WO2015118676A1 - MATERIAL FOR Li BATTERIES - Google Patents

MATERIAL FOR Li BATTERIES Download PDF

Info

Publication number
WO2015118676A1
WO2015118676A1 PCT/JP2014/052991 JP2014052991W WO2015118676A1 WO 2015118676 A1 WO2015118676 A1 WO 2015118676A1 JP 2014052991 W JP2014052991 W JP 2014052991W WO 2015118676 A1 WO2015118676 A1 WO 2015118676A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
negative electrode
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2014/052991
Other languages
French (fr)
Japanese (ja)
Inventor
紀雄 岩安
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/052991 priority Critical patent/WO2015118676A1/en
Publication of WO2015118676A1 publication Critical patent/WO2015118676A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a material for a Li battery.
  • Patent Document 1 discloses a technique for coating a negative electrode active material with a polyamideimide resin.
  • an object is to provide a novel coating material for a negative electrode active material that achieves both a reduction in irreversible capacity and a reduction in battery resistance.
  • a negative electrode coating material for a lithium ion secondary battery represented by Formula (1) A negative electrode coating material for a lithium ion secondary battery represented by Formula (1).
  • R 3 , R 4 and R 5 in the formula (1) are each a hydrocarbon group having 1 to 10 carbon atoms or H.
  • R 1 and R 2 have at least one electron-withdrawing functional group.
  • n is the number of repeating structural units.
  • Examples of the negative electrode covering material for a lithium ion secondary battery represented by Formula (1) include Formula (5), Formula (6), Formula (7), and Formula (8).
  • N in Formula (5), Formula (6), Formula (7), and Formula (8) is the number of repeating structural units.
  • a negative electrode having a small irreversible capacity and a low resistance can be provided.
  • a lithium ion secondary battery having high capacity and excellent output characteristics can be provided.
  • FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention.
  • a battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery container (that is, a battery can) 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, It comprises an internal pressure release valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21.
  • the battery lid 20 is an integrated part composed of the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19.
  • a positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft center 21.
  • the separator 11 is inserted between the positive electrode 10 and the negative electrode 12 to produce an electrode group wound around the axis 21.
  • the electrode group has various shapes such as a laminate of strip electrodes, or a positive electrode 10 and a negative electrode 12 wound in an arbitrary shape such as a flat shape. Can do.
  • the shape of the battery case 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery container 13 is selected.
  • the electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20.
  • the electrolyte is injected into the battery container interior 13 before the battery is sealed.
  • a method for injecting the electrolyte there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
  • the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well.
  • a method for sealing the battery there are known techniques such as welding and caulking.
  • the lithium ion battery according to an embodiment of the present invention can be manufactured, for example, by disposing a negative electrode and a positive electrode as described below with a separator interposed therebetween and injecting an electrolyte.
  • the structure of the lithium ion battery according to an embodiment of the present invention is not particularly limited.
  • the positive electrode and the negative electrode and the separator separating them are wound into a wound electrode group, or the positive electrode, the negative electrode, and the separator are combined.
  • a stacked electrode group can be formed by stacking.
  • the positive electrode 10 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
  • the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the particle size of the positive electrode active material is usually specified so as to be equal to or less than the thickness of the mixture layer formed of the positive electrode active material, the conductive agent, and the binder.
  • the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less. preferable.
  • the positive electrode active material is generally oxide-based and has high electric resistance
  • a conductive agent made of carbon powder for supplementing electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • materials such as stainless steel and titanium are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press.
  • the positive electrode 10 can be produced by pressure forming.
  • a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
  • the negative electrode in the present invention comprises a negative electrode active material, a binder, and a current collector.
  • the negative electrode active material an easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, etc.
  • the coating material preferably has ionicity to the extent that lithium ions are captured and dissociated.
  • the lithium ion capturing power of the covering material is too strong, the lithium ion conductivity is increased and the output as a battery is inferior. Therefore, it is preferable that the bonding force between the coating material and the lithium ions be adjusted strictly.
  • Examples of the functional group containing F include F, CFH 2 , CF 2 H, and CF 3 . From the viewpoint of synthesis, F and CF 3 are preferably used.
  • the other functional group when there is one electron-withdrawing group, the other functional group is hydrogen or a hydrocarbon group.
  • R1 and R2 are located adjacent to the sulfo group.
  • the electron-withdrawing functional group is located adjacent to the sulfo group, the electron density of the sulfo group decreases, and as a result, the degree of dissociation of Li ions increases, and the resistance of the battery can be reduced.
  • a coating material a copolymer obtained by copolymerizing a first monomer corresponding to a polymer having a structure of formula (1) (for example, formula (4)) with another second monomer. By copolymerization, a higher irreversible capacity reduction effect is exhibited.
  • a second monomer having the structure of formula (9) to formula (13) is preferably used as the monomer to be copolymerized.
  • X of the monomer is an alkali metal or H, and the alkali metal is preferably used from the viewpoint of electrochemical stability.
  • the initiator content in the present invention is 0.1 wt% to 20 wt%, preferably 0.3 wt% or more and 5 wt% with respect to the polymerizable compound.
  • the polymer structure may be a linear structure, a branched structure, a crosslinked structure, or a dendrimer structure. From the viewpoint of workability at the time of coating, a linear polymer is preferably used.
  • the polymerization mode when monomers are copolymerized is not particularly limited as long as a polymer can be formed, and examples thereof include random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization.
  • the number average molecular weight of the polymer used as the negative electrode coating material of the present invention is 1,000 or more and 5,000,000 or less. Preferably it is 1000 or more and 1,000,000 or less. By adjusting the number average molecular weight, aggregation of the negative electrode active material, which tends to occur when coating, can be suppressed.
  • the copolymer composition ratio of the first monomer corresponding to the polymer having the structure of the formula (1) and the second monomer containing the structures of the formulas (9) to (13) is the effect of the present invention. It is important in getting.
  • Formula (9), Formula (10), Formula (11), Formula (12), and Formula (13) can each be homopolymerized, and this polymer and the polymer of Formula (1) are mixed to form a negative electrode
  • the active material can also be coated.
  • non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2- Dimethoxyethane, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3- Non-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate, etc.
  • solvent There is a solvent.
  • Other solvents may be used as long as they do not decompose on the positive electrode 10 or the negative electrode
  • tetrahydrofuran as a monomer and reaction solvent was added to a reaction vessel. Furthermore, AIBN was added to the solution as a polymerization initiator. The concentration of the polymerization initiator was added so as to be 4 wt% with respect to the total amount of monomers. Thereafter, the polymer solutions (8) and (6) were synthesized by heating the reaction solution at 60 ° C. for 3 hours.
  • the negative electrode active material is added to the solution and stirred. After stirring for 20 minutes, the negative electrode active material in the form of a slurry is taken out and placed in a dryer heated to 100 ° C. to remove water. Then, after drying with a vacuum dryer heated to 120 ° C., it was sieved to obtain a coated negative electrode active material. The coating polymer was 0.5 wt% with respect to the negative electrode active material. In addition, graphite was used as the negative electrode active material. ⁇ Method for producing negative electrode> Polyvinylidene fluoride was mixed with graphite at a weight ratio of 95: 5, and charged into N-methyl-2-pyrrolidone to prepare a slurry solution.
  • the irreversible capacity was 33 mAhg- 1 .
  • a small battery was produced, and DC resistance was measured.
  • the DC resistance was 9.9 ⁇ .
  • a monomer was synthesized by copolymerizing the monomer (x) of the formula (14) and the monomer (y) of the formula (11). The copolymer composition ratio (x / (x + y)) was 0.75.
  • a negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 28 mAhg- 1 .
  • a small battery was produced, and DC resistance was measured. The DC resistance was 10.9 ⁇ .
  • Example 1 Evaluation was performed in the same manner as in Example 1 except that no coating material was used. As a result, the irreversible capacity was 36 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 12.1 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a novel coating material for negative electrode active materials, having both reduced irreversible capacity and reduced battery resistance. This invention is characterized by being a negative electrode coating material for lithium ion secondary batteries, that is indicated by formula (1). In formula (1), R3, R4, and R5 are C1-10 hydrocarbon groups or H. R1 and R2 have at least one functional group having electron-withdrawing properties. n is a repetition count of the structural unit. As a result of the present invention, a negative electrode having little irreversible capacity and little resistance can be provided. Furthermore, a lithium ion secondary battery having high capacity and excellent output characteristics can be provided as a result of applying said negative electrode to the lithium ion secondary battery.

