JP6384596B2 - Anode materials for lithium-ion batteries - Google Patents

Anode materials for lithium-ion batteries Download PDF

Info

Publication number
JP6384596B2
JP6384596B2 JP2017511959A JP2017511959A JP6384596B2 JP 6384596 B2 JP6384596 B2 JP 6384596B2 JP 2017511959 A JP2017511959 A JP 2017511959A JP 2017511959 A JP2017511959 A JP 2017511959A JP 6384596 B2 JP6384596 B2 JP 6384596B2
Authority
JP
Japan
Prior art keywords
anode material
lithium ion
hard carbon
active material
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017511959A
Other languages
Japanese (ja)
Other versions
JP2017526145A (en
Inventor
チェン チェン、
チェン チェン、
田村 宜之
宜之 田村
中原 謙太郎
謙太郎 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2017526145A publication Critical patent/JP2017526145A/en
Application granted granted Critical
Publication of JP6384596B2 publication Critical patent/JP6384596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用負極(アノード)材料に関する。特に、本発明は、炭素とケイ素の複合負極材料に関する。   The present invention relates to a negative electrode (anode) material for a lithium ion battery. In particular, the present invention relates to a composite negative electrode material of carbon and silicon.

従来の技術Conventional technology

すべての再充電可能な電池技術の中で、リチウムイオン電池(LIB)は、優れた性能を提供し、携帯用電子機器の主電源に適している。LIBはまた、電気自動車のための最も有望な動力源であり、再生可能エネルギー技術に基づいて、スマートグリッドのイネーブラであることが予測されている。これらの用途の多くにとって、エネルギー密度とサイクル寿命は大幅な改善を必要とする二つの重要な技術的パラメータとして際立っている。例えば、2010年に米国エネルギー省は、電気自動車のために現在の電池の二倍のエネルギー密度を有し、かつ携帯用電子機器に使用される典型的な高エネルギーの電池は、ほんの500〜1000サイクルのサイクル寿命しか持っていないのに比較して80%の容量維持率をもって5000サイクルのサイクル寿命を有するLIBを作成するという目標を掲げている。LIBにおけるエネルギー密度を大きくすると、より高い電荷容量またはより高い電圧で電極材料を開発する必要がある。サイクル寿命を改善することは、活性電極材料及びそれと電解質との界面いわゆるSEI(Solid Electrolyte Interphase)の電池電極の2つの重要な構成要素を安定化させることを含む。   Among all rechargeable battery technologies, lithium ion batteries (LIBs) provide superior performance and are suitable for the main power source of portable electronic devices. LIB is also the most promising power source for electric vehicles and is predicted to be a smart grid enabler based on renewable energy technology. For many of these applications, energy density and cycle life stand out as two important technical parameters that require significant improvement. For example, in 2010, the US Department of Energy has twice the energy density of current batteries for electric vehicles, and typical high energy batteries used in portable electronics are only 500-1000 The goal is to create a LIB with a cycle life of 5000 cycles with 80% capacity retention compared to having only a cycle life of a cycle. Increasing the energy density in LIB requires the development of electrode materials with higher charge capacity or higher voltage. Improving cycle life involves stabilizing two important components of the battery electrode of the active electrode material and its interface with the electrolyte, the so-called SEI (Solid Electrolyte Interface).

負極に対して、チタン酸リチウムは優れたサイクル特性を有するグラファイトの代替であるが、エネルギー密度はより低い。例えば酸化スズとケイ素のようなグラファイトの他の代替物は、増加したエネルギー密度を提供する可能性を有している。しかし、負極材料のためのこれらの他の代替物、特にシリコンについては、リチウムの挿入/合金化を伴い、構造変化及び異常に大きな体積膨張に関連して乏しい充放電サイクルにより商業的に不適切であることが分かっている。構造変化及び大きな体積変化は、電極の構造的完全性を破壊してサイクル効率を低下させている。   Compared to the negative electrode, lithium titanate is an alternative to graphite with excellent cycling properties, but with a lower energy density. Other alternatives to graphite, such as tin oxide and silicon, have the potential to provide increased energy density. However, these other alternatives for negative electrode materials, particularly silicon, are commercially unsuitable due to poor charge / discharge cycles associated with structural changes and unusually large volume expansions, with lithium insertion / alloying. I know that. Structural changes and large volume changes destroy the structural integrity of the electrodes and reduce cycle efficiency.

近年、炭素/Li貯蔵可能物質の複合アノード材料が提案されている(例えば、特開2004−119176号公報、特開2004−349253号公報及び特開2005−71938号公報)。これらには、Si、Sn及びその酸化物などのLi貯蔵可能物質が炭素マトリックス中に埋め込まれていることが開示されている。   In recent years, composite anode materials of carbon / Li storable substances have been proposed (for example, JP-A Nos. 2004-119176, 2004-349253, and 2005-71938). These disclose that Li-storable materials such as Si, Sn and their oxides are embedded in the carbon matrix.

