JP2017152122A - Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2017152122A
JP2017152122A JP2016031823A JP2016031823A JP2017152122A JP 2017152122 A JP2017152122 A JP 2017152122A JP 2016031823 A JP2016031823 A JP 2016031823A JP 2016031823 A JP2016031823 A JP 2016031823A JP 2017152122 A JP2017152122 A JP 2017152122A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016031823A
Other languages
Japanese (ja)
Inventor
浩 笹川
Hiroshi Sasagawa
浩 笹川
佐野 篤史
Atsushi Sano
篤史 佐野
田中 一正
Kazumasa Tanaka
一正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016031823A priority Critical patent/JP2017152122A/en
Publication of JP2017152122A publication Critical patent/JP2017152122A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a negative electrode active material for a lithium secondary battery and a negative electrode for a lithium ion secondary battery, which are superior in high-temperature cycle characteristics, and which are arranged to be able to suppress the reaction between a negative electrode active material and an electrolytic solution and gas generation during charge and discharge cycles; and a lithium ion secondary battery using the negative electrode.SOLUTION: A negative electrode active material for a lithium ion secondary battery comprises: a polyacrylic acid including a carboxy group and an acid anhydride group; and a negative electrode active substance of which the surface is coated with the polyacrylic acid. In the negative electrode active material for a lithium ion secondary battery, the polyacrylic acid is included preferably at 0.1-5 wt%. The ratio of a thickness of the polyacrylic acid coating to a particle diameter of particles of the negative electrode active substance is 0.0005-0.02.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池に関する。   The present invention relates to a negative electrode active material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される車載用電源として有力な候補ともなっている。近年は、携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。   Lithium ion secondary batteries are widely applied as power sources for portable electronic devices because they are lighter and have a higher capacity than nickel cadmium batteries, nickel metal hydride batteries, and the like. Moreover, it is also a promising candidate as a vehicle-mounted power source mounted for hybrid vehicles and electric vehicles. In recent years, along with the downsizing and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries serving as power sources.

負極活物質は充電時に電位が低くなり、電解液を還元分解する副反応が一般に起きる。その際、二酸化炭素や水素などのガスや電解液の分解物による被膜を負極活物質表面上に形成する。発生したガスはリチウムイオン二次電池の内部抵抗を増大させ、またこの被膜は充放電に関与しなくなるため、放電容量が減少し、ひいてはサイクル特性が劣化すると考えられる。一方、この被膜を形成することにより、充電時の負極活物質と電解液との反応が緩和される。しかし、この電解液の分解物による被膜が過度に成長することは、内部抵抗を増大させるため好ましくない。 The negative electrode active material generally has a low potential during charging, and side reactions that reduce and decompose the electrolyte generally occur. At that time, a film made of a decomposition product of a gas such as carbon dioxide or hydrogen or an electrolytic solution is formed on the surface of the negative electrode active material. The generated gas increases the internal resistance of the lithium ion secondary battery, and the coating does not participate in charging / discharging, so that the discharge capacity is reduced and the cycle characteristics are thus deteriorated. On the other hand, by forming this film, the reaction between the negative electrode active material and the electrolytic solution during charging is alleviated. However, excessive growth of the coating film due to the decomposition product of the electrolytic solution is not preferable because the internal resistance is increased.

負極活物質と電解液の副反応を抑制し、サイクル特性を向上することを目的として、カーボン材料を用いたリチウムイオン二次電池の負極活物質表面にアルカリ金属塩を含む高分子膜によって被覆すること(たとえば特許文献1)や、シリコン材料を高分子膜などで被覆する(たとえば、特許文献2)ことなどが提案されている。 The surface of the negative electrode active material of a lithium ion secondary battery using a carbon material is coated with a polymer film containing an alkali metal salt for the purpose of suppressing side reactions between the negative electrode active material and the electrolyte and improving cycle characteristics. For example, it has been proposed to cover a silicon material with a polymer film or the like (for example, Patent Document 2).

特開平8−306353号公報JP-A-8-306353 特開2005−197258号公報JP-A-2005-197258

しかしながら、サイクル特性を向上させることは従来の方法では十分ではなかった。ましてや、60℃以上の高温サイクル時においては電解液の反応性が非常に高くなるため、充放電サイクル時に起こる副反応は非常に活性となり、リチウムイオン二次電池に対してより大きな悪影響を及ぼす傾向がある。
車載用電源としての利用する場合には、リチウムイオン二次電池は高温に晒される可能性があるため、高温サイクル特性の向上は必要不可欠である。
このように、高分子膜で負極活物質を被覆する技術を用いても、外部からの加熱などによってリチウムイオン二次電池が高温になったときには、リチウムを吸蔵した負極活物質と電解液との副反応が非常に活性となる環境下で、十分な高温サイクル特性を得る必要がある。
However, the conventional method has not been sufficient to improve the cycle characteristics. In addition, the reactivity of the electrolyte solution becomes very high at high temperature cycles of 60 ° C. or higher, so the side reaction that occurs during the charge / discharge cycle becomes very active and tends to have a greater adverse effect on the lithium ion secondary battery. There is.
When used as an in-vehicle power source, the lithium ion secondary battery may be exposed to high temperatures, so it is essential to improve the high-temperature cycle characteristics.
As described above, even when the technique of coating the negative electrode active material with the polymer film is used, when the lithium ion secondary battery becomes high temperature due to external heating or the like, the negative electrode active material that occludes lithium and the electrolytic solution are used. It is necessary to obtain sufficient high-temperature cycle characteristics in an environment where side reactions are very active.

本発明は、上記問題を考慮し、高温サイクル特性に優れるリチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a negative electrode active material for a lithium ion secondary battery excellent in high-temperature cycle characteristics, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same. .

上記課題を解決するため、本発明の負極活物質は負極活物質粒子表面に、カルボン酸基および酸無水物基を含有するポリアクリル酸が被覆されていることを特徴とする。   In order to solve the above problems, the negative electrode active material of the present invention is characterized in that the surface of the negative electrode active material particles is coated with polyacrylic acid containing a carboxylic acid group and an acid anhydride group.

本発明にかかるリチウムイオン二次電池用負極活物質によれば、負極活物質の表面がカルボキシ基と酸無水物が存在するポリアクリル酸で被覆されることにより、充放電サイクル中の負極活物質と電解液との反応およびガス発生を抑制し、充放電サイクルによる劣化を抑制することができる。
これは、カルボキシ基が脱水縮合した酸無水物が化学的に安定であるために、電解液が活性になりやすい高温サイクル下においても、電解液と負極活物質の反応を抑制し、電解液の分解やガスの発生を抑制することができるものと考えられる。その結果として、優れた高温サイクル特性を有する。
また、カルボキシ基は負極活物質表面と良好な接着性を保持し、負極活物質の膨張収縮に追従することが可能であり負極活物質の表面に被覆された高分子化合物が剥がれることを抑制することができると考えられる。
According to the negative electrode active material for a lithium ion secondary battery according to the present invention, the surface of the negative electrode active material is coated with polyacrylic acid in which a carboxy group and an acid anhydride are present. It is possible to suppress the reaction between the electrolyte solution and the gas generation, and to suppress deterioration due to the charge / discharge cycle.
This is because the acid anhydride obtained by dehydration condensation of the carboxy group is chemically stable, so that the reaction between the electrolytic solution and the negative electrode active material is suppressed even under a high temperature cycle where the electrolytic solution is likely to be active. It is considered that decomposition and gas generation can be suppressed. As a result, it has excellent high temperature cycle characteristics.
In addition, the carboxy group maintains good adhesion to the surface of the negative electrode active material, can follow the expansion and contraction of the negative electrode active material, and suppresses peeling of the polymer compound coated on the surface of the negative electrode active material. It is considered possible.