Description

Li電池用材料Li battery materials
 本発明は、Li電池用材料に関する。 The present invention relates to a material for a Li battery.
 近年、Li電池用の材料の開発が盛んに進められている。Li電池用の負極は、電解液の還元活性が高く不可逆容量が増加して、電池容量の低下などの問題を引き起こすことが知られている。そのため、負極活物質をポリマーで被覆して電池性能を向上させるこころみがされている。 In recent years, materials for Li batteries have been actively developed. It is known that a negative electrode for a Li battery has a high reducing activity of an electrolytic solution and increases an irreversible capacity, thereby causing problems such as a decrease in battery capacity. Therefore, efforts are made to improve the battery performance by covering the negative electrode active material with a polymer.
WO2012/132152公報 特許文献1には、負極活物質をポリアミドイミド樹脂で被覆する技術か開示されている。WO2012 / 132152 Patent Document 1 discloses a technique for coating a negative electrode active material with a polyamideimide resin.
 しかし、特許文献1のポリマーで負極活物質を被覆すると、電池の抵抗が高くなり、出力特性が低下する問題がある。これは、前記ポリマーが存在する負極を初期化して形成されるSEIが、高抵抗を示すことが原因と考えられる。 However, when the negative electrode active material is coated with the polymer of Patent Document 1, there is a problem that the resistance of the battery increases and the output characteristics deteriorate. This is presumably because the SEI formed by initializing the negative electrode in which the polymer is present exhibits high resistance.
 本発明では、不可逆容量の低減と、電池抵抗の低減を両立した新規な負極活物質用被覆材を提供することを目的にする。 In the present invention, an object is to provide a novel coating material for a negative electrode active material that achieves both a reduction in irreversible capacity and a reduction in battery resistance.
 上記課題を解決するための本発明の特徴は以下の通りである。 The features of the present invention for solving the above-described problems are as follows.
 式(1)で表わされるリチウムイオン二次電池用負極被覆材。 A negative electrode coating material for a lithium ion secondary battery represented by Formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)のR3、R4、R5は、炭素数1~10の炭化水素基または、Hである。R1とR2は、少なくとも1つ以上の電子吸引性の官能基を有する。nは構造単位の繰り返し数である。 R 3 , R 4 and R 5 in the formula (1) are each a hydrocarbon group having 1 to 10 carbon atoms or H. R 1 and R 2 have at least one electron-withdrawing functional group. n is the number of repeating structural units.
 式(1)で表わされるリチウムイオン二次電池用負極被覆材としては、例えば式(5),式(6),式(7),式(8)である。 Examples of the negative electrode covering material for a lithium ion secondary battery represented by Formula (1) include Formula (5), Formula (6), Formula (7), and Formula (8).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(5),式(6),式(7),式(8)のnは構造単位の繰り返し数である。 N in Formula (5), Formula (6), Formula (7), and Formula (8) is the number of repeating structural units.
 本発明により、不可逆容量が小さく、抵抗が低い負極を提供できる。また、前記負極をリチウムイオン二次電池に適用することにより、高容量かつ出力特性に優れたリチウムイオン二次電池を提供できる。記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, a negative electrode having a small irreversible capacity and a low resistance can be provided. In addition, by applying the negative electrode to a lithium ion secondary battery, a lithium ion secondary battery having high capacity and excellent output characteristics can be provided. Problems, configurations, and effects other than those described will be clarified by the following description of embodiments.
本発明の一実施形態に係る電池の内部構造を模式的に表す図The figure which represents typically the internal structure of the battery which concerns on one Embodiment of this invention.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 図1は、本発明の一実施形態に係る電池の内部構造を模式的に表す図である。図1に示す本発明の一実施形態に係る電池1は、正極10、セパレータ11、負極12、電池容器(即ち電池缶)13、正極集電タブ14、負極集電タブ15、内蓋16、内圧開放弁17、ガスケット18、正温度係数(Positive temperature coefficient;PTC)抵抗素子19、及び電池蓋20、軸心21から構成される。電池蓋20は、内蓋16、内圧開放弁17、ガスケット18、及びPTC抵抗素子19からなる一体化部品である。また、軸心21には、正極10、セパレータ11及び負極12が捲回されている。 FIG. 1 is a diagram schematically showing the internal structure of a battery according to an embodiment of the present invention. A battery 1 according to an embodiment of the present invention shown in FIG. 1 includes a positive electrode 10, a separator 11, a negative electrode 12, a battery container (that is, a battery can) 13, a positive electrode current collecting tab 14, a negative electrode current collecting tab 15, an inner lid 16, It comprises an internal pressure release valve 17, a gasket 18, a positive temperature coefficient (PTC) resistance element 19, a battery lid 20, and an axis 21. The battery lid 20 is an integrated part composed of the inner lid 16, the internal pressure release valve 17, the gasket 18, and the PTC resistance element 19. A positive electrode 10, a separator 11, and a negative electrode 12 are wound around the shaft center 21.
 セパレータ11を正極10及び負極12の間に挿入し、軸心21に捲回した電極群を作製する。軸心21は、正極10、セパレータ11及び負極12を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図1に示した円筒形状の他に、短冊状電極を積層したもの、又は正極10と負極12を扁平状等の任意の形状に捲回したもの等、種々の形状にすることができる。電池容器13の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。 The separator 11 is inserted between the positive electrode 10 and the negative electrode 12 to produce an electrode group wound around the axis 21. As the axis 21, any known one can be used as long as it can support the positive electrode 10, the separator 11, and the negative electrode 12. In addition to the cylindrical shape shown in FIG. 1, the electrode group has various shapes such as a laminate of strip electrodes, or a positive electrode 10 and a negative electrode 12 wound in an arbitrary shape such as a flat shape. Can do. The shape of the battery case 13 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
 電池容器13の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池容器13を正極10又は負極12に電気的に接続する場合は、非水電解質と接触している部分において、電池容器13の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器13の材料の選定を行う。 The material of the battery container 13 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, and nickel-plated steel. Further, when the battery container 13 is electrically connected to the positive electrode 10 or the negative electrode 12, the material is not deteriorated due to corrosion of the battery container 13 or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Thus, the material of the battery container 13 is selected.
 電池容器13に電極群を収納し、電池容器13の内壁に負極集電タブ15を接続し、電池蓋20の底面に正極集電タブ14を接続する。電解液は、電池の密閉の前に電池容器内部13に注入する。電解液の注入方法は、電池蓋20を解放した状態にて電極群に直接添加する方法、又は電池蓋20に設置した注入口から添加する方法がある。 The electrode group is housed in the battery container 13, the negative electrode current collecting tab 15 is connected to the inner wall of the battery container 13, and the positive electrode current collecting tab 14 is connected to the bottom surface of the battery lid 20. The electrolyte is injected into the battery container interior 13 before the battery is sealed. As a method for injecting the electrolyte, there are a method of adding directly to the electrode group in a state where the battery cover 20 is released, or a method of adding from an injection port installed in the battery cover 20.
 その後、電池蓋20を電池容器13に密着させ、電池全体を密閉する。電解液の注入口がある場合は、それも密封する。電池を密閉する方法には、溶接、かしめ等公知の技術がある。 Thereafter, the battery lid 20 is brought into close contact with the battery container 13 to seal the entire battery. If there is an electrolyte inlet, seal it as well. As a method for sealing the battery, there are known techniques such as welding and caulking.
 本発明の一実施形態に係るリチウムイオン電池は、例えば、下記のような負極と正極とをセパレータを介して対向して配置し、電解質を注入することによって製造することができる。本発明の一実施形態に係るリチウムイオン電池の構造は特に限定されないが、通常、正極及び負極とそれらを隔てるセパレータとを捲回して捲回式電極群にするか、又は正極、負極及びセパレータを積層させて積層型の電極群とすることができる。 The lithium ion battery according to an embodiment of the present invention can be manufactured, for example, by disposing a negative electrode and a positive electrode as described below with a separator interposed therebetween and injecting an electrolyte. The structure of the lithium ion battery according to an embodiment of the present invention is not particularly limited. Usually, the positive electrode and the negative electrode and the separator separating them are wound into a wound electrode group, or the positive electrode, the negative electrode, and the separator are combined. A stacked electrode group can be formed by stacking.
 <正極>
 正極10は、正極活物質、導電剤、バインダ、及び集電体から構成される。正極活物質を例示すると、LiCoO2、LiNiO2、及びLiMn24が代表例である。他に、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xMxO2(ただし、M=Co、Ni、Fe、Cr、Zn、Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Znからなる群から選ばれる少なくとも1種)、Li1-xxMn24(ただし、A=Mg、B、Al、Fe、Co、Ni、Cr、Zn、Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-xx2(ただし、M=Co、Fe、Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO2、Fe2(SO43、LiCo1-xx2(ただし、M=Ni、Fe、Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO43、FeF3、LiFePO4、及びLiMnPO4等を列挙することができる。
<Positive electrode>
The positive electrode 10 includes a positive electrode active material, a conductive agent, a binder, and a current collector. Illustrative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . In addition, LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , LiMn 2−x MxO 2 (however, at least selected from the group consisting of M = Co, Ni, Fe, Cr, Zn, Ti) 1 type, x = 0.01 to 0.2), Li 2 Mn 3 MO 8 (however, M = at least one selected from the group consisting of Fe, Co, Ni, Cu, Zn), Li 1-x A x Mn 2 O 4 (where A = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, at least one selected from the group consisting of x = 0.01 to 0.1), LiNi 1 -x M x O 2 (however, at least one selected from the group consisting of M = Co, Fe and Ga, x = 0.01 to 0.2), LiFeO 2 , Fe 2 (SO 4 ) 3 , LiCo 1 -x M x O 2 (where little is selected from the group consisting of M = Ni, Fe, Mn Both one, x = 0.01 ~ 0.2), LiNi 1-x M x O 2 ( however, M = Mn, Fe, Co , Al, Ga, Ca, at least one selected from the group consisting of Mg X = 0.01 to 0.2), Fe (MoO 4 ) 3 , FeF 3 , LiFePO 4 , LiMnPO 4 and the like.
 正極活物質の粒径は、正極活物質、導電剤、及びバインダから形成される合剤層の厚さ以下になるように通常は規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。 The particle size of the positive electrode active material is usually specified so as to be equal to or less than the thickness of the mixture layer formed of the positive electrode active material, the conductive agent, and the binder. When there are coarse particles having a size equal to or greater than the thickness of the mixture layer in the positive electrode active material powder, the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less. preferable.
 また、正極活物質は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる導電剤を利用する。正極活物質及び導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。 In addition, since the positive electrode active material is generally oxide-based and has high electric resistance, a conductive agent made of carbon powder for supplementing electric conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
 正極10の集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、又は発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。 As the current collector of the positive electrode 10, an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used. . In addition to aluminum, materials such as stainless steel and titanium are also applicable. In the present invention, any current collector can be used without being limited by the material, shape, manufacturing method and the like.
 正極活物質、導電剤、バインダ、及び有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、又はスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、正極10を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
<負極>
 本発明における負極は、負極活物質とバインダおよび集電体からなる。負極活物質としては、天然黒鉛,石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの,メソフェーズカーボン或いは非晶質炭素,炭素繊維,リチウムと合金化する金属,あるいは炭素粒子表面に金属を担持した材料が用いられる。例えばリチウム,銀,アルミニウム,スズ,ケイ素,インジウム,ガリウム,マグネシウムより選ばれた金属あるいは合金である。また,該金属または該金属の酸化物を負極活物質として利用できる。さらに、チタン酸リチウムを用いることもできる。

