JP5725075B2 - Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery - Google Patents

Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery Download PDF

Info

Publication number
JP5725075B2
JP5725075B2 JP2013086702A JP2013086702A JP5725075B2 JP 5725075 B2 JP5725075 B2 JP 5725075B2 JP 2013086702 A JP2013086702 A JP 2013086702A JP 2013086702 A JP2013086702 A JP 2013086702A JP 5725075 B2 JP5725075 B2 JP 5725075B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013086702A
Other languages
Japanese (ja)
Other versions
JP2014211977A (en
Inventor
佑介 杉山
佑介 杉山
加代子 湯川
加代子 湯川
敬史 毛利
敬史 毛利
合田 信弘
信弘 合田
村瀬 正和
正和 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013086702A priority Critical patent/JP5725075B2/en
Priority to PCT/JP2014/001210 priority patent/WO2014171053A1/en
Publication of JP2014211977A publication Critical patent/JP2014211977A/en
Application granted granted Critical
Publication of JP5725075B2 publication Critical patent/JP5725075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、リチウムイオン二次電池に用いられる負極用のバインダーとリチウムイオン二次電池負極及びリチウムイオン二次電池に関するものである。 The present invention relates to a negative electrode binder used in a lithium ion secondary battery, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery.

リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極及び負極にそれぞれ有する。そして、両極間に設けられた電解液内をリチウムイオンが移動することによって動作する。   A lithium ion secondary battery is a secondary battery having a high charge / discharge capacity and capable of high output. Currently, it is mainly used as a power source for portable electronic devices, and further expected as a power source for electric vehicles that are expected to be widely used in the future. Lithium ion secondary batteries have active materials capable of inserting and extracting lithium (Li) in the positive electrode and the negative electrode, respectively. And it operates by moving lithium ions in the electrolyte provided between the two electrodes.

リチウムイオン二次電池には、正極の活物質として主にリチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が用いられ、負極の活物質としては多層構造を有する炭素材料が主に用いられている。リチウムイオン二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも活物質を形成する活物質材料の研究開発が活発に行われている。例えば負極活物質材料として炭素よりも高容量なケイ素またはケイ素酸化物が検討されている。   In lithium ion secondary batteries, lithium-containing metal composite oxides such as lithium cobalt composite oxide are mainly used as the active material for the positive electrode, and carbon materials having a multilayer structure are mainly used as the active material for the negative electrode. Yes. The performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode, and the electrolyte constituting the secondary battery. In particular, research and development of active material that forms an active material is being actively conducted. For example, silicon or silicon oxide having a higher capacity than carbon has been studied as a negative electrode active material.

ケイ素を負極活物質として用いることにより、炭素材料を用いるよりも高容量の電池になりうる。しかしながらケイ素は、充放電時のLiの吸蔵・放出に伴う体積変化が大きい。また吸蔵・放出を繰り返すことで、ケイ素そのものが微粉化することがわかっている。そのためケイ素が微粉化して集電体から脱落または剥離し、電池の充放電サイクル寿命が短いという問題点がある。この問題に対して、ケイ素酸化物を負極活物質として用いることにより、ケイ素よりも充放電時のLiの吸蔵・放出に伴う体積変化を抑制する検討がなされている。   By using silicon as the negative electrode active material, a battery having a higher capacity than that using a carbon material can be obtained. However, silicon has a large volume change due to insertion and extraction of Li during charge and discharge. Moreover, it is known that silicon itself is pulverized by repeated occlusion / release. Therefore, there is a problem that silicon is pulverized and falls off or peels from the current collector, and the charge / discharge cycle life of the battery is short. In order to solve this problem, studies have been made to suppress volume change associated with insertion and extraction of Li during charge and discharge rather than silicon by using silicon oxide as a negative electrode active material.

例えば、負極活物質として、酸化ケイ素(SiOx:xは0.5≦x≦1.5程度)の使用が検討されている。SiOxは熱処理されると、粒子内でSiがSiO2内に偏析することが知られている。これは不均化反応といい、固体の内部反応によりSi相とSiO2相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO2相が電解液の分解を抑制する働きをもつ。したがって、SiとSiO2とに分解したSiOxからなる負極活物質を用いた二次電池は、サイクル特性に優れる。 For example, the use of silicon oxide (SiO x : x is about 0.5 ≦ x ≦ 1.5) as a negative electrode active material has been studied. It is known that SiO x segregates in SiO 2 within particles when heat-treated. This is called disproportionation reaction, and it is separated into two phases of Si phase and SiO 2 phase by solid internal reaction. The Si phase obtained by separation is very fine. Further, the SiO 2 phase covering the Si phase has a function of suppressing the decomposition of the electrolytic solution. Therefore, the secondary battery using the negative electrode active material composed of SiO x decomposed into Si and SiO 2 has excellent cycle characteristics.

上記したSiOxのSi相を構成するシリコン粒子が微細であるほど、それを負極活物質として用いた二次電池はサイクル特性が向上する。そこで特許第3865033号(特許文献1)には、金属シリコンとSiO2を加熱して昇華させて酸化珪素ガスとし、それを冷却してSiOxを製造する方法が記載されている。この方法によれば、Si相を構成するシリコン粒子の粒径を1-5nmのナノサイズとすることができる。 As the silicon particles constituting the Si phase of SiO x are finer, the secondary battery using the silicon particles as the negative electrode active material has improved cycle characteristics. Therefore, Japanese Patent No. 3806333 (Patent Document 1) describes a method of heating and sublimating metallic silicon and SiO 2 to form silicon oxide gas and cooling it to produce SiO x . According to this method, the particle size of the silicon particles constituting the Si phase can be set to a nanosize of 1-5 nm.

また特開2009-102219号公報(特許文献2)には、シリコン原料を高温のプラズマ中で元素状態まで分解し、それを液体窒素温度まで急冷してシリコンナノ粒子を得、このシリコンナノ粒子をゾルゲル法などでSiO2-TiO2マトリクス中に固定する製造方法が記載されている。 JP 2009-102219 (Patent Document 2) discloses that a silicon raw material is decomposed to an elemental state in a high-temperature plasma, and rapidly cooled to a liquid nitrogen temperature to obtain silicon nanoparticles. A manufacturing method for fixing in a SiO 2 —TiO 2 matrix by a sol-gel method or the like is described.

ところが特許文献1に記載の製造方法では、マトリクスが昇華性の材料に限られる。このため、マトリクスはSiO2に限られるため、リチウム吸蔵時にマトリクスとリチウムが不可逆反応する。このような反応は、セル容量低下の主要因となる。また特許文献2に記載の製造方法では、プラズマ放電のために高いエネルギーが必要となる。さらにこれらの製造方法で得られたシリコン複合体では、Si相のシリコン粒子の分散性が低く凝集し易いという不具合がある。Si粒子どうしが凝集して粒径が大きくなると、それを負極活物質として用いた二次電池は初期容量が低く、サイクル特性も低下する。 However, in the manufacturing method described in Patent Document 1, the matrix is limited to a sublimable material. For this reason, since the matrix is limited to SiO 2 , the matrix and lithium react irreversibly during lithium occlusion. Such a reaction is a main factor of cell capacity reduction. Further, in the manufacturing method described in Patent Document 2, high energy is required for plasma discharge. Furthermore, the silicon composites obtained by these production methods have a disadvantage that the dispersibility of Si-phase silicon particles is low and they are likely to aggregate. When Si particles are aggregated to increase the particle size, a secondary battery using the same as a negative electrode active material has a low initial capacity and cycle characteristics.

