで5分間混合し、自公転ミキサーで1分間脱泡することで、正極用ペーストを得た。
また、得られた負極用の粉体9.0g、前記PVDFを固形分換算で1.0g、NMP8gを秤量して、自公転ミキサーで1分間混合し、さらに超音波ホモジナイザーで5分間混合し、自公転ミキサーで1分間脱泡することで、負極用ペーストを得た。
次いで、アプリケーターを使用して、得られた正極用ペーストを厚さ20μmのアルミ箔に塗布し、120℃で30分程度加熱した後、ロールプレス機で圧縮成形し、さらに80℃12時間減圧乾燥することで、PAc−Liを含有する厚さが50μmの正極を得た。
また、アプリケーターを使用して、得られた負極用ペーストを厚さ20μmの銅箔に塗布し、120℃で30分程度加熱した後、ロールプレス機で圧縮成形し、さらに80℃12時間減圧乾燥することで、PAc−Liを含有する厚さが30μmの負極を得た。
得られた電極の組成を表1に示す。
<Manufacture of electrodes>
[Example 1]
(Production of electrode containing PAc-Li)
10 g of lithium cobalt oxide (LiCoO 2 ) (Nippon Chemical Industry Co., Ltd. cell seed C-5H, average particle size 6.7 μm), which is an active material for the positive electrode, and 10 g of a 1% by mass aqueous solution of PAc-Li obtained in Production Example 1 Were weighed and mixed for 1 minute with a self-revolving mixer to obtain a mixture for a positive electrode in which lithium cobaltate was coated with PAc-Li.
In addition, 10 g of graphite (CGB-10 manufactured by Nippon Graphite Industry Co., Ltd., average particle size 12.13 μm) as an active material for a negative electrode and 10 g of a 1% by mass aqueous solution of PAc-Li obtained in Production Example 1 were weighed. This was mixed with a self-revolving mixer for 1 minute to obtain a negative electrode mixture in which graphite was coated with PAc-Li.
Next, the obtained positive electrode and negative electrode mixtures were each dried at 80 ° C. for 1 hour using a dryer, and then pulverized in a mortar to obtain positive electrode and negative electrode powders. At this time, the average particle size of the powder was set to be approximately the same as the original average particle size of the active material.
Next, 8.9 g of the obtained powder for positive electrode, polyvinylidene fluoride (PVDF) (Kureha KF polymer # 1120, N-methyl-2-pyrrolidone (NMP) solvent, solid content: 12% by mass) 0.6 g in terms of conversion, 0.5 g of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) and 10 g of NMP are weighed and mixed for 1 minute with a self-revolving mixer, and further mixed for 5 minutes with an ultrasonic homogenizer. By degassing for 1 minute, a positive electrode paste was obtained.
In addition, 9.0 g of the obtained negative electrode powder, 1.0 g of the PVDF in terms of solid content, and 8 g of NMP were weighed, mixed for 1 minute with a self-revolving mixer, and further mixed for 5 minutes with an ultrasonic homogenizer, A negative electrode paste was obtained by defoaming for 1 minute with a self-revolving mixer.
Next, using an applicator, the obtained positive electrode paste was applied to an aluminum foil having a thickness of 20 μm, heated at 120 ° C. for about 30 minutes, then compression-molded with a roll press, and further dried under reduced pressure at 80 ° C. for 12 hours. As a result, a positive electrode containing PAc-Li and having a thickness of 50 μm was obtained.
Also, using an applicator, the obtained negative electrode paste was applied to a copper foil having a thickness of 20 μm, heated at 120 ° C. for about 30 minutes, then compression-molded with a roll press, and further dried under reduced pressure at 80 ° C. for 12 hours. As a result, a negative electrode containing PAc-Li and having a thickness of 30 μm was obtained.
Table 1 shows the composition of the obtained electrode.