<被覆材>
 負極活物質を、被覆材により被覆することができる。被覆材を設けることで、負極活物質と電解質との接触を防ぐことができるため、電解質成分の析出による抵抗上昇を抑制することができる。電池の充放電の際、リチウムイオンは、被覆材を通って電解質と負極活物質間を行き来するため、被覆材はリチウムイオンを補足、解離する程度にイオン性を有していることが好ましい。被覆材のリチウムイオン補足力が強すぎる場合、リチウムイオンの伝導度が上がり、電池としての出力が劣る。したがって、被覆材とリチウムイオンとの結合力は厳密に調節されることが好ましい。
A positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press. The positive electrode 10 can be produced by pressure forming. In addition, a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
<Negative electrode>
The negative electrode in the present invention comprises a negative electrode active material, a binder, and a current collector. As the negative electrode active material, an easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, etc. is heat-treated at a high temperature of 2500 ° C. or higher, and mesophase carbon or amorphous carbon, carbon fiber, and lithium are alloyed. A metal or a material having a metal supported on the surface of carbon particles is used. For example, a metal or alloy selected from lithium, silver, aluminum, tin, silicon, indium, gallium, and magnesium. Further, the metal or an oxide of the metal can be used as a negative electrode active material. Furthermore, lithium titanate can also be used.

