WO2014171053A1 - Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery - Google Patents

Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
WO2014171053A1
WO2014171053A1 PCT/JP2014/001210 JP2014001210W WO2014171053A1 WO 2014171053 A1 WO2014171053 A1 WO 2014171053A1 JP 2014001210 W JP2014001210 W JP 2014001210W WO 2014171053 A1 WO2014171053 A1 WO 2014171053A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
binder
active material
electrode active
Prior art date
Application number
PCT/JP2014/001210
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 杉山
加代子 湯川
敬史 毛利
合田 信弘
村瀬 正和
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014171053A1 publication Critical patent/WO2014171053A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a binder for a negative electrode used for a secondary battery such as a lithium ion secondary battery, a secondary battery negative electrode, and a lithium ion secondary battery.
  • the lithium ion secondary battery is a secondary battery that has a high charge / discharge capacity and can achieve high output. Currently, it is mainly used as a power source for portable electronic devices, and is further expected as a power source for electric vehicles expected to be widely used in the future.
  • a lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) on a positive electrode and a negative electrode, respectively. Then, it operates by moving lithium ions in the electrolytic solution provided between both electrodes.
  • lithium-containing metal complex oxides such as lithium cobalt complex oxide are mainly used as the active material of the positive electrode, and carbon materials having a multilayer structure are mainly used as the active material of the negative electrode There is.
  • the performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode and the electrolyte that constitute the secondary battery. Above all, research and development of active material materials that form active materials are actively conducted. For example, silicon or silicon oxide having a higher capacity than carbon is being studied as a negative electrode active material.
  • silicon As the negative electrode active material, a battery with a higher capacity than using a carbon material can be obtained.
  • silicon has a large volume change associated with absorption and release of Li during charge and discharge.
  • silicon itself is pulverized by repeating occluding and releasing. Therefore, there is a problem that silicon is pulverized and is separated or separated from the current collector, and the charge and discharge cycle life of the battery is short. In order to address this problem, it has been studied to suppress the volume change associated with the storage and release of Li during charge and discharge by using silicon oxide as the negative electrode active material.
  • SiO x silicon oxide
  • x is about 0.5 ⁇ x ⁇ 1.5
  • disproportionation reaction a reaction that segregates Si in SiO 2 in particles. This is called disproportionation reaction, and it is separated into two phases of Si phase and SiO 2 phase by internal reaction of solid.
  • the Si phase obtained by separation is very fine.
  • the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a secondary battery using a negative electrode active material composed of SiO x decomposed into Si and SiO 2 is excellent in cycle characteristics.
  • Patent Document 1 describes a method of heating and subliming metal silicon and SiO 2 into silicon oxide gas and cooling it to produce SiO x . According to this method, the particle size of silicon particles constituting the Si phase can be made into nanosize of 1 to 5 nm.
  • JP-A 2009-102219 decomposes a silicon raw material into an elemental state in high temperature plasma, and rapidly cools it to liquid nitrogen temperature to obtain silicon nanoparticles, and then this silicon nanoparticles are A manufacturing method of fixing in a SiO 2 -TiO 2 matrix by a sol-gel method or the like is described.
  • the matrix is limited to a sublimable material. Therefore, since the matrix is limited to SiO 2 , the matrix and lithium react irreversibly at the time of lithium storage. Such a reaction is a major cause of cell capacity reduction. Further, the manufacturing method described in Patent Document 2 requires high energy for plasma discharge. Furthermore, in the silicon composite obtained by these manufacturing methods, there is a problem that the dispersibility of silicon particles in the Si phase is low and aggregation is easy. When the Si particles aggregate and the particle size becomes large, the secondary battery using it as the negative electrode active material has a low initial capacity, and the cycle characteristics also deteriorate.
  • Non-patent Document 1 describes a method of synthesizing layered polysilane by reacting hydrogen chloride (HCl) and calcium disilicide (CaSi 2 ).
  • HCl hydrogen chloride
  • CaSi 2 calcium disilicide
  • Patent Document 3 describes a lithium ion secondary battery using layered polysilane as a negative electrode active material.
  • the negative electrode active material composed of layered polysilane described in Patent Document 3 has a problem that it is not preferable as a negative electrode active material for a secondary battery because the BET specific surface area is large.
  • the BET specific surface area is large, the irreversible capacity consumed by the negative electrode is increased to accelerate the decomposition of the electrolytic solution, and it is difficult to achieve high capacity.
  • SEI is likely to occur and the cycle characteristics are low.
  • the layered polysilane described in Patent Document 3 is fired in a non-oxidizing atmosphere. According to this method, nanosilicon having a crystallite size of several nm can be obtained, so it is suitable as a negative electrode active material.
  • a lithium ion secondary battery using nanosilicon manufactured by this method as a negative electrode active material has a problem that the initial efficiency is low and the capacity retention rate after the cycle test is low.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to solve this problem by improving the binder of the negative electrode.
  • the feature of the binder for a secondary battery negative electrode according to the present invention for solving the above problems is a polymer having a carboxyl group in at least a part of side chains, and at least one selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of a reaction product of a compound of one kind of metal element.
  • the feature of the secondary battery negative electrode of the present invention comprises a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer comprises a negative electrode active material and a binder of the present invention And to include.
  • the binder for a secondary battery negative electrode according to the present invention comprises a polymer having a carboxyl group at least in part of a side chain, and a compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of the reaction product of.
  • a metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of the reaction product of.
  • Example 3 is a SEM image of the gray powder prepared in Example 1.
  • the binder for a secondary battery negative electrode according to the present invention comprises a polymer having a carboxyl group at least in part of a side chain, and a compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of the reaction product of.
  • a polymer which has a carboxyl group in at least one part side chain polyacrylic acid, polymethacrylic acid, polyaspartic acid, polyglutamic acid etc. are illustrated.
  • examples of compounds of metal elements selected from copper (Cu), nickel (Ni) and cobalt (Co) include acetates, nitrates, chlorides, fluorides, hydroxides and the like of the respective metal elements.
  • the compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) is contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer having a carboxyl group in at least a part of side chains. Is desirable.
  • the compound of the metal element is less than 0.01 parts by mass, it is difficult to exhibit the effect of containing the metal element, and when the compound of the metal element exceeds 10 parts by mass, the viscosity of the reactant of the polymer and the metal element becomes too high. It becomes difficult to prepare a slurry for forming the active material layer.
  • a salt compound, a complex compound, etc. are illustrated as a reaction product of the said polymer and the compound of the said metallic element.
  • a method of mixing both and heating a method of dissolving both the polymer and the compound of the metal element in a soluble solvent and heating Can be used.
  • a method of heating in a state in which both are mixed in a liquid state as in the latter method.
  • the binder for a secondary battery negative electrode of the present invention can be used together with known negative electrode active materials such as graphite, hard carbon, silicon, carbon fiber, tin (Sn), silicon oxide and the like.
  • known negative electrode active materials such as graphite, hard carbon, silicon, carbon fiber, tin (Sn), silicon oxide and the like.
  • silicon oxides represented by SiO x (0.3 ⁇ x ⁇ 1.6) or nanosilicon obtained by firing the layered polysilane described in Non-Patent Document 1 and Patent Document 3 is particularly preferable preferable.
  • Layered polysilanes can be obtained by reacting calcium disilicide (CaSi 2 ) with an acid, such as an aqueous solution of hydrogen chloride (HCl).
  • CaSi 2 calcium disilicide
  • HCl hydrogen chloride
  • CaSi 2 forms a layered crystal in which a Ca atomic layer is inserted between the (111) faces of diamond-shaped Si, and layered polysilane by extracting calcium (Ca) in reaction with an acid. Is obtained.
  • a mixture of hydrogen fluoride (HF) aqueous solution and hydrogen chloride (HCl) aqueous solution can be used as the acid.
  • the molar ratio of hydrogen chloride (HCl) is 100
  • the molar ratio of hydrogen fluoride (HF) is preferably 100 or less.
  • impurities such as CaF 2 and CaSiO are generated, and it is difficult to separate the impurities from the layered polysilane, which is not preferable.
  • the reaction ratio between the acid and calcium disilicide (CaSi 2 ) is preferably in excess of the acid. Moreover, it is preferable to carry out reaction atmosphere under inert gas atmosphere.
  • the reaction time and reaction temperature are not particularly limited, but the reaction temperature is usually 0 ° C. to 100 ° C., and the reaction time is 0.25 to 24 hours.
  • the nanosilicon obtained by the above reaction is aggregated to form aggregated particles. Therefore, pulverization of aggregated particles occurs due to repeated expansion and contraction at the time of charge and discharge as a power storage device, and there is a problem that the specific surface area is increased and the cycle characteristics are deteriorated due to the generation of SEI.
  • a negative electrode active material which is composed of agglomerated particles made of nanosilicon and a carbon layer composed of amorphous carbon and covering at least a part of the agglomerated particles to form a composite.
  • the carbon layer made of amorphous carbon covers at least a part of the aggregated particles. This carbon layer exerts an effect of reinforcing the agglomerated particles.
  • a conductive support agent such as graphite, acetylene black and ketjen black may be used for the negative electrode, these carbons are crystalline and not amorphous.
  • the thickness of the composite carbon layer covering the nanosilicon aggregate is preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 50 nm.
  • the thickness of the carbon layer is too thin, it is difficult to express the effect, and when the carbon layer is too thick, the initial capacity decreases.