[実施例2]
(PAMPS−Liを含有する電極の製造)
正極用活物質であるコバルト酸リチウム(日本化学工業社製セルシードC−5H、平均粒径6.7μm)10gと、製造例2で得られたPAMPS−Liの1質量%水溶液10gとを秤量し、これを自公転ミキサーで1分間混合して、コバルト酸リチウムがPAMPS−Liで被覆された正極用の混合物を得た。
また、負極用活物質であるグラファイト(日本黒鉛工業社製CGB−10、平均粒径12.13μm)10gと、製造例2で得られたPAMPS−Liの1質量%水溶液10gとを秤量し、これを自公転ミキサーで1分間混合して、グラファイトがPAMPS−Liで被覆された負極用の混合物を得た。
以下、PAc−Liで被覆された正極用及び負極用の混合物に代えて、得られた正極用及び負極用の前記混合物を使用したこと以外は、実施例1と同様の方法で、PAMPS−Liを含有する正極及び負極をそれぞれ得た。
得られた電極の組成を表1に示す。
[Example 2]
(Production of electrode containing PAMPS-Li)
10 g of lithium cobaltate (Nippon Kagaku Kogyo cell seed C-5H, average particle size 6.7 μm) as an active material for the positive electrode and 10 g of a 1% by mass aqueous solution of PAMPS-Li obtained in Production Example 2 were weighed. This was mixed for 1 minute with a self-revolving mixer to obtain a mixture for a positive electrode in which lithium cobaltate was coated with PAMPS-Li.
Also, 10 g of graphite (CGB-10 manufactured by Nippon Graphite Industry Co., Ltd., average particle size 12.13 μm) as an active material for the negative electrode and 10 g of a 1% by mass aqueous solution of PAMPS-Li obtained in Production Example 2 were weighed. This was mixed for 1 minute by a self-revolving mixer to obtain a negative electrode mixture in which graphite was coated with PAMPS-Li.
Hereinafter, in place of the mixture for positive electrode and negative electrode coated with Pac-Li, the same method as in Example 1 was used except that the obtained mixture for positive electrode and negative electrode was used, and PAMPS-Li A positive electrode and a negative electrode containing each were obtained.
Table 1 shows the composition of the obtained electrode.

<従来の電極の製造>
[比較例1]
前記正極用及び負極用の粉体に代えて、コバルト酸リチウム(日本化学工業社製セルシードC−5H、平均粒径6.7μm)及びグラファイト(日本黒鉛工業社製CGB−10、平均粒径12.13μm)をそれぞれ使用して、正極用ペースト及び負極用ペーストを作製したこと以外は、実施例1と同様の方法で、ポリアニオン型リチウム塩を含有しない従来の正極及び負極をそれぞれ製造した。
得られた電極の組成を表1に示す。
<Manufacture of conventional electrodes>
[Comparative Example 1]
Instead of the positive electrode and negative electrode powders, lithium cobalt oxide (Nippon Kagaku Kogyo Co., Ltd. cell seed C-5H, average particle size 6.7 μm) and graphite (Nippon Graphite Kogyo Co., Ltd. CGB-10, average particle size 12) A conventional positive electrode and negative electrode not containing a polyanionic lithium salt were produced in the same manner as in Example 1 except that a positive electrode paste and a negative electrode paste were prepared using .13 μm respectively.
Table 1 shows the composition of the obtained electrode.

Figure 2012074167
Figure 2012074167

<リチウムイオン二次電池の製造>
[実施例3]
(PAc−Liを含有する電極を備えたリチウムイオン二次電池の製造)
実施例1で得られたPAc−Liを含有する正極及び負極、並びに製造例3で得られた固体電解質膜を使用し、不活性ガス又は乾燥空気雰囲気下で、図2に示すコイン型のリチウムイオン二次電池を製造した。より具体的には、正極及び負極は直径16mmの大きさ、電解質膜は直径17mmの大きさに、それぞれ切断した。そして、コイン型電池のケース内で正極、電解質膜及び負極をこの順に積層し、絶縁性ガスケットを介してステンレス製のキャップにより密封した。
<Manufacture of lithium ion secondary batteries>
[Example 3]
(Manufacture of a lithium ion secondary battery provided with an electrode containing PAc-Li)
Using the positive electrode and negative electrode containing PAc-Li obtained in Example 1 and the solid electrolyte membrane obtained in Production Example 3, coin-type lithium shown in FIG. 2 in an inert gas or dry air atmosphere An ion secondary battery was manufactured. More specifically, the positive electrode and the negative electrode were cut to a diameter of 16 mm, and the electrolyte membrane was cut to a diameter of 17 mm. Then, the positive electrode, the electrolyte membrane and the negative electrode were laminated in this order in the case of the coin-type battery, and sealed with a stainless steel cap through an insulating gasket.