<Coating material>
The negative electrode active material can be coated with a coating material. By providing the covering material, contact between the negative electrode active material and the electrolyte can be prevented, so that an increase in resistance due to precipitation of the electrolyte component can be suppressed. At the time of charging / discharging of the battery, since lithium ions pass between the electrolyte and the negative electrode active material through the coating material, the coating material preferably has ionicity to the extent that lithium ions are captured and dissociated. When the lithium ion capturing power of the covering material is too strong, the lithium ion conductivity is increased and the output as a battery is inferior. Therefore, it is preferable that the bonding force between the coating material and the lithium ions be adjusted strictly.
 負極活物質の被覆材として(式1)で表わされる高分子負極被覆材を用いることでイオン伝導度が高く、高出力のリチウムイオン二次電池を提供することができることを見出した。 It has been found that by using a polymer negative electrode coating material represented by (Formula 1) as a negative electrode active material coating material, it is possible to provide a lithium ion secondary battery with high ion conductivity and high output.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)のnは構造単位の繰り返し数である。式(1)のR3 ,R3,R5は、炭素数1~10の炭化水素基または、Hである。本発明において、R1,R2は、本願の効果を得る上で重要なものである。R1とR2は、少なくとも1つ以上は電子吸引性の官能基を含む。電子吸引性の官能基としては、具体的にはハロゲンを含む官能基が好適に用いられる。ハロゲンとしては、F、Cl、Br、I、Atが挙げられる。電子吸引性の強さと、電気化学的安定性の観点からは、F、Cl、Br、Iが好ましく、F、Clがさらに好ましく、Fが特に好ましい。Fを含む官能基としては、F、CFH2、CF2H、CF3が挙げられる。合成上の観点から、F、CF3が好適に用いられる。R1およびR2において、電子吸引基が一つの場合、もうひとつの官能基は水素または炭化水素基である。また式(1)において、R1およびR2はスルホ基の隣接に位置することが重要である。電子吸引性の官能基がスルホ基の隣接に位置することにより、スルホ基の電子密度が低下して、その結果Liイオンの解離度が高まり、電池の抵抗が低減できると考えられる。 N in the formula (1) is the number of repeating structural units. R3, R3 and R5 in the formula (1) are a hydrocarbon group having 1 to 10 carbon atoms or H. In the present invention, R1 and R2 are important for obtaining the effects of the present application. At least one of R1 and R2 includes an electron-withdrawing functional group. Specifically, a functional group containing halogen is preferably used as the electron-withdrawing functional group. Examples of halogen include F, Cl, Br, I, and At. From the viewpoint of the strength of electron withdrawing and electrochemical stability, F, Cl, Br, and I are preferable, F and Cl are more preferable, and F is particularly preferable. Examples of the functional group containing F include F, CFH 2 , CF 2 H, and CF 3 . From the viewpoint of synthesis, F and CF 3 are preferably used. In R1 and R2, when there is one electron-withdrawing group, the other functional group is hydrogen or a hydrocarbon group. In formula (1), it is important that R1 and R2 are located adjacent to the sulfo group. When the electron-withdrawing functional group is located adjacent to the sulfo group, the electron density of the sulfo group decreases, and as a result, the degree of dissociation of Li ions increases, and the resistance of the battery can be reduced.
 負極活物質は、本発明の負極被覆材で被覆されている。被覆量は本願の効果を得るために重要な値である。被覆量は、負極活物質に対し0.01 wt%以上10 wt%以下であり、好ましくは0.1 wt%以上5 %以下であり、特に好ましくは0.3 wt%以上3 wt%以下である。 The negative electrode active material is coated with the negative electrode coating material of the present invention. The coating amount is an important value for obtaining the effect of the present application. The coating amount is 0.01 to 10% by weight, preferably 0.1 to 5% by weight, particularly preferably 0.3 to 3% by weight, based on the negative electrode active material.
 式(1)の構造を持つポリマーは、対応する構造を有するモノマーを重合することで作製する。また、前記モノマーは以下の方法で合成することができる。 The polymer having the structure of the formula (1) is produced by polymerizing a monomer having a corresponding structure. The monomer can be synthesized by the following method.
 はじめに、溶媒のテトラヒドロフランに塩化アクリル式(2)を溶解させる。その後、溶液を50℃に加熱する。そこに、テトラヒドロフランに溶解させた式(3)を徐々に滴下する。滴下終了後、50℃で10時間撹拌を続ける。反応終了後、反応溶媒のテトラヒドロフランをエバポレータで留去し、粗生成物を得る。その後、祖生成物をカラムクロマトグラフィーで精製し、目的生成物式(4)を得る。なお、カラムクロマトグラフィーでは、溶媒にヘキサンと酢酸エチルの混合溶媒を用いた。 First, the acrylic chloride (2) is dissolved in the solvent tetrahydrofuran. The solution is then heated to 50 ° C. There, the formula (3) dissolved in tetrahydrofuran is gradually added dropwise. After completion of dropping, stirring is continued at 50 ° C. for 10 hours. After completion of the reaction, tetrahydrofuran as a reaction solvent is distilled off with an evaporator to obtain a crude product. The parent product is then purified by column chromatography to obtain the desired product formula (4). In column chromatography, a mixed solvent of hexane and ethyl acetate was used as a solvent.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)の構造を持つポリマーとしては、例えば式(5)~式(8)のような構造が好ましい。Fと-CF3とを比較すると、Fとすることでリチウムイオンと結合する酸素とより近距離になるため、電子吸引の効果が高い。-CF3とすることでハロゲンと酸素との距離は開くものの、炭素を介してより多くのハロゲンを設けることができるため、電子吸引効果が高い。 As the polymer having the structure of the formula (1), for example, structures such as the formulas (5) to (8) are preferable. When F is compared with —CF 3 , the effect of electron withdrawing is high because F is closer to oxygen bonded to lithium ions. Although the distance between halogen and oxygen is increased by using -CF 3 , more halogen can be provided via carbon, so that the electron withdrawing effect is high.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1)の構造を持つポリマーに対応する第一のモノマー(例えば式(4))に他の第二のモノマーを共重合させたものを被覆材として用いることも可能である。共重合することで、より高い不可逆容量の低減効果が発現する。共重合するモノマーとしては、式(9)から式(13)の構造を含む第二のモノマーが好適に用いられる。なお、前記モノマーのXはアルカリ金属またはHであり、アルカリ金属が電気化学的安定性の観点から好適に用いられる。 It is also possible to use, as a coating material, a copolymer obtained by copolymerizing a first monomer corresponding to a polymer having a structure of formula (1) (for example, formula (4)) with another second monomer. By copolymerization, a higher irreversible capacity reduction effect is exhibited. As the monomer to be copolymerized, a second monomer having the structure of formula (9) to formula (13) is preferably used. X of the monomer is an alkali metal or H, and the alkali metal is preferably used from the viewpoint of electrochemical stability.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(重合法)
 本発明の被覆材は前述のとおり、モノマーを重合させて作製することができる。重合は、従来から知られているバルク重合、溶液重合、乳化重合のいずれによっても良い。また、重合方法は特に限定はされないが、ラジカル重合が好適に用いられる。重合に際しては重合開始剤を用いても用いなくても良く、取り扱いの容易さの点からはラジカル重合開始剤を用いるのが好ましい。ラジカル重合開始剤を用いた重合方法は、通常行われている温度範囲および重合時間で行うことができる。本発明における開始剤配合量は、重合性化合物に対し0.1wt%から20wt%であり、好ましくは0.3wt%以上5wt%である。
(ポリマーの構造)
 本発明において、ポリマーの構造は直鎖構造、枝分かれ構造、架橋構造、デンドリマー構造でもよい。被覆する際の作業性の観点からは直鎖構造のポリマーが好適に用いられる。モノマーを共重合した際の重合様式は、ポリマーが形成できれば特にとわないが、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合などが挙げられる。
(ポリマーの分子量)
 本発明の負極被覆材として用いるポリマーの数平均分子量は、1,000以上5,000,000以下である。好ましくは1000以上1,000,000以下である。数平均分子量を調整することにより被覆する際に起こりやすい、負極活物質の凝集を抑制することができる。
 (共重合組成比)
 本発明において、式(1)の構造を持つポリマーに対応する第一のモノマーと、式(9)から式(13)の構造を含む第二のモノマーとの共重合組成比は本発明の効果を得る上で重要である。第一のモノマーの比率をx、第二のモノマーの比率をyとすると、x/(x+y)は0<x/(x+y) ≦1であり、好ましくは0.05≦x/(x+y) ≦1であり、特に好ましくは0.1≦x/(x+y) ≦1である。x/(x+y)を制御することにより、不可逆容量と低抵抗の両立がはかれるLi電池が提供できる。
(Polymerization method)
As described above, the coating material of the present invention can be produced by polymerizing monomers. The polymerization may be any of conventionally known bulk polymerization, solution polymerization, and emulsion polymerization. The polymerization method is not particularly limited, but radical polymerization is preferably used. In the polymerization, a polymerization initiator may or may not be used, and a radical polymerization initiator is preferably used from the viewpoint of easy handling. The polymerization method using a radical polymerization initiator can be carried out in a temperature range and a polymerization time which are usually performed. The initiator content in the present invention is 0.1 wt% to 20 wt%, preferably 0.3 wt% or more and 5 wt% with respect to the polymerizable compound.
(Polymer structure)
In the present invention, the polymer structure may be a linear structure, a branched structure, a crosslinked structure, or a dendrimer structure. From the viewpoint of workability at the time of coating, a linear polymer is preferably used. The polymerization mode when monomers are copolymerized is not particularly limited as long as a polymer can be formed, and examples thereof include random copolymerization, alternating copolymerization, block copolymerization, and graft copolymerization.