特開2004−119176号公報JP 2004-119176 A 特開2004−349253号公報JP 2004-349253 A 特開2005−71938号公報JP 2005-71938 A

従来の複合アノード材料は、予めLi貯蔵可能物質である活物質を製造した後、炭素で該活物質を被覆することによって製造される。したがって、活物質の含有量は粒子ごとに変化する。
本発明の目的は、各粒子中でのより少ない含有量変化をもつ活物質埋設ハードカーボンを含むリチウムイオン電池用アノード材料及び該アノード材料を含むリチウムイオン電池を提供することである。
A conventional composite anode material is manufactured by previously manufacturing an active material that is a Li-storable material and then coating the active material with carbon. Therefore, the content of the active material varies from particle to particle.
An object of the present invention is to provide an anode material for a lithium ion battery including an active material-embedded hard carbon having a smaller content change in each particle, and a lithium ion battery including the anode material.

すなわち、本発明の一態様によれば、活物質埋設ハードカーボンを含むリチウムイオン電池用アノード材料であって、該活物質がシリコン及びスズから選択される少なくとも1種の酸化物を含み、該酸化物が、その前駆体からハードカーボンの前駆体を含む媒体中で溶媒熱合成によって製造されることを特徴とするアノード材料が提供される。   That is, according to one aspect of the present invention, there is provided an anode material for a lithium ion battery including active material-embedded hard carbon, wherein the active material includes at least one oxide selected from silicon and tin, and the oxidation material An anode material is provided wherein the article is produced by solvothermal synthesis in a medium comprising a precursor of hard carbon from its precursor.

本発明の一態様によれば、活物質が炭素前駆体分解とともにin situで製造されるため、各粒子中でのより少ない含有量変化をもつ活物質埋設ハードカーボンを含むリチウムイオン電池用アノード材料を提供できる。   According to one aspect of the present invention, since the active material is produced in situ with the carbon precursor decomposition, the anode material for a lithium ion battery containing active material-embedded hard carbon having a smaller content change in each particle Can provide.

実施例1で製造された、アノード材料AのSEM像。2 is an SEM image of anode material A produced in Example 1. FIG. 実施例1で製造された、アノード材料AのXRD。XRD of anode material A produced in Example 1. 実施例2で製造された、アノード材料BのSEM像。4 is an SEM image of anode material B manufactured in Example 2. FIG.

本発明は、ここで実施形態を参照して説明される。   The invention will now be described with reference to embodiments.

アノード材料
本発明の一実施形態例は活物質埋設ハードカーボンを含むリチウムイオン電池用アノード材料に関する。
本実施形態例のアノード材料は、溶媒熱合成、特に水を溶媒として用いる水熱合成により得られる。まず、炭素前駆体を水等の溶媒中に溶解することによって炭素前駆体溶液が提供される。次に、活物質用の前駆体が炭素前駆体溶液に添加され、次いで該混合物を高圧雰囲気下に加熱する。反応装置として、オートクレーブなどの耐圧容器が通常用いられる。溶媒熱(水熱)合成により、活物質用の前駆体は結晶形、特にナノ結晶形を持つ活物質に変換される。本実施形態例において、活物質はシリコン及びスズから選択される少なくとも1種の酸化物を含む。活物質は通常、二酸化シリコン又は二酸化スズであるが、それらは非酸化金属部分を含んでいてもよい。溶媒熱(水熱)合成中、炭素前駆体は分解され、該活物質または該活物質の凝集体上に吸着する。分解された炭素前駆体はその後不活性雰囲気下高温で炭化され、ハードカーボンに変換される。
Anode Material One embodiment of the present invention relates to an anode material for a lithium ion battery containing active material embedded hard carbon.
The anode material of this embodiment is obtained by solvent thermal synthesis, particularly hydrothermal synthesis using water as a solvent. First, a carbon precursor solution is provided by dissolving the carbon precursor in a solvent such as water. Next, a precursor for the active material is added to the carbon precursor solution, and then the mixture is heated under a high pressure atmosphere. As the reaction apparatus, a pressure vessel such as an autoclave is usually used. Solvent thermal (hydrothermal) synthesis converts the precursor for the active material into an active material having a crystalline form, particularly a nanocrystalline form. In the present embodiment example, the active material includes at least one oxide selected from silicon and tin. The active material is typically silicon dioxide or tin dioxide, but they may contain non-oxidized metal moieties. During solvent thermal (hydrothermal) synthesis, the carbon precursor is decomposed and adsorbed onto the active material or aggregates of the active material. The decomposed carbon precursor is then carbonized at high temperature in an inert atmosphere and converted to hard carbon.

炭素前駆体の例としては、ポリイミド、フラン樹脂、フェノール樹脂、ポリビニルアルコール、セルロース樹脂、エポキシ樹脂及びポリスチレン樹脂などの高分子、及びショ糖などの糖類が挙げられる。水熱合成の場合、炭素前駆体は水に可溶であることが好ましく、糖類が適している。   Examples of the carbon precursor include polymers such as polyimide, furan resin, phenol resin, polyvinyl alcohol, cellulose resin, epoxy resin and polystyrene resin, and sugars such as sucrose. In the case of hydrothermal synthesis, the carbon precursor is preferably soluble in water, and saccharides are suitable.

活物質用の前駆体はシリコン又はスズの無機又は有機化合物であることができる。活物質用の前駆体の例としては、シリコン又はスズの塩化物、硫酸塩、炭酸塩などの無機又は有機の塩、3−アミノプロピルメチルジエトキシシラン、ブチル(トリクロロ)スタナンなどの有機シリコン又は有機スズ化合物が挙げられる。   The precursor for the active material can be an inorganic or organic compound of silicon or tin. Examples of precursors for active materials include inorganic or organic salts such as silicon or tin chloride, sulfate, carbonate, organic silicon such as 3-aminopropylmethyldiethoxysilane, butyl (trichloro) stannane, or An organic tin compound is mentioned.