ところで近年、半導体、電気・電子等の各分野への利用が期待されるナノシリコン材料が開発されている。例えばPhysical Review B(1993),vol48,8172-8189(非特許文献1)には、塩化水素(HCl)と二ケイ化カルシウム(CaSi2)とを反応させることで層状ポリシランを合成する方法が記載され、こうして得られる層状ポリシランは、発光素子などに利用できることが記載されている。この材料は昇華法やプラズマ放電ではない手法で製造できるため、不可逆容量や凝集による初期効率低下等の問題を解決できうる。 By the way, in recent years, nanosilicon materials that are expected to be used in various fields such as semiconductors, electrical / electronics, and the like have been developed. For example, Physical Review B (1993), vol 48, 8172-8189 (Non-Patent Document 1) describes a method of synthesizing layered polysilane by reacting hydrogen chloride (HCl) with calcium disilicide (CaSi 2 ). In addition, it is described that the layered polysilane thus obtained can be used for a light emitting device or the like. Since this material can be manufactured by a method other than the sublimation method or plasma discharge, problems such as irreversible capacity and initial efficiency reduction due to aggregation can be solved.

そして特開2011-090806号公報(特許文献3)には、層状ポリシランを負極活物質として用いたリチウムイオン二次電池が記載されている。   JP 2011-090806 A (Patent Document 3) describes a lithium ion secondary battery using layered polysilane as a negative electrode active material.

特許第3865033号公報Japanese Patent No. 3806333 特開2009-102219号公報JP 2009-102219 A 特開2011-090806号公報JP 2011-090806 JP

Physical Review B(1993),vol48,8172-8189Physical Review B (1993), vol48,8172-8189

ところが特許文献3に記載された層状ポリシランからなる負極活物質は、BET比表面積が大きいために、二次電池の負極活物質材料としては好ましくないという不具合があった。例えばリチウムイオン二次電池の負極においては、BET比表面積が大きいと、電解液の分解を促進させるために負極で消費される不可逆容量が大きくなり、高容量化が困難である。またSEIが生じやすく、サイクル特性が低いという問題がある。   However, the negative electrode active material made of layered polysilane described in Patent Document 3 has a disadvantage that it is not preferable as a negative electrode active material for a secondary battery because of its large BET specific surface area. For example, in the negative electrode of a lithium ion secondary battery, if the BET specific surface area is large, the irreversible capacity consumed in the negative electrode in order to promote the decomposition of the electrolytic solution increases, and it is difficult to increase the capacity. There is also a problem that SEI is likely to occur and the cycle characteristics are low.

そこで特許文献3に記載された層状ポリシランを非酸化性雰囲気下で焼成することが想起された。この方法によれば、結晶子サイズが数nmのナノシリコンが得られるため、負極活物質として好適である。しかしながらこの方法で製造されたナノシリコンを負極活物質として用いたリチウムイオン二次電池は、初期効率が低くサイクル試験後の容量維持率が低いという不具合があった。   Thus, it has been recalled that the layered polysilane described in Patent Document 3 is fired in a non-oxidizing atmosphere. According to this method, nanosilicon having a crystallite size of several nanometers can be obtained, which is preferable as a negative electrode active material. However, a lithium ion secondary battery using nanosilicon produced by this method as a negative electrode active material has a problem that initial efficiency is low and capacity retention after a cycle test is low.

本発明はこのような事情に鑑みてなされたものであり、負極のバインダーを改良することでこの問題を解決することを目的とする。   This invention is made | formed in view of such a situation, and it aims at solving this problem by improving the binder of a negative electrode.

上記課題を解決する本発明のリチウムイオン二次電池負極用バインダーの特徴は、ポリアクリル酸と、塩基性酢酸銅、塩基性酢酸ニッケル又は水酸化銅から選ばれる少なくとも一種の金属化合物と、の反応物からなることにある。 The feature of the binder for a lithium ion secondary battery negative electrode of the present invention that solves the above problems is a reaction between polyacrylic acid and at least one metal compound selected from basic copper acetate, basic nickel acetate, or copper hydroxide It consists of things.

そして本発明の二次電池負極の特徴は、集電体と、集電体の表面に形成された負極活物質層と、からなり、負極活物質層は、負極活物質と、本発明のバインダーと、を含むことにある。   And the characteristic of the secondary battery negative electrode of this invention consists of a collector and the negative electrode active material layer formed in the surface of a collector, and a negative electrode active material layer is a negative electrode active material and the binder of this invention. And to include.

本発明のリチウムイオン二次電池負極用バインダーは、ポリアクリル酸と、塩基性酢酸銅、塩基性酢酸ニッケル又は水酸化銅から選ばれる少なくとも一種の金属化合物と、の反応物からなる。この金属元素を含むことで、通常のポリマーのみからなるバインダーに比べて導電性が向上するため、リチウムイオン二次電池の初期効率が向上する。さらにこの金属元素は価数変化が可能であるので、充放電における電位変化に追従して電子の授受が生じ、本発明の負極を用いたリチウムイオン二次電池は初期効率がさらに向上するとともにサイクル後の効率も向上する。 The binder for a lithium ion secondary battery negative electrode of the present invention comprises a reaction product of polyacrylic acid and at least one metal compound selected from basic copper acetate, basic nickel acetate, or copper hydroxide . By including this metal element, the conductivity is improved as compared with a binder made of only a normal polymer, so that the initial efficiency of the lithium ion secondary battery is improved. Furthermore, since this metal element can change the valence, electrons are transferred according to the potential change during charging and discharging, and the lithium ion secondary battery using the negative electrode of the present invention further improves initial efficiency and cycle. Later efficiency is also improved.

実施例1で調製された灰色粉末のSEM像である。2 is an SEM image of a gray powder prepared in Example 1.

本発明のリチウムイオン二次電池負極用バインダーは、ポリアクリル酸と、塩基性酢酸銅、塩基性酢酸ニッケル又は水酸化銅から選ばれる少なくとも一種の金属化合物と、の反応物からなる。 Lithium-ion secondary battery negative electrode binder of the present invention, polyacrylic acid, basic copper acetate, and at least one metal compound selected from basic nickel acetate or copper hydroxide, ing from the reaction of.