[実施例4]
(PAMPS−Liを含有する電極を備えたリチウムイオン二次電池の製造)
実施例1で得られたPAc−Liを含有する正極及び負極に代えて、実施例2で得られたPAMPS−Liを含有する正極及び負極を使用したこと以外は、実施例3と同様の方法で、コイン型のリチウムイオン二次電池を製造した。
[Example 4]
(Manufacture of a lithium ion secondary battery equipped with an electrode containing PAMPS-Li)
The same method as in Example 3, except that the positive electrode and negative electrode containing PAMPS-Li obtained in Example 2 were used instead of the positive electrode and negative electrode containing PAc-Li obtained in Example 1. Thus, a coin-type lithium ion secondary battery was manufactured.

[比較例2]
(従来の電極を備えたリチウムイオン二次電池の製造)
実施例1で得られたPAc−Liを含有する正極及び負極に代えて、比較例1で得られた、ポリアニオン型リチウム塩を含有しない従来の正極及び負極を使用したこと以外は、実施例3と同様の方法で、コイン型のリチウムイオン二次電池を製造した。
[Comparative Example 2]
(Manufacture of lithium ion secondary batteries with conventional electrodes)
Example 3 except that instead of the positive electrode and negative electrode containing PAc-Li obtained in Example 1, the conventional positive electrode and negative electrode not containing polyanionic lithium salt obtained in Comparative Example 1 were used. A coin-type lithium ion secondary battery was manufactured in the same manner as described above.

<電池性能(レート特性)の評価>
上記各実施例及び比較例のリチウムイオン二次電池について、25℃の環境下で上限電圧4.2Vまで充電した後、下限電圧2.5Vまで定電流放電するという操作を繰り返す充放電サイクルを行った。ここで、充放電時の電流量は0.2C、1C、3Cとした。ここで「1C」とは、活物質量より算出した容量を1時間で充放電するのに必要な電流量であり、同様に「0.2C」とは5時間、「3C」とは20分で、それぞれ充放電するのに必要な電流量である。そして、この充放電サイクルの10回目の放電容量を測定し、電流量が0.2Cの場合の放電容量を100とした時の、電流量が1Cと3Cの場合の放電容量の比率をそれぞれ求めて、レート特性を評価した。結果を表2に示す。
<Evaluation of battery performance (rate characteristics)>
About the lithium ion secondary battery of each said Example and comparative example, after charging to the upper limit voltage 4.2V in a 25 degreeC environment, the charge / discharge cycle which repeats the operation of carrying out constant current discharge to the lower limit voltage 2.5V was performed It was. Here, the amount of current during charging and discharging was set to 0.2C, 1C, and 3C. Here, “1C” is the amount of current required to charge and discharge the capacity calculated from the amount of active material in 1 hour. Similarly, “0.2C” is 5 hours, and “3C” is 20 minutes. Thus, the amount of current required to charge and discharge each. Then, the discharge capacity at the 10th charge / discharge cycle is measured, and the ratio of the discharge capacity when the current amount is 1C and 3C when the discharge capacity when the current amount is 0.2C is assumed to be 100. The rate characteristics were evaluated. The results are shown in Table 2.