  • the manufacturing method includes an aggregation particle forming step of forming a structure in which a plurality of six-membered rings composed of silicon atoms are continuous and heat treating a layered polysilane represented by a composition formula (SiH) n to obtain aggregated particles of nanosilicon; It is desirable to carry out in this order the polymerization step of polymerizing the aromatic heterocyclic compound in the state where the particles and the aromatic heterocyclic compound are mixed, and the carbonization step of carbonizing the polymer of the aromatic heterocyclic compound .
  • the process of forming the agglomerated particles of nanosilicon is as described above.
  • aromatic heterocyclic compounds include five-membered aromatic heterocyclic compounds such as furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, and isothiazole, and polycyclic compounds such as indole, benzimidazole and benzofuran Polymerizable compounds such as aromatic heterocyclic compounds can be used.
  • polymerization methods can be employed to polymerize these compounds, in the case of pyrrole and the like, the method of heating in the presence of a polymerization catalyst such as concentrated hydrochloric acid or iron trichloride is convenient.
  • a polymerization catalyst such as concentrated hydrochloric acid or iron trichloride
  • polymerization can be performed in a non-water atmosphere and oxidation of Si can be suppressed, so that an effect of increasing the initial capacity when used as a power storage device is obtained.
  • the polymer of the aromatic heterocyclic compound is carbonized in a state of being mixed with the agglomerated particles of nanosilicon.
  • heat treatment may be performed at a temperature of 100 ° C. or more in an inert atmosphere, preferably heat treatment at 400 ° C. or more. Since the aromatic heterocyclic compound is a polymer, carbonization proceeds without being evaporated even when heated, and a complex in which a carbon layer made of amorphous carbon is bonded to the surface of the agglomerated particle of nanosilicon Is obtained.
  • the aromatic heterocyclic compound is evaporated and carbonization is difficult.
  • the secondary battery negative electrode of the present invention comprises a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer comprises a negative electrode active material and a binder of the present invention. Including.
  • a current collector is a chemically inert electron conductor for keeping current flowing to an electrode during discharge or charge.
  • the current collector may be in the form of a foil, a plate or the like, but is not particularly limited as long as it has a shape according to the purpose.
  • copper foil or aluminum foil can be suitably used as the current collector.
  • the negative electrode active material is as described above.
  • a negative electrode active material powder a negative electrode active material powder, a conductive additive such as carbon powder, the binder of the present invention, and an appropriate amount of organic solvent are added and mixed
  • the slurry can be prepared by applying the slurry onto the current collector by a method such as roll coating, dip coating, doctor blade method, spray coating, curtain coating or the like, and drying or curing the binder. .
  • the binder is required to bind the active material and the like in a small amount as much as possible, but the addition amount thereof is preferably 0.5 wt% to 50 wt% of the total of the active material, the conductive additive and the binder. If the binder is less than 0.5 wt%, the formability of the electrode is reduced, and if it exceeds 50 wt%, the energy density of the electrode is reduced.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamide imide
  • CMC Carboxymethylcellulose
  • PMA methacrylic resin
  • PAN polyacrylonitrile
  • PPO polyethylene oxide
  • PE polyethylene
  • PP polypropylene
  • PAA polyacrylic An acid
  • a conductive aid is added to enhance the conductivity of the electrode.
  • carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), etc. may be used alone or in combination.
  • the use amount of the conductive aid is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material. If the amount of the conductive additive is less than 20 parts by mass, efficient conductive paths can not be formed, and if it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered.
  • N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone and ester solvents ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate etc.
  • glyme solvents diglyme, triglyme, tetraglyme etc.
  • the negative electrode can also be pre-doped with lithium.
  • the negative electrode with lithium for example, an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used.
  • the doping amount of lithium is not particularly limited.
  • the positive electrode may be one that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid.
  • the positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
  • the positive electrode active material examples include metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , sulfur and the like.
  • the current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like.
  • the conductive additive the same one as described in the above-mentioned negative electrode can be used.
  • the electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent.
  • the electrolyte is not particularly limited.
  • an organic solvent use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc.
  • a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
  • lithium metal salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate or the like at a concentration of about 0.5 mol / L to 1.7 mol / L A dissolved solution can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape thereof is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • a polyacrylic acid (see Formula 2) having a number average molecular weight of 500,000 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • 1 mg of the above-mentioned basic copper acetate powder is further dissolved in this solution, and kept at 60 ° C. for 3 hours while stirring for reaction to prepare an NMP solution of polyacrylic acid-basic copper acetate reactant shown in Formula 3. did.
  • NMP N-methyl-2-pyrrolidone
  • polyacrylic acid-basic copper acetate reactant it is considered that basic copper acetate is bound to the carboxyl group of a part of the side chain of polyacrylic acid and has an acetyl group at its terminal.
  • the resulting mixed solution was filtered and the residue was washed with 10 ml of distilled water and then with 10 ml of ethanol and dried under vacuum to obtain 5.5 g of layered polysilane.
  • the layered polysilane was heat-treated at 500 ° C. for 1 hour in an argon gas with 1% by volume or less of O 2 to obtain a powder of nanosilicon agglomerated particles.
  • the powder was subjected to X-ray diffraction measurement (XRD measurement) using a CuK ⁇ ray. According to XRD measurement, a halo considered to be derived from Si fine particles was observed.
  • the Si fine particles had a crystal grain size of about 7 nm calculated from Scherrer's equation from the half value width of the diffraction peak on the (111) plane as a result of X-ray diffraction measurement.
  • the SEM photograph of the obtained gray powder is shown in FIG. From FIG. 1, a composite structure is confirmed in which nanosilicon aggregate particles in the ⁇ m order are wrapped in a carbon layer with a maximum thickness of about 200 nm.
  • Table 1 also shows the results of measurement of the specific surface areas of the gray powder and the nanosilicon powder used for producing the gray powder by the BET method.
  • a slurry was prepared.
  • the slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of about 20 ⁇ m using a doctor blade to form a negative electrode active material layer on the copper foil.
  • the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum dried at 100 ° C. for 2 hours to form a negative electrode having a thickness of 16 ⁇ m of the negative electrode active material layer.
  • a lithium ion secondary battery (half cell) was produced using the negative electrode produced according to the above procedure as an evaluation electrode.
  • the counter electrode was a metal lithium foil (thickness 500 ⁇ m).
  • the counter electrode was cut into a diameter of 13 mm, and the evaluation electrode was cut into a diameter of 11 mm, and a separator (a glass filter made by Hoechst Celanese and "Celgard 2400" made by Celgard) was interposed therebetween to obtain an electrode body battery.
  • the electrode battery was housed in a battery case (CR2032 type coin battery member, manufactured by Takasen Co., Ltd.).
  • a non-aqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at 1: 1 (volume ratio) is injected, and the battery case is sealed to make lithium ion. I got a secondary battery.
  • polyacrylic acid-copper reactant represented by Chemical Formula 5.
  • the polyacrylic acid-copper reactant is considered to have a structure in which two molecules of polyacrylic acid are crosslinked by copper (Cu).
  • a lithium ion secondary battery was obtained in the same manner as Example 1, except that the NMP solution of the polyacrylic acid-basic copper acetate reactant was replaced with the same amount of the NMP solution of the polyacrylic acid-copper reactant. .
  • Example 2 0.8 g of polyacrylic acid as in Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above-mentioned basic nickel acetate powder is further dissolved in this solution, and the mixture is reacted while maintaining it at 60 ° C. for 3 hours while stirring to prepare an NMP solution of polyacrylic acid-basic nickel acetate reactant shown in Formula 6 did.
  • NMP N-methyl-2-pyrrolidone
  • a lithium ion secondary battery is prepared in the same manner as in Example 1, except that the NMP solution of the polyacrylic acid-basic copper acetate reactant is replaced with the same amount of the NMP solution of the polyacrylic acid-basic nickel acetate reactant. I got Comparative Example 1
  • NMP N-methyl-2-pyrrolidone
  • the initial charge capacity when charged under the conditions of a temperature of 25 ° C. and a current of 0.2 mA was measured, and the results are shown in Table 2.
  • the initial discharge capacity at the time of discharging at a current of 0.2 mA was measured, and the results are shown in Table 2.
  • the initial efficiency (initial charge capacity / initial discharge capacity) was calculated, and the results are shown in Table 2.
  • the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 are charged to 1 V under conditions of a temperature of 25 ° C. and a current of 0.2 mA, and after rest for 10 minutes, 0.01 V under the conditions of 0.2 mA of current A cycle test was performed by repeating the cycle of 10 cycles of discharging to 10 minutes and stopping for 10 minutes. Then, the capacity maintenance ratio, which is the ratio of the charge capacity at the 10th cycle to the charge capacity at the first cycle, and the coulombic efficiency, which is the ratio of the discharge capacity after 10 cycles to the charge capacity after 10 cycles, are measured. Shown in.
  • the lithium ion secondary batteries of Examples 1 to 3 all have an improved initial efficiency compared to Comparative Example 1. This is considered to be due to the efficient transfer of electrons due to the change in valence of copper or nickel. Moreover, although the lithium ion secondary battery of Example 2 has the highest initial efficiency, other battery characteristics are low. This is considered to be due to the occurrence of aggregation and the uneven distribution of the binder because the main chains of the polyacrylic acid are cross-linked by copper as shown in Formula 5. Therefore, when importance is placed on the cycle characteristics, as the compound of the metal element used for producing the binder of the present invention, basic acetate is more preferable than hydroxide, and one having an acyl group at the end of the side chain is preferable. .