本発明にかかる前記ポリアクリル酸は、負極活物質に対して、0.1〜5重量%含まれていることが好ましい。 The polyacrylic acid according to the present invention is preferably contained in an amount of 0.1 to 5% by weight with respect to the negative electrode active material.

この範囲であれば負極活物質の表面を被覆し、活物質と電解液の反応をより十分に抑制する効果があり、かつ充放電時のLiイオンの挿入/脱離の疎外にもならないため、負極活物質と電解液との反応を抑制するために好適である。 If it is in this range, the surface of the negative electrode active material is coated, and there is an effect of suppressing the reaction between the active material and the electrolyte more sufficiently, and the insertion / extraction of Li ions during charge / discharge is not alienated, It is suitable for suppressing the reaction between the negative electrode active material and the electrolytic solution.

本発明にかかるリチウムイオン二次電池用負極活物質は、負極活物質粒子の粒径に対する、前記ポリアクリル酸の被覆厚さの比率が0.0005〜0.02であることが好ましい。 In the negative electrode active material for a lithium ion secondary battery according to the present invention, the ratio of the coating thickness of the polyacrylic acid to the particle size of the negative electrode active material particles is preferably 0.0005 to 0.02.

これによれば、充電時に負極活物質の膨張に起因して発生する負極活物質層中の応力を緩衝する効果が増大し、さらに高温サイクル特性が向上することができる。 According to this, the effect of buffering the stress in the negative electrode active material layer generated due to the expansion of the negative electrode active material during charging is increased, and the high-temperature cycle characteristics can be further improved.

本発明によれば、高温サイクル特性に優れるリチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the negative electrode active material for lithium ion secondary batteries which is excellent in a high temperature cycling characteristic, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery can be provided.

リチウムイオン二次電池の模式断面図である。It is a schematic cross section of a lithium ion secondary battery.

以下、図面を参照しながら本発明の好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

(リチウムイオン二次電池)
図1は、本実施形態とするリチウムイオン二次電池を示す模式断面図である。図1に示すように、リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60、62を備えている。
(Lithium ion secondary battery)
FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to this embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30. ing.

積層体30は、一対の正極10、負極20が、セパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14の主面及び負極活物質層24の主面が、セパレータ18の主面にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60、62が接続されており、リード60、62の端部はケース50の外部にまで延びている。   The laminated body 30 is configured such that a pair of a positive electrode 10 and a negative electrode 20 are disposed to face each other with a separator 18 interposed therebetween. The positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12. The negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22. The main surface of the positive electrode active material layer 14 and the main surface of the negative electrode active material layer 24 are in contact with the main surface of the separator 18. Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.

以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24ということがある。まず、電極10、20について具体的に説明する。   Hereinafter, the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode The active material layer 24 may be collectively referred to as the active material layers 14 and 24. First, the electrodes 10 and 20 will be specifically described.

(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a conductive auxiliary agent in an amount as necessary.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、PF )とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV、LiVOPO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)、LiMnO−LiMO(ただしMはMn、Co,Niより選ばれる1種類以上の元素)で表されるLi過剰系固溶体等の複合金属酸化物が挙げられる。
(Positive electrode active material)
Examples of the positive electrode active material include occlusion and release of lithium ions, desorption and insertion (intercalation) of lithium ions, or doping and dedoping of lithium ions and counter anions (for example, PF 6 ) of the lithium ions. The electrode is not particularly limited as long as it can be reversibly advanced, and a known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the general formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Oxide, lithium vanadium compound (LiV 2 O 5 , LiVOPO 4 ), olivine-type LiMPO 4 (where M is one or more selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr) elements), lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1), Li 2 MnO 3 -LiM 2 (wherein M is Mn, Co, selected one or more elements from Ni) complex metal oxide such as Li excess solid solution represented by the like.

(正極バインダー)
バインダーは、正極活物質同士を結合すると共に、正極活物質と集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂が挙げられる。更に、上記の他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電助剤粒子の機能も発揮するので導電助剤を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
(Positive electrode binder)
The binder binds the positive electrode active materials and the current collector 12 together with the positive electrode active materials. The binder is not particularly limited as long as the above-described bonding is possible, and examples thereof include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). In addition to the above, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, or the like may be used as the binder. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also exhibits the function of the conductive assistant particles, it is not necessary to add the conductive assistant. As the ion-conductive conductive polymer, for example, those having ion conductivity such as lithium ion can be used. For example, polymer compounds (polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide) , Polyphosphazene, etc.) and a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , or an alkali metal salt mainly composed of lithium, and the like. Examples of the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.

正極活物質層14中のバインダーの含有量は特に限定されないが、正極活物質、導電助剤及びバインダーの質量の和を基準にして、1〜10質量%であることが好ましい。正極活物質とバインダーの含有量を上記範囲とすることにより、得られた正極活物質層14において、バインダーの量が少なすぎて強固な正極活物質層を形成できなくなる傾向を抑制できる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。 Although content of the binder in the positive electrode active material layer 14 is not specifically limited, It is preferable that it is 1-10 mass% on the basis of the sum of the mass of a positive electrode active material, a conductive support agent, and a binder. By making content of a positive electrode active material and a binder into the said range, in the obtained positive electrode active material layer 14, the amount of binders is too small and the tendency which cannot form a strong positive electrode active material layer can be suppressed. In addition, the amount of the binder that does not contribute to the electric capacity increases, and the tendency that it is difficult to obtain a sufficient volume energy density can be suppressed.

(正極導電助剤)
導電助剤も、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Positive electrode conductive aid)
The conductive auxiliary agent is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

正極活物質層14中の導電助剤の含有量も特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量%であることが好ましい。 The content of the conductive additive in the positive electrode active material layer 14 is not particularly limited, but when added, it is preferably 0.5 to 5% by mass with respect to the mass of the positive electrode active material.

(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅、ニッケル、ステンレス又はそれらの合金の金属薄板(金属箔)を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 22 may be any conductive plate material, and for example, a metal thin plate (metal foil) of copper, nickel, stainless steel, or an alloy thereof can be used.

(負極活物質層)
負極活物質層24は、負極活物質、負極バインダー、及び、必要に応じた量の導電助剤から主に構成されるものである。
(負極活物質)
負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、SiO、Sn等のリチウムと化合することのできる金属、TiO、SnO、Fe等の酸化物を主体とする結晶質・非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material, a negative electrode binder, and an amount of a conductive aid as required.
(Negative electrode active material)
Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate, or dope / dedope) lithium ions. Carbon materials, metals that can be combined with lithium such as Al, Si, SiO and Sn, crystalline and amorphous compounds mainly composed of oxides such as TiO 2 , SnO 2 and Fe 2 O 3 , titanic acid and lithium (Li 4 Ti 5 O 12) particles and the like are.