溶媒熱合成に使用される溶媒は、炭素前駆体を溶解できる溶媒である。水が好ましく使用され、アルコール等の水溶性溶媒を水とともに使用することができる。   The solvent used for the solvent thermal synthesis is a solvent that can dissolve the carbon precursor. Water is preferably used, and a water-soluble solvent such as alcohol can be used together with water.

炭素前駆体溶液の濃度は、0.2〜6モル/Lであることが好ましい。溶媒熱合成は、溶媒の超臨界温度より低い温度で行われる。例えば、水熱合成は水の超臨界温度である374℃よりも低い温度、好ましくは160〜300℃で1〜24時間行われる。   The concentration of the carbon precursor solution is preferably 0.2 to 6 mol / L. Solvent thermal synthesis is carried out at a temperature below the supercritical temperature of the solvent. For example, the hydrothermal synthesis is performed at a temperature lower than 374 ° C., which is the supercritical temperature of water, preferably 160 to 300 ° C. for 1 to 24 hours.

アノード材料の大きさは、20nm〜80μmの間、より好ましくは100nm〜50μmの間、最も好ましくは500nm〜20μmの間とすることができる。ハードカーボン内の活物質の大きさは100nm未満、好ましくは50nm未満、最も好ましくは10nm未満とすることができる。ハードカーボンはボロン、窒素等でドープすることができる。ハードカーボンの活物質に対する比は好ましくは50:1〜1:1である。   The size of the anode material can be between 20 nm and 80 μm, more preferably between 100 nm and 50 μm, and most preferably between 500 nm and 20 μm. The size of the active material in the hard carbon can be less than 100 nm, preferably less than 50 nm, and most preferably less than 10 nm. Hard carbon can be doped with boron, nitrogen or the like. The ratio of hard carbon to active material is preferably 50: 1 to 1: 1.

ここで、リチウムイオン電池アノード材料としてハードカーボン中に埋め込まれた新規な活物質複合材料を設計した。その構造的利点は、
1)ハードカーボン中に埋め込まれた活物質が、充放電の間、直接電解液(溶媒)と接触しない。そのため、SEIはサイクル中ハードカーボンの表面にのみ形成され、高いクーロン効率及び長いサイクル寿命を有する。
2)活物質は、純粋な活物質よりも低抵抗なハードカーボンで被覆されている。
3)活物質がハードカーボン前駆体の分解とin situで製造されるため、活物質はハードカーボン中に原子レベルの均一分散で分散される。それゆえ、各粒子内での活物質の含有量偏差を減らすことができる。
Here, a novel active material composite material embedded in hard carbon was designed as a lithium ion battery anode material. Its structural advantage is
1) The active material embedded in the hard carbon does not come into direct contact with the electrolytic solution (solvent) during charging and discharging. Therefore, SEI is formed only on the surface of hard carbon during cycling, and has high Coulomb efficiency and long cycle life.
2) The active material is coated with hard carbon having a lower resistance than a pure active material.
3) Since the active material is produced in situ by decomposing the hard carbon precursor, the active material is dispersed in the hard carbon at an atomic level uniform dispersion. Therefore, the content deviation of the active material in each particle can be reduced.

リチウムイオン電池
別の実施形態例は、上記実施形態例に係るアノード材料を含む負極を含むリチウムイオン電池に関する。アノード材料は、少なくともグラファイトの容量、すなわち372mAh/gの容量を有している。電池はまた、活物質を含む正極と、少なくとも一種の非水系溶媒に溶解したリチウム塩を含む電解質と、電解質とリチウムイオンが第一の側から対向する第二の側に流れるように構成されたセパレータを備える。
Lithium Ion Battery Another embodiment relates to a lithium ion battery including a negative electrode including an anode material according to the above embodiment. The anode material has a capacity of at least graphite, ie a capacity of 372 mAh / g. The battery is also configured such that the positive electrode containing the active material, the electrolyte containing a lithium salt dissolved in at least one non-aqueous solvent, and the electrolyte and lithium ions flow from the first side to the opposing second side. A separator is provided.

正極活物質としては、種類またはその性質は特に制限されないが、公知のカソード材料が本発明を実施するために使用することができる。カソード材料は、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、リチウムバナジウム酸化物、リチウム混合金属酸化物、リチウムリン酸鉄、リン酸マンガンリチウム、リン酸バナジウムリチウム、リチウム混合金属リン酸塩、金属硫化物、及びこれらの組み合わせがからなる群から選択される少なくとも一つの材料が挙げられる。正極活物質はまた、チタン二硫酸又はモリブデン二硫酸などのカルコゲン化合物から選ばれる少なくとも一種の化合物であってもよい。より好ましくは、リチウムコバルト酸化物(例えば、LiCoO、0.8≦X≦1)、リチウムニッケル酸化物(例えば、LiNiO)、リチウムマンガン酸化物(例えば、LiMn及びLiMnO)である。リン酸鉄リチウムは、その安全性と低コストのために好ましい。すべてのこれらのカソード材料は微粉末、ナノワイヤー、ナノロッド、ナノ繊維、またはナノチューブの形態で調製することができる。それらは、容易に、アセチレンブラック、カーボンブラック、及び超微細黒鉛粒子のような追加導電剤と混合することができる。 The type and properties of the positive electrode active material are not particularly limited, but known cathode materials can be used for carrying out the present invention. Cathode materials are lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium vanadium oxide, lithium mixed metal oxide, lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, lithium mixed metal phosphate And at least one material selected from the group consisting of salts, metal sulfides, and combinations thereof. The positive electrode active material may also be at least one compound selected from chalcogen compounds such as titanium disulfuric acid or molybdenum disulfuric acid. More preferably, lithium cobalt oxide (eg, Li x CoO 2 , 0.8 ≦ X ≦ 1), lithium nickel oxide (eg, LiNiO 2 ), lithium manganese oxide (eg, LiMn 2 O 4 and LiMnO 2). ). Lithium iron phosphate is preferred because of its safety and low cost. All these cathode materials can be prepared in the form of fine powders, nanowires, nanorods, nanofibers or nanotubes. They can be easily mixed with additional conductive agents such as acetylene black, carbon black, and ultrafine graphite particles.