  • the secondary battery negative electrode of the present invention can be used for a secondary battery, an electric double layer capacitor, a lithium ion capacitor, and the like.
  • the lithium ion secondary battery of the present invention is useful as a non-aqueous secondary battery used for driving motors of electric vehicles and hybrid vehicles, personal computers, portable communication devices, home appliances, office devices, industrial devices, etc. In particular, it can be suitably used for driving a motor of an electric car or a hybrid car that requires a large capacity and a large output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

A binder which is composed of a reaction product between a polymer that has a carboxyl group in at least some side chains and a compound of a metal element that is selected from among copper (Cu), nickel (Ni) and cobalt (Co) is used together with a negative electrode active material for the formation of a negative electrode active material layer. By using this binder, the initial efficiency and the capacity retention rate after a cycle test of a secondary battery are improved.

Description

二次電池負極用バインダーと二次電池負極及びリチウムイオン二次電池Binder for Secondary Battery Anode, Secondary Battery Anode, and Lithium Ion Secondary Battery
 本発明は、リチウムイオン二次電池などの二次電池に用いられる負極用のバインダーと二次電池負極及びリチウムイオン二次電池に関するものである。 The present invention relates to a binder for a negative electrode used for a secondary battery such as a lithium ion secondary battery, a secondary battery negative electrode, and a lithium ion secondary battery.
 リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極及び負極にそれぞれ有する。そして、両極間に設けられた電解液内をリチウムイオンが移動することによって動作する。 The lithium ion secondary battery is a secondary battery that has a high charge / discharge capacity and can achieve high output. Currently, it is mainly used as a power source for portable electronic devices, and is further expected as a power source for electric vehicles expected to be widely used in the future. A lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) on a positive electrode and a negative electrode, respectively. Then, it operates by moving lithium ions in the electrolytic solution provided between both electrodes.
 リチウムイオン二次電池には、正極の活物質として主にリチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が用いられ、負極の活物質としては多層構造を有する炭素材料が主に用いられている。リチウムイオン二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも活物質を形成する活物質材料の研究開発が活発に行われている。例えば負極活物質材料として炭素よりも高容量なケイ素またはケイ素酸化物が検討されている。 In lithium ion secondary batteries, lithium-containing metal complex oxides such as lithium cobalt complex oxide are mainly used as the active material of the positive electrode, and carbon materials having a multilayer structure are mainly used as the active material of the negative electrode There is. The performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode and the electrolyte that constitute the secondary battery. Above all, research and development of active material materials that form active materials are actively conducted. For example, silicon or silicon oxide having a higher capacity than carbon is being studied as a negative electrode active material.
 ケイ素を負極活物質として用いることにより、炭素材料を用いるよりも高容量の電池になりうる。しかしながらケイ素は、充放電時のLiの吸蔵・放出に伴う体積変化が大きい。また吸蔵・放出を繰り返すことで、ケイ素そのものが微粉化することがわかっている。そのためケイ素が微粉化して集電体から脱落または剥離し、電池の充放電サイクル寿命が短いという問題点がある。この問題に対して、ケイ素酸化物を負極活物質として用いることにより、ケイ素よりも充放電時のLiの吸蔵・放出に伴う体積変化を抑制する検討がなされている。 By using silicon as the negative electrode active material, a battery with a higher capacity than using a carbon material can be obtained. However, silicon has a large volume change associated with absorption and release of Li during charge and discharge. In addition, it is known that silicon itself is pulverized by repeating occluding and releasing. Therefore, there is a problem that silicon is pulverized and is separated or separated from the current collector, and the charge and discharge cycle life of the battery is short. In order to address this problem, it has been studied to suppress the volume change associated with the storage and release of Li during charge and discharge by using silicon oxide as the negative electrode active material.
 例えば、負極活物質として、酸化ケイ素(SiO:xは0.5≦x≦1.5程度)の使用が検討されている。SiOは熱処理されると、粒子内でSiがSiO内に偏析することが知られている。これは不均化反応といい、固体の内部反応によりSi相とSiO相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO相が電解液の分解を抑制する働きをもつ。したがって、SiとSiOとに分解したSiOからなる負極活物質を用いた二次電池は、サイクル特性に優れる。 For example, use of silicon oxide (SiO x : x is about 0.5 ≦ x ≦ 1.5) is being studied as a negative electrode active material. It is known that, when heat treated, SiO x segregates Si in SiO 2 in particles. This is called disproportionation reaction, and it is separated into two phases of Si phase and SiO 2 phase by internal reaction of solid. The Si phase obtained by separation is very fine. In addition, the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a secondary battery using a negative electrode active material composed of SiO x decomposed into Si and SiO 2 is excellent in cycle characteristics.
 上記したSiOのSi相を構成するシリコン粒子が微細であるほど、それを負極活物質として用いた二次電池はサイクル特性が向上する。そこで特許第3865033号(特許文献1)には、金属シリコンとSiOを加熱して昇華させて酸化珪素ガスとし、それを冷却してSiOを製造する方法が記載されている。この方法によれば、Si相を構成するシリコン粒子の粒径を1-5nmのナノサイズとすることができる。 As the silicon particles forming the Si phase of SiO x are finer, the cycle characteristics of the secondary battery using it as the negative electrode active material are improved. Thus, Japanese Patent No. 3865033 (Patent Document 1) describes a method of heating and subliming metal silicon and SiO 2 into silicon oxide gas and cooling it to produce SiO x . According to this method, the particle size of silicon particles constituting the Si phase can be made into nanosize of 1 to 5 nm.
 また特開2009-102219号公報(特許文献2)には、シリコン原料を高温のプラズマ中で元素状態まで分解し、それを液体窒素温度まで急冷してシリコンナノ粒子を得、このシリコンナノ粒子をゾルゲル法などでSiO-TiOマトリクス中に固定する製造方法が記載されている。 JP-A 2009-102219 (patent document 2) decomposes a silicon raw material into an elemental state in high temperature plasma, and rapidly cools it to liquid nitrogen temperature to obtain silicon nanoparticles, and then this silicon nanoparticles are A manufacturing method of fixing in a SiO 2 -TiO 2 matrix by a sol-gel method or the like is described.
 ところが特許文献1に記載の製造方法では、マトリクスが昇華性の材料に限られる。このため、マトリクスはSiOに限られるため、リチウム吸蔵時にマトリクスとリチウムが不可逆反応する。このような反応は、セル容量低下の主要因となる。また特許文献2に記載の製造方法では、プラズマ放電のために高いエネルギーが必要となる。さらにこれらの製造方法で得られたシリコン複合体では、Si相のシリコン粒子の分散性が低く凝集し易いという不具合がある。Si粒子どうしが凝集して粒径が大きくなると、それを負極活物質として用いた二次電池は初期容量が低く、サイクル特性も低下する。 However, in the manufacturing method described in Patent Document 1, the matrix is limited to a sublimable material. Therefore, since the matrix is limited to SiO 2 , the matrix and lithium react irreversibly at the time of lithium storage. Such a reaction is a major cause of cell capacity reduction. Further, the manufacturing method described in Patent Document 2 requires high energy for plasma discharge. Furthermore, in the silicon composite obtained by these manufacturing methods, there is a problem that the dispersibility of silicon particles in the Si phase is low and aggregation is easy. When the Si particles aggregate and the particle size becomes large, the secondary battery using it as the negative electrode active material has a low initial capacity, and the cycle characteristics also deteriorate.
 ところで近年、半導体、電気・電子等の各分野への利用が期待されるナノシリコン材料が開発されている。例えばPhysical Review B(1993),vol48,8172-8189(非特許文献1)には、塩化水素(HCl)と二ケイ化カルシウム(CaSi)とを反応させることで層状ポリシランを合成する方法が記載され、こうして得られる層状ポリシランは、発光素子などに利用できることが記載されている。この材料は昇華法やプラズマ放電ではない手法で製造できるため、不可逆容量や凝集による初期効率低下等の問題を解決できうる。 By the way, in recent years, nano silicon materials which are expected to be used in various fields such as semiconductors, electricity and electrons have been developed. For example, Physical Review B (1993), vol 48, 8172-8189 (Non-patent Document 1) describes a method of synthesizing layered polysilane by reacting hydrogen chloride (HCl) and calcium disilicide (CaSi 2 ). The layered polysilane thus obtained is described to be applicable to light emitting devices and the like. Since this material can be manufactured by a method other than sublimation method or plasma discharge, it is possible to solve problems such as irreversible capacity and initial efficiency decrease due to aggregation.
 そして特開2011-090806号公報(特許文献3)には、層状ポリシランを負極活物質として用いたリチウムイオン二次電池が記載されている。 And JP-A-2011-090806 (Patent Document 3) describes a lithium ion secondary battery using layered polysilane as a negative electrode active material.
特許第3865033号公報Patent No. 3865033 特開2009-102219号公報JP, 2009-102219, A 特開2011-090806号公報JP, 2011-090806, A
 ところが特許文献3に記載された層状ポリシランからなる負極活物質は、BET比表面積が大きいために、二次電池の負極活物質材料としては好ましくないという不具合があった。例えばリチウムイオン二次電池の負極においては、BET比表面積が大きいと、電解液の分解を促進させるために負極で消費される不可逆容量が大きくなり、高容量化が困難である。またSEIが生じやすく、サイクル特性が低いという問題がある。 However, the negative electrode active material composed of layered polysilane described in Patent Document 3 has a problem that it is not preferable as a negative electrode active material for a secondary battery because the BET specific surface area is large. For example, in the negative electrode of a lithium ion secondary battery, when the BET specific surface area is large, the irreversible capacity consumed by the negative electrode is increased to accelerate the decomposition of the electrolytic solution, and it is difficult to achieve high capacity. There is also a problem that SEI is likely to occur and the cycle characteristics are low.