本実施形態の負極活物質は負極活物質粒子表面にカルボキシ基および酸無水物基を含有するポリアクリル酸が被覆されていることを特徴とする。
本実施形態の負極活物質には、カルボキシ基の一部を脱水縮合させ酸無水物基にしたポリアクリル酸で被覆されている。酸無水物基は化学的に安定であるため、電解液が活性になりやすい高温サイクル下においても、電解液と活物質の反応を抑制し、電解液の還元分解や、ガスの発生を抑制することができる。これにより、負極活物質表面と電解液が直接接触するのをさけることにより、副反応を抑制することができ、高温サイクル特性を向上することができる。
The negative electrode active material of this embodiment is characterized in that the surface of the negative electrode active material particles is coated with polyacrylic acid containing a carboxy group and an acid anhydride group.
The negative electrode active material of this embodiment is coated with polyacrylic acid in which a part of the carboxy group is dehydrated and condensed to form an acid anhydride group. Since the acid anhydride group is chemically stable, the reaction between the electrolyte and the active material is suppressed even during high-temperature cycles where the electrolyte is likely to become active, and the reductive decomposition of the electrolyte and the generation of gas are suppressed. be able to. Thereby, by avoiding direct contact between the negative electrode active material surface and the electrolytic solution, side reactions can be suppressed and high-temperature cycle characteristics can be improved.

また、ポリアクリル酸のカルボキシ基は活物質表面に対する接着性が強いことが特徴である。これにより、充放電時の負極活物質粒子の膨張収縮に追随し、良いと考えられる。
一方でポリアクリル酸中のカルボキシ基の一部が重合して酸無水物が形成されているので、それにより3次元的な結合ネットワークが強化され、負極活物質の膨張による負極活物質粒子の崩壊を抑える効果が得られると考えられる。
In addition, the carboxy group of polyacrylic acid is characterized by strong adhesion to the active material surface. Thereby, the expansion and contraction of the negative electrode active material particles at the time of charging / discharging is followed, and it is considered good.
On the other hand, a part of the carboxy group in polyacrylic acid is polymerized to form an acid anhydride, thereby strengthening the three-dimensional bond network and collapsing the negative electrode active material particles due to expansion of the negative electrode active material. It is considered that the effect of suppressing the above can be obtained.

負極活物質粒子表面をカルボキシ基と酸無水物が同時に存在するポリアクリル酸で被覆することで、負極活物質と電解液の接触による副反応を抑制する効果および、負極活物質粒子の崩壊を抑制する効果により、高温サイクル特性の改善が可能となる。
By covering the surface of the negative electrode active material particles with polyacrylic acid in which a carboxy group and an acid anhydride are present at the same time, the side reaction caused by the contact between the negative electrode active material and the electrolyte is suppressed, and the negative electrode active material particles are prevented from collapsing. Due to this effect, the high-temperature cycle characteristics can be improved.

負極活物質の表面にポリアクリル酸を被覆する方法としては、特に限定することはなく、例えば、負極活物質とポリアクリル酸が均一に分散されたスラリーを、スプレードライアー装置などで噴霧乾燥する方法や、負極活物質とポリアクリル酸が均一に分散されたスラリーを、架橋剤を溶かした溶液中に滴下して被覆させる方法などがあるが、以下に示すような方法で簡便に負極活物質表面にポリアクリル酸樹脂層を被覆することができる。 The method for coating the surface of the negative electrode active material with polyacrylic acid is not particularly limited. For example, a method in which a slurry in which the negative electrode active material and polyacrylic acid are uniformly dispersed is spray-dried with a spray dryer apparatus or the like. And a method in which a slurry in which a negative electrode active material and polyacrylic acid are uniformly dispersed is dropped into a solution in which a cross-linking agent is dissolved. The polyacrylic acid resin layer can be coated on.

負極活物質とポリアクリル酸を任意の被覆量になるように秤量し、純水を加えながら混錬し、負極活物質とポリアクリル酸が均一に分散されたスラリーを作製する。そしてスラリーを乾燥させ分を十分揮発させた後、乾燥物を解砕および粉砕させ、所定の目開きの篩に通し、ポリアクリル酸樹脂層が表面に被覆された負極活物質が得られる。 The negative electrode active material and polyacrylic acid are weighed so as to have an arbitrary coating amount, and kneaded while adding pure water to prepare a slurry in which the negative electrode active material and polyacrylic acid are uniformly dispersed. Then, after drying the slurry and sufficiently volatilizing the portion, the dried product is crushed and pulverized, passed through a sieve having a predetermined opening, and a negative electrode active material having a polyacrylic acid resin layer coated on the surface is obtained.

また、被覆したポリアクリル酸中のカルボキシ基の一部に酸無水物基を導入する方法として、熱処理することが挙げられる。それにより、ポリアクリル酸の側鎖のカルボキシ基が脱水縮合し酸無水物基が生成されると考えられる。熱処理の方法としては、バッチ式乾燥炉や赤外線乾燥炉などを使うことができる。特に赤外線乾燥炉は高分子に対して効率的に、かつ短時間で熱処理することができるので、有用である。酸無水物基の量は熱処理温度によってコントロールすることができる。熱処理温度は180℃〜300℃、より好ましくは200℃〜250℃であるとさらに良い。熱処理時間は1時間〜24時間、より好ましくは2時間〜12時間であるとさらに良い。熱処理のタイミングは、負極活物質とポリアクリル酸が均一に分散されたスラリーを乾燥するときでも、スラリーを乾燥させた後でも、どちらでも構わない。 Moreover, heat-processing is mentioned as a method of introduce | transducing an acid anhydride group into a part of carboxy group in the coated polyacrylic acid. Thereby, it is considered that the carboxy group in the side chain of polyacrylic acid undergoes dehydration condensation to produce an acid anhydride group. As a heat treatment method, a batch-type drying furnace or an infrared drying furnace can be used. In particular, an infrared drying furnace is useful because it can heat-treat the polymer efficiently and in a short time. The amount of the acid anhydride group can be controlled by the heat treatment temperature. The heat treatment temperature is 180 ° C to 300 ° C, more preferably 200 ° C to 250 ° C. The heat treatment time is further preferably 1 to 24 hours, more preferably 2 to 12 hours. The timing of the heat treatment may be either when the slurry in which the negative electrode active material and polyacrylic acid are uniformly dispersed is dried or after the slurry is dried.

なお、カルボキシ基と酸無水物基の量は、FT−IR測定機を用いればよい。測定したIR吸収スペクトルにおいて、カルボキシ基を示す1235cm−1付近のピーク強度と、酸無水物を示す1800cm−1付近のピーク強度の比率を比較すればよい。その際、IR吸収スペクトルの強度比は、測定したIR吸収スペクトルのバックグラウンドを差し引き、カルボキシ基を示す1235cm−1付近のピーク強度と、酸無水物を示す1800cm−1付近のピーク強度を比率で表すことで得られる。 In addition, what is necessary is just to use the amount of a carboxy group and an acid anhydride group for a FT-IR measuring machine. In the measured IR absorption spectrum may be compared with the peak intensity in the vicinity of 1235cm -1 indicating the carboxyl group, the ratio of the peak intensity in the vicinity of 1800 cm -1 which represents an acid anhydride. At that time, the intensity ratio of the IR absorption spectrum, subtracting the background measured IR absorption spectrum, the peak intensity in the vicinity of 1235cm -1 indicating the carboxyl group, the peak intensity in the vicinity of 1800 cm -1 indicating an acid anhydride in a ratio It is obtained by expressing.