電極の製造のために、バインダーを用いることができる。バインダーの例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレンプロピレンジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)が挙げられる。正極および負極は、負極に対して銅箔、正極に対してアルミニウム又はニッケル箔などの集電体上に形成することができる。しかしながら、集電体がスムーズに電流を流し、比較的高い耐食性を有することができるのであれば、集電体の種類に特に重要な制限は全くない。正極および負極は、セパレータを挟んで積層することができる。セパレータは、合成樹脂製不織布、多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性PTFEフィルムから選択することができる。   A binder can be used for the production of the electrode. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene propylene diene copolymer (EPDM), and styrene-butadiene rubber (SBR). The positive electrode and the negative electrode can be formed on a current collector such as a copper foil for the negative electrode and an aluminum or nickel foil for the positive electrode. However, as long as the current can flow smoothly and have a relatively high corrosion resistance, there is no particular limitation on the type of current collector. The positive electrode and the negative electrode can be stacked with a separator in between. The separator can be selected from a synthetic resin nonwoven fabric, a porous polyethylene film, a porous polypropylene film, or a porous PTFE film.

本発明を実施するには、幅広い電解質を使用することができる。最も好ましいものは非水系およびポリマーゲル電解質であるが、他のタイプも使用することができる。ここで採用される非水系電解質は、電解質塩を非水系溶媒に溶解することで製造される。リチウム二次電池用溶媒として採用されてきた公知のあらゆる非水系溶媒を使用することができる。エチレンカーボネート(EC)と、融点が前述のエチレンカーボネートより低くドナーナンバーが18以下である非水系溶媒(以降、第二溶媒と称する)の少なくとも1種とからなる混合溶媒から主に構成される非水系溶媒が、好ましく採用される。この非水系溶媒は、(a)黒鉛構造がよく発達した炭素質材料を含む負極に対して安定であり、(b)電解質の還元または酸化分解を抑制するのに効果的であり、(c)高い導電性を有する、点で有利である。エチレンカーボネート(EC)のみから構成された非水系電解質は、黒鉛化炭素質材料による還元の際の分解に対して安定であるという点で有利である。しかしながら、ECの融点は39℃〜40℃と比較的高く、粘度が比較的高く、よって自身の導電性が低く、これにより室温あるいはそれ以下で動作させる二次電池電解質としてEC単独で作製することは適さない。ECと混合して使用される第二溶媒は、混合溶媒の粘度をEC単独の場合より低下させるべく機能し、これにより混合溶媒のイオン伝導性を向上させる。さらに、ドナーナンバー18以下(エチレンカーボネートのドナーナンバーは16.4)の第二溶媒が用いられると、上述のエチレンカーボネートは、容易にかつ選択的にリチウムイオンを溶媒和することができ、黒鉛化が良く発達した炭素質材料との第二溶媒の還元反応が抑制されると考えられる。さらに、第二溶媒のドナーナンバーが18以下に制御されると、リチウム電極に対する酸化分解電圧は容易に4V以上に増加させることができ、高電圧のリチウム二次電池を製造することができる。好ましい第二溶媒は、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、プロピオン酸エチル、プロピオン酸メチル、プロピレンカーボネート(PC)、γブチロラクトン(γBL)、アセトニトリル(AN)、エチルアセテート(EA)、ギ酸プロピル(PF)、ギ酸メチル(MF)、トルエン、キシレンおよび酢酸メチル(MA)である。これら第二溶媒は、単独または2種以上を組み合わせて使用することができる。より好ましくは、この第二溶媒は、ドナーナンバーが16.5以下のものから選択されるべきである。第二溶媒の粘度は、好ましくは25℃において28cps以下である。混合溶媒中の上記エチレンカーボネートの混合比は、好ましくは10〜80体積%である。エチレンカーボネートの混合比がこの範囲を外れると、溶媒の導電性が低下するか溶媒がより容易に分解する傾向を示し、これにより充放電性能が悪化する。エチレンカーボネートのより好ましい混合比は、20〜75体積%である。非水系溶媒中でのエチレンカーボネートの混合比が20体積%以上に増加した場合、エチレンカーボネートのリチウムイオンに対する溶媒和効果が促進され、溶媒分解抑制効果が向上する。   A wide range of electrolytes can be used to practice the present invention. Most preferred are non-aqueous and polymer gel electrolytes, although other types can be used. The non-aqueous electrolyte employed here is manufactured by dissolving an electrolyte salt in a non-aqueous solvent. Any known non-aqueous solvent that has been employed as a solvent for lithium secondary batteries can be used. A non-solvent mainly composed of a mixed solvent composed of ethylene carbonate (EC) and at least one non-aqueous solvent (hereinafter referred to as second solvent) having a melting point lower than that of the aforementioned ethylene carbonate and a donor number of 18 or less. An aqueous solvent is preferably employed. This non-aqueous solvent is (a) stable to a negative electrode containing a carbonaceous material with a well-developed graphite structure, (b) effective in suppressing reduction or oxidative decomposition of the electrolyte, and (c) It is advantageous in that it has high conductivity. A non-aqueous electrolyte composed only of ethylene carbonate (EC) is advantageous in that it is stable against decomposition upon reduction with a graphitized carbonaceous material. However, EC has a relatively high melting point of 39 ° C. to 40 ° C., a relatively high viscosity, and thus its own conductivity is low, so that EC alone can be produced as a secondary battery electrolyte that operates at or below room temperature. Is not suitable. The second solvent used by mixing with EC functions to lower the viscosity of the mixed solvent than that of EC alone, thereby improving the ionic conductivity of the mixed solvent. Furthermore, when a second solvent having a donor number of 18 or less (the donor number of ethylene carbonate is 16.4) is used, the above-mentioned ethylene carbonate can easily and selectively solvate lithium ions and graphitize. It is considered that the reduction reaction of the second solvent with the well-developed carbonaceous material is suppressed. Furthermore, when the donor number of the second solvent is controlled to 18 or less, the oxidative decomposition voltage with respect to the lithium electrode can be easily increased to 4 V or more, and a high voltage lithium secondary battery can be manufactured. Preferred second solvents are dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), ethyl propionate, methyl propionate, propylene carbonate (PC), γ-butyrolactone (γBL), acetonitrile (AN), Ethyl acetate (EA), propyl formate (PF), methyl formate (MF), toluene, xylene and methyl acetate (MA). These 2nd solvents can be used individually or in combination of 2 or more types. More preferably, the second solvent should be selected from those having a donor number of 16.5 or less. The viscosity of the second solvent is preferably 28 cps or less at 25 ° C. The mixing ratio of the ethylene carbonate in the mixed solvent is preferably 10 to 80% by volume. When the mixing ratio of ethylene carbonate is out of this range, the conductivity of the solvent tends to decrease or the solvent tends to decompose more easily, thereby deteriorating the charge / discharge performance. A more preferable mixing ratio of ethylene carbonate is 20 to 75% by volume. When the mixing ratio of ethylene carbonate in the non-aqueous solvent is increased to 20% by volume or more, the solvation effect of ethylene carbonate with respect to lithium ions is promoted, and the solvent decomposition suppressing effect is improved.