金属化合物は、ポリアクリル酸100質量部に対して0.01〜10質量部含まれていることが望ましい。金属化合物が0.01質量部より少ないと金属元素を含有させた効果の発現が困難となり、金属化合物が10質量部を超えるとポリマーと金属化合物の反応物の粘度が高くなりすぎて負極活物質層を形成するためのスラリーの調製が困難となる。 The metal compound is preferably contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of polyacrylic acid . If the amount of the metal compound is less than 0.01 parts by mass, it will be difficult to achieve the effect of containing the metal element. If the amount of the metal compound exceeds 10 parts by mass, the viscosity of the reaction product of the polymer and the metal compound becomes too high, and the negative electrode active material layer is formed. Preparation of the slurry for forming becomes difficult.

ポリアクリル酸と金属化合物との反応物としては、塩化合物、錯化合物などが例示される。 Examples of the reaction product of polyacrylic acid and a metal compound include salt compounds and complex compounds.

ポリアクリル酸と金属化合物とを反応させて反応物を得るには、両者を混合して加熱する方法、ポリアクリル酸と金属化合物の両方を溶解可能な溶媒に溶解させて加熱する方法などを用いることができる。分子レベルで均一な反応物を得るためには、後者の方法のように両者が液状で混合された状態で加熱する方法が好ましい。 In order to obtain a reactant by reacting polyacrylic acid and a metal compound , a method of mixing and heating both, a method of heating by dissolving both polyacrylic acid and a metal compound in a soluble solvent, etc. are used. be able to. In order to obtain a uniform reaction product at the molecular level, a method of heating in a state where both are mixed in a liquid state is preferable, as in the latter method.

本発明の二次電池負極用バインダーは、グラファイト、ハードカーボン、ケイ素、炭素繊維、スズ(Sn)、酸化ケイ素など公知の負極活物質と共に用いることができる。負極活物質の中でも、SiOx(0.3≦x≦1.6)で表されるケイ素酸化物、あるいは非特許文献1及び特許文献3に記載された層状ポリシランを焼成することで得られるナノシリコンなどが特に好ましい。 The binder for a secondary battery negative electrode of the present invention can be used together with a known negative electrode active material such as graphite, hard carbon, silicon, carbon fiber, tin (Sn), and silicon oxide. Among the negative electrode active materials, silicon oxide represented by SiO x (0.3 ≦ x ≦ 1.6), or nanosilicon obtained by firing layered polysilane described in Non-Patent Document 1 and Patent Document 3, etc. preferable.

本願発明者らは、非特許文献1及び特許文献3に記載された層状ポリシランに関して鋭意研究を行った。二ケイ化カルシウム(CaSi2)と酸、例えば塩化水素(HCl)水溶液とを反応させることにより、層状ポリシランを得ることができる。二ケイ化カルシウム(CaSi2)は、ダイヤモンド型のSiの(111)面の間にCa原子層が挿入された層状結晶をなし、酸との反応でカルシウム(Ca)が引き抜かれることによって層状ポリシランが得られる。 The inventors of the present application conducted intensive studies on the layered polysilanes described in Non-Patent Document 1 and Patent Document 3. By reacting calcium disilicide (CaSi 2 ) with an acid such as an aqueous solution of hydrogen chloride (HCl), a layered polysilane can be obtained. Calcium disilicide (CaSi 2 ) forms a layered crystal in which a Ca atomic layer is inserted between the (111) faces of diamond-type Si, and the layered polysilane is formed by extracting calcium (Ca) by reaction with acid. Is obtained.

また、酸としてフッ化水素(HF)水溶液と塩化水素(HCl)水溶液との混合物とを用いることもできる。フッ化水素(HF)と塩化水素(HCl)との組成比は、塩化水素(HCl)のモル量を100としたとき、フッ化水素(HF)のモル量が100以下であることが好ましい。フッ化水素(HF)の量がこの比より多くなるとCaF2、CaSiO系などの不純物が生成し、この不純物と層状ポリシランとを分離するのが困難であるため好ましくない。 Alternatively, a mixture of an aqueous hydrogen fluoride (HF) solution and an aqueous hydrogen chloride (HCl) solution can be used as the acid. The composition ratio of hydrogen fluoride (HF) and hydrogen chloride (HCl) is preferably such that the molar amount of hydrogen fluoride (HF) is 100 or less, where the molar amount of hydrogen chloride (HCl) is 100. If the amount of hydrogen fluoride (HF) exceeds this ratio, impurities such as CaF 2 and CaSiO are generated, and it is difficult to separate this impurity from the layered polysilane, which is not preferable.

酸と二ケイ化カルシウム(CaSi2)との反応比は、当量より酸を過剰にすることが好ましい。また反応雰囲気は、不活性ガス雰囲気下で行うことが好ましい。反応時間と反応温度は特に限定されないが、通常、反応温度は0℃〜100℃、反応時間は0.25〜24時間である。 The reaction ratio between the acid and calcium disilicide (CaSi 2 ) is preferably such that the acid is in excess of the equivalent. The reaction atmosphere is preferably performed in an inert gas atmosphere. Although reaction time and reaction temperature are not specifically limited, Usually, reaction temperature is 0 degreeC-100 degreeC, and reaction time is 0.25-24 hours.

上記反応によって得られるナノシリコンは、凝集して凝集粒子となっている。そのため、蓄電装置として充放電時における膨張・収縮の繰り返しによる凝集粒子の微粉化が生じ、比表面積が増大するとともにSEIの生成によってサイクル特性が低下するという問題がある。   Nanosilicon obtained by the above reaction is aggregated into aggregated particles. For this reason, there is a problem that the aggregated particles are pulverized due to repeated expansion and contraction during charging and discharging as the power storage device, and the specific surface area is increased and the cycle characteristics are degraded due to the generation of SEI.

そこでナノシリコンからなる凝集粒子と、非晶質の炭素からなり凝集粒子の少なくとも一部を覆って複合化された炭素層と、よりなる負極活物質を用いることが特に好ましい。非晶質の炭素からなる炭素層は、凝集粒子の少なくとも一部を覆っている。この炭素層によって凝集粒子が補強されるという効果が発現される。負極にはグラファイト、アセチレンブラック、ケッチェンブラックなどの導電助剤が用いられる場合があるが、これらの炭素は結晶質であり、非晶質ではない。ナノシリコンの凝集体を覆って複合化された炭素層の厚さは、1〜100nmの範囲であることが好ましく、5〜50nmの範囲であることがさらに望ましい。炭素層の厚さが薄すぎると効果の発現が困難となり、炭素層が厚くなりすぎると電池抵抗が上昇し、充放電が困難となる場合がある。   Therefore, it is particularly preferable to use a negative electrode active material comprising aggregated particles made of nanosilicon, a carbon layer made of amorphous carbon and composited covering at least a part of the aggregated particles. The carbon layer made of amorphous carbon covers at least a part of the aggregated particles. The effect that aggregated particles are reinforced by this carbon layer is expressed. A conductive aid such as graphite, acetylene black, or ketjen black may be used for the negative electrode, but these carbons are crystalline and not amorphous. The thickness of the carbon layer composited over the nanosilicon aggregate is preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 50 nm. If the thickness of the carbon layer is too thin, it will be difficult to achieve the effect, and if the thickness of the carbon layer is too thick, the battery resistance may increase and charging / discharging may become difficult.