また、被覆量は、ポリアクリル酸は負極活物質に対して、0.05〜6.5重量%が好ましい。負極活物質の表面を一部でも高分子化合物によって被覆されていれば電解液との接触面積を低減することができるため、副反応を抑制することができるが、最良の被覆形態としては活物質表面を均一に万遍なく被覆することが好ましい。この範囲の被覆量であれば、負極活物質の表面全体を被覆しやすい傾向があり、より負極活物質と電解液との反応を抑制するために好適である。さらに被覆量は、上述した効果が向上するため0.1〜5重量%であることが好ましい。 The covering amount of polyacrylic acid is preferably 0.05 to 6.5% by weight with respect to the negative electrode active material. If even a part of the surface of the negative electrode active material is coated with a polymer compound, the contact area with the electrolytic solution can be reduced, so that side reactions can be suppressed. It is preferable to uniformly and uniformly coat the surface. If the coating amount is within this range, the entire surface of the negative electrode active material tends to be covered easily, which is more suitable for suppressing the reaction between the negative electrode active material and the electrolytic solution. Furthermore, the coating amount is preferably 0.1 to 5% by weight because the above-described effects are improved.

さらに、この範囲の被覆量であれば、より高温サイクル特性を向上することができる。 Furthermore, if the coating amount is within this range, the high-temperature cycle characteristics can be further improved.

また、負極活物質粒子の粒径に対する、前記ポリアクリル酸の被覆厚さの比率(被覆厚/粒径)が0.0005〜0.02であることが好ましい。この範囲であれば負極活物質の表面を被覆し、活物質と電解液の反応を抑制する効果があり、かつ充放電時のLiイオンの挿入/脱離の疎外にもならないため、より負極活物質と電解液との反応を抑制するために好適である。なお、負極活物質粒子の直径をR (μm)、ポリアクリル酸の被膜厚さをT(μm)とし、負極活物質粒子の粒径に対する前記ポリアクリル酸の被覆厚さの比率=T/Rと定義する。 The ratio of the coating thickness of the polyacrylic acid to the particle size of the negative electrode active material particles (coating thickness / particle size) is preferably 0.0005 to 0.02. Within this range, the surface of the negative electrode active material is coated, and there is an effect of suppressing the reaction between the active material and the electrolyte, and there is no alienation of insertion / extraction of Li ions during charge / discharge. It is suitable for suppressing the reaction between the substance and the electrolytic solution. The diameter of the negative electrode active material particles is R (μm), the thickness of the polyacrylic acid film is T (μm), and the ratio of the coating thickness of the polyacrylic acid to the particle size of the negative electrode active material particles = T / R. It is defined as

また、本実施形態における負極活物質粒子上の前記ポリアクリル酸の被覆の状態は、おおよそ半分以上が覆われた状態であることが好ましい。 Moreover, it is preferable that the coating state of the polyacrylic acid on the negative electrode active material particles in the present embodiment is a state in which approximately half or more is covered.

(負極バインダー)
負極バインダーは、負極活物質層24中の構成する部材同士または、負極活物質層24と負極集電体22とを密着させて電極構造を維持する目的で添加される。リチウムイオン二次電池用負極20に含まれるバインダーとしては、公知の材料を用いることができるが、例えばポリイミド、ポリアミドイミド、ポリアクリロニトリル、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などが好適に用いることができる。SBR/CMC混合樹脂がより好ましい。
(Negative electrode binder)
The negative electrode binder is added for the purpose of maintaining the electrode structure by bringing the negative electrode active material layer 24 into close contact with each other or the negative electrode active material layer 24 and the negative electrode current collector 22. As the binder contained in the negative electrode 20 for a lithium ion secondary battery, known materials can be used. For example, polyimide, polyamideimide, polyacrylonitrile, styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC) and the like are preferable. Can be used. SBR / CMC mixed resin is more preferable.

(負極導電助剤)
導電助剤も、負極活物質層24の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Negative conductive auxiliary)
The conductive auxiliary agent is not particularly limited as long as it improves the conductivity of the negative electrode active material layer 24, and a known conductive auxiliary agent can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.

また導電助剤の含有量も、負極活物質の体積変化の大きさや箔との密着性を加味しなければならない場合は適宜調整し、上述した正極10における含有量と同様の含有量を採用すればよい。導電助剤の添加量は、負極活物質の質量に対して0.5〜5質量%であることが好ましい。 In addition, the content of the conductive auxiliary agent is appropriately adjusted when the volume change of the negative electrode active material and the adhesion to the foil must be taken into account, and the same content as the content in the positive electrode 10 described above should be adopted. That's fine. It is preferable that the addition amount of a conductive support agent is 0.5-5 mass% with respect to the mass of a negative electrode active material.

上述した構成要素により、電極10、20は、通常用いられる方法により作製できる。例えば、活物質(正極活物質または負極活物質)、バインダー(正極バインダーまたは負極バインダー)、溶媒、及び、導電助剤(正極導電助剤または負極導電助剤)を含む塗料を集電体上に塗布し、集電体上に塗布された塗料中の溶媒を除去することにより製造することができる。 With the components described above, the electrodes 10 and 20 can be produced by a commonly used method. For example, a paint containing an active material (a positive electrode active material or a negative electrode active material), a binder (a positive electrode binder or a negative electrode binder), a solvent, and a conductive additive (a positive electrode conductive additive or a negative electrode conductive aid) is placed on the current collector. It can manufacture by apply | coating and removing the solvent in the coating material apply | coated on the electrical power collector.

溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、水等を用いることができる。   As the solvent, for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide, water and the like can be used.

塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。 There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used. Examples thereof include a slit die coating method and a doctor blade method.

集電体12、22上に塗布された塗料中の溶媒を除去する方法は特に限定されず、塗料が塗布された集電体12、22を、溶媒が揮発する温度で乾燥させればよい。さらに、ポリアクリル酸に酸無水物基を導入するための熱処理する方法は特に限定されず、塗料が塗布された集電体12,22を、例えば赤外線乾燥機を用いて180℃〜300℃の範囲で熱処理すればよい。 The method for removing the solvent in the paint applied onto the current collectors 12 and 22 is not particularly limited, and the current collectors 12 and 22 applied with the paint may be dried at a temperature at which the solvent volatilizes. Further, the heat treatment method for introducing the acid anhydride group into the polyacrylic acid is not particularly limited, and the current collectors 12 and 22 to which the paint is applied may be 180 ° C. to 300 ° C. using, for example, an infrared dryer. What is necessary is just to heat-process in the range.

そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10〜50kgf/cmとすることができる。   Then, the electrodes on which the active material layers 14 and 24 are formed in this way may then be pressed by a roll press device or the like as necessary. The linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.

次に、リチウムイオン二次電池100の他の構成要素を説明する。 Next, other components of the lithium ion secondary battery 100 will be described.

(セパレータ)
セパレータは、電解液に対して安定であり、保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィンの多孔質シート、又は不織布が挙げられる。
(Separator)
The separator is not particularly limited as long as it is stable with respect to the electrolytic solution and has excellent liquid retention, but generally includes a porous sheet of polyolefin such as polyethylene and polypropylene, or a nonwoven fabric.