 そこで特許文献3に記載された層状ポリシランを非酸化性雰囲気下で焼成することが想起された。この方法によれば、結晶子サイズが数nmのナノシリコンが得られるため、負極活物質として好適である。しかしながらこの方法で製造されたナノシリコンを負極活物質として用いたリチウムイオン二次電池は、初期効率が低くサイクル試験後の容量維持率が低いという不具合があった。 Therefore, it was recalled that the layered polysilane described in Patent Document 3 is fired in a non-oxidizing atmosphere. According to this method, nanosilicon having a crystallite size of several nm can be obtained, so it is suitable as a negative electrode active material. However, a lithium ion secondary battery using nanosilicon manufactured by this method as a negative electrode active material has a problem that the initial efficiency is low and the capacity retention rate after the cycle test is low.
 本発明はこのような事情に鑑みてなされたものであり、負極のバインダーを改良することでこの問題を解決することを目的とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to solve this problem by improving the binder of the negative electrode.
 上記課題を解決する本発明の二次電池負極用バインダーの特徴は、少なくとも一部の側鎖にカルボキシル基をもつポリマーと、銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる少なくとも一種の金属元素の化合物と、の反応物からなることにある。 The feature of the binder for a secondary battery negative electrode according to the present invention for solving the above problems is a polymer having a carboxyl group in at least a part of side chains, and at least one selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of a reaction product of a compound of one kind of metal element.
 そして本発明の二次電池負極の特徴は、集電体と、集電体の表面に形成された負極活物質層と、からなり、負極活物質層は、負極活物質と、本発明のバインダーと、を含むことにある。 And, the feature of the secondary battery negative electrode of the present invention comprises a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer comprises a negative electrode active material and a binder of the present invention And to include.
 本発明の二次電池負極用バインダーは、少なくとも一部の側鎖にカルボキシル基をもつポリマーと、銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる少なくとも一種の金属元素の化合物と、の反応物からなる。この金属元素を含むことで、通常のポリマーのみからなるバインダーに比べて導電性が向上するため、二次電池の初期効率が向上する。さらにこの金属元素は価数変化が可能であるので、充放電における電位変化に追従して電子の授受が生じ、本発明の負極を用いた二次電池は初期効率がさらに向上するとともにサイクル後の効率も向上する。 The binder for a secondary battery negative electrode according to the present invention comprises a polymer having a carboxyl group at least in part of a side chain, and a compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of the reaction product of. By containing this metal element, the conductivity is improved as compared with a binder consisting only of a normal polymer, and hence the initial efficiency of the secondary battery is improved. Furthermore, since this metal element can change its valence, transfer of electrons occurs following the potential change in charge and discharge, and the secondary battery using the negative electrode of the present invention has a further improved initial efficiency and a post cycle operation. Efficiency also improves.
実施例1で調製された灰色粉末のSEM像である。3 is a SEM image of the gray powder prepared in Example 1.
 本発明の二次電池負極用バインダーは、少なくとも一部の側鎖にカルボキシル基をもつポリマーと、銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる少なくとも一種の金属元素の化合物と、の反応物からなる。少なくとも一部の側鎖にカルボキシル基をもつポリマーとしては、ポリアクリル酸、ポリメタクリル酸、ポリアスパラギン酸、ポリグルタミン酸などが例示される。また銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる金属元素の化合物としては、各金属元素の酢酸塩、硝酸塩、塩化物、フッ化物、水酸化物などが例示される。 The binder for a secondary battery negative electrode according to the present invention comprises a polymer having a carboxyl group at least in part of a side chain, and a compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) It consists of the reaction product of. As a polymer which has a carboxyl group in at least one part side chain, polyacrylic acid, polymethacrylic acid, polyaspartic acid, polyglutamic acid etc. are illustrated. Further, examples of compounds of metal elements selected from copper (Cu), nickel (Ni) and cobalt (Co) include acetates, nitrates, chlorides, fluorides, hydroxides and the like of the respective metal elements.
 銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる少なくとも一種の金属元素の化合物は、少なくとも一部の側鎖にカルボキシル基をもつポリマー100質量部に対して0.01~10質量部含まれていることが望ましい。金属元素の化合物が0.01質量部より少ないと金属元素を含有させた効果の発現が困難となり、金属元素の化合物が10質量部を超えるとポリマーと金属元素の反応物の粘度が高くなりすぎて負極活物質層を形成するためのスラリーの調製が困難となる。 The compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co) is contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer having a carboxyl group in at least a part of side chains. Is desirable. When the compound of the metal element is less than 0.01 parts by mass, it is difficult to exhibit the effect of containing the metal element, and when the compound of the metal element exceeds 10 parts by mass, the viscosity of the reactant of the polymer and the metal element becomes too high. It becomes difficult to prepare a slurry for forming the active material layer.
 上記ポリマーと上記金属元素の化合物との反応物としては、塩化合物、錯化合物などが例示される。 A salt compound, a complex compound, etc. are illustrated as a reaction product of the said polymer and the compound of the said metallic element.
 上記ポリマーと上記金属元素の化合物とを反応させて反応物を得るには、両者を混合して加熱する方法、ポリマーと金属元素の化合物の両方を溶解可能な溶媒に溶解させて加熱する方法などを用いることができる。分子レベルで均一な反応物を得るためには、後者の方法のように両者が液状で混合された状態で加熱する方法が好ましい。 In order to react the above-mentioned polymer and the compound of the above-mentioned metal element to obtain a reaction product, a method of mixing both and heating, a method of dissolving both the polymer and the compound of the metal element in a soluble solvent and heating Can be used. In order to obtain a uniform reactant at the molecular level, it is preferable to use a method of heating in a state in which both are mixed in a liquid state as in the latter method.
 本発明の二次電池負極用バインダーは、グラファイト、ハードカーボン、ケイ素、炭素繊維、スズ(Sn)、酸化ケイ素など公知の負極活物質と共に用いることができる。負極活物質の中でも、SiO(0.3≦x≦1.6)で表されるケイ素酸化物、あるいは非特許文献1及び特許文献3に記載された層状ポリシランを焼成することで得られるナノシリコンなどが特に好ましい。 The binder for a secondary battery negative electrode of the present invention can be used together with known negative electrode active materials such as graphite, hard carbon, silicon, carbon fiber, tin (Sn), silicon oxide and the like. Among the negative electrode active materials, silicon oxides represented by SiO x (0.3 ≦ x ≦ 1.6) or nanosilicon obtained by firing the layered polysilane described in Non-Patent Document 1 and Patent Document 3 is particularly preferable preferable.
 本願発明者らは、非特許文献1及び特許文献3に記載された層状ポリシランに関して鋭意研究を行った。二ケイ化カルシウム(CaSi)と酸、例えば塩化水素(HCl)水溶液とを反応させることにより、層状ポリシランを得ることができる。二ケイ化カルシウム(CaSi)は、ダイヤモンド型のSiの(111)面の間にCa原子層が挿入された層状結晶をなし、酸との反応でカルシウム(Ca)が引き抜かれることによって層状ポリシランが得られる。 The present inventors conducted intensive studies on the layered polysilanes described in Non-Patent Document 1 and Patent Document 3. Layered polysilanes can be obtained by reacting calcium disilicide (CaSi 2 ) with an acid, such as an aqueous solution of hydrogen chloride (HCl). Calcium disilicide (CaSi 2 ) forms a layered crystal in which a Ca atomic layer is inserted between the (111) faces of diamond-shaped Si, and layered polysilane by extracting calcium (Ca) in reaction with an acid. Is obtained.
 また、酸としてフッ化水素(HF)水溶液と塩化水素(HCl)水溶液との混合物とを用いることもできる。フッ化水素(HF)と塩化水素(HCl)との組成比は、塩化水素(HCl)のモル量を100としたとき、フッ化水素(HF)のモル量が100以下であることが好ましい。フッ化水素(HF)の量がこの比より多くなるとCaF、CaSiO系などの不純物が生成し、この不純物と層状ポリシランとを分離するのが困難であるため好ましくない。 Alternatively, a mixture of hydrogen fluoride (HF) aqueous solution and hydrogen chloride (HCl) aqueous solution can be used as the acid. When the molar ratio of hydrogen chloride (HCl) is 100, the molar ratio of hydrogen fluoride (HF) is preferably 100 or less. When the amount of hydrogen fluoride (HF) exceeds this ratio, impurities such as CaF 2 and CaSiO are generated, and it is difficult to separate the impurities from the layered polysilane, which is not preferable.
 酸と二ケイ化カルシウム(CaSi)との反応比は、当量より酸を過剰にすることが好ましい。また反応雰囲気は、不活性ガス雰囲気下で行うことが好ましい。反応時間と反応温度は特に限定されないが、通常、反応温度は0℃~100℃、反応時間は0.25~24時間である。 The reaction ratio between the acid and calcium disilicide (CaSi 2 ) is preferably in excess of the acid. Moreover, it is preferable to carry out reaction atmosphere under inert gas atmosphere. The reaction time and reaction temperature are not particularly limited, but the reaction temperature is usually 0 ° C. to 100 ° C., and the reaction time is 0.25 to 24 hours.