また、電解液には、負極の表面に安定した品質のSEI層を維持するために、添加剤が添加されてもよい。SEI層は、電解液との反応(分解)を抑制する、またリチウムイオン電池の脱リチウム化による脱溶媒反応に曝され、アノード材料の構造上の物理的な劣化を抑制する役割を有する。添加剤の例としては、ビニレンカーボネート(VC)、プロパンスルトン(PS)、環状スルホン酸エステルが挙げられる。   In addition, an additive may be added to the electrolytic solution in order to maintain a stable quality SEI layer on the surface of the negative electrode. The SEI layer suppresses reaction (decomposition) with the electrolytic solution, and is exposed to a desolvation reaction due to delithiation of the lithium ion battery, and has a role of suppressing physical deterioration in the structure of the anode material. Examples of the additive include vinylene carbonate (VC), propane sultone (PS), and cyclic sulfonic acid ester.

本実施形態例に係るLi塩の例としては、LiPF、LiBF、LiAsF、LiSbF、LClO、LiAlCl,LiN(C2n+1SO)(C2m+1SO)(n、mは自然数)、およびLiCFSOが挙げられる。しかしながら、Li塩は、これらに限定されるものではない。これらのLi塩の1種を使用してもよいし、これらのLi塩の2種以上を併用してもよい。 Examples of Li salt according to this embodiment is, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, L 1 ClO 4, LiAlCl 4, LiN (C n F 2n + 1 SO 2) (C m F 2m + 1 SO 2) (N and m are natural numbers), and LiCF 3 SO 3 . However, the Li salt is not limited to these. One of these Li salts may be used, or two or more of these Li salts may be used in combination.

本実施形態例における電池用ケースは、例えば、基材、金属箔、およびシーラントが順次積層されたラミネートフィルムであってもよい。使用することができる基材としては、ポリエステル(PET)またはナイロン製の10〜25μmの厚さの樹脂フィルムが挙げられる。金属箔は、20〜40μmの厚さのアルミニウム膜であってもよい。シーラントは、ポリエチレン(PE)、ポリプロピレン(PP)、変性ポリプロピレン(PP)またはアイオノマーからなる30〜70μmの厚さを有する樹脂膜であってもよい。   The battery case in the present embodiment may be, for example, a laminate film in which a base material, a metal foil, and a sealant are sequentially laminated. Examples of the substrate that can be used include a resin film made of polyester (PET) or nylon and having a thickness of 10 to 25 μm. The metal foil may be an aluminum film having a thickness of 20 to 40 μm. The sealant may be a resin film having a thickness of 30 to 70 μm made of polyethylene (PE), polypropylene (PP), modified polypropylene (PP), or ionomer.