炭素層を形成する場合において、何らかの方法で別に製造された非晶質の炭素をナノシリコンの凝集粒子と混合するだけでは、不均質となるとともに、炭素が凝集粒子の少なくとも一部を覆うことも困難である。そこで非晶質の炭素が凝集粒子の少なくとも一部を確実に覆い、均質な負極活物質を製造する方法が開発された。その製造方法は、ケイ素原子で構成された六員環が複数連なった構造をなし組成式(SiH)nで示される層状ポリシランを熱処理してナノシリコンの凝集粒子を得る凝集粒子形成工程と、凝集粒子と芳香性複素環化合物とを混合した状態で芳香性複素環化合物を重合する重合工程と、芳香性複素環化合物の重合体を炭素化する炭素化工程と、をこの順で行うことが望ましい。 In the case of forming a carbon layer, mixing amorphous carbon separately produced by some method with nanosilicon agglomerated particles becomes inhomogeneous and carbon may cover at least a part of the agglomerated particles. Have difficulty. Therefore, a method has been developed in which amorphous carbon reliably covers at least a part of the aggregated particles to produce a homogeneous negative electrode active material. The manufacturing method includes an aggregated particle forming step of obtaining a nanosilicon aggregated particle by heat-treating a layered polysilane represented by the composition formula (SiH) n having a structure in which a plurality of six-membered rings composed of silicon atoms are connected, and an aggregation It is desirable to perform in this order a polymerization step for polymerizing the aromatic heterocyclic compound in a state where the particles and the aromatic heterocyclic compound are mixed, and a carbonization step for carbonizing the polymer of the aromatic heterocyclic compound. .

ナノシリコンの凝集粒子の形成工程は前述したとおりである。   The formation process of the nanosilicon agglomerated particles is as described above.

重合工程では、ナノシリコン凝集粒子と芳香性複素環化合物とを混合した状態で、芳香性複素環化合物が重合される。これによりナノシリコンの凝集粒子に付着した状態の芳香性複素環化合物の重合体が得られる。ここで芳香性複素環化合物には、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾールなどの五員環芳香性複素環化合物、インドール、ベンズイミダゾール、ベンゾフランなどの多環芳香性複素環化合物など、重合可能なものを用いることができる。   In the polymerization step, the aromatic heterocyclic compound is polymerized in a state where the nanosilicon aggregated particles and the aromatic heterocyclic compound are mixed. As a result, a polymer of the aromatic heterocyclic compound in a state of being attached to the nanosilicon aggregated particles is obtained. Here, the aromatic heterocyclic compound includes five-membered aromatic heterocyclic compounds such as furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole and isothiazole, and polycyclic rings such as indole, benzimidazole and benzofuran. A polymerizable substance such as an aromatic heterocyclic compound can be used.

これらの化合物を重合するには、各種重合方法を採用することができるが、ピロールなどの場合には、濃塩酸あるいは三塩化鉄などのポリマー化触媒の存在下で加熱する方法が簡便である。特に三塩化鉄を用いれば、非水雰囲気で重合することができSiの酸化を抑制できるので、蓄電装置としたときに初期容量が増大する効果がある。   Various polymerization methods can be employed to polymerize these compounds. In the case of pyrrole or the like, a method of heating in the presence of a polymerization catalyst such as concentrated hydrochloric acid or iron trichloride is simple. In particular, when iron trichloride is used, it can be polymerized in a non-aqueous atmosphere and the oxidation of Si can be suppressed, so that there is an effect that the initial capacity is increased when a power storage device is obtained.

炭素化工程では、ナノシリコンの凝集粒子と混合された状態で芳香性複素環化合物の重合体が炭素化される。この工程は、ナノシリコンの製造時と同様に、不活性雰囲気下にて100℃以上の温度で熱処理すればよく、400℃以上で熱処理するのが好ましい。芳香性複素環化合物は重合体となっているため、加熱しても蒸散することなく炭素化が進行し、ナノシリコンの凝集粒子の表面に非晶質の炭素からなる炭素層が結合した複合体が得られる。なお重合工程を行わずに、ナノシリコンの凝集粒子と芳香性複素環化合物とを混合した状態で熱処理を行うと、芳香性複素環化合物が蒸散してしまい炭素化が困難である。   In the carbonization step, the polymer of the aromatic heterocyclic compound is carbonized in a state of being mixed with the nanosilicon aggregate particles. This step may be heat-treated in an inert atmosphere at a temperature of 100 ° C. or higher, and preferably 400 ° C. or higher as in the case of nanosilicon production. Since aromatic heterocyclic compounds are polymers, carbonization proceeds without evaporation even when heated, and a composite in which a carbon layer composed of amorphous carbon is bonded to the surface of nanosilicon agglomerated particles Is obtained. If heat treatment is performed in a state where nanosilicon agglomerated particles and an aromatic heterocyclic compound are mixed without performing a polymerization step, the aromatic heterocyclic compound evaporates and carbonization is difficult.

非晶質の炭素が凝集粒子の少なくとも一部を覆う負極活物質においては、ケイ素と炭素との組成比は重量比でSi/C=3/1〜20/1であることが望ましい。この比が20/1を超えると炭素層を形成した効果が発現されず、3/1未満では二次電池の容量が低下する。   In the negative electrode active material in which amorphous carbon covers at least a part of the aggregated particles, the composition ratio of silicon to carbon is desirably Si / C = 3/1 to 20/1 in terms of weight ratio. If this ratio exceeds 20/1, the effect of forming a carbon layer is not exhibited, and if it is less than 3/1, the capacity of the secondary battery decreases.

<二次電池負極>
本発明の二次電池負極は、集電体と、集電体の表面に形成された負極活物質層と、からなり、負極活物質層は、負極活物質と、本発明のバインダーと、を含む。
<Secondary battery negative electrode>
The secondary battery negative electrode of the present invention comprises a current collector and a negative electrode active material layer formed on the surface of the current collector. The negative electrode active material layer comprises a negative electrode active material and the binder of the present invention. Including.

集電体は、放電或いは充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体のことである。集電体は箔、板等の形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体として、例えば銅箔やアルミニウム箔を好適に用いることができる。   A current collector is a chemically inert electronic high conductor that keeps current flowing through an electrode during discharging or charging. The current collector can adopt a shape such as a foil or a plate, but is not particularly limited as long as it has a shape according to the purpose. As the current collector, for example, a copper foil or an aluminum foil can be suitably used.

負極活物質は、上述したとおりである。負極活物質を用いて、非水系二次電池の負極を作製するには、負極活物質粉末と、炭素粉末などの導電助剤と、本発明のバインダーと、適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダーを乾燥あるいは硬化させることによって作製することができる。   The negative electrode active material is as described above. In order to produce a negative electrode for a non-aqueous secondary battery using a negative electrode active material, a negative electrode active material powder, a conductive additive such as carbon powder, the binder of the present invention, and an appropriate amount of an organic solvent are added and mixed. The slurry can be produced by applying it onto a current collector by a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, or the like, and drying or curing the binder. .