(電解質)
電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解液(非水電解質溶液)であることが好ましい。電解液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては特に限定されず、リチウムイオン二次電池の電解質として用いられるリチウム塩を用いることができる。例えば、リチウム塩としては、LiPF、LiBF、LiBETI、LiFSI、LiBOB等の無機酸陰イオン塩、LiCFSO、(CFSONLi等の有機酸陰イオン塩等を用いることができる。
(Electrolytes)
The electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18. The electrolyte is not particularly limited, and for example, in the present embodiment, an electrolytic solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used. However, the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, so that the withstand voltage during charging is limited to a low level. As the electrolytic solution, a lithium salt dissolved in a non-aqueous solvent (organic solvent) is preferably used. It does not specifically limit as lithium salt, The lithium salt used as an electrolyte of a lithium ion secondary battery can be used. For example, as the lithium salt, an inorganic acid anion salt such as LiPF 6 , LiBF 4 , LiBETI, LiFSI, LiBOB, or an organic acid anion salt such as LiCF 3 SO 3 , (CF 3 SO 2 ) 2 NLi, or the like is used. Can do.

また、有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。イオン性液体は前述の有機溶媒と混合して使用することが可能である。
電解液のリチウム塩の濃度は、電気伝導性の点から、0.5〜2.0Mが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。
Moreover, as the organic solvent, for example, aprotic high dielectric constant solvents such as ethylene carbonate and propylene carbonate, aprotic low viscosity such as acetic acid esters and propionic acid esters such as dimethyl carbonate and ethyl methyl carbonate, etc. A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the organic solvent described above.
The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2.0 M from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of electrolyte salt or its concentration.

電解質を固体電解質やゲル電解質とする場合には、ポリビニリデンフルオライド等を高分子材料として含有することが可能である。
更に、本実施形態の電解液中には、必要に応じて各種添加剤を添加してもよい。添加剤としては、例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。
When the electrolyte is a solid electrolyte or a gel electrolyte, polyvinylidene fluoride or the like can be contained as a polymer material.
Furthermore, you may add various additives in the electrolyte solution of this embodiment as needed. Examples of additives include vinylene carbonate and methyl vinylene carbonate for the purpose of improving cycle life, biphenyl and alkyl biphenyl for the purpose of preventing overcharge, various carbonate compounds for the purpose of deoxidation and dehydration, Carboxylic anhydride, various nitrogen-containing and sulfur-containing compounds can be mentioned.

(ケース)
ケース50は、その内部に積層体30及び電解液を密封するものである。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。
(Case)
The case 50 seals the laminated body 30 and the electrolytic solution therein. The case 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and entry of moisture and the like into the lithium ion secondary battery 100 from the outside. For example, as the case 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point, such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). Etc. are preferred.

(リード)
リード60、62は、アルミ等の導電材料から形成されている。
そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。
(Lead)
The leads 60 and 62 are made of a conductive material such as aluminum.
Then, the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20. 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、リチウムイオン二次電池は図1に示した形状のものに限定されず、コイン形状に打ち抜いた電極とセパレータとを積層したコインタイプや、電極シートとセパレータとをスパイラル状に巻回したシリンダータイプ等であってもよい。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the lithium ion secondary battery is not limited to the shape shown in FIG. It may be a type or the like.

(実施例1)
<リチウムイオン二次電池用負極の作製>
まず、負極活物質として減圧下において1000℃の熱処理で不均化反応させたSiOと黒鉛を1:1の重量比で含む負極活物質を用意した。負極活物質重量に対して0.055重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製した。次いで、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した。次に得られたポリアクリル酸を被覆した負極活物質を赤外線乾燥炉にて225℃で2時間熱処理を行った。熱処理後の負極活物質をFT−IRにて計測したところ、カルボキシ基と酸無水物基の存在比は72:28であることが確認された。上記で得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を以下の式より算出した結果、0.0002であった。
負極活物質粒子の粒径に対するポリアクリル酸の被覆厚さの比=T/R
ただし、負極活物質粒子の直径をR (μm)、ポリアクリル酸の被膜厚さをT(μm)とする。
Example 1
<Preparation of negative electrode for lithium ion secondary battery>
First, as the negative electrode active material, a negative electrode active material containing SiO and graphite that was disproportionated by heat treatment at 1000 ° C. under reduced pressure at a weight ratio of 1: 1 was prepared. An aqueous solution in which this negative electrode active material was dispersed in an aqueous solution containing 0.055% by weight of polyacrylic acid based on the weight of the negative electrode active material was prepared. Next, a negative electrode active material coated with polyacrylic acid was produced from this dispersion by a spray drying method using a spray dryer. Next, the obtained negative active material coated with polyacrylic acid was heat-treated at 225 ° C. for 2 hours in an infrared drying furnace. When the negative electrode active material after the heat treatment was measured by FT-IR, it was confirmed that the abundance ratio of the carboxy group to the acid anhydride group was 72:28. As a result of observing the cross section of the negative electrode active material particles obtained above with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. In one negative electrode active material particle, the thickness of the resin layer formed on the surface was arbitrarily measured, and the ratio of the thickness of the resin layer to the particle diameter was calculated from the following formula, and was 0.0002.
Ratio of coating thickness of polyacrylic acid to particle diameter of negative electrode active material particles = T / R
However, the diameter of the negative electrode active material particles is R (μm), and the film thickness of the polyacrylic acid is T (μm).

<リチウムイオン二次電池用負極の作製>
上記のリチウムイオン二次電池用負極活物質を90重量%と、導電助剤としてアセチレンブラックを5重量%と、バインダーとしてSBR/CMC混合樹脂を5重量%と、水とを混合分散させてペースト状の負極スラリーを作製した。そして、コンマロールコーターを用いて、この負極スラリーを厚さ10μmの銅箔の両面に所定の厚みとなるように、均一に負極活物質層を塗布した。次いで、乾燥炉内にて90℃の大気雰囲気下で上記負極活物質層を乾燥させた。なお、銅箔の両面に塗布された負極活物質層の塗膜の厚みは、ほぼ同じ膜厚に調整した。上記負極活物質が形成された負極をロールプレス機によって、負極活物質層を負極集電体の両面に圧着させ、所定の密度を有する負極シートを得た。
<Preparation of negative electrode for lithium ion secondary battery>
Paste obtained by mixing and dispersing 90% by weight of the negative electrode active material for lithium ion secondary battery, 5% by weight of acetylene black as a conductive auxiliary agent, 5% by weight of SBR / CMC mixed resin as a binder, and water. A negative electrode slurry was prepared. Then, using a comma roll coater, the negative electrode active material layer was uniformly applied on both surfaces of the copper foil having a thickness of 10 μm so as to have a predetermined thickness. Next, the negative electrode active material layer was dried in an air atmosphere at 90 ° C. in a drying furnace. In addition, the thickness of the coating film of the negative electrode active material layer apply | coated on both surfaces of copper foil was adjusted to the substantially same film thickness. The negative electrode on which the negative electrode active material was formed was pressure-bonded to both surfaces of the negative electrode current collector by a roll press to obtain a negative electrode sheet having a predetermined density.

上記負極シートは、電極金型を用いて21×31mmの電極サイズに打ち抜き、実施例1に係るリチウムイオン二次電池用負極を作製した。   The negative electrode sheet was punched into an electrode size of 21 × 31 mm using an electrode mold to produce a negative electrode for a lithium ion secondary battery according to Example 1.