 上記反応によって得られるナノシリコンは、凝集して凝集粒子となっている。そのため、蓄電装置として充放電時における膨張・収縮の繰り返しによる凝集粒子の微粉化が生じ、比表面積が増大するとともにSEIの生成によってサイクル特性が低下するという問題がある。 The nanosilicon obtained by the above reaction is aggregated to form aggregated particles. Therefore, pulverization of aggregated particles occurs due to repeated expansion and contraction at the time of charge and discharge as a power storage device, and there is a problem that the specific surface area is increased and the cycle characteristics are deteriorated due to the generation of SEI.
 そこでナノシリコンからなる凝集粒子と、非晶質の炭素からなり凝集粒子の少なくとも一部を覆って複合化された炭素層と、よりなる負極活物質を用いることが特に好ましい。非晶質の炭素からなる炭素層は、凝集粒子の少なくとも一部を覆っている。この炭素層によって凝集粒子が補強されるという効果が発現される。負極にはグラファイト、アセチレンブラック、ケッチェンブラックなどの導電助剤が用いられる場合があるが、これらの炭素は結晶質であり、非晶質ではない。ナノシリコンの凝集体を覆って複合化された炭素層の厚さは、1~100nmの範囲であることが好ましく、5~50nmの範囲であることがさらに望ましい。炭素層の厚さが薄すぎると効果の発現が困難となり、炭素層が厚くなりすぎると初期容量が低下する。 Therefore, it is particularly preferable to use a negative electrode active material which is composed of agglomerated particles made of nanosilicon and a carbon layer composed of amorphous carbon and covering at least a part of the agglomerated particles to form a composite. The carbon layer made of amorphous carbon covers at least a part of the aggregated particles. This carbon layer exerts an effect of reinforcing the agglomerated particles. Although a conductive support agent such as graphite, acetylene black and ketjen black may be used for the negative electrode, these carbons are crystalline and not amorphous. The thickness of the composite carbon layer covering the nanosilicon aggregate is preferably in the range of 1 to 100 nm, and more preferably in the range of 5 to 50 nm. When the thickness of the carbon layer is too thin, it is difficult to express the effect, and when the carbon layer is too thick, the initial capacity decreases.
 炭素層を形成する場合において、何らかの方法で別に製造された非晶質の炭素をナノシリコンの凝集粒子と混合するだけでは、不均質となるとともに、炭素が凝集粒子の少なくとも一部を覆うことも困難である。そこで非晶質の炭素が凝集粒子の少なくとも一部を確実に覆い、均質な負極活物質を製造する方法が開発された。その製造方法は、ケイ素原子で構成された六員環が複数連なった構造をなし組成式(SiH)で示される層状ポリシランを熱処理してナノシリコンの凝集粒子を得る凝集粒子形成工程と、凝集粒子と芳香性複素環化合物とを混合した状態で芳香性複素環化合物を重合する重合工程と、芳香性複素環化合物の重合体を炭素化する炭素化工程と、をこの順で行うことが望ましい。 In the case of forming a carbon layer, mixing amorphous carbon produced separately by some method with the agglomerated particles of nanosilicon is not only inhomogeneous, but also carbon covers at least a part of the agglomerated particles. Have difficulty. Therefore, a method has been developed for producing a homogeneous negative electrode active material by ensuring that amorphous carbon covers at least a part of aggregated particles. The manufacturing method includes an aggregation particle forming step of forming a structure in which a plurality of six-membered rings composed of silicon atoms are continuous and heat treating a layered polysilane represented by a composition formula (SiH) n to obtain aggregated particles of nanosilicon; It is desirable to carry out in this order the polymerization step of polymerizing the aromatic heterocyclic compound in the state where the particles and the aromatic heterocyclic compound are mixed, and the carbonization step of carbonizing the polymer of the aromatic heterocyclic compound .
 ナノシリコンの凝集粒子の形成工程は前述したとおりである。 The process of forming the agglomerated particles of nanosilicon is as described above.
 重合工程では、ナノシリコン凝集粒子と芳香性複素環化合物とを混合した状態で、芳香性複素環化合物が重合される。これによりナノシリコンの凝集粒子に付着した状態の芳香性複素環化合物の重合体が得られる。ここで芳香性複素環化合物には、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソオキサゾール、チアゾール、イソチアゾールなどの五員環芳香性複素環化合物、インドール、ベンズイミダゾール、ベンゾフランなどの多環芳香性複素環化合物など、重合可能なものを用いることができる。 In the polymerization step, the aromatic heterocyclic compound is polymerized in a state in which the nanosilicon aggregate particles and the aromatic heterocyclic compound are mixed. As a result, a polymer of the aromatic heterocyclic compound in a state of being attached to the aggregated particles of nanosilicon is obtained. Here, aromatic heterocyclic compounds include five-membered aromatic heterocyclic compounds such as furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, and isothiazole, and polycyclic compounds such as indole, benzimidazole and benzofuran Polymerizable compounds such as aromatic heterocyclic compounds can be used.
 これらの化合物を重合するには、各種重合方法を採用することができるが、ピロールなどの場合には、濃塩酸あるいは三塩化鉄などのポリマー化触媒の存在下で加熱する方法が簡便である。特に三塩化鉄を用いれば、非水雰囲気で重合することができSiの酸化を抑制できるので、蓄電装置としたときに初期容量が増大する効果がある。 Although various polymerization methods can be employed to polymerize these compounds, in the case of pyrrole and the like, the method of heating in the presence of a polymerization catalyst such as concentrated hydrochloric acid or iron trichloride is convenient. In particular, if iron trichloride is used, polymerization can be performed in a non-water atmosphere and oxidation of Si can be suppressed, so that an effect of increasing the initial capacity when used as a power storage device is obtained.
 炭素化工程では、ナノシリコンの凝集粒子と混合された状態で芳香性複素環化合物の重合体が炭素化される。この工程は、ナノシリコンの製造時と同様に、不活性雰囲気下にて100℃以上の温度で熱処理すればよく、400℃以上で熱処理するのが好ましい。芳香性複素環化合物は重合体となっているため、加熱しても蒸散することなく炭素化が進行し、ナノシリコンの凝集粒子の表面に非晶質の炭素からなる炭素層が結合した複合体が得られる。なお重合工程を行わずに、ナノシリコンの凝集粒子と芳香性複素環化合物とを混合した状態で熱処理を行うと、芳香性複素環化合物が蒸散してしまい炭素化が困難である。 In the carbonization step, the polymer of the aromatic heterocyclic compound is carbonized in a state of being mixed with the agglomerated particles of nanosilicon. In this step, as in the production of nanosilicon, heat treatment may be performed at a temperature of 100 ° C. or more in an inert atmosphere, preferably heat treatment at 400 ° C. or more. Since the aromatic heterocyclic compound is a polymer, carbonization proceeds without being evaporated even when heated, and a complex in which a carbon layer made of amorphous carbon is bonded to the surface of the agglomerated particle of nanosilicon Is obtained. When the heat treatment is performed in a state where the aggregated particles of nanosilicon and the aromatic heterocyclic compound are mixed without performing the polymerization step, the aromatic heterocyclic compound is evaporated and carbonization is difficult.
 非晶質の炭素が凝集粒子の少なくとも一部を覆う負極活物質においては、ケイ素と炭素との組成比は重量比でSi/C=3/1~20/1であることが望ましい。この比が20/1を超えると炭素層を形成した効果が発現されず、3/1未満では二次電池の容量が低下する。
<二次電池負極>
In the negative electrode active material in which amorphous carbon covers at least a part of the aggregated particles, the composition ratio of silicon to carbon is desirably Si / C = 3/1 to 20/1 by weight. When this ratio exceeds 20/1, the effect of forming a carbon layer is not exhibited, and when it is less than 3/1, the capacity of the secondary battery decreases.
<Secondary battery negative electrode>
 本発明の二次電池負極は、集電体と、集電体の表面に形成された負極活物質層と、からなり、負極活物質層は、負極活物質と、本発明のバインダーと、を含む。 The secondary battery negative electrode of the present invention comprises a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer comprises a negative electrode active material and a binder of the present invention. Including.
 集電体は、放電或いは充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体のことである。集電体は箔、板等の形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体として、例えば銅箔やアルミニウム箔を好適に用いることができる。 A current collector is a chemically inert electron conductor for keeping current flowing to an electrode during discharge or charge. The current collector may be in the form of a foil, a plate or the like, but is not particularly limited as long as it has a shape according to the purpose. For example, copper foil or aluminum foil can be suitably used as the current collector.
 負極活物質は、上述したとおりである。負極活物質を用いて、非水系二次電池の負極を作製するには、負極活物質粉末と、炭素粉末などの導電助剤と、本発明のバインダーと、適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダーを乾燥あるいは硬化させることによって作製することができる。 The negative electrode active material is as described above. In order to produce a negative electrode of a non-aqueous secondary battery using a negative electrode active material, a negative electrode active material powder, a conductive additive such as carbon powder, the binder of the present invention, and an appropriate amount of organic solvent are added and mixed The slurry can be prepared by applying the slurry onto the current collector by a method such as roll coating, dip coating, doctor blade method, spray coating, curtain coating or the like, and drying or curing the binder. .
 バインダーは、なるべく少ない量で活物質等を結着させることが求められるが、その添加量は活物質、導電助剤、及びバインダーを合計したものの0.5wt%~50wt%が望ましい。バインダーが0.5wt%未満では電極の成形性が低下し、50wt%を超えると電極のエネルギー密度が低くなる。 The binder is required to bind the active material and the like in a small amount as much as possible, but the addition amount thereof is preferably 0.5 wt% to 50 wt% of the total of the active material, the conductive additive and the binder. If the binder is less than 0.5 wt%, the formability of the electrode is reduced, and if it exceeds 50 wt%, the energy density of the electrode is reduced.