バインダーは、なるべく少ない量で活物質等を結着させることが求められるが、その添加量は活物質、導電助剤、及びバインダーを合計したものの0.5wt%〜50wt%が望ましい。バインダーが0.5wt%未満では電極の成形性が低下し、50wt%を超えると電極のエネルギー密度が低くなる。   The binder is required to bind the active material and the like in as small an amount as possible, but the addition amount is preferably 0.5 wt% to 50 wt% of the total of the active material, the conductive auxiliary agent, and the binder. When the binder is less than 0.5 wt%, the moldability of the electrode is lowered, and when it exceeds 50 wt%, the energy density of the electrode is lowered.

バインダーには、本発明のバインダーに加えて、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリル酸(PAA)等を混合することもできる。   The binder includes, in addition to the binder of the present invention, polyvinylidene fluoride (PolyVinylidene DiFluoride: PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamideimide (PAI), Carboxymethyl cellulose (CMC), polyvinyl chloride (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP), polyacryl An acid (PAA) or the like can also be mixed.

導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、負極活物質100質量部に対して、20〜100質量部程度とすることができる。導電助剤の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。   The conductive assistant is added to increase the conductivity of the electrode. Carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), etc., which are carbonaceous fine particles, are used alone or in combination of two or more as conductive aids. Can be added. The amount of the conductive auxiliary agent used is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material. If the amount of the conductive auxiliary is less than 20 parts by mass, an efficient conductive path cannot be formed, and if it exceeds 100 parts by mass, the moldability of the electrode deteriorates and the energy density decreases.

有機溶剤には特に制限はなく、複数の溶剤の混合物でも構わない。N-メチル-2-ピロリドン及びN-メチル-2-ピロリドンとエステル系溶媒(酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート等)あるいはグライム系溶媒(ジグライム、トリグライム、テトラグライム等)の混合溶媒が特に好ましい。   There is no restriction | limiting in particular in an organic solvent, The mixture of a some solvent may be sufficient. N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone and ester solvents (ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, etc.) or glyme solvents (diglyme, triglyme, tetraglyme, etc.) The mixed solvent is particularly preferred.

二次電池がリチウムイオン二次電池の場合、負極には、リチウムがプリドーピングされていることもできる。負極にリチウムをドープするには、例えば対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量は特に制約されない。   When the secondary battery is a lithium ion secondary battery, the negative electrode can be pre-doped with lithium. In order to dope lithium into the negative electrode, for example, an electrode formation method in which a half battery is assembled using metallic lithium as the counter electrode and electrochemically doped with lithium can be used. The amount of lithium doped is not particularly limited.

二次電池がリチウムイオン二次電池の場合、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助剤およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。   When the secondary battery is a lithium ion secondary battery, known positive electrodes, electrolytes, and separators that are not particularly limited can be used. The positive electrode may be anything that can be used in a lithium ion secondary battery. The positive electrode has a current collector and a positive electrode active material layer bound on the current collector. The positive electrode active material layer includes a positive electrode active material and a binder, and may further include a conductive additive. The positive electrode active material, the conductive auxiliary agent, and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.

正極活物質としては、金属リチウム、LiCoO2、LiNi1/3Co1/3Mn1/3O2、Li2MnO3、硫黄などが挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。 Examples of the positive electrode active material include lithium metal, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , and sulfur. The current collector is not particularly limited as long as it is generally used for the positive electrode of a lithium ion secondary battery, such as aluminum, nickel, and stainless steel. As the conductive auxiliary agent, the same ones as described in the above negative electrode can be used.

電解液は、有機溶媒に電解質であるリチウム金属塩を溶解させたものである。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF6、LiBF4、LiAsF6、LiI、LiClO4、LiCF3SO3等の有機溶媒に可溶なリチウム金属塩を用いることができる。 The electrolytic solution is obtained by dissolving a lithium metal salt as an electrolyte in an organic solvent. The electrolytic solution is not particularly limited. As the organic solvent, an aprotic organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or the like should be used. Can do. As the electrolyte to be dissolved, a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , LiCF 3 SO 3 can be used.

例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO4、LiPF6、LiBF4、LiCF3SO3等のリチウム金属塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を使用することができる。 For example, lithium metal salts such as LiClO 4 , LiPF 6 , LiBF 4 , and LiCF 3 SO 3 in organic solvents such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and dimethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L. A dissolved solution can be used.

セパレータは、リチウムイオン二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。   A separator will not be specifically limited if it can be used for a lithium ion secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.

二次電池がリチウムイオン二次電池である場合、その形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。   When the secondary battery is a lithium ion secondary battery, the shape is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be employed. Regardless of the shape, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the space between the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal is used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.

以下、実施例及び比較例により本発明の実施形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

<バインダーの調製>
酢酸銅2gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液10mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で3時間乾燥して青色の塩基性酢酸銅(化1式参照)の粉末1gを得た。
<Preparation of binder>
2 g of copper acetate was dissolved in 20 ml of pure water, and 10 ml of 0.5N NaOH aqueous solution was added dropwise with stirring. Stir for 2 hours after dropping the entire amount, precipitate deposited, filter and wash twice with 10 ml of pure water, rinse with 10 ml of acetone, and then dry under vacuum for 3 hours to obtain blue basic copper acetate (see Formula 1) 1 g of powder was obtained.

次に、数平均分子量が500,000のポリアクリル酸(化2式参照)0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の塩基性酢酸銅粉末1mgをさらに溶解させ、撹拌しながら60℃で3時間保持して反応させ、化3式に示すポリアクリル酸−塩基性酢酸銅反応物のNMP溶液を調製した。ポリアクリル酸−塩基性酢酸銅反応物では、ポリアクリル酸の一部の側鎖のカルボキシル基に塩基性酢酸銅が結合し、その末端にはアセチル基を有していると考えられる。   Next, 0.8 g of polyacrylic acid having a number average molecular weight of 500,000 (see Formula 2) was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above basic copper acetate powder is further dissolved in this solution, and the mixture is reacted by stirring at 60 ° C. for 3 hours to prepare an NMP solution of the polyacrylic acid-basic copper acetate reactant shown in Chemical Formula 3. did. In the polyacrylic acid-basic copper acetate reactant, it is considered that basic copper acetate is bonded to the carboxyl group of a part of the side chain of polyacrylic acid and has an acetyl group at the end.

<負極活物質の調製>
濃度46質量%のHF水溶液3mlと、濃度36質量%のHCl水溶液300mlとの混合溶液20mlを氷浴中で0℃とし、アルゴンガス気流中にてそこへ5gの二ケイ化カルシウム(CaSi2)を加えて撹拌した。発泡が完了したのを確認した後に室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに5分間撹拌した。このとき黄色粉末が浮遊した。
<Preparation of negative electrode active material>
20 ml of a mixed solution of 3 ml of HF aqueous solution with a concentration of 46% by mass and 300 ml of HCl aqueous solution with a concentration of 36% by mass was brought to 0 ° C. in an ice bath, and 5 g of calcium disilicide (CaSi 2 ) was passed there in an argon gas stream Was added and stirred. After confirming the completion of foaming, the temperature was raised to room temperature, and the mixture was further stirred at room temperature for 2 hours, and then 20 ml of distilled water was added and further stirred for 5 minutes. At this time, yellow powder floated.