実施例1
6.84g(20ミリモル)のショ糖を100mlの脱イオン水に添加し、混合物を60℃で30分間磁気攪拌して炭素前駆体溶液を得た。次いで、3.78g(20ミリモル)のSnClを炭素前駆体溶液にゆっくりと添加した。混合物を300mlテフロン(登録商標)被覆ステンレスオートクレーブに装入した。続いて、オートクレーブをオーブン中に入れて、180℃で4時間加熱した。オートクレーブは室温まで自然冷却した。暗色沈殿物を回収し、脱イオン水で数回洗浄し、オーブン中100℃で24時間乾燥した。得られた粉末をN雰囲気下にオーブンで炭化してアノード材料Aを得た。炭化は、N流量100ml/分、昇温速度5℃/分で、最終温度1000℃で実施した。アノード材料AのSEM画像を図1に示す。図1に示すように、アノード材料Aは滑らかな表面形態を有する球形粒子である。図2は、アノード材料AのX線回折である。アノード材料AにおけるSnOの(110)面は、他の面が同じ入射角に留まっているのに対し、他の方法で合成したSnOに比較してより高い入射角(2θ)にシフトした。さらに、アノード材料AにおけるSnOの(110)面の(101)に対する強度比は1.1より高く、他の方法で合成したSnOの強度比はいつも1未満である。
Example 1
6.84 g (20 mmol) of sucrose was added to 100 ml of deionized water, and the mixture was magnetically stirred at 60 ° C. for 30 minutes to obtain a carbon precursor solution. 3.78 g (20 mmol) of SnCl 2 was then slowly added to the carbon precursor solution. The mixture was charged into a 300 ml Teflon-coated stainless steel autoclave. Subsequently, the autoclave was placed in an oven and heated at 180 ° C. for 4 hours. The autoclave was naturally cooled to room temperature. The dark precipitate was collected, washed several times with deionized water and dried in an oven at 100 ° C. for 24 hours. The obtained powder was carbonized in an oven under an N 2 atmosphere to obtain an anode material A. Carbonization was performed at a final temperature of 1000 ° C. with a N 2 flow rate of 100 ml / min, a heating rate of 5 ° C./min. An SEM image of anode material A is shown in FIG. As shown in FIG. 1, the anode material A is a spherical particle having a smooth surface morphology. FIG. 2 is an X-ray diffraction of anode material A. The (110) plane of SnO 2 in anode material A shifted to a higher incident angle (2θ) compared to SnO 2 synthesized by other methods, while the other planes remained at the same incident angle. . Furthermore, the strength ratio of SnO 2 to (101) of (110) face in anode material A is higher than 1.1, and the strength ratio of SnO 2 synthesized by other methods is always less than 1.

実施例2
6.84g(20ミリモル)のショ糖を100mlの脱イオン水に添加し、混合物を60℃で30分間磁気攪拌して炭素前駆体溶液を得た。次いで、10ml(48ミリモル)の3−アミノプロピルメチルジエトキシシランを炭素前駆体溶液にゆっくりと添加した。混合物を300mlテフロン(登録商標)被覆ステンレスオートクレーブに装入した。続いて、オートクレーブをオーブン中に入れて、180℃で4時間加熱した。オートクレーブは室温まで自然冷却した。暗色沈殿物を回収し、脱イオン水で数回洗浄し、オーブン中100℃で24時間乾燥した。得られた粉末をN雰囲気下にオーブンで炭化してアノード材料Bを得た。炭化は、N流量100ml/分、昇温速度5℃/分で、最終温度1000℃で実施した。アノード材料BのSEM画像を図3に示す。水熱合成中、シリコン酸化物は棒状結晶に成長している。
Example 2
6.84 g (20 mmol) of sucrose was added to 100 ml of deionized water, and the mixture was magnetically stirred at 60 ° C. for 30 minutes to obtain a carbon precursor solution. Then 10 ml (48 mmol) 3-aminopropylmethyldiethoxysilane was slowly added to the carbon precursor solution. The mixture was charged into a 300 ml Teflon-coated stainless steel autoclave. Subsequently, the autoclave was placed in an oven and heated at 180 ° C. for 4 hours. The autoclave was naturally cooled to room temperature. The dark precipitate was collected, washed several times with deionized water and dried in an oven at 100 ° C. for 24 hours. The obtained powder was carbonized in an oven under an N 2 atmosphere to obtain an anode material B. Carbonization was performed at a final temperature of 1000 ° C. with a N 2 flow rate of 100 ml / min, a heating rate of 5 ° C./min. An SEM image of the anode material B is shown in FIG. During hydrothermal synthesis, silicon oxide grows into rod-like crystals.

比較例1
平均直径10μmSnO粒子がアノード材料Cとして使用された。
Comparative Example 1
An average diameter of 10 μm SnO 2 particles was used as anode material C.

(比較例2)
平均直径5μmSiO粒子が、アノード材料Dとして使用された。
(Comparative Example 2)
Average diameter 5 μm SiO particles were used as anode material D.