Figure 2012074167
Figure 2012074167

表2から明らかなように、本発明の電極を使用することで、電解質が固体であっても、電池のレート特性が大きく改善されており、電池性能が大きく向上することが確認できた。電解質がゲル状であっても同様の効果が得られる。   As is apparent from Table 2, it was confirmed that by using the electrode of the present invention, the rate characteristics of the battery were greatly improved even when the electrolyte was solid, and the battery performance was greatly improved. The same effect can be obtained even if the electrolyte is gel.

本発明は、リチウムイオン二次電池に利用可能である。   The present invention can be used for a lithium ion secondary battery.

1・・・リチウムイオン二次電池、11・・・正極、12・・・電解質膜、13・・・負極、14・・・ケース、15・・・絶縁性ガスケット、16・・・キャップ   DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 11 ... Positive electrode, 12 ... Electrolyte membrane, 13 ... Negative electrode, 14 ... Case, 15 ... Insulating gasket, 16 ... Cap

Claims (4)

ポリアニオン型リチウム塩を含有することを特徴とするリチウムイオン二次電池用電極。   An electrode for a lithium ion secondary battery, comprising a polyanionic lithium salt. 前記ポリアニオン型リチウム塩が、ポリカルボン酸リチウム塩及びポリスルホン酸リチウム塩からなる群から選択される一種以上であることを特徴とする請求項1に記載のリチウムイオン二次電池用電極。   2. The electrode for a lithium ion secondary battery according to claim 1, wherein the polyanionic lithium salt is at least one selected from the group consisting of a lithium polycarboxylic acid salt and a lithium lithium polysulfonate. 請求項1又は2に記載の電極を備えたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the electrode according to claim 1. 請求項1又は2に記載のリチウムイオン二次電池用電極の製造方法であって、
電極活物質及びポリアニオン型リチウム塩水溶液を混合し、得られた混合物を乾燥及び粉砕して粉体を作製する工程と、該粉体、結着剤及び導電剤を混合して電極用ペーストを作製する工程と、
を有することを特徴とするリチウムイオン二次電池用電極の製造方法。
It is a manufacturing method of the electrode for lithium ion secondary batteries according to claim 1 or 2,
Mixing the electrode active material and the polyanionic lithium salt aqueous solution, drying and pulverizing the resulting mixture to produce a powder, and mixing the powder, binder and conductive agent to produce an electrode paste And a process of
The manufacturing method of the electrode for lithium ion secondary batteries characterized by having.
JP2010216351A 2010-09-28 2010-09-28 Lithium ion secondary battery Active JP5632246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216351A JP5632246B2 (en) 2010-09-28 2010-09-28 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216351A JP5632246B2 (en) 2010-09-28 2010-09-28 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2012074167A true JP2012074167A (en) 2012-04-12
JP5632246B2 JP5632246B2 (en) 2014-11-26