<リチウムイオン二次電池用正極の作製>
正極活物質としてコバルト酸リチウム(LiCoO)を96重量%と、導電助剤としてケッチェンブラックを2重量%と、バインダーとしてPVDFを2重量%と、溶媒としてN−メチル−2−ピロリドンとを混合分散させて、ペースト状の正極スラリーを作製した。そして、コンマロールコーターを用いて、この正極スラリーを厚さ20μmのアルミニウム箔の両面に所定の厚みとなるように、均一に正極活物質層を塗布した。次いで、乾燥炉内にて、110℃の大気雰囲気下でN−メチル−2−ピロリドン溶媒を乾燥させた。なお、アルミニウム箔の両面に塗布された正極活物質層の塗膜の厚みは、ほぼ同じ膜厚に調整した。正極活物質が形成された正極をロールプレス機によって、正極活物質層を正極集電体の両面に圧着させ、所定の密度を有する正極シートを得た。
<Preparation of positive electrode for lithium ion secondary battery>
96% by weight of lithium cobaltate (LiCoO 2 ) as a positive electrode active material, 2 % by weight of ketjen black as a conductive additive, 2% by weight of PVDF as a binder, and N-methyl-2-pyrrolidone as a solvent By mixing and dispersing, a paste-like positive electrode slurry was produced. Then, using a comma roll coater, the positive electrode active material layer was uniformly applied so that the positive electrode slurry had a predetermined thickness on both surfaces of an aluminum foil having a thickness of 20 μm. Next, the N-methyl-2-pyrrolidone solvent was dried in an air atmosphere at 110 ° C. in a drying furnace. In addition, the thickness of the coating film of the positive electrode active material layer applied to both surfaces of the aluminum foil was adjusted to substantially the same film thickness. The positive electrode on which the positive electrode active material was formed was pressure-bonded to both surfaces of the positive electrode current collector by a roll press to obtain a positive electrode sheet having a predetermined density.

上記正極シートは、電極金型を用いて20×30mmの電極サイズに打ち抜き、リチウムイオン二次電池用正極を作製した。   The positive electrode sheet was punched into an electrode size of 20 × 30 mm using an electrode mold to produce a positive electrode for a lithium ion secondary battery.

<リチウムイオン二次電池の作製>
上記作製した負極と正極とを、厚さ16μmの22×33mmサイズのポリプロピレン製のセパレーターを介して積層し、電極体を作製した。負極3枚と正極2枚とを負極と正極が交互に積層されるようセパレーター4枚を介して積層した。さらに、上記電極体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極リードを取り付け、一方、電極体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極リードを超音波溶接機によって取り付けた。そしてこの電極体を、アルミニウムのラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成し、上記外装体内にFEC/DECが3:7の割合で配合された溶媒中に、リチウム塩として1M(mol/L)のLiPFが添加された電解液を注入した後に、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封し、実施例1に係るリチウムイオン二次電池を作製した。
<Production of lithium ion secondary battery>
The prepared negative electrode and positive electrode were laminated via a polypropylene separator having a thickness of 16 μm and a size of 22 × 33 mm to prepare an electrode body. Three negative electrodes and two positive electrodes were laminated via four separators so that the negative and positive electrodes were alternately laminated. Further, in the negative electrode of the electrode body, a nickel negative electrode lead is attached to the protruding end portion of the copper foil not provided with the negative electrode active material layer, while the positive electrode of the electrode body is provided with aluminum without the positive electrode active material layer. An aluminum positive electrode lead was attached to the protruding end of the foil by an ultrasonic welding machine. Then, this electrode body is inserted into an aluminum laminate film outer package and heat-sealed except for one peripheral portion to form a closed portion, and FEC / DEC is blended at a ratio of 3: 7 in the outer package. Example 1 After injecting an electrolyte containing 1M (mol / L) LiPF 6 as a lithium salt into the solvent, the remaining one part was sealed with a heat seal while reducing the pressure with a vacuum sealer. The lithium ion secondary battery which concerns on was produced.

(実施例2)
実施例2に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して0.11重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.0005であった。
(Example 2)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 2 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 0.11% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. The thickness of the resin layer formed on the surface of one negative electrode active material particle was arbitrarily measured, and the ratio of the thickness of the resin layer to the particle diameter was calculated from the formula of Example 1 and was 0.0005.

(実施例3)
実施例3に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して0.55重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.002であった。
(Example 3)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 3 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 0.55% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.002.

(実施例4)
実施例4に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して1.1重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。負1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.004であった。
Example 4
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 4 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 1.1% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.004. .

(実施例5)
実施例5に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して3.3重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製し、得られた以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.013であった。
(Example 5)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 5 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 3.3% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode active material coated with polyacrylic acid was prepared by a spray drying method using a spray dryer, and a negative electrode for a lithium ion secondary battery was obtained in the same manner as in Example 1 except that the dispersion was obtained. And the lithium ion secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.013.

(実施例6)
実施例6に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して4.4重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。負1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.018であった。
(Example 6)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 6 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 4.4% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.018. .

(実施例7)
実施例7に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して5.5重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.02であった。
(Example 7)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 7 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 5.5% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.02.

(実施例8)
実施例8に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して6.6重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.027であった。
(Example 8)
The negative electrode for a lithium ion secondary battery and the lithium ion secondary battery according to Example 8 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 6.6% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.027.

(実施例9)
実施例9に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して7.15重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製した以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.029であった。
Example 9
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Example 9 are an aqueous solution in which this negative electrode active material is dispersed in an aqueous solution containing 7.15% by weight of polyacrylic acid based on the weight of the negative electrode active material. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared in the same manner as in Example 1 except that a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer. A secondary battery was produced. In addition, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.029.

(比較例1)
比較例1に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して3重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製し、得られたポリアクリル酸を被覆した負極活物質に熱処理を行わなかった以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、熱処理後の負極活物質をFT−IRにて計測したところ、カルボキシ基の存在は確認できたが酸無水物基の存在比は確認できなかった。また、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、負極活物質の各粒子の表面には。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を実施例1の式より算出した結果、0.013であった。
(Comparative Example 1)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 1 are prepared by dispersing an aqueous solution in which the negative electrode active material is dispersed in an aqueous solution containing 3% by weight of polyacrylic acid based on the weight of the negative electrode active material. Then, this dispersion was prepared by a spray drying method using a spray dryer, and a negative electrode active material coated with polyacrylic acid was prepared, and the resulting negative electrode active material coated with polyacrylic acid was not subjected to heat treatment. In the same manner as in Example 1, a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced. In addition, when the negative electrode active material after heat processing was measured by FT-IR, presence of the carboxy group was confirmed, but the abundance ratio of the acid anhydride group was not confirmed. Moreover, as a result of observing the cross section of the obtained negative electrode active material particle | grains with the scanning electron microscope (SEM), on the surface of each particle | grain of a negative electrode active material. As a result of arbitrarily measuring the thickness of the resin layer formed on the surface of one negative electrode active material particle and calculating the ratio of the thickness of the resin layer to the particle diameter from the formula of Example 1, it was 0.013.