テストセルの作製
アノード材料A〜Dのそれぞれと、カーボンブラック、およびPVDFを91:1:8の重量比でN−メチルピロリドン(NMP)中に混合して、スラリーを調製した。該スラリーを、銅箔上に塗布し、15分間120℃で乾燥させ薄い基体を形成した。次に基体を50g/mの荷重で45μm厚にプレスし、N雰囲気下、2時間200℃で加熱処理して負極を作製した。
該負極を作用電極として用い、金属リチウム箔を対向電極として用いた。作用電極と対向電極間に多孔性ポリプロピレンフィルムからなるセパレータを挿入した。ジエチルカーボネート(DEC)とエチレンカーボネート(EC)を7:3の体積比での混合溶媒に1MのLiPFを溶解して電解液を調製し、ラミネートハーフセルを作製した。
Preparation of Test Cell Each of the anode materials A to D, carbon black, and PVDF were mixed at a weight ratio of 91: 1: 8 into N-methylpyrrolidone (NMP) to prepare a slurry. The slurry was applied on a copper foil and dried at 120 ° C. for 15 minutes to form a thin substrate. Next, the substrate was pressed to a thickness of 45 μm with a load of 50 g / m 2 , and heat-treated at 200 ° C. for 2 hours in an N 2 atmosphere to produce a negative electrode.
The negative electrode was used as a working electrode, and a metal lithium foil was used as a counter electrode. A separator made of a porous polypropylene film was inserted between the working electrode and the counter electrode. 1M LiPF 6 was dissolved in a mixed solvent of diethyl carbonate (DEC) and ethylene carbonate (EC) at a volume ratio of 7: 3 to prepare an electrolyte solution, and a laminated half cell was prepared.

テストセルは、初期充電容量、クーロン効率及び1C充電/0.1C放電及び6C充電/0.1C放電のレート特性、及び100サイクル後の容量維持率1Cで評価した。結果を表1に示す。   The test cell was evaluated with initial charge capacity, coulomb efficiency, rate characteristics of 1C charge / 0.1C discharge and 6C charge / 0.1C discharge, and a capacity maintenance ratio of 1C after 100 cycles. The results are shown in Table 1.

以上、実施形態例を参照して本発明を説明したが、本発明は上記実施形態例に限定されものではない。本発明の構成や詳細には、請求項に規定されたように本発明の精神及びスコープ内で当業者が理解し得る様々な変更をすることができると理解されよう。   While the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above exemplary embodiments. It will be understood that various changes may be made to the structure and details of the invention which will be apparent to those skilled in the art within the spirit and scope of the invention as defined in the claims.

Claims (14)

シリコン酸化物活物質がハードカーボン中に埋設されたリチウムイオン電池用アノード材料の製造方法であって、
前記シリコン酸化物の前駆体と、前記ハードカーボンの前駆体を含む媒体中で溶媒熱合成によって、前記シリコン酸化物の前駆体のナノ結晶形を持つ活物質への変換と前記ハードカーボンへの埋設を同時に行うことを特徴とするアノード材料の製造方法
A method for producing an anode material for a lithium ion battery in which a silicon oxide active material is embedded in hard carbon ,
Conversion of the silicon oxide precursor into an active material having a nanocrystal form and embedding in the hard carbon by solvent thermal synthesis in a medium containing the silicon oxide precursor and the hard carbon precursor A method for producing an anode material , characterized in that
前記溶媒熱合成は溶媒として水を用いる請求項1に記載のアノード材料の製造方法The method for producing an anode material according to claim 1, wherein the solvent thermal synthesis uses water as a solvent. 前記ハードカーボンの前駆体が糖類である請求項2に記載のアノード材料の製造方法The method for producing an anode material according to claim 2, wherein the hard carbon precursor is a saccharide. 前記アノード材料の大きさが20nm〜80μmである請求項1〜3のいずれか1項に記載のアノード材料の製造方法The method for producing an anode material according to any one of claims 1 to 3, wherein the anode material has a size of 20 nm to 80 µm. 前記活物質の大きさが100nm未満である請求項1〜4のいずれか1項に記載のアノード材料の製造方法The method for producing an anode material according to any one of claims 1 to 4, wherein the size of the active material is less than 100 nm. 前記ハードカーボンは、ホウ素又は窒素でドープされている請求項1〜5のいずれか1項に記載のアノード材料の製造方法The method for producing an anode material according to any one of claims 1 to 5 , wherein the hard carbon is doped with boron or nitrogen. 前記シリコン酸化物の前駆体は3−アミノプロピルメチルジエトキシシランである請求項1〜6のいずれか1項に記載のアノード材料の製造方法 Method for producing the anode material according to any one of claims 1 to 6 the precursor of silicon oxide is 3-aminopropyl methyl diethoxy silane. 正負極電極を含むリチウムイオン電池の製造方法であって、前記負極に含まれるアノード材料が請求項1〜7のいずれか1項に記載のアノード材料の製造方法により製造されたものであるリチウムイオン電池の製造方法A lithium ion battery manufacturing method including positive and negative electrodes, wherein the anode material included in the negative electrode is manufactured by the anode material manufacturing method according to any one of claims 1 to 7. Battery manufacturing method . 前記アノード材料が少なくとも372mAh/gの容量を有する請求項8に記載のリチウムイオン電池の製造方法The method of manufacturing a lithium ion battery according to claim 8, wherein the anode material has a capacity of at least 372 mAh / g. リチウムイオン電池用のアノード材料であって、ハードカーボンの中に活物質が埋め込まれており、前記活物質はシリコンの酸化物であり、前記活物質の粒径は10nm未満であることを特徴とするアノード材料。An anode material for a lithium ion battery, wherein an active material is embedded in hard carbon, the active material is an oxide of silicon, and the particle size of the active material is less than 10 nm. Anode material to be used. 前記アノード材料の大きさが20nm〜80μmである請求項10に記載のアノード材料。The anode material according to claim 10, wherein the anode material has a size of 20 nm to 80 μm. 前記ハードカーボンは、ホウ素又は窒素でドープされている請求項10〜11のいずれか1項に記載のアノード材料。The anode material according to claim 10, wherein the hard carbon is doped with boron or nitrogen. 正負極電極を含むリチウムイオン電池であって、前記負極に含まれるアノード材料が請求項10〜12のいずれか1項に記載のアノード材料であるリチウムイオン電池。It is a lithium ion battery containing a positive / negative electrode, Comprising: The lithium ion battery whose anode material contained in the said negative electrode is an anode material of any one of Claims 10-12. 前記アノード材料が少なくとも372mAh/gの容量を有する請求項13に記載のリチウムイオン電池。The lithium ion battery of claim 13, wherein the anode material has a capacity of at least 372 mAh / g.