Family

ID=46170145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216351A Active JP5632246B2 (en) 2010-09-28 2010-09-28 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5632246B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092071A1 (en) * 2012-12-13 2014-06-19 日東電工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2015029247A1 (en) * 2013-09-02 2015-03-05 株式会社日立製作所 Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery and battery system
WO2015029248A1 (en) * 2013-09-02 2015-03-05 株式会社日立製作所 Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer
WO2015052809A1 (en) * 2013-10-10 2015-04-16 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
WO2015118676A1 (en) * 2014-02-10 2015-08-13 株式会社日立製作所 MATERIAL FOR Li BATTERIES
WO2023119990A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161777A (en) * 1995-12-06 1997-06-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000021448A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd High polymer electrolyte secondary battery
JP2000164252A (en) * 1998-11-27 2000-06-16 Kyocera Corp Solid electrolyte battery
JP2001291519A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Nonaqueous second battery
JP2002050360A (en) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd Lithium ion secondary battery electrode binder and its usage
JP2002246020A (en) * 2001-02-13 2002-08-30 Sony Corp Active material and non-aqueous electrolyte battery using the same, and battery producing method
JP2002304986A (en) * 2001-04-03 2002-10-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006032296A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Negative electrode and nonaqueous electrolyte secondary battery
JP2008218404A (en) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd Ionic conductive material and usage of same
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
JP2010518581A (en) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー ELECTRODE CONTAINING NOVEL BINDING AGENT AND METHOD FOR PRODUCING AND USING THE SAME
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161777A (en) * 1995-12-06 1997-06-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000021448A (en) * 1998-06-30 2000-01-21 Sanyo Electric Co Ltd High polymer electrolyte secondary battery
JP2000164252A (en) * 1998-11-27 2000-06-16 Kyocera Corp Solid electrolyte battery
JP2001291519A (en) * 2000-04-06 2001-10-19 Hitachi Maxell Ltd Nonaqueous second battery
JP2002050360A (en) * 2000-08-07 2002-02-15 Nippon Zeon Co Ltd Lithium ion secondary battery electrode binder and its usage
JP2002246020A (en) * 2001-02-13 2002-08-30 Sony Corp Active material and non-aqueous electrolyte battery using the same, and battery producing method
JP2002304986A (en) * 2001-04-03 2002-10-18 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006032296A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Negative electrode and nonaqueous electrolyte secondary battery
JP2010518581A (en) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー ELECTRODE CONTAINING NOVEL BINDING AGENT AND METHOD FOR PRODUCING AND USING THE SAME
JP2008218404A (en) * 2007-02-08 2008-09-18 Nippon Shokubai Co Ltd Ionic conductive material and usage of same
JP2009080971A (en) * 2007-09-25 2009-04-16 Tokyo Univ Of Science Anode for lithium ion battery
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092071A1 (en) * 2012-12-13 2014-06-19 日東電工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2014120227A (en) * 2012-12-13 2014-06-30 Nitto Denko Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN104838533A (en) * 2012-12-13 2015-08-12 日东电工株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2015029247A1 (en) * 2013-09-02 2015-03-05 株式会社日立製作所 Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery and battery system
WO2015029248A1 (en) * 2013-09-02 2015-03-05 株式会社日立製作所 Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer
WO2015052809A1 (en) * 2013-10-10 2015-04-16 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
US10355279B2 (en) 2013-10-10 2019-07-16 Hitachi, Ltd. Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
WO2015118676A1 (en) * 2014-02-10 2015-08-13 株式会社日立製作所 MATERIAL FOR Li BATTERIES
WO2023119990A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5632246B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
Lee et al. Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
Bao et al. Enhanced cyclability of sulfur cathodes in lithium-sulfur batteries with Na-alginate as a binder
Jin et al. Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator
US20140065489A1 (en) Electrolyte-negative electrode structure, and lithium ion secondary battery comprising the same
JP2016506055A (en) Cathode active material for lithium-sulfur battery and method for producing the same
WO2013185629A1 (en) High energy density charge and discharge lithium battery
Sun et al. Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes
CN1960040A (en) High-powered lithium ferric phosphate dynamic battery, and preparation technique
JP5632246B2 (en) Lithium ion secondary battery
JP2013200961A (en) All solid lithium ion secondary battery and manufacturing method thereof
CN104157909A (en) Preparation method of lithium sulfur battery membrane electrode
KR102157913B1 (en) Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles
JP6384596B2 (en) Anode materials for lithium-ion batteries
CN108550848A (en) Rich lithium carbon material, preparation method and application
Li et al. Thin buffer layer assist carbon-modifying separator for long-life lithium metal anodes
CN117559013A (en) Lithium supplementing agent composite material and preparation method and application thereof
Zhang et al. Low-cost batteries based on industrial waste Al–Si microparticles and LiFePO 4 for stationary energy storage
JP2013201062A (en) Manufacturing method of all-solid lithium ion secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR102244905B1 (en) Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
CN114455563A (en) Modified lithium iron phosphate material and preparation method and application thereof
JP2014072129A (en) Electrode for power storage device and power storage device using the same
Nguyen et al. Eco-friendly Aqueous Binder-Based LiNi0. 4Mn1. 6O4 Cathode Enabling Stable Cycling Performance of High Voltage Lithium-Ion Batteries with Biomass-Derived Silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141009

R151 Written notification of patent or utility model registration

Ref document number: 5632246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250