 バインダーには、本発明のバインダーに加えて、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリル酸(PAA)等を混合することもできる。 As the binder, in addition to the binder of the present invention, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamide imide (PAI), Carboxymethylcellulose (CMC), polyvinyl chloride (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP), polyacrylic An acid (PAA) etc. can also be mixed.
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、負極活物質100質量部に対して、20~100質量部程度とすることができる。導電助剤の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。 A conductive aid is added to enhance the conductivity of the electrode. As conductive additives, carbon black fine particles such as carbon black, graphite, acetylene black (AB), ketjen black (KB), vapor grown carbon fiber (VGCF), etc. may be used alone or in combination. Can be added. The use amount of the conductive aid is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material. If the amount of the conductive additive is less than 20 parts by mass, efficient conductive paths can not be formed, and if it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered.
 有機溶剤には特に制限はなく、複数の溶剤の混合物でも構わない。N-メチル-2-ピロリドン及びN-メチル-2-ピロリドンとエステル系溶媒(酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート等)あるいはグライム系溶媒(ジグライム、トリグライム、テトラグライム等)の混合溶媒が特に好ましい。 There is no particular limitation on the organic solvent, and a mixture of plural solvents may be used. N-methyl-2-pyrrolidone and N-methyl-2-pyrrolidone and ester solvents (ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate etc.) or glyme solvents (diglyme, triglyme, tetraglyme etc.) Mixed solvents of are particularly preferred.
 二次電池がリチウムイオン二次電池の場合、負極には、リチウムがプリドーピングされていることもできる。負極にリチウムをドープするには、例えば対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量は特に制約されない。 When the secondary battery is a lithium ion secondary battery, the negative electrode can also be pre-doped with lithium. In order to dope the negative electrode with lithium, for example, an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used. The doping amount of lithium is not particularly limited.
 二次電池がリチウムイオン二次電池の場合、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助剤およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであればよい。 When the secondary battery is a lithium ion secondary battery, known positive electrodes, electrolytes and separators which are not particularly limited can be used. The positive electrode may be one that can be used in a lithium ion secondary battery. The positive electrode has a current collector and a positive electrode active material layer bound on the current collector. The positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid. The positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a lithium ion secondary battery.
 正極活物質としては、金属リチウム、LiCoO、LiNi1/3Co1/3Mn1/3O、LiMnO、硫黄などが挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。 Examples of the positive electrode active material include metal lithium, LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 , sulfur and the like. The current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like. As the conductive additive, the same one as described in the above-mentioned negative electrode can be used.
 電解液は、有機溶媒に電解質であるリチウム金属塩を溶解させたものである。電解液は、特に限定されない。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiCFSO等の有機溶媒に可溶なリチウム金属塩を用いることができる。 The electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent. The electrolyte is not particularly limited. As an organic solvent, use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc. Can. Further, as an electrolyte to be dissolved, a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
 例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のリチウム金属塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を使用することができる。 For example, lithium metal salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate or the like at a concentration of about 0.5 mol / L to 1.7 mol / L A dissolved solution can be used.
 セパレータは、リチウムイオン二次電池に使用されることができるものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。 The separator is not particularly limited as long as it can be used for a lithium ion secondary battery. The separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
 二次電池がリチウムイオン二次電池である場合、その形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。 When the secondary battery is a lithium ion secondary battery, the shape thereof is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted. In any of the shapes, the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
 以下、実施例及び比較例により本発明の実施形態を具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described by examples and comparative examples.
<バインダーの調製>
 酢酸銅2gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液10mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で3時間乾燥して青色の塩基性酢酸銅(化1式参照)の粉末1gを得た。
<Preparation of Binder>
2 g of copper acetate was dissolved in 20 ml of pure water, and 10 ml of 0.5 N aqueous NaOH solution was added dropwise while stirring. After the entire amount has been added, the mixture is stirred for 2 hours, and the deposited precipitate is separated by filtration, washed twice with 10 ml of pure water, rinsed with 10 ml of acetone and then dried under vacuum for 3 hours to obtain blue basic copper acetate (see Formula 1) 1 g of powder was obtained.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 次に、数平均分子量が500,000のポリアクリル酸(化2式参照)0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の塩基性酢酸銅粉末1mgをさらに溶解させ、撹拌しながら60℃で3時間保持して反応させ、化3式に示すポリアクリル酸-塩基性酢酸銅反応物のNMP溶液を調製した。ポリアクリル酸-塩基性酢酸銅反応物では、ポリアクリル酸の一部の側鎖のカルボキシル基に塩基性酢酸銅が結合し、その末端にはアセチル基を有していると考えられる。 Next, 0.8 g of a polyacrylic acid (see Formula 2) having a number average molecular weight of 500,000 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above-mentioned basic copper acetate powder is further dissolved in this solution, and kept at 60 ° C. for 3 hours while stirring for reaction to prepare an NMP solution of polyacrylic acid-basic copper acetate reactant shown in Formula 3. did. In the polyacrylic acid-basic copper acetate reactant, it is considered that basic copper acetate is bound to the carboxyl group of a part of the side chain of polyacrylic acid and has an acetyl group at its terminal.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
<負極活物質の調製>
Figure JPOXMLDOC01-appb-C000003
<Preparation of Negative Electrode Active Material>
 濃度46質量%のHF水溶液3mlと、濃度36質量%のHCl水溶液300mlとの混合溶液20mlを氷浴中で0℃とし、アルゴンガス気流中にてそこへ5gの二ケイ化カルシウム(CaSi)を加えて撹拌した。発泡が完了したのを確認した後に室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに5分間撹拌した。このとき黄色粉末が浮遊した。 20 ml of a mixed solution of 3 ml of a 46% strength by weight aqueous HF solution and 300 ml of a 36% strength by weight aqueous HCl solution at 0 ° C. in an ice bath and 5 g calcium disilicide (CaSi 2 ) in an argon gas stream Was added and stirred. After confirming that foaming was completed, the temperature was raised to room temperature, and after stirring for another 2 hours at room temperature, 20 ml of distilled water was added and the mixture was further stirred for 5 minutes. At this time, yellow powder floated.
 得られた混合溶液を濾過し、残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄し、真空乾燥して5.5gの層状ポリシランを得た。この層状ポリシランを、Oが1体積%以下のアルゴンガス中にて500℃で1時間保持する熱処理を行い、ナノシリコン凝集粒子からなる粉末を得た。この粉末に対してCuKα線を用いたX線回折測定(XRD測定)を行った。XRD測定によれば、Si微粒子由来と考えられるハローを観測した。Si微粒子は、X線回折測定結果の(111)面の回折ピークの半値幅からシェラーの式より算出される結晶粒径が約7nmであった。 The resulting mixed solution was filtered and the residue was washed with 10 ml of distilled water and then with 10 ml of ethanol and dried under vacuum to obtain 5.5 g of layered polysilane. The layered polysilane was heat-treated at 500 ° C. for 1 hour in an argon gas with 1% by volume or less of O 2 to obtain a powder of nanosilicon agglomerated particles. The powder was subjected to X-ray diffraction measurement (XRD measurement) using a CuKα ray. According to XRD measurement, a halo considered to be derived from Si fine particles was observed. The Si fine particles had a crystal grain size of about 7 nm calculated from Scherrer's equation from the half value width of the diffraction peak on the (111) plane as a result of X-ray diffraction measurement.
 このナノシリコン粉末1gに対してフラン0.5mlを3時間真空含浸させ、濃塩酸を加えた。濃塩酸添加後、60℃で3時間処理してフランを重合させ、濾過、洗浄して濃塩酸を除去した。得られた粉末を3時間真空乾燥し、その後、アルゴンガス中にて500℃で焼成し、フラン重合物を炭素化して灰色粉末を得た。灰色粉末の収率は、ナノシリコン粉末1gに対して1.22gであった。なお本実施例において、ケイ素と炭素との組成比は重量比でSi/C=82/18であった。 A 0.5 g of furan was vacuum impregnated for 3 hours to 1 g of this nanosilicon powder, and concentrated hydrochloric acid was added. After the addition of concentrated hydrochloric acid, the reaction mixture was treated at 60 ° C. for 3 hours to polymerize furan, filtered and washed to remove concentrated hydrochloric acid. The resulting powder was dried under vacuum for 3 hours and then calcined at 500 ° C. in argon gas to carbonize the furan polymer to obtain a gray powder. The yield of gray powder was 1.22 g per 1 g of nanosilicon powder. In the present example, the composition ratio of silicon to carbon was Si / C = 82/18 in weight ratio.
 得られた灰色粉末のSEM写真を図1に示す。図1から、μmオーダーのナノシリコン凝集粒子が、最大厚み約200nmの炭素層に包まれた複合体構造が確認される。またこの灰色粉末と、灰色粉末の製造に用いたナノシリコン粉末の比表面積をそれぞれBET法により測定した結果を表1に示す。 The SEM photograph of the obtained gray powder is shown in FIG. From FIG. 1, a composite structure is confirmed in which nanosilicon aggregate particles in the μm order are wrapped in a carbon layer with a maximum thickness of about 200 nm. Table 1 also shows the results of measurement of the specific surface areas of the gray powder and the nanosilicon powder used for producing the gray powder by the BET method.