(比較例2)
比較例2に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、負極活物質重量に対して3重量%のポリアクリル酸を含む水溶液に、この負極活物質を分散させた水溶液を作製し、この分散液をスプレードライヤーを用いる噴霧乾燥法によって、ポリアクリル酸を被覆した負極活物質を作製し、得られたポリアクリル酸を被覆した負極活物質を赤外線乾燥炉にて350℃2時間で熱処理を行った以外は、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。なお、熱処理後の負極活物質をFT−IRにて計測したところ、酸無水物基の存在は確認できたが、カルボキシ基の存在は確認できなかった。また、得られた負極活物質粒子の断面を、走査型電子顕微鏡(SEM)で観察した結果、表面上の粒子界面が明確に区別できなくなり、粒子全体が均一にコートされていた。1つの負極活物質粒子において、表面に形成された樹脂層の厚みを任意で測定し、粒子径に対する樹脂層の厚みの比率を以下の式より算出した結果、0.013であった。
(Comparative Example 2)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 2 are prepared by dispersing an aqueous solution in which the negative electrode active material is dispersed in an aqueous solution containing 3% by weight of polyacrylic acid based on the weight of the negative electrode active material. Then, a negative electrode active material coated with polyacrylic acid was prepared by spray drying using a spray dryer from this dispersion, and the obtained negative electrode active material coated with polyacrylic acid was heated at 350 ° C. for 2 hours in an infrared drying furnace. A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the heat treatment was performed in In addition, when the negative electrode active material after heat processing was measured by FT-IR, presence of an acid anhydride group was confirmed, but presence of a carboxy group was not confirmed. Moreover, as a result of observing the cross section of the obtained negative electrode active material particles with a scanning electron microscope (SEM), the particle interface on the surface could not be clearly distinguished, and the entire particle was uniformly coated. In one negative electrode active material particle, the thickness of the resin layer formed on the surface was arbitrarily measured, and the ratio of the thickness of the resin layer to the particle diameter was calculated from the following formula and found to be 0.013.

(比較例3)
比較例3に係るリチウムイオン二次電池用負極およびリチウムイオン二次電池は、ポリアクリル酸が被覆されていない負極活物質を用いて、実施例1と同様にしてリチウムイオン二次電池用負極およびリチウムイオン二次電池を作製した。
(Comparative Example 3)
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery according to Comparative Example 3 were prepared in the same manner as in Example 1 by using a negative electrode active material not coated with polyacrylic acid. A lithium ion secondary battery was produced.

また、実施例1〜6および比較例1〜4で作製したリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、60℃における充放電サイクルにおいて容量維持率が70%となる時のサイクル数、およびガス発生の有無について評価した。   Moreover, about the negative electrode for lithium ion secondary batteries produced in Examples 1-6 and Comparative Examples 1-4, and a lithium ion secondary battery, the cycle when a capacity | capacitance maintenance factor will be 70% in the charging / discharging cycle in 60 degreeC The number and the presence or absence of gas generation were evaluated.

(高温充放電サイクル試験)
実施例および比較例で作製したリチウムイオン二次電池は、下記に示す充放電試験条件によって充放電を繰り返し、高温充放電サイクル特性について評価した。なお、充放電は60℃にて、実施した。充放電試験条件は、1.0Cの定電流で4.2Vになるまで定電流充電を行い、その後は1.0Cの定電流で電池電圧が2.5Vとなるまで放電し、上記を1サイクルとし、充放電サイクル後の放電容量維持率が70%を下回った時の充放電サイクル数を高温サイクル寿命と定義し、評価した。なお、1Cとは公称容量値の容量を有する電池セルを定電流充電、または定電流放電して、ちょうど1時間で充放電が終了となる電流値のことである。
(High-temperature charge / discharge cycle test)
The lithium ion secondary batteries produced in Examples and Comparative Examples were repeatedly charged and discharged under the following charge / discharge test conditions, and evaluated for high-temperature charge / discharge cycle characteristics. In addition, charging / discharging was implemented at 60 degreeC. The charging / discharging test conditions were as follows: constant current charging until a constant current of 1.0 C was 4.2 V, then discharging until a battery voltage of 2.5 V was reached with a constant current of 1.0 C, and the above was performed for one cycle. The number of charge / discharge cycles when the discharge capacity retention rate after the charge / discharge cycle was less than 70% was defined as the high-temperature cycle life and evaluated. Note that 1C is a current value at which charging / discharging is completed in just one hour after constant current charging or constant current discharging of a battery cell having a nominal capacity value.

(ガスの発生量)
また、ガスの発生量は、実施例および比較例で作製したリチウムイオン二次電池において、60℃充放電サイクルを100サイクル行った後、アルキメデスの原理により体積の測定を行い、体積の増加分をガス発生量とした。
(Gas generation amount)
The amount of gas generated was determined by measuring the volume according to Archimedes' principle after performing 100 cycles of 60 ° C. charge / discharge cycles in the lithium ion secondary batteries produced in the examples and comparative examples. The amount of gas generated.

本発明内のリチウムイオン二次電池用負極、およびリチウムイオン二次電池について、実施例1〜9および比較例1〜3の高温サイクル試験およびガス発生の有無の結果について表1に示す。 About the negative electrode for lithium ion secondary batteries in this invention, and a lithium ion secondary battery, it shows in Table 1 about the result of the high temperature cycle test of Examples 1-9 and Comparative Examples 1-3 and the presence or absence of gas generation.

なお、表中の被覆量については、電池の負極シートより負極活物質を抽出し、TG−DTAにて被覆量を測定した。

Figure 2017152122
In addition, about the coating amount in a table | surface, the negative electrode active material was extracted from the negative electrode sheet of the battery, and the coating amount was measured by TG-DTA.
Figure 2017152122

上記表1より明らかなように、カルボキシ基と酸無水物基を含有するポリアクリル酸で被覆され、被覆量が0.1重量%から5重量%でポリアクリル酸と活物質粒径の比が0.0005から0.02の範囲にあると、さらに高温サイクル特性が向上していることが明らかとなった。   As is apparent from Table 1 above, the coating is coated with polyacrylic acid containing a carboxy group and an acid anhydride group, and the ratio of the polyacrylic acid to the active material particle size is 0.1 to 5% by weight. When it was in the range of 0.0005 to 0.02, it became clear that the high-temperature cycle characteristics were further improved.

実施例1〜9、および比較例3より、負極活物質粒子がカルボキシ基と酸無水物基を含有するポリアクリル酸に被覆されることで、サイクル特性が向上し、ガスの発生量も抑えられることが明らかとなった。これは、活物質粒子と電解液との副反応を抑制しているものと考えられる。   From Examples 1 to 9 and Comparative Example 3, when the negative electrode active material particles are coated with polyacrylic acid containing a carboxy group and an acid anhydride group, cycle characteristics are improved and the amount of gas generated is also suppressed. It became clear. This is considered to suppress the side reaction between the active material particles and the electrolytic solution.