得られた混合溶液を濾過し、残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄し、真空乾燥して5.5gの層状ポリシランを得た。この層状ポリシランを、O2を1体積%以下の量で含むアルゴンガス中にて500℃で1時間保持する熱処理を行い、ナノシリコン凝集粒子からなる粉末を得た。この粉末に対してCuKα線を用いたX線回折測定(XRD測定)を行った。XRD測定によれば、Si微粒子由来と考えられるハローを観測した。Si微粒子は、X線回折測定結果の(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が約7nmであった。 The obtained mixed solution was filtered, and the residue was washed with 10 ml of distilled water, then washed with 10 ml of ethanol, and vacuum dried to obtain 5.5 g of layered polysilane. The layered polysilane was heat-treated in argon gas containing O 2 in an amount of 1% by volume or less at 500 ° C. for 1 hour to obtain a powder composed of nanosilicon aggregated particles. This powder was subjected to X-ray diffraction measurement (XRD measurement) using CuKα rays. According to the XRD measurement, halos that are considered to be derived from Si fine particles were observed. The Si fine particles had a crystal grain size of about 7 nm calculated from Scherrer's equation from the half-value width of the diffraction peak of the (111) plane of the X-ray diffraction measurement result.

このナノシリコン粉末1gに対してフラン0.5mlを3時間真空含浸させ、濃塩酸を加えた。濃塩酸添加後、60℃で3時間処理してフランを重合させ、濾過、洗浄して濃塩酸を除去した。得られた粉末を3時間真空乾燥し、その後、アルゴンガス中にて500℃で焼成し、フラン重合物を炭素化して灰色粉末を得た。灰色粉末の収率は、ナノシリコン粉末1gに対して1.22gであった。なお本実施例において、ケイ素と炭素との組成比は重量比でSi/C=82/18であった。   1 g of this nanosilicon powder was vacuum impregnated with 0.5 ml of furan for 3 hours, and concentrated hydrochloric acid was added. After adding concentrated hydrochloric acid, it was treated at 60 ° C. for 3 hours to polymerize furan, filtered and washed to remove concentrated hydrochloric acid. The obtained powder was vacuum-dried for 3 hours, and then calcined at 500 ° C. in an argon gas to carbonize the furan polymer to obtain a gray powder. The yield of gray powder was 1.22 g with respect to 1 g of nanosilicon powder. In this example, the composition ratio between silicon and carbon was Si / C = 82/18 by weight.

得られた灰色粉末のSEM写真を図1に示す。図1から、μmオーダーのナノシリコン凝集粒子が、最大厚み約200nmの炭素層に包まれた複合体構造が確認される。またこの灰色粉末と、灰色粉末の製造に用いたナノシリコン粉末の比表面積をそれぞれBET法により測定した結果を表1に示す。   An SEM photograph of the obtained gray powder is shown in FIG. From FIG. 1, a composite structure in which nano-silicon aggregated particles on the order of μm are wrapped in a carbon layer having a maximum thickness of about 200 nm is confirmed. Table 1 shows the results of measuring the specific surface areas of the gray powder and the nanosilicon powder used in the production of the gray powder by the BET method.

ナノシリコン凝集粒子を炭素層で被覆することで、比表面積が小さくなっていることがわかる。   It can be seen that the specific surface area is reduced by coating the nanosilicon agglomerated particles with the carbon layer.

この灰色粉末に対して、CuKα線を用いたX線回折測定(XRD測定)を行った。その結果、灰色粉末にはアセチレンブラックに存在する2θ=26°のピーク(結晶性炭素ピーク)が認められず、灰色粉末に含まれる炭素は非晶質であることがわかった。また半値幅から、灰色粉末中のSiの粒径は10nm以下であることもわかった。   X-ray diffraction measurement (XRD measurement) using CuKα rays was performed on the gray powder. As a result, the gray powder had no 2θ = 26 ° peak (crystalline carbon peak) present in acetylene black, indicating that the carbon contained in the gray powder was amorphous. From the half-width, it was also found that the particle size of Si in the gray powder was 10 nm or less.

<リチウムイオン二次電池の調製>
得られた灰色粉末45質量部と、天然黒鉛粉末40質量部と、アセチレンブラック5質量部と、上記で得られたポリアクリル酸−塩基性酢酸銅化合物のNMP溶液10質量部とを混合してスラリーを調製した。このスラリーを、厚さ約20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空乾燥し、負極活物質層の厚さが16μmの負極を形成した。
<Preparation of lithium ion secondary battery>
45 parts by mass of the obtained gray powder, 40 parts by mass of natural graphite powder, 5 parts by mass of acetylene black, and 10 parts by mass of the NMP solution of the polyacrylic acid-basic copper acetate compound obtained above were mixed. A slurry was prepared. This slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of about 20 μm using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely joined by a roll press. This was vacuum-dried at 100 ° C. for 2 hours to form a negative electrode having a negative electrode active material layer thickness of 16 μm.

上記の手順で作製した負極を評価極として用い、リチウムイオン二次電池(ハーフセル)を作製した。対極は金属リチウム箔(厚さ500μm)とした。   A lithium ion secondary battery (half cell) was produced using the negative electrode produced by the above procedure as an evaluation electrode. The counter electrode was a metal lithium foil (thickness 500 μm).

対極をφ13mm、評価極をφ11mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルター及びCelgard社製「Celgard2400」)を両者の間に介装して電極体電池とした。この電極体電池を電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した非水電解液を注入し、電池ケースを密閉してリチウムイオン二次電池を得た。   The counter electrode was cut to φ13 mm and the evaluation electrode was cut to φ11 mm, and a separator (Hoechst Celanese glass filter and Celgard “Celgard2400”) was interposed between them to form an electrode body battery. This electrode body battery was accommodated in a battery case (CR2032 type coin battery member, manufactured by Hosen Co., Ltd.). In the battery case, a nonaqueous electrolyte solution in which LiPF6 is dissolved at a concentration of 1M is injected into a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1 (volume ratio). The next battery was obtained.

<バインダーの調製>
酢酸銅2gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液20mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で3時間乾燥して水酸化銅(化4式参照)の粉末1.5gを得た。この粉末の色調は、実施例1の塩基性酢酸銅粉末より緑がかった青色であった。
<Preparation of binder>
2 g of copper acetate was dissolved in 20 ml of pure water, and 20 ml of 0.5N NaOH aqueous solution was added dropwise with stirring. After the entire amount is dropped, the mixture is stirred for 2 hours. The deposited precipitate is filtered off, washed twice with 10 ml of pure water, rinsed with 10 ml of acetone, and dried under vacuum for 3 hours to obtain a powder of copper hydroxide (see Formula 4). 1.5g was obtained. The color tone of this powder was greener blue than the basic copper acetate powder of Example 1.