Figure JPOXMLDOC01-appb-T000001
 ナノシリコン凝集粒子を炭素層で被覆することで、比表面積が小さくなっていることがわかる。
Figure JPOXMLDOC01-appb-T000001
It can be seen that the specific surface area is reduced by coating the nanosilicon agglomerated particles with a carbon layer.
 この灰色粉末に対して、CuKα線を用いたX線回折測定(XRD測定)を行った。その結果、灰色粉末にはアセチレンブラックに存在する2θ=26°のピーク(結晶性炭素ピーク)が認められず、灰色粉末に含まれる炭素は非晶質であることがわかった。また半値幅から、灰色粉末中のSiの粒径は10nm以下であることもわかった。
<リチウムイオン二次電池の調製>
The gray powder was subjected to X-ray diffraction measurement (XRD measurement) using a CuKα ray. As a result, the gray powder did not show a peak at 2θ = 26 ° (crystalline carbon peak) present in acetylene black, and it was found that carbon contained in the gray powder was amorphous. Further, it was also found from the half value width that the particle size of Si in the gray powder is 10 nm or less.
Preparation of Lithium Ion Secondary Battery
 得られた灰色粉末45質量部と、天然黒鉛粉末40質量部と、アセチレンブラック5質量部と、上記で得られたポリアクリル酸-塩基性酢酸銅化合物のNMP溶液10質量部とを混合してスラリーを調製した。このスラリーを、厚さ約20μmの電解銅箔(集電体)の表面にドクターブレードを用いて塗布し、銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空乾燥し、負極活物質層の厚さが16μmの負極を形成した。 45 parts by mass of the obtained gray powder, 40 parts by mass of natural graphite powder, 5 parts by mass of acetylene black, and 10 parts by mass of an NMP solution of the polyacrylic acid-basic copper acetate compound obtained above are mixed. A slurry was prepared. The slurry was applied to the surface of an electrolytic copper foil (current collector) having a thickness of about 20 μm using a doctor blade to form a negative electrode active material layer on the copper foil. Thereafter, the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press. This was vacuum dried at 100 ° C. for 2 hours to form a negative electrode having a thickness of 16 μm of the negative electrode active material layer.
 上記の手順で作製した負極を評価極として用い、リチウムイオン二次電池(ハーフセル)を作製した。対極は金属リチウム箔(厚さ500μm)とした。 A lithium ion secondary battery (half cell) was produced using the negative electrode produced according to the above procedure as an evaluation electrode. The counter electrode was a metal lithium foil (thickness 500 μm).
 対極をφ13mm、評価極をφ11mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルター及びCelgard社製「Celgard2400」)を両者の間に介装して電極体電池とした。この電極体電池を電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPFを1Mの濃度で溶解した非水電解液を注入し、電池ケースを密閉してリチウムイオン二次電池を得た。 The counter electrode was cut into a diameter of 13 mm, and the evaluation electrode was cut into a diameter of 11 mm, and a separator (a glass filter made by Hoechst Celanese and "Celgard 2400" made by Celgard) was interposed therebetween to obtain an electrode body battery. The electrode battery was housed in a battery case (CR2032 type coin battery member, manufactured by Takasen Co., Ltd.). In the battery case, a non-aqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at 1: 1 (volume ratio) is injected, and the battery case is sealed to make lithium ion. I got a secondary battery.
<バインダーの調製>
 酢酸銅2gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液20mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で3時間乾燥して水酸化銅(化4式参照)の粉末1.5gを得た。この粉末の色調は、実施例1の塩基性酢酸銅粉末より緑がかった青色であった。
<Preparation of Binder>
2 g of copper acetate was dissolved in 20 ml of pure water, and while stirring, 20 ml of 0.5 N aqueous NaOH solution was dropped. After the entire amount is added, the solution is stirred for 2 hours, and the deposited precipitate is separated by filtration, washed twice with 10 ml of pure water, rinsed with 10 ml of acetone, and dried under vacuum for 3 hours to obtain a powder of copper hydroxide (see Formula 4). I got 1.5 g. The color tone of this powder was more greenish blue than the basic copper acetate powder of Example 1.
Figure JPOXMLDOC01-appb-C000004
 次に、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の水酸化銅粉末1mgをさらに溶解させ、撹拌しながら60℃で反応させ、化5式に示すポリアクリル酸-銅反応物のNMP溶液を調製した。ポリアクリル酸-銅反応物では、ポリアクリル酸の二分子が銅(Cu)によって架橋された構造となっていると考えられる。
Figure JPOXMLDOC01-appb-C000004
Next, 0.8 g of polyacrylic acid as in Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above-mentioned copper hydroxide powder was further dissolved in this solution and reacted at 60 ° C. with stirring to prepare an NMP solution of polyacrylic acid-copper reactant represented by Chemical Formula 5. The polyacrylic acid-copper reactant is considered to have a structure in which two molecules of polyacrylic acid are crosslinked by copper (Cu).
Figure JPOXMLDOC01-appb-C000005
<リチウムイオン二次電池の調製>
Figure JPOXMLDOC01-appb-C000005
Preparation of Lithium Ion Secondary Battery
 ポリアクリル酸-塩基性酢酸銅反応物のNMP溶液に代えてポリアクリル酸-銅反応物のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。 A lithium ion secondary battery was obtained in the same manner as Example 1, except that the NMP solution of the polyacrylic acid-basic copper acetate reactant was replaced with the same amount of the NMP solution of the polyacrylic acid-copper reactant. .
<バインダーの調製>
 酢酸ニッケル2.1gを純水20mlに溶解させ、それを撹拌しながら0.5NのNaOH水溶液10mlを滴下した。全量滴下後に2時間撹拌し、析出した沈殿を濾別して10mlの純水で2回洗浄し10mlのアセトンでリンスした後、真空下で12時間乾燥して塩基性酢酸ニッケル[Ni(OH)(OOCCH)]の粉末1.2gを得た。
<Preparation of Binder>
2.1 g of nickel acetate was dissolved in 20 ml of pure water, and 10 ml of 0.5 N aqueous NaOH solution was added dropwise while stirring. After the entire amount is added, the solution is stirred for 2 hours, and the deposited precipitate is separated by filtration, washed twice with 10 ml of pure water, rinsed with 10 ml of acetone, and dried under vacuum for 12 hours to obtain basic nickel acetate [Ni (OH) (OOCCH 3 ) Obtained 1.2 g of a powder of].
 次に、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させた。この溶液に上記の塩基性酢酸ニッケル粉末1mgをさらに溶解させ、撹拌しながら60℃で3時間保持して反応させ、化6式に示すポリアクリル酸-塩基性酢酸ニッケル反応物のNMP溶液を調製した。 Next, 0.8 g of polyacrylic acid as in Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP). 1 mg of the above-mentioned basic nickel acetate powder is further dissolved in this solution, and the mixture is reacted while maintaining it at 60 ° C. for 3 hours while stirring to prepare an NMP solution of polyacrylic acid-basic nickel acetate reactant shown in Formula 6 did.
Figure JPOXMLDOC01-appb-C000006
<リチウムイオン二次電池の調製>
Figure JPOXMLDOC01-appb-C000006
Preparation of Lithium Ion Secondary Battery
 ポリアクリル酸-塩基性酢酸銅反応物のNMP溶液に代えてポリアクリル酸-塩基性酢酸ニッケル反応物のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
[比較例1]
A lithium ion secondary battery is prepared in the same manner as in Example 1, except that the NMP solution of the polyacrylic acid-basic copper acetate reactant is replaced with the same amount of the NMP solution of the polyacrylic acid-basic nickel acetate reactant. I got
Comparative Example 1
 ポリアクリル酸-塩基性酢酸銅化合物のNMP溶液に代えて、実施例1と同様のポリアクリル酸0.8gを9.2gのN-メチル-2-ピロリドン(NMP)に溶解させたポリアクリル酸のNMP溶液を同量用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を得た。
<電池特性試験1>
NMP of polyacrylic acid in which 0.8 g of polyacrylic acid similar to Example 1 was dissolved in 9.2 g of N-methyl-2-pyrrolidone (NMP) instead of NMP solution of polyacrylic acid-basic copper acetate compound A lithium ion secondary battery was obtained in the same manner as in Example 1 except that the same amount of solution was used.
<Battery characteristic test 1>
 実施例1~3及び比較例1のリチウムイオン二次電池について、温度25℃、電流0.2mAの条件で充電した際の初期の充電容量を測定し、結果を表2に示す。また電流0.2mAの条件で放電させた際の初期の放電容量を測定し、結果を表2に示す。さらに初期効率(初期充電容量/初期放電容量)を算出し、結果を表2に示す。 With respect to the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1, the initial charge capacity when charged under the conditions of a temperature of 25 ° C. and a current of 0.2 mA was measured, and the results are shown in Table 2. In addition, the initial discharge capacity at the time of discharging at a current of 0.2 mA was measured, and the results are shown in Table 2. Furthermore, the initial efficiency (initial charge capacity / initial discharge capacity) was calculated, and the results are shown in Table 2.