また実施例5および比較例1、比較例2より、被覆しているポリアクリル酸にはカルボキシ基と酸無水物基の両方が存在することでサイクル特性が向上し、ガスの発生量も抑えられることが明らかとなった。
比較例1はポリアクリル酸が被覆された負極活物質に熱処理を加えておらず、ポリアクリル酸に酸無水物が導入されていない。これはポリアクリル酸中のカルボキシ基の一部が重合して酸無水物が形成されていないので、3次元的な結合ネットワークが強化されず、負極活物質の膨張による負極活物質粒子の崩壊を抑えられず、負極活物質粒子の新生面と電解液との副反応により、ガス発生、サイクル劣化が起こっていると考えられる。
比較例2は熱処理により、ポリアクリル酸中のカルボキシ基の全てが重合して酸無水物基になっているため、ポリアクリル酸被膜と負極活物質表面の接着性が低下し、ポリアクリル酸被膜と負極活物質の剥離が生じ、電解液と負極活物質の接触により、ガス発生、サイクル劣化が生じていると考えれられる。
実施例5は被覆しているポリアクリル酸にカルボキシ基と酸無水物基が両方存在しており、カルボキシ基による強い密着と、酸無水物基による強固な被膜形成の効果により、サイクル特性が向上し、ガス発生も抑えられたと考えられる。
Further, from Example 5 and Comparative Examples 1 and 2, the polyacrylic acid that is coated has both carboxy groups and acid anhydride groups, so that cycle characteristics are improved and the amount of gas generated can be suppressed. It became clear.
In Comparative Example 1, no heat treatment was applied to the negative electrode active material coated with polyacrylic acid, and no acid anhydride was introduced into the polyacrylic acid. This is because a part of the carboxy group in polyacrylic acid is not polymerized to form an acid anhydride, so that the three-dimensional bond network is not strengthened, and the negative electrode active material particles collapse due to the expansion of the negative electrode active material. It is considered that gas generation and cycle deterioration have occurred due to side reactions between the new surface of the negative electrode active material particles and the electrolyte solution.
In Comparative Example 2, since all of the carboxy groups in the polyacrylic acid are polymerized into acid anhydride groups by heat treatment, the adhesion between the polyacrylic acid film and the negative electrode active material surface is reduced. The negative electrode active material is peeled off, and it is considered that gas generation and cycle deterioration are caused by the contact between the electrolytic solution and the negative electrode active material.
In Example 5, both the carboxy group and the acid anhydride group exist in the polyacrylic acid that is coated, and the cycle characteristics are improved by the strong adhesion by the carboxy group and the effect of forming a strong film by the acid anhydride group. However, it is thought that gas generation was also suppressed.

また実施例1〜実施例9から、カルボキシ基と酸無水物基を含有するポリアクリル酸で被覆され、被覆量が0.1重量%から5重量%でポリアクリル酸と活物質粒径の比が0.0005から0.02の範囲にあると、さらに高温サイクル特性が向上していることが明らかとなった。これは、ポリアクリル酸被膜の被覆量がこの範囲にあれば負極活物質の表面をよく被覆し、活物質と電解液の反応を抑制する効果があり、かつ充放電時のリチウムイオンの挿入/脱離の疎外にもならないため、より負極活物質と電解液との反応を抑制するためであると考えられる。
Moreover, from Example 1 to Example 9, it is coated with polyacrylic acid containing a carboxy group and an acid anhydride group, and the ratio of the polyacrylic acid to the active material particle size is 0.1 to 5% by weight. Is in the range of 0.0005 to 0.02, it was revealed that the high-temperature cycle characteristics are further improved. If the amount of the polyacrylic acid coating is within this range, the surface of the negative electrode active material is well covered, and the reaction between the active material and the electrolyte is suppressed. This is considered to be because the reaction between the negative electrode active material and the electrolytic solution is further suppressed because the detachment is not excluded.

Claims (5)

負極活物質粒子表面を、カルボキシ基および酸無水物基を含有するポリアクリル酸が被覆していることを特徴とするリチウムイオン二次電池用負極活物質。 A negative electrode active material for a lithium ion secondary battery, wherein the surface of the negative electrode active material particles is coated with polyacrylic acid containing a carboxy group and an acid anhydride group. 前記ポリアクリル酸は、前記リチウムイオン二次電池用負極活物質に対して、0.1〜5重量%含まれていることを特徴とする請求項1に記載のリチウムイオン二次電池用負極活物質。 The negative active material for a lithium ion secondary battery according to claim 1, wherein the polyacrylic acid is contained in an amount of 0.1 to 5 wt% with respect to the negative electrode active material for the lithium ion secondary battery. material. 負極活物質粒子の粒径に対する、前記ポリアクリル酸の被覆厚さの比率が0.0005〜0.02であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極活物質。   3. The negative electrode active material for a lithium ion secondary battery according to claim 1, wherein a ratio of the coating thickness of the polyacrylic acid to the particle size of the negative electrode active material particles is 0.0005 to 0.02. material. 請求項1から3のいずれか一項に記載のリチウムイオン二次電池用負極活物質とバインダーとの混合物が負極集電体上に形成されているリチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, wherein a mixture of the negative electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3 and a binder is formed on a negative electrode current collector. 請求項4に記載のリチウムイオン二次電池用負極と、正極と、電解質とを備えたリチウムイオン二次電池。



The lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries of Claim 4, a positive electrode, and electrolyte.



JP2016031823A 2016-02-23 2016-02-23 Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery Pending JP2017152122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031823A JP2017152122A (en) 2016-02-23 2016-02-23 Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031823A JP2017152122A (en) 2016-02-23 2016-02-23 Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2017152122A true JP2017152122A (en) 2017-08-31

Family

ID=59739221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031823A Pending JP2017152122A (en) 2016-02-23 2016-02-23 Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2017152122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251432A1 (en) * 2020-06-11 2021-12-16 株式会社エンビジョンAescジャパン Negative electrode, lithium ion secondary battery, manufacturing method of negative electrode for lithium ion secondary battery, and manufacturing method of negative electrode sheet for lithium ion secondary battery
WO2022039201A1 (en) * 2020-08-18 2022-02-24 Apb株式会社 Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
JP2022034339A (en) * 2020-08-18 2022-03-03 三洋化成工業株式会社 Coated negative electrode active material particle for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, and manufacturing method of coated negative electrode active material particle for lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251432A1 (en) * 2020-06-11 2021-12-16 株式会社エンビジョンAescジャパン Negative electrode, lithium ion secondary battery, manufacturing method of negative electrode for lithium ion secondary battery, and manufacturing method of negative electrode sheet for lithium ion secondary battery
WO2022039201A1 (en) * 2020-08-18 2022-02-24 Apb株式会社 Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
JP2022034339A (en) * 2020-08-18 2022-03-03 三洋化成工業株式会社 Coated negative electrode active material particle for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, and manufacturing method of coated negative electrode active material particle for lithium ion battery
JP7097410B2 (en) 2020-08-18 2022-07-07 三洋化成工業株式会社 A method for producing coated negative electrode active material particles for a lithium ion battery, a negative electrode for a lithium ion battery, a lithium ion battery, and a coated negative electrode active material particle for a lithium ion battery.

Similar Documents

Publication Publication Date Title
US9034521B2 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
JP2017152123A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6428243B2 (en) Non-aqueous lithium secondary battery and manufacturing method thereof
JP6484995B2 (en) Lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP6451889B1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP6229730B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2008177122A (en) Negative electrode active material for all solid polymer battery, its manufacturing method, and all solid polymer battery
JP6992362B2 (en) Lithium ion secondary battery
JP2020158834A (en) Metal halide particle, and all-solid battery and nonaqueous lithium ion battery including the same
JP2020158835A (en) Metal halide foil, and all-solid battery and nonaqueous lithium ion battery including the same
JP6083289B2 (en) Lithium ion secondary battery
JP2019175631A (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
JP2017152126A (en) Negative electrode active material, negative electrode containing negative electrode active material, and lithium ion secondary battery
JP2016081707A (en) Negative electrode and lithium ion secondary battery using the same
JP2020167000A (en) Electrode and nonaqueous electrolyte secondary battery
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JPWO2019065288A1 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP2017152121A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2019169391A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414