次に、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の水酸化銅粉末1mgをさらに溶解させ、撹拌しながら60℃で反応させ、化5式に示すポリアクリル酸−銅反応物のNMP溶液を調製した。ポリアクリル酸−銅反応物では、ポリアクリル酸の二分子が銅(Cu)によって架橋された構造となっていると考えられる。   Next, 0.8 g of the same polyacrylic acid as in Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above-mentioned copper hydroxide powder was further dissolved in this solution and reacted at 60 ° C. with stirring to prepare an NMP solution of a polyacrylic acid-copper reactant represented by Chemical Formula 5. The polyacrylic acid-copper reaction product is considered to have a structure in which two molecules of polyacrylic acid are crosslinked by copper (Cu).

<リチウムイオン二次電池の調製>
ポリアクリル酸−塩基性酢酸銅反応物のNMP溶液に代えてポリアクリル酸−銅反応物のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
<Preparation of lithium ion secondary battery>
A lithium ion secondary battery was obtained in the same manner as Example 1 except that the same amount of the NMP solution of the polyacrylic acid-copper reactant was used instead of the NMP solution of the polyacrylic acid-basic copper acetate reactant. .

<バインダーの調製>
酢酸ニッケル2.1gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液10mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で12時間乾燥して塩基性酢酸ニッケル[Ni(OH)(OOCCH3)]の粉末1.2gを得た。
<Preparation of binder>
Nickel acetate (2.1 g) was dissolved in pure water (20 ml), and 0.5 N NaOH aqueous solution (10 ml) was added dropwise with stirring. After the total amount was dropped, the mixture was stirred for 2 hours, and the deposited precipitate was filtered off, washed twice with 10 ml of pure water, rinsed with 10 ml of acetone, dried under vacuum for 12 hours, and basic nickel acetate [Ni (OH) (OOCCH3 )] Powder 1.2 g was obtained.

次に、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の塩基性酢酸ニッケル粉末1mgをさらに溶解させ、撹拌しながら60℃で3時間保持して反応させ、化6式に示すポリアクリル酸−塩基性酢酸ニッケル反応物のNMP溶液を調製した。   Next, 0.8 g of the same polyacrylic acid as in Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above basic nickel acetate powder was further dissolved in this solution, and the mixture was allowed to react at 60 ° C. for 3 hours while stirring to prepare an NMP solution of the polyacrylic acid-basic nickel acetate reactant shown in Chemical Formula 6. did.

<リチウムイオン二次電池の調製>
ポリアクリル酸−塩基性酢酸銅反応物のNMP溶液に代えてポリアクリル酸−塩基性酢酸ニッケル反応物のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
<Preparation of lithium ion secondary battery>
A lithium ion secondary battery was carried out in the same manner as in Example 1 except that the same amount of the NMP solution of the polyacrylic acid-basic nickel acetate reactant was used instead of the NMP solution of the polyacrylic acid-basic copper acetate reactant. Got.

[比較例1]
ポリアクリル酸−塩基性酢酸銅化合物のNMP溶液に代えて、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させたポリアクリル酸のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[Comparative Example 1]
Instead of NMP solution of polyacrylic acid-basic copper acetate compound, NMP of polyacrylic acid prepared by dissolving 0.8 g of polyacrylic acid similar to Example 1 in 9.2 g of N-methyl-2-pyrrolidone (NMP) A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the same amount of the solution was used.

<電池特性試験1>
実施例1〜3及び比較例1のリチウムイオン二次電池について、温度25℃、電流0.2mAの条件で充電した際の初期の充電容量を測定し、結果を表2に示す。また電流0.2mAの条件で放電させた際の初期の放電容量を測定し、結果を表2に示す。さらに初期効率(初期充電容量/初期放電容量)を算出し、結果を表2に示す。
<Battery characteristics test 1>
The lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 were measured for the initial charge capacity when charged under conditions of a temperature of 25 ° C. and a current of 0.2 mA, and the results are shown in Table 2. In addition, the initial discharge capacity when discharged under the condition of current 0.2 mA was measured, and the results are shown in Table 2. Further, the initial efficiency (initial charge capacity / initial discharge capacity) was calculated, and the results are shown in Table 2.

また、実施例1〜3及び比較例1のリチウムイオン二次電池を用い、温度25℃、電流0.2mAの条件下において1Vまで充電し、10分間休止した後、電流0.2mAの条件で0.01Vまで放電し、10分間休止するサイクルを10サイクル繰り返すサイクル試験を行った。そして1サイクル目の充電容量に対する10サイクル目の充電容量の割合である容量維持率と、10サイクル後の充電容量に対する10サイクル後の放電容量の割合であるクーロン効率を測定し、結果を表2に示す。   Also, using the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1, charging to 1V under the conditions of a temperature of 25 ° C. and a current of 0.2 mA, and resting for 10 minutes, then 0.01V under the conditions of a current of 0.2 mA A cycle test was performed in which the cycle of discharging to 10 minutes and stopping for 10 minutes was repeated. Then, the capacity maintenance ratio, which is the ratio of the charge capacity of the 10th cycle to the charge capacity of the first cycle, and the coulomb efficiency, which is the ratio of the discharge capacity after 10 cycles to the charge capacity after 10 cycles, were measured, and the results are shown in Table 2. Shown in

実施例1〜3のリチウムイオン二次電池は、いずれも比較例1に比べて初期効率が向上している。これは、銅又はニッケルの価数変化によって電子の授受が効率よく行われたためと考えられる。また実施例2のリチウムイオン二次電池は、初期効率が最も高いものの、他の電池特性が低い。これは、化5式に示されるように、ポリアクリル酸の主鎖どうしが銅によって架橋しているために、凝集が生じてバインダーの偏在が起こったためと考えられる。したがってサイクル特性を重視した場合には、本発明のバインダーの製造に用いる金属元素の化合物としては、水酸化物より塩基性酢酸塩の方が好ましく、側鎖の末端にアシル基を有するものが好ましい。   The lithium ion secondary batteries of Examples 1 to 3 all have improved initial efficiency as compared with Comparative Example 1. This is thought to be due to the efficient transfer of electrons due to the change in the valence of copper or nickel. Further, the lithium ion secondary battery of Example 2 has the highest initial efficiency, but other battery characteristics are low. This is probably because the polyacrylic acid main chains are cross-linked by copper as shown in the chemical formula (5), so that aggregation occurs and the binder is unevenly distributed. Therefore, when the cycle characteristics are regarded as important, the compound of the metal element used for the production of the binder of the present invention is preferably a basic acetate rather than a hydroxide, and preferably has an acyl group at the end of the side chain. .