(Polymer molecular weight)
The number average molecular weight of the polymer used as the negative electrode coating material of the present invention is 1,000 or more and 5,000,000 or less. Preferably it is 1000 or more and 1,000,000 or less. By adjusting the number average molecular weight, aggregation of the negative electrode active material, which tends to occur when coating, can be suppressed.
(Copolymerization composition ratio)
In the present invention, the copolymer composition ratio of the first monomer corresponding to the polymer having the structure of the formula (1) and the second monomer containing the structures of the formulas (9) to (13) is the effect of the present invention. It is important in getting. If the ratio of the first monomer is x and the ratio of the second monomer is y, x / (x + y) is 0 <x / (x + y) ≦ 1, preferably 0.05 ≦ x / (x + y) ≦ 1, particularly preferably 0.1 ≦ x / (x + y) ≦ 1. By controlling x / (x + y), it is possible to provide a Li battery that can achieve both irreversible capacity and low resistance.
 本発明の負極被覆材において、負極活物質に前記被覆材を被覆する方法は負極活物質にポリマーが被覆されれば特に問わないが、ポリマーを溶媒に溶解させその溶液中に負極活物質を加え撹拌後、溶媒を乾燥させ被覆することが、コストの観点からも好ましい。溶媒としては、ポリマーが溶解すれば特に問わないが、水、エタノールなどのプロトン性溶媒、N-メチルピロリドンなどの非プロトン性溶媒、トルエン、ヘキサンなどの非極性溶媒などが好適に用いられる。 In the negative electrode coating material of the present invention, the method of coating the negative electrode active material with the coating material is not particularly limited as long as the negative electrode active material is coated with a polymer, but the polymer is dissolved in a solvent and the negative electrode active material is added to the solution. It is preferable from the viewpoint of cost to dry and coat the solvent after stirring. The solvent is not particularly limited as long as the polymer dissolves, but a protic solvent such as water and ethanol, an aprotic solvent such as N-methylpyrrolidone, and a nonpolar solvent such as toluene and hexane are preferably used.
 また、式(9),式(10),式(11),式(12),式(13)はそれぞれ単独重合することができ、このポリマーと式(1)のポリマーとを混合して負極活物質を被覆することもできる。 Formula (9), Formula (10), Formula (11), Formula (12), and Formula (13) can each be homopolymerized, and this polymer and the polymer of Formula (1) are mixed to form a negative electrode The active material can also be coated.
 <セパレータ> 
 上記の方法で作製した正極10及び負極12の間にセパレータ11を挿入し、正極10及び負極12の短絡を防止する。セパレータ11には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、又はポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータ11が収縮しないように、セパレータ11の表面にセラミックス及びバインダの混合物を薄層状に形成してもよい。これらのセパレータ11は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン電池に使用可能である。
<電解質>
 本発明の一実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、又はエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)、又はホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明は、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
<Separator>
The separator 11 is inserted between the positive electrode 10 and the negative electrode 12 produced by the above method to prevent a short circuit between the positive electrode 10 and the negative electrode 12. The separator 11 can be a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. It is. A mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 11 so that the separator 11 does not shrink when the battery temperature increases. Since these separators 11 need to allow lithium ions to pass through when charging and discharging the battery, they can be used for lithium ion batteries as long as the pore diameter is generally 0.01 to 10 μm and the porosity is 20 to 90%. .
<Electrolyte>
As a representative example of an electrolyte solution that can be used in an embodiment of the present invention, a solvent obtained by mixing ethylene carbonate with dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte, Alternatively, there is a solution in which lithium borofluoride (LiBF 4 ) is dissolved. The present invention is not limited to the type of solvent and electrolyte, and the mixing ratio of solvents, and other electrolytes can be used.
 なお、電解液に使用可能な非水溶媒の例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、又はクロルプロピレンカーボネート等の非水溶媒がある。本発明の電池に内蔵される正極10又は負極12上で分解しなければ、これ以外の溶媒を用いてもよい。 Examples of non-aqueous solvents that can be used for the electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2- Dimethoxyethane, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3- Non-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate, etc. There is a solvent. Other solvents may be used as long as they do not decompose on the positive electrode 10 or the negative electrode 12 incorporated in the battery of the present invention.
 また、電解質の例としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、又はリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等、多種類のリチウム塩がある。これらの塩を、上記の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本実施形態に係る電池が有する正極10及び負極12上で分解しなければ、これ以外の電解質を用いてもよい。 In addition, examples of the electrolyte, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, multi There are different types of lithium salts. A nonaqueous electrolytic solution obtained by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution. An electrolyte other than this may be used as long as it does not decompose on the positive electrode 10 and the negative electrode 12 included in the battery according to the present embodiment.
 固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ11を省略することができる利点がある。 In the case of using a solid polymer electrolyte (polymer electrolyte), ion conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide can be used for the electrolyte. When these solid polymer electrolytes are used, there is an advantage that the separator 11 can be omitted.
 さらに、イオン性液体を用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-BF4)、リチウム塩LiN(SO2CF32(LiTFSI)とトリグライムとテトラグライムとの混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)、及びイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より、正極10及び負極12にて分解しない組み合わせを選択して、本実施形態に係る電池に用いることができる。
<電池システム>
 本願で見出された負極活物質を用いたLi電池は、抵抗が低いという優れた性質を持つ。そのため、電池の使用時に電池の内部抵抗に起因する発熱を抑制することができる。そのため、電池の冷却機構の簡略化も図れるため、携帯機器用の小型電池は勿論のこと、車載用などの大型電池にも有用である。
Furthermore, an ionic liquid can be used. For example, 1-ethyl-3-methylimidazole tetrafluoroborate (EMI-BF4), a mixed salt of lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), triglyme and tetraglyme, a cyclic quaternary ammonium cation (N-methyl) -N-propylpyrrolidinium is exemplified)) and imide anion (exemplified by bis (fluorosulfonyl) imide) are selected from combinations that do not decompose at the positive electrode 10 and the negative electrode 12, and according to this embodiment. Can be used for batteries.
<Battery system>
The Li battery using the negative electrode active material found in the present application has an excellent property of low resistance. Therefore, heat generation due to the internal resistance of the battery can be suppressed when the battery is used. Therefore, since the battery cooling mechanism can be simplified, it is useful not only for small batteries for portable devices but also for large batteries for in-vehicle use.
 以下,実施例を挙げて本発明をさらに具体的に説明するが,本発明はこれらの実施例に限定されるものではない。本実施例の結果を表1にまとめた。
<モノマーおよびポリマーの合成方法>
 本実施例では、式(14)と式(15)のモノマーを発明の詳細な説明の<被覆材>の項で示した反応スキームに従い合成した。また、そのモノマーを用いてポリマーを合成した。なお、式(14)と式(15)は、それぞれ式(8)、式(6)に対応したモノマー構造である
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. The results of this example are summarized in Table 1.
<Synthesis method of monomer and polymer>
In this example, monomers of formula (14) and formula (15) were synthesized according to the reaction scheme shown in the <Coating Material> section of the detailed description of the invention. Moreover, the polymer was synthesize | combined using the monomer. Formula (14) and Formula (15) are monomer structures corresponding to Formula (8) and Formula (6), respectively.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ポリマーの合成は、反応容器にモノマーと反応溶媒としてテトラヒドロフランを加えた。さらに、その溶液に重合開始剤としてAIBNを加えた。重合開始剤の濃度はモノマーの総量に対し4wt %になるように加えた。その後、反応溶液を60℃、3 h加熱することでポリマー式(8)、式(6)を合成した。
<正極の作製方法>
 正極活物質(LiCoO2)、導電剤(SP270:日本黒鉛社製黒鉛)、ポリフッ化ビニリデンバインダーを85:7.5:7.5重量%の割合で混合し、N-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、200g/m2 であった。その後、プレスして正極を作製した。
<負極活物質の被覆方法>
 水に所定量の被覆ポリマーを混合する。その後、その溶液に負極活物質を加えて撹拌する。20 分間撹拌後、スラリー状になった負極活物質を取り出し、100℃に加熱した乾燥機にいれて水を除去する。その後、120℃に加熱した真空乾燥機で乾燥したあと篩でふるうことで、被覆した負極活物資物質を得た。なお、被覆ポリマーは負極活物質に対し0.5 wt%になるようにした。また、負極活物質にはグラファイトを用いた。
<負極の作製方法>