JP2017511959A 2014-08-29 2014-08-29 Anode materials for lithium-ion batteries Active JP6384596B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073423 WO2016031085A1 (en) 2014-08-29 2014-08-29 Anode material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2017526145A JP2017526145A (en) 2017-09-07
JP6384596B2 true JP6384596B2 (en) 2018-09-05

Family

ID=55399016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017511959A Active JP6384596B2 (en) 2014-08-29 2014-08-29 Anode materials for lithium-ion batteries

Country Status (2)

Country Link
JP (1) JP6384596B2 (en)
WO (1) WO2016031085A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373306A1 (en) * 2016-06-22 2017-12-28 Sharp Kabushiki Kaisha Carbon-metal/alloy composite material, synthesis method, and electrode including same
CN109167025B (en) * 2018-08-03 2021-04-09 湖州杉杉新能源科技有限公司 Boron-doped modified soft carbon-coated negative electrode material with high stability in high and low temperature environments and preparation method thereof
CN109148847B (en) * 2018-08-07 2021-04-09 湖州杉杉新能源科技有限公司 Boron-doped modified hard carbon-coated negative electrode material with high rate performance and liquid-phase preparation method thereof
CN112701265B (en) * 2020-12-30 2022-03-11 来骑哦互联网技术(深圳)有限公司 Mesoporous carbon coated SnO2Nano flower lithium ion battery cathode material and preparation method thereof
CN116799219B (en) * 2023-08-25 2023-12-15 浙江华宇钠电新能源科技有限公司 Tin-based oxide nanocrystalline modified hard carbon, sodium ion battery and vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403324B2 (en) * 1999-07-05 2010-01-27 ソニー株式会社 Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2002093415A (en) * 2000-09-18 2002-03-29 Nichia Chem Ind Ltd Composite carbon material for nonaqueous lithium secondary battery and its synthetic method
JP5678419B2 (en) * 2009-08-27 2015-03-04 日産自動車株式会社 Battery electrode and manufacturing method thereof
JP2012048865A (en) * 2010-08-24 2012-03-08 Asahi Glass Co Ltd Method of manufacturing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6077206B2 (en) * 2011-09-22 2017-02-08 住友大阪セメント株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, ELECTRODE, LITHIUM ION BATTERY
KR101476043B1 (en) * 2012-07-20 2014-12-24 주식회사 엘지화학 Carbon-silicone composite, preparation method thereof, and anode active material comprising the same
EP2936586B1 (en) * 2012-12-20 2016-07-13 Umicore Negative electrode material for a rechargeable battery and method for producing the same

Also Published As

Publication number Publication date
JP2017526145A (en) 2017-09-07
WO2016031085A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
KR102038545B1 (en) Positive electrode for lithium sulfur battery, method for manufacturing the same and lithium sulfur battery comprising the same
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP6583404B2 (en) Anode material for lithium ion battery, negative electrode including the anode material, and lithium ion battery
US11901540B2 (en) Composite anode active material, method of preparing the same, and lithium secondary battery including anode including composite anode active material
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
US10403885B2 (en) Active material for batteries
US11217783B2 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
JP6288257B2 (en) Nanosilicon material, method for producing the same, and negative electrode of secondary battery
JP6384596B2 (en) Anode materials for lithium-ion batteries
KR20150083381A (en) Rechargeable lithium battery
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
KR101590678B1 (en) Anode Active Material for Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
JP6176510B2 (en) Silicon material and negative electrode of secondary battery
CN114744183A (en) Negative electrode active material and method for producing same, mixed negative electrode active material, negative electrode, lithium ion secondary battery, and method for producing same
CN110100331B (en) Anode, method for manufacturing the same, and lithium ion secondary battery
KR20150083382A (en) Negative electrode and rechargeable lithium battery including same
JP6394795B2 (en) Electrochemically modified carbon materials for lithium ion batteries
KR20170095942A (en) Lithium ion secondary cell
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
JP2017533541A (en) Anode materials for lithium-ion batteries
JP2015037068A (en) Positive electrode for lithium ion battery, and lithium ion secondary battery
JP6613952B2 (en) Positive electrode active material, and positive electrode and lithium ion secondary battery using the same
JP2020194739A (en) Lithium ion secondary battery and manufacturing method thereof
US10217990B2 (en) Silicon material and negative electrode of secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150