本発明のリチウムイオン二次電池負極は、リチウムイオン二次電池、リチウムイオンキャパシタなどに利用できる。また本発明のリチウムイオン二次電池は、電気自動車やハイブリッド自動車のモータ駆動用、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器などに利用される非水系二次電池として有用であり、特に、大容量、大出力が必要な電気自動車やハイブリッド自動車のモータ駆動用に好適に用いることができる。 Lithium-ion secondary battery negative electrode of the present invention can be used lithium-ion secondary batteries, such as lithium ion capacitor. Further, the lithium ion secondary battery of the present invention is useful as a non-aqueous secondary battery used for motor driving of electric vehicles and hybrid vehicles, personal computers, portable communication devices, home appliances, office equipment, industrial equipment, etc. In particular, it can be suitably used for driving a motor of an electric vehicle or a hybrid vehicle that requires a large capacity and a large output.

Claims (8)

ポリアクリル酸と、塩基性酢酸銅、塩基性酢酸ニッケル又は水酸化銅から選ばれる少なくとも一種の金属化合物と、の反応物からなることを特徴とするリチウムイオン二次電池負極用バインダー。   A binder for a negative electrode of a lithium ion secondary battery, comprising a reaction product of polyacrylic acid and at least one metal compound selected from basic copper acetate, basic nickel acetate, or copper hydroxide. 前記反応物は側鎖の末端にアシル基を有する請求項1に記載のリチウムイオン二次電池負極用バインダー。   2. The binder for a lithium ion secondary battery negative electrode according to claim 1, wherein the reactant has an acyl group at the end of the side chain. 前記金属化合物の金属元素は前記ポリアクリル酸100質量部に対して0.01〜10質量部含まれている請求項1又は請求項2に記載のリチウムイオン二次電池負極用バインダー。 3. The binder for a lithium ion secondary battery negative electrode according to claim 1, wherein the metal element of the metal compound is contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyacrylic acid . 集電体と、該集電体の表面に形成された負極活物質層と、からなり、該負極活物質層は、負極活物質と、請求項1〜3のいずれかに記載のバインダーと、を含むことを特徴とするリチウムイオン二次電池負極。   A current collector and a negative electrode active material layer formed on the surface of the current collector, the negative electrode active material layer comprising a negative electrode active material and the binder according to any one of claims 1 to 3, A lithium ion secondary battery negative electrode comprising: 前記負極活物質は、ケイ素原子で構成された六員環が複数連なった構造をなし組成式(SiH)nで示される層状ポリシランを熱処理することで製造されたナノシリコンからなる凝集粒子である請求項4に記載のリチウムイオン二次電池負極。 The negative electrode active material is an agglomerated particle composed of nanosilicon produced by heat-treating a layered polysilane represented by a composition formula (SiH) n having a structure in which a plurality of six-membered rings composed of silicon atoms are connected. Item 5. The negative electrode of the lithium ion secondary battery according to Item 4. 非晶質の炭素からなり前記凝集粒子の少なくとも一部を覆って複合化された炭素層を有する請求項5に記載のリチウムイオン二次電池負極。   6. The negative electrode of a lithium ion secondary battery according to claim 5, comprising a carbon layer made of amorphous carbon and composited so as to cover at least a part of the aggregated particles. ケイ素と炭素との組成比は重量比でSi/C=3/1〜20/1である請求項6に記載のリチウムイオン二次電池負極。   7. The lithium ion secondary battery negative electrode according to claim 6, wherein the composition ratio of silicon and carbon is Si / C = 3/1 to 20/1 by weight. 請求項4〜7のいずれかに記載のリチウムイオン二次電池負極を有することを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the lithium ion secondary battery negative electrode according to any one of claims 4 to 7.
JP2013086702A 2013-04-17 2013-04-17 Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery Active JP5725075B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013086702A JP5725075B2 (en) 2013-04-17 2013-04-17 Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
PCT/JP2014/001210 WO2014171053A1 (en) 2013-04-17 2014-03-05 Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086702A JP5725075B2 (en) 2013-04-17 2013-04-17 Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014211977A JP2014211977A (en) 2014-11-13
JP5725075B2 true JP5725075B2 (en) 2015-05-27

Family

ID=51731020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086702A Active JP5725075B2 (en) 2013-04-17 2013-04-17 Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5725075B2 (en)
WO (1) WO2014171053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994723A (en) * 2019-04-04 2019-07-09 常州大学 A kind of SiOxThe preparation method of-G/PAA-PANi/Cu composite material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084224A1 (en) * 2014-11-28 2016-06-02 株式会社日立製作所 Supramolecular structure of acrylic acid, and lithium ion battery obtained using same
JP6625646B2 (en) * 2014-12-23 2019-12-25 ユミコア Powders, electrodes and batteries containing such powders
EP4020625A1 (en) * 2014-12-23 2022-06-29 Umicore Powder, electrode and battery comprising such a powder
WO2017175518A1 (en) * 2016-04-06 2017-10-12 株式会社豊田自動織機 Method for manufacturing silicon material
CN109686981B (en) * 2018-12-25 2021-03-02 河南电池研究院有限公司 Composite binder applied to lithium-sulfur battery and preparation method thereof
CN117059876A (en) * 2019-12-25 2023-11-14 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5141011B2 (en) * 2006-12-27 2013-02-13 Jsr株式会社 Battery electrode binder composition, battery electrode paste, and battery electrode
JP5617457B2 (en) * 2010-09-08 2014-11-05 株式会社豊田中央研究所 Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
JP5557793B2 (en) * 2011-04-27 2014-07-23 株式会社日立製作所 Nonaqueous electrolyte secondary battery
JP5843891B2 (en) * 2012-02-06 2016-01-13 株式会社豊田自動織機 Polymer, method for producing the same, and power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994723A (en) * 2019-04-04 2019-07-09 常州大学 A kind of SiOxThe preparation method of-G/PAA-PANi/Cu composite material
CN109994723B (en) * 2019-04-04 2022-01-04 常州大学 SiO (silicon dioxide)xPreparation method of-G/PAA-PANI/Cu composite material

Also Published As

Publication number Publication date
JP2014211977A (en) 2014-11-13
WO2014171053A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
KR101451801B1 (en) Anode active material, method of preparing the same, anode and lithium battery containing the material
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
JP6673331B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5494712B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and vehicle
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
JP6288257B2 (en) Nanosilicon material, method for producing the same, and negative electrode of secondary battery
CN105849947B (en) Negative electrode active material, method for producing same, and electricity storage device
US10164255B2 (en) Silicon material and negative electrode of secondary battery
JP6534835B2 (en) Power storage device provided with negative electrode active material layer and negative electrode active material layer
JP6384596B2 (en) Anode materials for lithium-ion batteries
JP5858297B2 (en) Negative electrode active material and power storage device
JP2012156087A (en) Nonaqueous electrolyte secondary battery
JP6926873B2 (en) Al and O-containing silicon material
JP6065678B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP5534368B2 (en) Negative electrode active material and power storage device
JP2017027772A (en) Lithium ion secondary battery and method for manufacturing the same
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
US10217990B2 (en) Silicon material and negative electrode of secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP5737447B2 (en) Copper-containing layered polysilane, negative electrode active material, and power storage device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R151 Written notification of patent or utility model registration

Ref document number: 5725075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151