 グラファイトにポリフッ化ビニリデンを95:5の重量%の比率で混合し、更にN-メチル-2-ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ10 μmの銅箔にドクターブレード法で塗布し、乾燥した。合剤かさ密度が1.5 g / cm3になるようにプレスして負極を作製した。
<負極単極の評価方法>
 作製した負極を、直径15 mmの円形に打ち抜いて電極を準備した。評価セルは、負極と対極としてLi金属を用い、負極とLi金属の間にセパレータを挿入して、そこに電解液を加えることで構成した。評価セルの充電は、予め設定した下限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した上限電圧まで、電流密度0.72 mA / cm2で放電した。下限電圧は0.01 V、上限電圧は1.5 Vであった。不可逆容量は、充電容量と放電容量の差分から求めた。
<直流抵抗の評価方法>
 正極および負極を直径15 mmの円形に打ち抜いて電極を準備した。小型電池は、正極および負極間にセパレータを挿入して、そこに電解液を加えることで構成した。小型電池の充電は、予め設定した上限電圧まで電流密度0.72 mA /cm2で充電した。放電は、予め設定した下限電圧まで、電流密度0.72 mA / cm2で放電した。上限電圧は4.2 V、下限電圧は3.0 Vであった。1サイクル目に得られた放電容量を、電池の初期容量とした。その後、初期容量の50%まで充電して直流抵抗を測定した。
(実施例1)
 式(14)のモノマーを用いてポリマーを合成した。また合成したポリマーを用いて負極活物質を被覆した。負極単極を作製して不可逆容量を測定した。不可逆容量は32 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は10.6 Ωであった。
(実施例2)
 式(15)のモノマーを用いてポリマーを合成した。また合成したポリマーを用いて負極活物質を被覆した。負極単極を作製して不可逆容量を測定した。不可逆容量は33 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は9.9 Ωであった。
(実施例3)
 式(14)のモノマー(x)と式(11)のモノマー(y)を共重合させてポリマーを合成した。共重合組成比(x/(x+y))は0.75であった。負極単極を作製して不可逆容量を測定した。不可逆容量は28 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は10.9 Ωであった。
(実施例4)
 式(15)のモノマーと式(11)のモノマー(y)を共重合させてポリマーを合成した。共重合組成比 (x/(x+y)) は0.75であった。負極単極を作製して不可逆容量を測定した。不可逆容量は30 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は10.2 Ωであった。
(実施例5)
 式(14)のモノマー(x)と式(11)のモノマー(y)を共重合させてポリマーを合成した。共重合組成比 (x/(x+y)) は0.50であった。負極単極を作製して不可逆容量を測定した。不可逆容量は26 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.0 Ωであった。
(実施例6)
 式(15)のモノマー(x)と式(11)のモノマー(y)を共重合させてポリマーを合成した。共重合組成比 (x/(x+y)) は0.50であった。負極単極を作製して不可逆容量を測定した。不可逆容量は24 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は11.3 Ωであった。
 (比較例1)
 実施例1において、被覆材を用いないこと以外は実施例1と同様に評価した。その結果、不可逆容量は36 mAhg-1であった。次に小型電池を作製して、直流抵抗を測定した。直流抵抗は12.1 Ωであった。
For the synthesis of the polymer, tetrahydrofuran as a monomer and reaction solvent was added to a reaction vessel. Furthermore, AIBN was added to the solution as a polymerization initiator. The concentration of the polymerization initiator was added so as to be 4 wt% with respect to the total amount of monomers. Thereafter, the polymer solutions (8) and (6) were synthesized by heating the reaction solution at 60 ° C. for 3 hours.
<Method for producing positive electrode>
A positive electrode active material (LiCoO 2 ), a conductive agent (SP270: graphite produced by Nippon Graphite Co., Ltd.), and a polyvinylidene fluoride binder were mixed at a ratio of 85: 7.5: 7.5% by weight, and mixed into N-methyl-2-pyrrolidone. A slurry-like solution was prepared. The slurry was applied to a 20 μm thick aluminum foil by a doctor blade method and dried. The coating amount of the mixture was 200 g / m 2 . Then, it pressed and produced the positive electrode.
<Method for coating negative electrode active material>
A predetermined amount of coating polymer is mixed in water. Thereafter, the negative electrode active material is added to the solution and stirred. After stirring for 20 minutes, the negative electrode active material in the form of a slurry is taken out and placed in a dryer heated to 100 ° C. to remove water. Then, after drying with a vacuum dryer heated to 120 ° C., it was sieved to obtain a coated negative electrode active material. The coating polymer was 0.5 wt% with respect to the negative electrode active material. In addition, graphite was used as the negative electrode active material.
<Method for producing negative electrode>
Polyvinylidene fluoride was mixed with graphite at a weight ratio of 95: 5, and charged into N-methyl-2-pyrrolidone to prepare a slurry solution. The slurry was applied to a copper foil having a thickness of 10 μm by a doctor blade method and dried. The mixture was pressed so that the bulk density was 1.5 g / cm 3 to prepare a negative electrode.
<Negative electrode evaluation method>
The prepared negative electrode was punched into a circle having a diameter of 15 mm to prepare an electrode. The evaluation cell was configured by using Li metal as a negative electrode and a counter electrode, inserting a separator between the negative electrode and Li metal, and adding an electrolyte thereto. The evaluation cell was charged at a current density of 0.72 mA / cm 2 up to a preset lower limit voltage. The discharge was performed at a current density of 0.72 mA / cm 2 up to a preset upper limit voltage. The lower limit voltage was 0.01 V and the upper limit voltage was 1.5 V. The irreversible capacity was obtained from the difference between the charge capacity and the discharge capacity.
<Evaluation method of DC resistance>
The positive electrode and the negative electrode were punched into a circle having a diameter of 15 mm to prepare an electrode. The small battery was configured by inserting a separator between the positive electrode and the negative electrode, and adding an electrolytic solution thereto. The small battery was charged at a current density of 0.72 mA / cm 2 up to a preset upper limit voltage. The discharge was performed at a current density of 0.72 mA / cm 2 up to a preset lower limit voltage. The upper limit voltage was 4.2 V and the lower limit voltage was 3.0 V. The discharge capacity obtained in the first cycle was defined as the initial capacity of the battery. Thereafter, the battery was charged to 50% of the initial capacity, and the direct current resistance was measured.
(Example 1)
A polymer was synthesized using the monomer of formula (14). The synthesized polymer was used to coat the negative electrode active material. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 32 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The direct current resistance was 10.6 Ω.
(Example 2)
A polymer was synthesized using the monomer of formula (15). The synthesized polymer was used to coat the negative electrode active material. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 33 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 9.9 Ω.
(Example 3)
A monomer was synthesized by copolymerizing the monomer (x) of the formula (14) and the monomer (y) of the formula (11). The copolymer composition ratio (x / (x + y)) was 0.75. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 28 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 10.9 Ω.
(Example 4)
A monomer was synthesized by copolymerizing the monomer of formula (15) and the monomer (y) of formula (11). The copolymer composition ratio (x / (x + y)) was 0.75. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 30 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 10.2 Ω.
(Example 5)
A monomer was synthesized by copolymerizing the monomer (x) of the formula (14) and the monomer (y) of the formula (11). The copolymer composition ratio (x / (x + y)) was 0.50. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 26 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 11.0 Ω.
(Example 6)
A polymer was synthesized by copolymerizing the monomer (x) of the formula (15) and the monomer (y) of the formula (11). The copolymer composition ratio (x / (x + y)) was 0.50. A negative electrode single electrode was prepared and the irreversible capacity was measured. The irreversible capacity was 24 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 11.3 Ω.
(Comparative Example 1)
In Example 1, evaluation was performed in the same manner as in Example 1 except that no coating material was used. As a result, the irreversible capacity was 36 mAhg- 1 . Next, a small battery was produced, and DC resistance was measured. The DC resistance was 12.1Ω.
 式(14)の単独ポリマー結果を示す実施例1から、式(14)の単独ポリマーは、直流抵抗が低く、出力の高い二次電池を製造することができることがわかる。これに対して、式(14)と式(11)との共重合体を評価した実施例3、5では、実施例1よりも直流抵抗は劣るものの、不可逆容量が低いことが分かる。これは、式(11)との共重合とすることで、負極活物質との親和性を上げ、SEIの生成を防ぐ効果が高いことによるのもであると考えられる。 From Example 1 showing the result of the single polymer of the formula (14), it can be seen that the single polymer of the formula (14) has a low DC resistance and can produce a secondary battery with high output. On the other hand, in Examples 3 and 5 in which the copolymers of the formula (14) and the formula (11) were evaluated, the DC resistance was inferior to that of the example 1, but the irreversible capacity was low. This is considered to be due to the high effect of increasing the affinity with the negative electrode active material and preventing the generation of SEI by copolymerizing with the formula (11).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (9)