 また、実施例1~3及び比較例1のリチウムイオン二次電池を用い、温度25℃、電流0.2mAの条件下において1Vまで充電し、10分間休止した後、電流0.2mAの条件で0.01Vまで放電し、10分間休止するサイクルを10サイクル繰り返すサイクル試験を行った。そして1サイクル目の充電容量に対する10サイクル目の充電容量の割合である容量維持率と、10サイクル後の充電容量に対する10サイクル後の放電容量の割合であるクーロン効率を測定し、結果を表2に示す。 In addition, the lithium ion secondary batteries of Examples 1 to 3 and Comparative Example 1 are charged to 1 V under conditions of a temperature of 25 ° C. and a current of 0.2 mA, and after rest for 10 minutes, 0.01 V under the conditions of 0.2 mA of current A cycle test was performed by repeating the cycle of 10 cycles of discharging to 10 minutes and stopping for 10 minutes. Then, the capacity maintenance ratio, which is the ratio of the charge capacity at the 10th cycle to the charge capacity at the first cycle, and the coulombic efficiency, which is the ratio of the discharge capacity after 10 cycles to the charge capacity after 10 cycles, are measured. Shown in.
Figure JPOXMLDOC01-appb-T000002
 実施例1~3のリチウムイオン二次電池は、いずれも比較例1に比べて初期効率が向上している。これは、銅又はニッケルの価数変化によって電子の授受が効率よく行われたためと考えられる。また実施例2のリチウムイオン二次電池は、初期効率が最も高いものの、他の電池特性が低い。これは、化5式に示されるように、ポリアクリル酸の主鎖どうしが銅によって架橋しているために、凝集が生じてバインダーの偏在が起こったためと考えられる。したがってサイクル特性を重視した場合には、本発明のバインダーの製造に用いる金属元素の化合物としては、水酸化物より塩基性酢酸塩の方が好ましく、側鎖の末端にアシル基を有するものが好ましい。
Figure JPOXMLDOC01-appb-T000002
The lithium ion secondary batteries of Examples 1 to 3 all have an improved initial efficiency compared to Comparative Example 1. This is considered to be due to the efficient transfer of electrons due to the change in valence of copper or nickel. Moreover, although the lithium ion secondary battery of Example 2 has the highest initial efficiency, other battery characteristics are low. This is considered to be due to the occurrence of aggregation and the uneven distribution of the binder because the main chains of the polyacrylic acid are cross-linked by copper as shown in Formula 5. Therefore, when importance is placed on the cycle characteristics, as the compound of the metal element used for producing the binder of the present invention, basic acetate is more preferable than hydroxide, and one having an acyl group at the end of the side chain is preferable. .
 本発明の二次電池負極は、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタなどに利用できる。また本発明のリチウムイオン二次電池は、電気自動車やハイブリッド自動車のモータ駆動用、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器などに利用される非水系二次電池として有用であり、特に、大容量、大出力が必要な電気自動車やハイブリッド自動車のモータ駆動用に好適に用いることができる。 The secondary battery negative electrode of the present invention can be used for a secondary battery, an electric double layer capacitor, a lithium ion capacitor, and the like. In addition, the lithium ion secondary battery of the present invention is useful as a non-aqueous secondary battery used for driving motors of electric vehicles and hybrid vehicles, personal computers, portable communication devices, home appliances, office devices, industrial devices, etc. In particular, it can be suitably used for driving a motor of an electric car or a hybrid car that requires a large capacity and a large output.

Claims (9)

  1.  少なくとも一部の側鎖にカルボキシル基をもつポリマーと、銅(Cu)、ニッケル(Ni)及びコバルト(Co)から選ばれる少なくとも一種の金属元素の化合物と、の反応物からなることを特徴とする二次電池負極用バインダー。 It is characterized by comprising a reactant of a polymer having a carboxyl group in at least a part of side chain and a compound of at least one metal element selected from copper (Cu), nickel (Ni) and cobalt (Co). Binder for secondary battery negative electrode.
  2.  前記ポリマーはポリアクリル酸である請求項1に記載の二次電池負極用バインダー。 The binder for a secondary battery negative electrode according to claim 1, wherein the polymer is polyacrylic acid.
  3.  前記反応物は前記側鎖の末端にアシル基を有する請求項1又は請求項2に記載の二次電池負極用バインダー。 The binder for a secondary battery negative electrode according to claim 1, wherein the reactant has an acyl group at an end of the side chain.
  4.  前記金属元素は前記ポリマー100質量部に対して0.01~10質量部含まれている請求項1~3のいずれかに記載の二次電池負極用バインダー。 The binder for a secondary battery negative electrode according to any one of claims 1 to 3, wherein the metal element is contained in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polymer.
  5.  集電体と、該集電体の表面に形成された負極活物質層と、からなり、該負極活物質層は、負極活物質と、請求項1~4のいずれかに記載のバインダーと、を含むことを特徴とする二次電池負極。 A current collector and a negative electrode active material layer formed on the surface of the current collector, the negative electrode active material layer comprising a negative electrode active material, and the binder according to any one of claims 1 to 4. A secondary battery negative electrode characterized by including.
  6.  前記負極活物質は、ケイ素原子で構成された六員環が複数連なった構造をなし組成式(SiH)で示される層状ポリシランを熱処理することで製造されたナノシリコンからなる凝集粒子である請求項5に記載の二次電池負極。 The negative electrode active material is an agglomerated particle made of nanosilicon produced by heat treating a layered polysilane represented by a composition formula (SiH) n without forming a structure in which a plurality of six-membered rings composed of silicon atoms are linked. 6. The secondary battery negative electrode according to item 5.
  7.  非晶質の炭素からなり前記凝集粒子の少なくとも一部を覆って複合化された炭素層を有する請求項6に記載の二次電池負極。 The secondary battery negative electrode according to claim 6, further comprising a carbon layer composed of amorphous carbon and covering at least a part of the aggregated particles.
  8.  ケイ素と炭素との組成比は重量比でSi/C=3/1~20/1である請求項7に記載の二次電池負極。 8. The secondary battery negative electrode according to claim 7, wherein a composition ratio of silicon to carbon is Si / C = 3/1 to 20/1 by weight ratio.
  9.  請求項5~8のいずれかに記載の二次電池負極を有することを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery comprising the secondary battery negative electrode according to any one of claims 5 to 8.
PCT/JP2014/001210 2013-04-17 2014-03-05 Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery WO2014171053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013086702A JP5725075B2 (en) 2013-04-17 2013-04-17 Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
JP2013-086702 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014171053A1 true WO2014171053A1 (en) 2014-10-23

Family

ID=51731020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001210 WO2014171053A1 (en) 2013-04-17 2014-03-05 Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5725075B2 (en)
WO (1) WO2014171053A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175518A1 (en) * 2016-04-06 2017-10-12 株式会社豊田自動織機 Method for manufacturing silicon material
CN111129594A (en) * 2019-12-25 2020-05-08 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084224A1 (en) * 2014-11-28 2016-06-02 株式会社日立製作所 Supramolecular structure of acrylic acid, and lithium ion battery obtained using same
CN107251276A (en) * 2014-12-23 2017-10-13 尤米科尔公司 Powder includes the electrode and battery pack of such powder
JP6625646B2 (en) * 2014-12-23 2019-12-25 ユミコア Powders, electrodes and batteries containing such powders
CN109686981B (en) * 2018-12-25 2021-03-02 河南电池研究院有限公司 Composite binder applied to lithium-sulfur battery and preparation method thereof
CN109994723B (en) * 2019-04-04 2022-01-04 常州大学 SiO (silicon dioxide)xPreparation method of-G/PAA-PANI/Cu composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166058A (en) * 2006-12-27 2008-07-17 Jsr Corp Binder composition for battery electrode, paste for battery electrode, and battery electrode
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
JP2012230839A (en) * 2011-04-27 2012-11-22 Hitachi Ltd Nonaqueous electrolyte secondary battery
WO2013118231A1 (en) * 2012-02-06 2013-08-15 株式会社豊田自動織機 Polymer, method for producing same, and power storage device.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166058A (en) * 2006-12-27 2008-07-17 Jsr Corp Binder composition for battery electrode, paste for battery electrode, and battery electrode
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
JP2012230839A (en) * 2011-04-27 2012-11-22 Hitachi Ltd Nonaqueous electrolyte secondary battery
WO2013118231A1 (en) * 2012-02-06 2013-08-15 株式会社豊田自動織機 Polymer, method for producing same, and power storage device.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175518A1 (en) * 2016-04-06 2017-10-12 株式会社豊田自動織機 Method for manufacturing silicon material
JPWO2017175518A1 (en) * 2016-04-06 2018-11-29 株式会社豊田自動織機 Method for producing silicon material
CN111129594A (en) * 2019-12-25 2020-05-08 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN111129594B (en) * 2019-12-25 2023-09-01 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same

Also Published As

Publication number Publication date
JP5725075B2 (en) 2015-05-27
JP2014211977A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
JP6061160B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
WO2014171053A1 (en) Binder for negative electrodes of secondary batteries, negative electrode of secondary battery, and lithium ion secondary battery
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
JP6673331B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP6288257B2 (en) Nanosilicon material, method for producing the same, and negative electrode of secondary battery
WO2015182120A1 (en) Copper-containing silicon material, method for manufacturing same, negative-electrode active substance, and secondary cell
US10164255B2 (en) Silicon material and negative electrode of secondary battery
CN105849947B (en) Negative electrode active material, method for producing same, and electricity storage device
JP6384596B2 (en) Anode materials for lithium-ion batteries
JP6926873B2 (en) Al and O-containing silicon material
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
JP6011313B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP6065678B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
JP5534368B2 (en) Negative electrode active material and power storage device
US10217990B2 (en) Silicon material and negative electrode of secondary battery
JP6859930B2 (en) Al-containing silicon material
JP6852689B2 (en) Al-containing silicon material
JP5737447B2 (en) Copper-containing layered polysilane, negative electrode active material, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785939

Country of ref document: EP

Kind code of ref document: A1