  1.  (式1)で表わされるリチウムイオン二次電池用負極被覆材。
    Figure JPOXMLDOC01-appb-C000001
     式(1)のR3、R4、R5は、炭素数1~10の炭化水素基または、Hである。R1とR2は、少なくとも1つ以上の電子吸引性の官能基を有する。nは構造単位の繰り返し数である。
    A negative electrode coating material for a lithium ion secondary battery represented by (formula 1).
    Figure JPOXMLDOC01-appb-C000001
    R 3 , R 4 and R 5 in the formula (1) are each a hydrocarbon group having 1 to 10 carbon atoms or H. R 1 and R 2 have at least one electron-withdrawing functional group. n is the number of repeating structural units.
  2.  請求項1において、
     前記電子吸引性の官能基は、ハロゲンを含む官能基であり、前記ハロゲンは、F,Cl,Br,I,Atのいずれか少なくとも一種であるリチウムイオン二次電池用負極被覆材。
    In claim 1,
    The electron-withdrawing functional group is a functional group containing a halogen, and the halogen is at least one of F, Cl, Br, I, and At.
  3.  請求項2において、前記電子吸引性の官能基は、F,CFH2,CF2H,CF3の少なくともいずれか一種であるリチウムイオン二次電池用負極被覆材。 3. The negative electrode covering material for a lithium ion secondary battery according to claim 2, wherein the electron-withdrawing functional group is at least one of F, CFH 2 , CF 2 H, and CF 3 .
  4.  請求項2において、前記リチウムイオン二次電池用負極被覆材は、式(5),式(6),式(7),式(8)の少なくともいずれか一種であるリチウムイオン二次電池用負極被覆材。
    Figure JPOXMLDOC01-appb-C000002
     式(5),式(6),式(7),式(8)のnは構造単位の繰り返し数である。
    3. The negative electrode for a lithium ion secondary battery according to claim 2, wherein the negative electrode covering material for a lithium ion secondary battery is at least one of the following formulas (5), (6), (7), and (8): Coating material.
    Figure JPOXMLDOC01-appb-C000002
    N in Formula (5), Formula (6), Formula (7), and Formula (8) is the number of repeating structural units.
  5.  請求項1ないし請求項4のいずれかにおいて、
     前記リチウムイオン二次電池用負極被覆材は、化学式(1)で表されるポリマーの構造単位に相当する第一のモノマーと、
     式(9),式(10),式(11),式(12),式(13)に示す第2のモノマーのうちの少なくとも1種と、
     を共重合させた共重合体であるリチウムイオン二次電池用負極被覆材。
    In any one of Claim 1 thru | or 4,
    The negative electrode covering material for a lithium ion secondary battery includes a first monomer corresponding to a structural unit of a polymer represented by chemical formula (1),
    At least one of the second monomers represented by formula (9), formula (10), formula (11), formula (12), and formula (13);
    A negative electrode coating material for a lithium ion secondary battery, which is a copolymer obtained by copolymerization of
  6.  請求項5において、
     前記共重合体の前記第一のモノマーと前記第二のモノマーとの共重合比率は、前記第一のモノマーの比率をx、前記第二のモノマーの比率をyとした場合、x/(x+y)は0<x/(x+y) ≦1の範囲であるリチウムイオン二次電池用負極被覆材。
    In claim 5,
    The copolymerization ratio of the first monomer and the second monomer of the copolymer is x / (x, where x is the ratio of the first monomer and y is the ratio of the second monomer. + y) is a negative electrode covering material for lithium ion secondary batteries in the range of 0 <x / (x + y) ≦ 1.
  7.  リチウムイオンを吸蔵・放出可能な正極と、
     リチウムイオンを吸蔵・放出可能な負極と、を有するリチウムイオン二次電池において、前記負極は、負極活物質を有し、前記負極活物質は、被覆材により被覆されており、
     前記被覆材は請求項1ないし請求項6のいずれかに記載された被覆材であるリチウムイオン二次電池。
    A positive electrode capable of inserting and extracting lithium ions;
    In a lithium ion secondary battery having a negative electrode capable of inserting and extracting lithium ions, the negative electrode has a negative electrode active material, and the negative electrode active material is coated with a coating material,
    The said coating | covering material is a lithium ion secondary battery which is a coating | coated material in any one of Claim 1 thru | or 6.
  8.  請求項7において、
     前記負極活物質に対する前記被覆材の被覆量は、0.01 wt%以上10 wt%以下であるリチウムイオン二次電池。
    In claim 7,
    The lithium ion secondary battery, wherein a coating amount of the coating material on the negative electrode active material is 0.01 wt% or more and 10 wt% or less.
  9.  式(2)を溶媒に溶かし、式(2)溶液を作製する工程と、
     前記式(2)溶液に式(3)を加え、加熱により式(2)と式(3)とを反応させる工程と、
     前記溶媒を留去して式(4)を得る工程と、
     前記式(4)を重合させて式(1)を製造する請求項1に記載された式(1)で表わされるリチウムイオン二次電池用負極被覆材の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     式(1)のR3、R4、R5は、Hである。R1とR2は、少なくとも1つ以上の電子吸引性の官能基を有する。nは構造単位の繰り返し数である。
    Dissolving formula (2) in a solvent to prepare a solution of formula (2);
    Adding the formula (3) to the formula (2) solution and reacting the formula (2) and the formula (3) by heating;
    Evaporating the solvent to obtain formula (4);
    The method for producing a negative electrode coating material for a lithium ion secondary battery represented by the formula (1) according to claim 1, wherein the formula (1) is produced by polymerizing the formula (4).
    Figure JPOXMLDOC01-appb-C000003
    R 3 , R 4 and R 5 in the formula (1) are H. R 1 and R 2 have at least one electron-withdrawing functional group. n is the number of repeating structural units.
PCT/JP2014/052991 2014-02-10 2014-02-10 MATERIAL FOR Li BATTERIES WO2015118676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052991 WO2015118676A1 (en) 2014-02-10 2014-02-10 MATERIAL FOR Li BATTERIES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052991 WO2015118676A1 (en) 2014-02-10 2014-02-10 MATERIAL FOR Li BATTERIES

Publications (1)

Publication Number Publication Date
WO2015118676A1 true WO2015118676A1 (en) 2015-08-13

Family

ID=53777502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052991 WO2015118676A1 (en) 2014-02-10 2014-02-10 MATERIAL FOR Li BATTERIES

Country Status (1)

Country Link
WO (1) WO2015118676A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790689A (en) * 2019-11-11 2020-02-14 江西师范大学 Synthetic method of 1, 1-difluoro-2-isonitrile-ethyl phenyl sulfone compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2013197078A (en) * 2012-03-23 2013-09-30 Nippon Zeon Co Ltd Porous film for secondary battery, porous film slurry composition for secondary battery, secondary battery electrode, secondary battery separator, and secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2012079493A (en) * 2010-09-30 2012-04-19 Sekisui Chem Co Ltd Electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2013197078A (en) * 2012-03-23 2013-09-30 Nippon Zeon Co Ltd Porous film for secondary battery, porous film slurry composition for secondary battery, secondary battery electrode, secondary battery separator, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790689A (en) * 2019-11-11 2020-02-14 江西师范大学 Synthetic method of 1, 1-difluoro-2-isonitrile-ethyl phenyl sulfone compound
CN110790689B (en) * 2019-11-11 2022-04-01 江西师范大学 Synthetic method of 1, 1-difluoro-2-isonitrile-ethyl phenyl sulfone compound

Similar Documents

Publication Publication Date Title
KR101390057B1 (en) Non-aqueous electrolyte secondary battery and process for producing the same
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6110951B2 (en) Negative electrode material for lithium ion secondary battery, and negative electrode for lithium ion secondary battery, lithium ion secondary battery, and battery system using the same
WO2013042610A1 (en) Lithium-ion secondary battery
KR20200089182A (en) LITHIUM SECONDARY BATTERY COMPRISING Si-BASED COMPOUND WITH EXCELLENT ENERGY DENSITY
JP2022536290A (en) In-situ polymerized polymer electrolyte for lithium-ion batteries
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2015159050A (en) Li battery material
JP6992362B2 (en) Lithium ion secondary battery
WO2015029248A1 (en) Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer
WO2015037115A1 (en) Negative-electrode material for use in lithium-ion secondary batteries
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
WO2015015598A1 (en) Coating material for negative electrode active materials for lithium ion secondary batteries, negative electrode active material for lithium ion secondary batteries coated with said coating material, and lithium ion secondary battery using said negative electrode active material in negative electrode
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
WO2015118676A1 (en) MATERIAL FOR Li BATTERIES
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP6023222B2 (en) Anode material for lithium ion secondary battery
WO2015151145A1 (en) All-solid lithium secondary cell
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2017117686A (en) Lithium ion secondary battery
JP2013239356A (en) Negative electrode protective agent for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery and manufacturing method therefor
WO2015118675A1 (en) Negative electrode material for lithium ion secondary battery
JP2018133335A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP