JP2001291519A - Nonaqueous second battery - Google Patents

Nonaqueous second battery

Info

Publication number
JP2001291519A
JP2001291519A JP2000104286A JP2000104286A JP2001291519A JP 2001291519 A JP2001291519 A JP 2001291519A JP 2000104286 A JP2000104286 A JP 2000104286A JP 2000104286 A JP2000104286 A JP 2000104286A JP 2001291519 A JP2001291519 A JP 2001291519A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
transition metal
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000104286A
Other languages
Japanese (ja)
Other versions
JP4636650B2 (en
Inventor
Kazuyuki Nakazawa
一幸 中澤
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000104286A priority Critical patent/JP4636650B2/en
Publication of JP2001291519A publication Critical patent/JP2001291519A/en
Application granted granted Critical
Publication of JP4636650B2 publication Critical patent/JP4636650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous second battery which is superior in safety and storing nature. SOLUTION: In a nonaqueous second battery which has a positive electrode, a negative electrode and a nonaqueous electrolyte containing a lithium salt, the nonaqueous second battery is constituted from lithium-containing transition metal chalcogenide whose surface is coated with celluloses, as an active material of the positive electrode. As cellulosics, at least one kind of those chosen from a group consisting of carboxymethyl cellulose, carboxymethyl ethly cellulose, ethyl cellulose, hydroxypropylcellulose and their salt is preferable. Further, as the coating amount of celluloses to cost the surface of lithium-containing transition metal chalcogenide, 0.1 to 5% by the weight standard for lithium- containing transition metal chalcogenide is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に係
わり、さらに詳しくは、安全性および貯蔵性が優れた非
水二次電池に関する。
The present invention relates to a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery excellent in safety and storability.

【0002】[0002]

【従来の技術】電子機器の小型化に伴い、その電源とし
て使用されるリチウム二次電池に対しても高容量化への
要求が高まっている。このリチウム二次電池は、平均駆
動電圧が3.6Vと高く、従来のニッケル−カドミウム
電池やニッケル−水素電池の平均駆動電圧の約3倍であ
り、また、負極材料には軽量な炭素質材料を用いている
上に、充放電に関与するモビリティが軽金属のリチウム
であることから、軽量化が可能である。しかしながら、
電気的な容量に関しては、単位重量当りの容量は従来の
ニッケル−カドミウム電池やニッケル−水素電池より高
いものの、単位体積当りの容量はニッケル−水素電池の
約60%程度のものしか商品化されておらず、さらなる
高容量化が要請されている。
2. Description of the Related Art Along with the miniaturization of electronic equipment, there is an increasing demand for a lithium secondary battery used as a power source for higher capacity. This lithium secondary battery has a high average driving voltage of 3.6 V, which is about three times the average driving voltage of conventional nickel-cadmium batteries and nickel-hydrogen batteries, and a light carbonaceous material as a negative electrode material. In addition to the use of, the mobility involved in charge and discharge is light metal lithium, so that the weight can be reduced. However,
Regarding electrical capacity, although the capacity per unit weight is higher than that of conventional nickel-cadmium batteries or nickel-hydrogen batteries, only about 60% of the capacity per unit volume of nickel-hydrogen batteries has been commercialized. There is no demand for higher capacity.

【0003】リチウム二次電池の高容量化は、例えば、
正極活物質の充填量を多くすることによって達成するこ
とができるが、正極活物質の充填量を多くしすぎると、
負極の容量が不足して負極の表面に金属リチウムが析出
しやすくなり、デンドライトが形成されるため、充放電
特性を低下させるとともに安全性を著しく損なうおそれ
がある。そこで、そのような事情を考慮すると、高容量
化に際しては、それと同時に、充分な充放電特性や安全
性を確保することが必要であり、これまでは、主とし
て、正極活物質自身の安全性を改善することや負極材料
を高容量化することによって検討が行われてきた。
To increase the capacity of a lithium secondary battery, for example,
This can be achieved by increasing the amount of the positive electrode active material, but if the amount of the positive electrode active material is too large,
Since the capacity of the negative electrode is insufficient, metal lithium is likely to precipitate on the surface of the negative electrode, and dendrites are formed. Therefore, the charge / discharge characteristics may be reduced and safety may be significantly impaired. Therefore, considering such circumstances, it is necessary to secure sufficient charge / discharge characteristics and safety at the same time when increasing the capacity. Until now, mainly the safety of the positive electrode active material itself has been reduced. Investigations have been made by improving and increasing the capacity of the negative electrode material.

【0004】その一方で、リチウム二次電池は、充電状
態で長期間貯蔵した場合、正極活物質との反応によって
電解液の分解が生じ、その分解生成物により電極中の活
物質を覆う不働態被膜が増加して電池抵抗が上昇し、そ
れによって、負荷特性が低下したり、貯蔵前ほどの放電
容量が得られなくなるなどといった、貯蔵による電池特
性の低下が生じるという問題がある。
On the other hand, when a lithium secondary battery is stored for a long time in a charged state, decomposition of an electrolytic solution occurs due to a reaction with a positive electrode active material, and a passive product covering the active material in the electrode by the decomposition product. There is a problem that the battery characteristics decrease due to storage, such as an increase in the coating and an increase in the battery resistance, which leads to a decrease in load characteristics and a failure to obtain a discharge capacity as low as before storage.

【0005】また、このリチウム二次電池においては、
正極のバインダーとして、通常、ポリフッ化ビニリデン
が用いられたり(特開平4−249859号公報)、フ
ッ素ゴムが用いられている(特開平4−95363号公
報)。しかしながら、ポリフッ化ビニリデンでは、Li
CoO2 などの正極活物質の表面をほとんど被覆するこ
とができないため、活性な表面が露出することになり、
その正極活物質と電解液との反応性が高いために、安全
性や貯蔵性の面で問題を生じやすく、一方、フッ素ゴム
は、正極活物質の表面を緻密に被覆するため、充放電反
応の妨げとなり、負荷特性を低下させるといった問題が
あった。
Further, in this lithium secondary battery,
As the binder for the positive electrode, polyvinylidene fluoride is generally used (Japanese Patent Application Laid-Open No. 4-24959), or fluororubber is used (Japanese Patent Application Laid-Open No. 4-95363). However, with polyvinylidene fluoride, Li
Since the surface of the positive electrode active material such as CoO 2 can hardly be covered, an active surface is exposed,
Due to the high reactivity between the positive electrode active material and the electrolytic solution, problems tend to occur in terms of safety and storability.On the other hand, fluororubber covers the surface of the positive electrode active material densely, so that the charge-discharge reaction And the load characteristics are degraded.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記のよう
なリチウム二次電池に代表される非水二次電池の問題点
を解決し、安全性および貯蔵性が優れた非水二次電池を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problems of the non-aqueous secondary battery represented by the lithium secondary battery as described above, and provides a non-aqueous secondary battery excellent in safety and storability. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、正極、負極お
よびリチウム塩を含む非水電解質を有する非水二次電池
において、上記正極の活物質として、セルロース類によ
って表面を被覆したリチウム含有遷移金属カルコゲナイ
ドを用いることにより、上記課題を解決したものであ
る。
According to the present invention, there is provided a non-aqueous secondary battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a lithium salt. The above problem has been solved by using a metal chalcogenide.

【0008】上記リチウム含有遷移金属カルコゲナイド
の表面を被覆するセルロース類としては、例えば、カル
ボキシメチルセルロース、カルボキシメチルエチルセル
ロース、メチルセルロース、エチルセルロース、ヒドロ
キシプロピルセルロースおよびそれらの塩よりなる群か
ら選ばれる少なくとも1種が挙げられ、特にカルボキシ
メチルセルロース、カルボキシメチルエチルセルロース
などが好ましい。上記セルロース類の被覆量はリチウム
含有遷移金属カルコゲナイドの全量に対して重量基準で
0.1〜5%(すなわち、リチウム含有遷移金属カルコ
ゲナイド100重量部に対してセルロース類が0.1〜
5重量部となる比率)が好ましく、0.5〜2%がより
好ましい。
Examples of the celluloses that coat the surface of the lithium-containing transition metal chalcogenide include at least one selected from the group consisting of carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose, and salts thereof. And carboxymethylcellulose and carboxymethylethylcellulose are particularly preferred. The coating amount of the celluloses is 0.1 to 5% by weight based on the total amount of the lithium-containing transition metal chalcogenide (that is, 0.1 to 5 parts by weight of the celluloses per 100 parts by weight of lithium-containing transition metal chalcogenide).
5 parts by weight), and more preferably 0.5 to 2%.

【0009】本発明の非水二次電池においては、反応性
の高いリチウム含有遷移金属カルコゲナイドの表面をセ
ルロース類で被覆しているので、セルロース類で表面を
被覆していないリチウム含有遷移金属カルコゲナイドを
正極活物質として用いた場合に比べて、正極活物質の安
定性が高く、特に過充電時にリチウムが脱離して正極活
物質の反応性が高くなった状態においても、電解液との
反応が抑制される。同様に、短絡時や釘刺し試験時にお
いても、電解液の急激な分解などが生じないため、電池
の安全性が高められる。その一方で、セルロース類の被
覆層は薄くても上記効果を有するので、それがリチウム
イオンの移動に対する障害とはなりにくく、負荷特性な
どの電池特性を低下させることもない。また、貯蔵時に
も同様に安定性が高く、正極活物質表面への不働態被膜
の形成といった反応が抑制されるものと考えられる。
In the nonaqueous secondary battery of the present invention, since the surface of the highly reactive lithium-containing transition metal chalcogenide is coated with cellulose, the lithium-containing transition metal chalcogenide whose surface is not coated with cellulose is used. Higher stability of the positive electrode active material than when used as a positive electrode active material, especially when the lithium is desorbed during overcharge and the reactivity of the positive electrode active material becomes higher, the reaction with the electrolytic solution is suppressed. Is done. Similarly, even during a short circuit or a nail penetration test, rapid decomposition of the electrolyte does not occur, so that the safety of the battery is improved. On the other hand, since the cellulose-containing coating layer has the above-mentioned effect even if it is thin, it does not easily hinder the movement of lithium ions, and does not lower battery characteristics such as load characteristics. It is also considered that the stability is similarly high during storage, and a reaction such as formation of a passive film on the surface of the positive electrode active material is suppressed.

【0010】リチウム含有遷移金属カルコゲナイドの表
面を被覆するセルロース類の被覆量は、少なすぎると充
分な効果が得られにくく、また、多すぎると充填できる
正極活物質量が減少して、電池の放電容量を低下させる
上に、被覆量が多くなると充放電反応の妨げにもなるた
め、前記のように、リチウム含有遷移金属カルコゲナイ
ドの全量に対して重量基準で0.1〜5%とすることが
好ましく、0.5〜2%とすることがより好ましい。
If the amount of the cellulose coating the surface of the lithium-containing transition metal chalcogenide is too small, it is difficult to obtain a sufficient effect. In addition to lowering the capacity, increasing the coating amount also hinders the charge / discharge reaction. Therefore, as described above, the content is preferably set to 0.1 to 5% by weight based on the total amount of the lithium-containing transition metal chalcogenide. Preferably, it is more preferably 0.5 to 2%.

【0011】このような本発明に対して、フッ素ゴムを
バインダーとして用いた場合には、正極活物質の表面を
被覆し、正極活物質の安定性を向上させる作用はある程
度有するものの、過充電時における正極活物質の反応抑
制効果が充分でなく、また、リチウムイオンの移動に対
して障害となるため負荷特性を低下させてしまう。
In contrast to the present invention, when fluororubber is used as a binder, it has an effect of coating the surface of the positive electrode active material and improving the stability of the positive electrode active material to some extent, In this case, the effect of suppressing the reaction of the positive electrode active material is not sufficient, and the load characteristics are degraded because it hinders the movement of lithium ions.

【0012】また、本発明では、あらかじめリチウム含
有遷移金属カルコゲナイドの表面をセルロース類で被覆
しているので、セルロース類がリチウム含有遷移金属カ
ルコゲナイドの表面のみに存在しているのに対し、特開
平9−22693号公報などに記載のように、カルボキ
シメチルセルロースとフッ素樹脂とを混合してバインダ
ーとし、正極合剤全体にカルボキシメチルセルロースを
分散させた場合には、過充電時における正極活物質の反
応抑制に際して、本発明と同等の効果を得るためには、
セルロース類の被覆量を多くしなければならず(例え
ば、リチウム含有遷移金属カルコゲナイドの全量に対し
て重量基準で10%以上と高くする必要がある)、しか
も、正極合剤全体に分散したセルロース類がリチウムイ
オンの移動に対する障害となり、さらに正極の導電性を
向上させるために導電助剤が添加されている場合には、
導電助剤の表面もセルロース類が被覆してしまうために
抵抗が大きくなり、負荷特性を低下させてしまう。
In the present invention, since the surface of the lithium-containing transition metal chalcogenide is previously coated with cellulose, the cellulose is present only on the surface of the lithium-containing transition metal chalcogenide. As described in -22693, etc., when carboxymethylcellulose and a fluororesin are mixed to form a binder and carboxymethylcellulose is dispersed throughout the positive electrode mixture, the reaction of the positive electrode active material during overcharge is suppressed. In order to obtain the same effect as the present invention,
It is necessary to increase the coating amount of the cellulose (for example, it is necessary to increase the weight of the lithium-containing transition metal chalcogenide to 10% or more based on the total amount of the lithium-containing transition metal chalcogenide), and further, the cellulose dispersed in the entire positive electrode mixture Is an obstacle to the movement of lithium ions, and when a conductive auxiliary is added to further improve the conductivity of the positive electrode,
Since the cellulose also covers the surface of the conductive additive, the resistance is increased and the load characteristics are reduced.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明するが、本発明はそれら例示のもののみに限定さ
れることはない。また、本発明の特徴は、セルロース類
によって表面を被覆したリチウム含有遷移金属カルコゲ
ナイドを正極活物質として用いる点にあり、他の構成、
例えば、負極、非水電解質、セパレータなどの他の電池
構成部材については、特に限定されることなく、従来と
同様のものをはじめ種々のものを用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to only those exemplifications. Further, the feature of the present invention is that a lithium-containing transition metal chalcogenide whose surface is coated with celluloses is used as a positive electrode active material.
For example, other battery components such as a negative electrode, a non-aqueous electrolyte, and a separator are not particularly limited, and various components including those similar to conventional ones can be used.

【0014】まず、リチウム含有遷移金属カルコゲナイ
ドとしては、例えば、LiCoO2、LiNiO2 、L
iMn2 4 、LiNi0.7 Co0.3 2 などのLiN
xCoy 2 (x+y=1)、LiNip Coq r
2 (p+q+r=1、MはB、Mg、Al、Si、
P、V、Mn、Fe、Cu、Zn、Sr、In、Snお
よびランタニド元素よりなる群から選ばれる少なくとも
1種の元素)などが挙げられる。これらのリチウム含有
遷移金属カルコゲナイドはいずれもリチウムイオンをド
ープ・脱ドープし得る性質を有している。
First, as the lithium-containing transition metal chalcogenide, for example, LiCoO 2 , LiNiO 2 , L
LiN such as iMn 2 O 4 and LiNi 0.7 Co 0.3 O 2
i x Co y O 2 (x + y = 1), LiNi p Co q M r
O 2 (p + q + r = 1, M is B, Mg, Al, Si,
P, V, Mn, Fe, Cu, Zn, Sr, In, Sn and at least one element selected from the group consisting of lanthanide elements). All of these lithium-containing transition metal chalcogenides have the property of doping and undoping lithium ions.

【0015】このリチウム含有遷移金属カルコゲナイド
の表面を被覆するセルロース類としては、前記のよう
に、例えば、カルボキシメチルセルロース、カルボキシ
メチルエチルセルロース、メチルセルロース、エチルセ
ルロース、ヒドロキシプロピルセルロースおよびそれら
の塩よりなる群から選ばれる少なくとも1種が挙げら
れ、特にカルボキシメチルセルロース、カルボキシメチ
ルエチルセルロースなどが好ましい。
As described above, the cellulose which coats the surface of the lithium-containing transition metal chalcogenide is selected from the group consisting of, for example, carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose and salts thereof. At least one kind is exemplified, and carboxymethylcellulose, carboxymethylethylcellulose and the like are particularly preferable.

【0016】そして、リチウム含有遷移金属カルコゲナ
イドの表面をセルロース類によって被覆する方法として
は、例えば、以下に示すような方法を採用することがで
きる。
As a method for coating the surface of the lithium-containing transition metal chalcogenide with celluloses, for example, the following method can be adopted.

【0017】すなわち、リチウム含有遷移金属カルコゲ
ナイドの表面をセルロース類によって被覆する方法とし
ては、例えば、セルロース類を溶解した水溶液をリチウ
ム含有遷移金属カルコゲナイドの粉体とともに混合し、
乾燥してバルク体を得た後、このバルク体を被覆処理前
と同等の粒度分布となるように粉砕して、被覆処理粉体
を得る方法や、セルロース類の粉体とリチウム含有遷移
金属カルコゲナイドの粉体とを機械的に混合し、水に浸
漬した後、乾燥して被覆処理粉体を得る方法、リチウム
含有遷移金属カルコゲナイドの粉体にセルロース類を溶
解した水溶液を噴霧しながら、乾燥して被覆処理粉体を
得る方法などを採用することができる。
That is, as a method of coating the surface of a lithium-containing transition metal chalcogenide with cellulose, for example, an aqueous solution in which cellulose is dissolved is mixed with a lithium-containing transition metal chalcogenide powder,
After drying to obtain a bulk body, the bulk body is pulverized so as to have the same particle size distribution as before the coating treatment, and a method of obtaining a coating treatment powder, a cellulose powder and a lithium-containing transition metal chalcogenide A method of mechanically mixing the powder with the powder of Example 1 and immersing it in water, followed by drying to obtain a coating-treated powder, while drying while spraying an aqueous solution in which celluloses are dissolved in lithium-containing transition metal chalcogenide powder. For example, a method of obtaining a coating-treated powder by using the method.

【0018】正極は、上記のようにして得られた被覆処
理粉体、すなわち、セルロース類によって表面を被覆し
たリチウム含有遷移金属カルコゲナイドを正極活物質と
し、その正極活物質と必要に応じて添加する導電助剤や
バインダーとを混合して正極合剤を調製し、それを溶剤
に分散させてペーストにし(バインダーはあらかじめ溶
剤に溶解させておいてから正極活物質などと混合しても
よい)、その正極合剤含有ペーストを集電体に塗布し、
乾燥して正極合剤層を形成する工程を経ることによって
作製される。ただし、正極の作製方法は、上記例示のも
のに限られることなく、他の方法によってもよい。
For the positive electrode, the coated powder obtained as described above, that is, a lithium-containing transition metal chalcogenide whose surface is coated with celluloses is used as a positive electrode active material, and the positive electrode active material and, if necessary, are added. A positive electrode mixture is prepared by mixing a conductive assistant and a binder, and the mixture is dispersed in a solvent to form a paste (the binder may be dissolved in the solvent in advance and then mixed with the positive electrode active material), The positive electrode mixture-containing paste is applied to a current collector,
It is manufactured by passing through a step of drying to form a positive electrode mixture layer. However, the manufacturing method of the positive electrode is not limited to the above-described example, and another method may be used.

【0019】上記正極と対向させる負極の活物質として
は、例えば、リチウムイオンをドープ・脱ドープできる
ものであればよく、そのような負極活物質の具体例とし
ては、例えば、黒鉛、熱分解炭素類、コークス類、ガラ
ス状炭素類、有機高分子化合物の焼成体、メソカーボン
マイクロビーズ、炭素繊維、活性炭などの炭素質材料を
はじめ、リチウムまたはリチウム含有化合物などが挙げ
られる。そして、上記リチウム含有化合物としては錫酸
化物、ケイ素酸化物、ニッケル−ケイ素系合金、マグネ
シウム−ケイ素系合金、タングステン酸化物、リチウム
鉄複合酸化物などのほか、リチウム−アルミニウム、リ
チウム−鉛、リチウム−インジウム、リチウム−ガリウ
ム、リチウム−インジウム−ガリウムなどのリチウム合
金が挙げられる。これら例示のリチウム含有化合物中に
は、製造時にリチウムを含んでいないものもあるが、負
極活物質として作用するにあたってはリチウムを含んだ
状態になる。
The active material of the negative electrode facing the positive electrode may be, for example, one capable of doping and undoping lithium ions. Specific examples of such a negative electrode active material include graphite, pyrolytic carbon, and the like. , Cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, carbonaceous materials such as activated carbon, and lithium or lithium-containing compounds. Examples of the lithium-containing compound include tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, lithium iron composite oxide, and the like, as well as lithium-aluminum, lithium-lead, lithium And lithium alloys such as indium, lithium-gallium and lithium-indium-gallium. Some of these exemplified lithium-containing compounds do not contain lithium at the time of manufacture, but when they act as a negative electrode active material, they contain lithium.

【0020】負極は、上記負極活物質と必要に応じて添
加される導電助剤やバインダーとを混合して負極合剤を
調製し、それを溶剤に分散させてペーストにし(バイン
ダーはあらかじめ溶剤に溶解させておいてから負極活物
質などと混合してもよい)、その負極合剤含有ペースト
を銅箔などからなる負極集電体に塗布し、乾燥して、負
極合剤層を形成する工程を経ることによって作製され
る。ただし、負極の作製方法は上記例示の方法に限られ
ることなく、他の方法によってもよい。
The negative electrode is prepared by mixing the above-mentioned negative electrode active material with a conductive auxiliary and a binder, which are added as necessary, to prepare a negative electrode mixture, and dispersing the mixture in a solvent to form a paste (the binder is previously added to the solvent). A step of forming a negative electrode mixture layer by applying the negative electrode mixture-containing paste to a negative electrode current collector made of a copper foil or the like, and then drying the mixture. It is produced by going through. However, the method for producing the negative electrode is not limited to the method exemplified above, and may be another method.

【0021】本発明において正極や負極の作製にあたっ
て使用するバインダーとしては、例えば、ポリフッ化ビ
ニリデン、ポリテトラフルオロエチレン、ポリアクリル
酸、スチレンブタジエンゴムなどが挙げられる。また、
導電助剤としては、例えば、グラファイト、アセチレン
ブラック、カーボンブラック、ケッチェンブラック、炭
素繊維のほか、金属粉末、金属繊維などが挙げられる。
In the present invention, examples of the binder used for producing the positive electrode and the negative electrode include polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, and styrene-butadiene rubber. Also,
Examples of the conductive assistant include graphite, acetylene black, carbon black, Ketjen black, carbon fiber, metal powder, metal fiber, and the like.

【0022】また、正極や負極の作製にあたって使用す
る集電体としては、正極には、例えば、アルミニウム、
ステンレス鋼、ニッケル、チタンまたはそれらの合金か
らなる箔、パンチドメタル、エキスパンドメタル、網な
どが挙げられ、負極には、例えば、銅、ステンレス鋼、
ニッケル、チタンまたはそれらの合金からなる上記と同
様の形態のものが挙げられる。
As a current collector used for producing a positive electrode or a negative electrode, for example, aluminum,
Stainless steel, nickel, titanium or a foil made of titanium or an alloy thereof, punched metal, expanded metal, mesh and the like, the negative electrode, for example, copper, stainless steel,
Examples similar to those described above made of nickel, titanium, or an alloy thereof are given.

【0023】本発明の非水二次電池において、非水電解
質としては、通常、非水系の液状電解質(以下、これを
「電解液」という)が用いられる。そして、その電解液
としては有機溶媒にリチウム塩を溶解させた有機溶媒系
の非水電解液が用いられる。その電解液の有機溶媒とし
ては、特に限定されるものではないが、例えば、ジメチ
ルカーボネート、ジエチルカーボネート、エチルメチル
カーボネート、メチルプロピルカーボネートなどの鎖状
エステル、あるいはエチレンカーボネート、プロピレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネートなどの誘電率の高い環状エステル、あるいは鎖状
エステルと環状エステルとの混合溶媒などが挙げられ、
特に鎖状エステルを主溶媒とした環状エステルとの混合
溶媒が適している。
In the non-aqueous secondary battery of the present invention, a non-aqueous liquid electrolyte (hereinafter referred to as "electrolyte") is usually used as the non-aqueous electrolyte. As the electrolytic solution, an organic solvent-based non-aqueous electrolytic solution in which a lithium salt is dissolved in an organic solvent is used. The organic solvent of the electrolytic solution is not particularly limited, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, chain esters such as methyl propyl carbonate, or ethylene carbonate, propylene carbonate, butylene carbonate, vinylene Examples include a cyclic ester having a high dielectric constant such as carbonate, or a mixed solvent of a chain ester and a cyclic ester,
Particularly, a mixed solvent with a cyclic ester containing a chain ester as a main solvent is suitable.

【0024】電解液の調製にあたって上記有機溶媒に溶
解させるリチウム塩としては、例えば、LiPF6 、L
iClO4 、LiBF4 、LiCF3 SO3 、LiC4
93 、LiAsF6 などが挙げられる。
The lithium salt to be dissolved in the above-mentioned organic solvent in preparing the electrolytic solution includes, for example, LiPF 6 , L
iClO 4 , LiBF 4 , LiCF 3 SO 3 , LiC 4
F 9 O 3 , LiAsF 6 and the like.

【0025】本発明において、非水電解質としては、上
記電解液以外にも、固体状またはゲル状の非水電解質を
用いることができる。そのような固体状またはゲル状の
非水電解質としては、無機系非水電解質のほか、ポリエ
チレンオキサイド、ポリプロピレンオキサイドまたはそ
れらの誘導体を主材にした有機系非水電解質などが挙げ
られる。
In the present invention, a solid or gelled non-aqueous electrolyte can be used as the non-aqueous electrolyte, in addition to the above-mentioned electrolytic solution. Examples of such a solid or gelled non-aqueous electrolyte include an inorganic non-aqueous electrolyte, and an organic non-aqueous electrolyte mainly composed of polyethylene oxide, polypropylene oxide or a derivative thereof.

【0026】[0026]

【実施例】以下、本発明の実施例を説明するが、本発明
はそれらの実施例に何ら限定されるものではなく、その
要旨を変更しない範囲において適宜変更して実施するこ
とが可能である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below. However, the present invention is not limited to these embodiments, and can be implemented by appropriately changing the scope without changing the gist. .

【0027】実施例1 この実施例1では、本発明の非水二次電池として、カル
ボキシメチルセルロースによって表面を被覆したLiC
oO2 を正極活物質として用いて円筒形リチウムイオン
二次電池を作製した。上記カルボキシメチルセルロース
によるLiCoO2 の表面への被覆処理は、次のように
行った。まず、LiCoO2 粉体に、LiCoO2 に対
して重量基準で1%に相当する量のカルボキシメチルセ
ルロースを溶解した水溶液を加え、混合してバルク体を
得た。そして、そのバルク体を粉砕して再び粉体とし、
それを正極活物質として用いた。
Example 1 In Example 1, a non-aqueous secondary battery according to the present invention was prepared using LiC having a surface coated with carboxymethyl cellulose.
A cylindrical lithium ion secondary battery was fabricated using oO 2 as a positive electrode active material. The coating treatment of the surface of LiCoO 2 with the carboxymethyl cellulose was performed as follows. First, an aqueous solution in which carboxymethylcellulose was dissolved in an amount equivalent to 1% by weight based on LiCoO 2 was added to LiCoO 2 powder and mixed to obtain a bulk body. Then, the bulk body is crushed into powder again,
It was used as a positive electrode active material.

【0028】上記カルボキシメチルセルロースによって
表面を被覆したLiCoO2 からなる正極活物質91重
量部に対して、導電助剤として天然黒鉛を4重量部、バ
インダーとしてポリフッ化ビニリデンを5重量部加えて
混合した。ただし、混合は、ポリフッ化ビニリデンをあ
らかじめN−メチル−2−ピロリドンに溶解しておき、
そのポリフッ化ビニリデン含有溶液に上記正極活物質と
天然黒鉛を加え、充分に混合して正極合剤含有ペースト
を調製した。その正極合剤含有ペーストを厚さ20μm
のアルミニウム箔からなる正極集電体上に所定の塗布量
となるように均一に塗布し、乾燥して正極合剤層を形成
した。同様に、正極集電体の裏面にも上記正極合剤含有
ペーストを塗布し、乾燥して正極合剤層を形成し、圧延
処理した後、所定の大きさに切断して帯状の正極を得
た。
To 91 parts by weight of the positive electrode active material made of LiCoO 2 whose surface was coated with carboxymethyl cellulose, 4 parts by weight of natural graphite as a conductive aid and 5 parts by weight of polyvinylidene fluoride as a binder were added and mixed. However, for mixing, polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone,
The positive electrode active material and natural graphite were added to the polyvinylidene fluoride-containing solution and mixed well to prepare a positive electrode mixture-containing paste. The paste containing the positive electrode mixture has a thickness of 20 μm.
Was uniformly applied so as to have a predetermined coating amount on a positive electrode current collector made of an aluminum foil, and dried to form a positive electrode mixture layer. Similarly, the positive electrode mixture-containing paste is applied to the back surface of the positive electrode current collector, dried to form a positive electrode mixture layer, rolled, and then cut into a predetermined size to obtain a band-shaped positive electrode. Was.

【0029】また、負極の作製に際しては、負極活物質
としての黒鉛90重量部に対して、バインダーとしてポ
リフッ化ビニリデンを10重量部混合した。ただし、混
合は、正極の場合と同様に、ポリフッ化ビニリデンをあ
らかじめN−メチル−2−ピロリドンに溶解しておき、
そのポリフッ化ビニリデン含有溶液に負極活物質を加え
て混合して負極合剤含有ペーストを調製した。その負極
合剤含有ペーストを厚さ15μmの銅箔からなる負極集
電体上に所定の塗布量となるように均一に塗布し、乾燥
して負極合剤層を形成した。同様に、負極集電体の裏面
にも上記負極合剤含有ペーストを塗布し、乾燥して負極
合剤層を形成し、圧延処理した後、所定の大きさに切断
して帯状の負極を得た。
In preparing the negative electrode, 10 parts by weight of polyvinylidene fluoride as a binder was mixed with 90 parts by weight of graphite as the negative electrode active material. However, for mixing, as in the case of the positive electrode, polyvinylidene fluoride was previously dissolved in N-methyl-2-pyrrolidone,
A negative electrode active material was added to the polyvinylidene fluoride-containing solution and mixed to prepare a negative electrode mixture-containing paste. The paste containing the negative electrode mixture was uniformly applied onto a negative electrode current collector made of a copper foil having a thickness of 15 μm so as to have a predetermined coating amount, and dried to form a negative electrode mixture layer. Similarly, the negative electrode mixture-containing paste is applied to the back surface of the negative electrode current collector, dried to form a negative electrode mixture layer, rolled, and then cut into a predetermined size to obtain a strip-shaped negative electrode. Was.

【0030】つぎに、上記のようにして作製した帯状正
極と帯状負極との間に厚さ25μmの微孔性ポリエチレ
ンフィルムからなるセパレータを配置し、渦巻状に巻回
して、渦巻状電極体とした後、外径18mm、高さ67
mmの有底円筒状の電池ケース内に挿入し、正極リード
体および負極リード体の溶接を行った。
Next, a separator made of a microporous polyethylene film having a thickness of 25 μm is disposed between the strip-shaped positive electrode and the strip-shaped negative electrode manufactured as described above, and spirally wound to form a spiral electrode body. After that, outer diameter 18mm, height 67
The positive electrode lead body and the negative electrode lead body were inserted into a cylindrical battery case with a bottom having a diameter of 2 mm.

【0031】その後、電池ケース内に1mol/l L
iPF6 /EC+DEC(体積比1:1)からなる電解
液〔すなわち、エチレンカーボネート(EC)とジエチ
ルカーボネート(DEC)との体積比1:1の混合溶媒
にLiPF6 を1mol/l溶解させてなる非水電解
液〕を注入した。
Thereafter, 1 mol / l L was placed in the battery case.
Electrolyte solution composed of iPF 6 / EC + DEC (volume ratio 1: 1) [namely, LiPF 6 is dissolved at 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1. Nonaqueous electrolyte] was injected.

【0032】ついで、上記電池ケースの開口部を常法に
従って封口し、図1に示す構造で外径18mm、高さ6
5mmの筒形非水二次電池を作製した。
Then, the opening of the battery case was sealed in a usual manner, and the structure shown in FIG.
A 5 mm cylindrical non-aqueous secondary battery was produced.

【0033】ここで、図1に示す電池について説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用した集電体などは図示していない。
そして、それらの正極1と負極2はセパレータ3を介し
て渦巻状に巻回され、渦巻状電極体にして上記の電解液
4と共に電池ケース5内に収容されている。
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the current collectors used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are accommodated in a battery case 5 together with the above-mentioned electrolytic solution 4 as a spiral electrode body.

【0034】電池ケース5はステンレス鋼製で、その底
部には上記渦巻状電極体の挿入に先立って、ポリプロピ
レンからなる絶縁体6が配置されている。封口板7は、
アルミニウム製で円板状をしていて、その中央部に薄肉
部7aが設けられ、かつ上記薄肉部7aの周囲に電池内
圧を防爆弁9に作用させるための圧力導入口7bとして
の孔が設けられている。そして、この薄肉部7aの上面
に防爆弁9の突出部9aが溶接され、溶接部分11を構
成している。なお、上記の封口板7に設けた薄肉部7a
や防爆弁9の突出部9aなどは、図面上での理解がしや
すいように、切断面のみを図示しており、切断面後方の
輪郭は図示を省略している。また、封口板7の薄肉部7
aと防爆弁9の突出部9aの溶接部分11も、図面上で
の理解が容易なように、実際よりは誇張した状態に図示
している。
The battery case 5 is made of stainless steel, and an insulator 6 made of polypropylene is disposed at the bottom of the battery case 5 before the spiral electrode body is inserted. The sealing plate 7
It is made of aluminum and has a disk shape, a thin portion 7a is provided at the center thereof, and a hole is provided around the thin portion 7a as a pressure inlet 7b for applying the internal pressure of the battery to the explosion-proof valve 9. Have been. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. The thin portion 7a provided on the sealing plate 7
As for the projection 9a of the explosion-proof valve 9 and the like, only the cut surface is illustrated for easy understanding in the drawings, and the outline behind the cut surface is omitted. In addition, the thin portion 7 of the sealing plate 7
Also, the welded portion 11 of a and the projection 9a of the explosion-proof valve 9 is shown in an exaggerated state rather than the actual one so that it can be easily understood in the drawings.

【0035】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられてい
る。防爆弁9は、アルミニウム製で円板状をしており、
その中央部には発電要素側(図1では、下側)に先端部
を有する突出部9aが設けられ、かつ薄肉部9bが設け
られ、上記突出部9aの下面が、前記したように、封口
板7の薄肉部7aの上面に溶接され、溶接部分11を構
成している。絶縁パッキング10は、ポリプロピレン製
で環状をしており、封口板7の周縁部の上部に配置さ
れ、その上部に防爆弁9が配置していて、封口板7と防
爆弁9とを絶縁するとともに、両者の間から電解液が漏
れないように両者の間隙を封止している。環状ガスケッ
ト12はポリプロピレン製で、リード体13はアルミニ
ウム製で、前記封口板7と正極1とを接続し、渦巻状電
極体の上部には絶縁体14が配置され、負極2と電池ケ
ース5の底部とはニッケル製のリード体15で接続され
ている。
The terminal plate 8 is made of rolled steel, nickel-plated on its surface, and has a hat-like shape with a brim-shaped peripheral portion. The terminal plate 8 is provided with a gas outlet 8a. . The explosion-proof valve 9 is made of aluminum and has a disk shape.
In the center thereof, a protruding portion 9a having a tip portion is provided on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided, and the lower surface of the protruding portion 9a is closed as described above. It is welded to the upper surface of the thin portion 7a of the plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is disposed thereon. The gap between the two is sealed so that the electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed above the spiral electrode body. The bottom portion is connected by a lead body 15 made of nickel.

【0036】この電池においては、封口板7の薄肉部7
aと防爆弁9の突出部9aとが溶接部分11で接触し、
防爆弁9の周縁部と端子板8の周縁部とが接触し、正極
1と封口板7とは正極側のリード体13で接続されてい
るので、通常の状態では、正極1と端子板8とはリード
体13、封口板7、防爆弁9およびそれらの溶接部分1
1によって電気的接続が得られ、電路として正常に機能
する。
In this battery, the thin portion 7 of the sealing plate 7
a and the projecting portion 9a of the explosion-proof valve 9 come into contact at the welded portion 11,
Since the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact with each other, and the positive electrode 1 and the sealing plate 7 are connected by the lead 13 on the positive electrode side, in a normal state, the positive electrode 1 and the terminal plate 8 Means a lead body 13, a sealing plate 7, an explosion-proof valve 9, and their welded parts 1
1 provides an electrical connection and functions normally as an electrical circuit.

【0037】そして、電池が高温にさらされるなど、電
池に異常事態が起こり、電池内部にガスが発生して電池
の内圧が上昇した場合には、その内圧上昇により、防爆
弁9の中央部が内圧方向(図1では、上側の方向)に変
形し、それに伴って溶接部分11で一体化されている薄
肉部7aに剪断力が働いて該薄肉部7aが破断するか、
または防爆弁9の突出部9aと封口板7の薄肉部7aと
の溶接部分11が剥離した後、この防爆弁9に設けられ
ている薄肉部9bが開裂してガスを端子板8のガス排出
口8aから電池外部に排出させて電池の破裂を防止する
ことができるように設計されている。
When an abnormal situation occurs in the battery, such as when the battery is exposed to a high temperature, and gas is generated inside the battery to increase the internal pressure of the battery, the internal pressure rise causes the central portion of the explosion-proof valve 9 to move. It deforms in the direction of the internal pressure (upward direction in FIG. 1), and accordingly, the thin portion 7a integrated at the welded portion 11 is subjected to shearing force to break the thin portion 7a.
Alternatively, after the welding portion 11 between the projecting portion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 is peeled off, the thin portion 9b provided on the explosion-proof valve 9 is torn, and gas is discharged from the terminal plate 8. The battery is designed to be discharged from the outlet 8a to the outside of the battery to prevent the battery from bursting.

【0038】実施例2 LiCoO2 の表面を被覆するカルボキシメチルセルロ
ースの被覆量を、LiCoO2 に対して重量基準で0.
1%とした以外は、実施例1と同様にして筒形非水二次
電池を作製した。
Example 2 The amount of carboxymethylcellulose that coats the surface of LiCoO 2 was set at 0.1 based on the weight of LiCoO 2 .
A cylindrical nonaqueous secondary battery was produced in the same manner as in Example 1 except that the content was set to 1%.

【0039】実施例3 LiCoO2 の表面を被覆するカルボキシメチルセルロ
ースの被覆量を、LiCoO2 に対して重量基準で0.
5%とした以外は、実施例1と同様にして筒形非水二次
電池を作製した。
Example 3 The amount of carboxymethylcellulose that coats the surface of LiCoO 2 was 0.1% by weight based on LiCoO 2 .
A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that the content was set to 5%.

【0040】実施例4 LiCoO2 の表面を被覆するカルボキシメチルセルロ
ースの被覆量を、LiCoO2 に対して重量基準で2%
とした以外は、実施例1と同様にして筒形非水二次電池
を作製した。
[0040] The coating amount of carboxymethyl cellulose which covers the surface of Example 4 LiCoO 2, 2% by weight relative to LiCoO 2
A cylindrical non-aqueous secondary battery was fabricated in the same manner as in Example 1 except that the above conditions were satisfied.

【0041】実施例5 LiCoO2 の表面を被覆するカルボキシメチルセルロ
ースの被覆量を、LiCoO2 に対して重量基準で5%
とした以外は、実施例1と同様にして筒形非水二次電池
を作製した。
[0041] The coating amount of carboxymethyl cellulose which covers the surface of Example 5 LiCoO 2, 5% by weight relative to LiCoO 2
A cylindrical non-aqueous secondary battery was fabricated in the same manner as in Example 1 except that the above conditions were satisfied.

【0042】実施例6 LiCoO2 に代えてLiNi0.7 Co0.3 2 を用い
た以外は、実施例1と同様にして筒形非水二次電池を作
製した。つまり、この実施例6の非水二次電池では、L
iNi0.7 Co0.3 2 の表面をカルボキシメチルセル
ロースで被覆していて、そのカルボキシメチルセルロー
スによる被覆量はLiNi0.7 Co0.32 に対して重
量基準で1%である。
Example 6 A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that LiNi 0.7 Co 0.3 O 2 was used instead of LiCoO 2 . That is, in the non-aqueous secondary battery of the sixth embodiment, L
The surface of iNi 0.7 Co 0.3 O 2 is coated with carboxymethyl cellulose, and the coating amount of carboxymethyl cellulose is 1% by weight based on LiNi 0.7 Co 0.3 O 2 .

【0043】実施例7〜10 LiCoO2 の表面の被覆に用いるセルロース類をそれ
ぞれカルボキシメチルエチルセルロース、メチルセルロ
ース、エチルセルロース、ヒドロキシプロピルセルロー
スに変更した以外は、実施例1と同様にして筒形非水二
次電池を作製した。
Examples 7 to 10 The same procedure as in Example 1 was repeated except that the cellulose used for coating the surface of LiCoO 2 was changed to carboxymethylethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, respectively. A battery was manufactured.

【0044】実施例11 LiCoO2 の表面を被覆するカルボキシメチルセルロ
ースの被覆量を、LiCoO2 に対して重量比で6%と
した以外は、実施例1と同様にして筒形非水二次電池を
作製した。
[0044] The coating amount of carboxymethyl cellulose which covers the surface of Example 11 LiCoO 2, except that the 6% by weight relative to LiCoO 2 has a cylindrical nonaqueous secondary battery as in Example 1 Produced.

【0045】比較例1 正極活物質として、カルボキシメチルセルロースによる
表面の被覆処理を行っていないLiCoO2 を用いた以
外は、実施例1と同様にして筒形非水二次電池を作製し
た。
Comparative Example 1 A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1, except that LiCoO 2 whose surface was not coated with carboxymethyl cellulose was used as the positive electrode active material.

【0046】比較例2 カルボキシメチルセルロースによる被覆をしていないL
iCoO2 を正極活物質として用い、この正極活物質に
対して重量基準で1%のカルボキシメチルセルロースと
4%のポリテトラフルオロエチレンとの混合物をバイン
ダーとして用いて正極を作製した以外は、実施例1と同
様にして筒形非水二次電池を作製した。
Comparative Example 2 L not coated with carboxymethylcellulose
Example 1 Example 1 was repeated except that iCoO 2 was used as a positive electrode active material and a positive electrode was prepared using a mixture of 1% carboxymethylcellulose and 4% polytetrafluoroethylene as a binder based on the weight of the positive electrode active material. A cylindrical non-aqueous secondary battery was produced in the same manner as described above.

【0047】以上のようにして作製した実施例1〜11
および比較例1〜2の各電池について、サイクル試験、
過充電試験、貯蔵試験および負荷特性の評価を行った。
それらの試験方法や評価方法は次の通りである。
Examples 1 to 11 manufactured as described above
And a cycle test for each of the batteries of Comparative Examples 1 and 2,
The overcharge test, the storage test, and the load characteristics were evaluated.
The test methods and evaluation methods are as follows.

【0048】サイクル試験:各電池を20℃の環境下で
1.5Aで4.1Vまで定電流定電圧充電した後、1.
5Aで2.75Vまで放電する工程を1サイクルとし、
この充放電サイクルを繰り返し、1サイクル目の放電容
量に対する500サイクル目の放電容量の比率〔(50
0サイクル目の放電容量/1サイクル目の放電容量)×
100〕を求め、それをサイクル特性(容量保持率)と
して表1に示した。
Cycle test: Each battery was charged at a constant current and a constant voltage to 4.1 V at 1.5 A under an environment of 20 ° C.
The step of discharging to 2.75 V at 5 A is defined as one cycle,
This charge / discharge cycle is repeated, and the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle [(50
(0th cycle discharge capacity / 1st cycle discharge capacity) ×
100] were obtained, and the results are shown in Table 1 as cycle characteristics (capacity retention).

【0049】過充電試験:各電池を20℃の環境下で、
1.5Aで4.1Vまで定電流定電圧充電した後、0℃
で4時間保存してから試験を開始した。過充電試験時の
電流は3.0Aであり、評価は電池の最高到達温度で行
うものとし、それを表1に示した。
Overcharge test: Each battery was placed in an environment of 20 ° C.
After charging at a constant current and a constant voltage up to 4.1 V at 1.5 A,
The test was started after storing for 4 hours. The current during the overcharge test was 3.0 A, and the evaluation was performed at the maximum temperature of the battery, which is shown in Table 1.

【0050】貯蔵試験:各電池を上記サイクル試験と同
様の充放電を5サイクル繰り返した後、4.1Vまで定
電流定電圧充電し、その後、60℃の環境下に貯蔵し
た。30日間貯蔵後に放電を行い、再び上記サイクル試
験と同様の充放電を1回行って放電容量および放電時に
おける放電電位を測定した。なお、放電容量や放電時に
おける放電電位は貯蔵前にも測定していて、貯蔵試験の
評価は、貯蔵によるそれらの変化で評価した。すなわ
ち、放電容量に関しては、貯蔵前の放電容量に対する貯
蔵後の放電容量の比率〔(貯蔵後の放電容量/貯蔵前の
放電容量)×100〕を求め、それを貯蔵後の放電容量
として表2に示した。また、放電時における放電電位に
関しては、貯蔵前の放電電位と貯蔵後の放電電位との差
を求め、それを貯蔵後の放電電位の低下として表2に示
した。
Storage test: Each battery was charged and discharged in the same manner as in the above cycle test for 5 cycles, charged at a constant current and a constant voltage up to 4.1 V, and then stored in a 60 ° C. environment. After storage for 30 days, discharge was performed, and the same charge / discharge as in the above cycle test was performed once again to measure the discharge capacity and the discharge potential at the time of discharge. In addition, the discharge capacity and the discharge potential at the time of discharge were also measured before storage, and the evaluation of the storage test was evaluated by their change due to storage. That is, with respect to the discharge capacity, the ratio of the discharge capacity after storage to the discharge capacity before storage [(discharge capacity after storage / discharge capacity before storage) × 100] was determined, and this was used as the discharge capacity after storage. It was shown to. With respect to the discharge potential at the time of discharge, the difference between the discharge potential before storage and the discharge potential after storage was determined, and the difference was shown in Table 2 as a decrease in the discharge potential after storage.

【0051】負荷特性の評価:前記サイクル試験時と同
様の充放電サイクルを繰り返し、その10サイクル目と
100サイクル目に3.0Aで放電を行い、その際のそ
れぞれの平均駆動電圧を求め、その結果を表3に示し
た。
Evaluation of load characteristics: The same charge / discharge cycle as in the above cycle test was repeated, and discharge was performed at 3.0 A at the 10th and 100th cycles. The average drive voltage at that time was determined. The results are shown in Table 3.

【0052】なお、表1〜表3には、それぞれの実施例
におけるリチウム含有遷移金属カルコゲナイドの種類、
その表面の被覆に用いたセルロース類の種類とそのリチ
ウム含有遷移金属カルコゲナイドに対する被覆量を示す
が、スペース上の関係で、セルロース類の名称は略号で
示す。つまり、カルボキシメチルセルロースはCMCで
示し、カルボキシメチルエチルセルロースはCMECで
示し、メチルセルロースはMCで示し、エチルセルロー
スはECで示し、ヒドロキシプロピルセルロースはHP
Cで示す。また、表1〜表3には、比較例に関しても、
用いたリチウム含有遷移金属カルコゲナイドの種類、バ
インダーの種類、その使用量(リチウム含有遷移金属カ
ルコゲナイドに対する量)を示すが、スペース上の関係
で、バインダーの名称は略号で示す。つまり、ポリテト
ラフルオロエチレンはPTFEで示す。
Tables 1 to 3 show the types of lithium-containing transition metal chalcogenides in each of the examples.
The type of celluloses used for coating the surface and the amount of the coating on the lithium-containing transition metal chalcogenide are shown. Due to space limitations, the names of the celluloses are indicated by abbreviations. That is, carboxymethylcellulose is indicated by CMC, carboxymethylethylcellulose is indicated by CMEC, methylcellulose is indicated by MC, ethylcellulose is indicated by EC, and hydroxypropylcellulose is indicated by HP.
Indicated by C. Tables 1 to 3 also show comparative examples.
The type of the lithium-containing transition metal chalcogenide used, the type of the binder, and the amount used (the amount based on the lithium-containing transition metal chalcogenide) are shown. That is, polytetrafluoroethylene is represented by PTFE.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】表1に示す結果から明らかなように、実施
例1〜11の電池は、比較例1〜2の電池より、過充電
時における電池の最高到達温度が低く抑えられ、安全性
が向上していることがわかる。これは、正極の活物質の
安定性が向上したことによるものと考えられ、これ以外
に短絡試験や釘刺し試験などを行った場合も同様の効果
が認められた。
As is evident from the results shown in Table 1, the batteries of Examples 1 to 11 have lower maximum temperatures at the time of overcharging than the batteries of Comparative Examples 1 and 2, and have improved safety. You can see that it is doing. This is considered to be because the stability of the active material of the positive electrode was improved, and similar effects were also observed when a short-circuit test, a nail penetration test, and the like were performed.

【0057】また、貯蔵性に関しても、表2に示すよう
に、実施例1〜11の電池は、比較例1〜2の電池よ
り、貯蔵後の放電容量が大きく、貯蔵性が優れていた。
また、同一のリチウム含有遷移金属カルコゲナイドを用
いた電池間で比較すると、実施例の電池は、貯蔵後の放
電電位の低下も比較例の電池より小さく抑えられ、より
高い作動電圧を維持できることがわかった。
As shown in Table 2, the batteries of Examples 1 to 11 had larger discharge capacities after storage than the batteries of Comparative Examples 1 and 2, and were excellent in storability.
In addition, comparing the batteries using the same lithium-containing transition metal chalcogenide, it was found that the batteries of the examples were able to maintain a higher operating voltage because the decrease in the discharge potential after storage was also smaller than that of the batteries of the comparative examples. Was.

【0058】そして、サイクル特性に関しては、表1に
示すように、実施例1〜11の電池は比較例1の電池と
同等またはそれ以上の特性を有していた。ただし、カル
ボキシメチルセルロースの被覆量が5%を越えると、各
種の効果が飽和する傾向が認められた。
As for the cycle characteristics, as shown in Table 1, the batteries of Examples 1 to 11 had the same or better characteristics as the battery of Comparative Example 1. However, when the coating amount of carboxymethyl cellulose exceeded 5%, various effects tended to be saturated.

【0059】ここで、表3に示す負荷特性について説明
すると、実施例1〜11は、10サイクル目や100サ
イクル目での平均駆動電圧が高く、負荷特性が優れてい
た。
Here, the load characteristics shown in Table 3 will be described. In Examples 1 to 11, the average drive voltage at the 10th and 100th cycles was high, and the load characteristics were excellent.

【0060】なお、あらかじめリチウム含有遷移金属カ
ルコゲナイドの表面に対して被覆処理を行わずに、バイ
ンダーとしてカルボキシメチルセルロースとポリテトラ
フルオロエチレンとの混合物を用いた比較例2では、表
3に示すように、特に100サイクル目での負荷特性が
悪く、そのため、表1に示すように、サイクル特性の劣
化が大きくなった。これは、カルボキシメチルセルロー
スが導電助剤をも被覆してしまい、正極に充分な電子伝
導性を付与することができなかったことによるものと考
えられる。
Incidentally, in Comparative Example 2 in which a mixture of carboxymethylcellulose and polytetrafluoroethylene was used as a binder without previously coating the surface of the lithium-containing transition metal chalcogenide, as shown in Table 3, In particular, the load characteristics at the 100th cycle were poor, and therefore, as shown in Table 1, the deterioration of the cycle characteristics became large. This is considered to be because carboxymethylcellulose also covered the conductive auxiliary agent and could not impart sufficient electron conductivity to the positive electrode.

【0061】[0061]

【発明の効果】以上説明したように、本発明では、安全
性および貯蔵性が優れた非水二次電池を提供することが
できた。
As described above, according to the present invention, a non-aqueous secondary battery excellent in safety and storability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水二次電池の一例を模式的に示
す縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing one example of a non-aqueous secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ04 AJ12 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ08 HJ01 5H050 AA09 AA15 BA17 CA08 CB08 DA02 DA11 EA21 FA18 HA01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ04 AJ12 AK03 AL06 AM03 AM05 AM07 BJ02 BJ14 DJ08 HJ01 5H050 AA09 AA15 BA17 CA08 CB08 DA02 DA11 EA21 FA18 HA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極およびリチウム塩を含む非水
電解質を有する非水二次電池において、上記正極の活物
質として、セルロース類によって表面を被覆したリチウ
ム含有遷移金属カルコゲナイドを用いたことを特徴とす
る非水二次電池。
1. A non-aqueous secondary battery having a positive electrode, a negative electrode and a non-aqueous electrolyte containing a lithium salt, wherein a lithium-containing transition metal chalcogenide whose surface is coated with cellulose is used as an active material of the positive electrode. Non-aqueous secondary battery.
【請求項2】 上記セルロース類が、カルボキシメチル
セルロース、カルボキシメチルエチルセルロース、メチ
ルセルロース、エチルセルロース、ヒドロキシプロピル
セルロースおよびそれらの塩よりなる群から選ばれた少
なくとも1種である請求項1記載の非水二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the cellulose is at least one selected from the group consisting of carboxymethylcellulose, carboxymethylethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose, and salts thereof. .
【請求項3】 上記正極の活物質において、リチウム含
有遷移金属カルコゲナイドの表面を被覆するセルロース
類が、リチウム含有遷移金属カルコゲナイドに対して重
量基準で0.1〜5%である請求項1記載の非水二次電
池。
3. The active material of the positive electrode according to claim 1, wherein the amount of cellulose coating the surface of the lithium-containing transition metal chalcogenide is 0.1 to 5% by weight based on the lithium-containing transition metal chalcogenide. Non-aqueous secondary battery.
JP2000104286A 2000-04-06 2000-04-06 Non-aqueous secondary battery Expired - Fee Related JP4636650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104286A JP4636650B2 (en) 2000-04-06 2000-04-06 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104286A JP4636650B2 (en) 2000-04-06 2000-04-06 Non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008316751A Division JP5126851B2 (en) 2008-12-12 2008-12-12 Lithium-containing transition metal chalcogenide, method for producing the same, and method for producing a non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2001291519A true JP2001291519A (en) 2001-10-19
JP4636650B2 JP4636650B2 (en) 2011-02-23

Family

ID=18617861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104286A Expired - Fee Related JP4636650B2 (en) 2000-04-06 2000-04-06 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4636650B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032325A (en) * 2004-06-17 2006-02-02 Toyota Motor Corp Lithium secondary battery, positive electrode used in lithium secondary battery, and its manufacturing method
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010534392A (en) * 2007-07-25 2010-11-04 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery comprising an electrode and a novel electrode binder
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2013114945A (en) * 2011-11-30 2013-06-10 Hitachi Ltd Covering material for positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, lithium secondary battery, and methods for manufacturing the same
WO2013094942A1 (en) * 2011-12-22 2013-06-27 주식회사 엘지화학 Cathode active material and lithium secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761267A (en) * 1980-09-30 1982-04-13 Seiko Instr & Electronics Ltd Nonaqueous electrolyte cell
JPH1140157A (en) * 1997-07-23 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous electrolyte battery using it
WO2000052774A1 (en) * 1999-03-04 2000-09-08 Japan Storage Battery Co., Ltd. Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
JP2001146427A (en) * 1999-09-25 2001-05-29 Merck Patent Gmbh Coated lithium-mixed oxide particle and use thereof
JP2001202954A (en) * 1999-11-12 2001-07-27 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761267A (en) * 1980-09-30 1982-04-13 Seiko Instr & Electronics Ltd Nonaqueous electrolyte cell
JPH1140157A (en) * 1997-07-23 1999-02-12 Ricoh Co Ltd Electrode and nonaqueous electrolyte battery using it
WO2000052774A1 (en) * 1999-03-04 2000-09-08 Japan Storage Battery Co., Ltd. Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
JP2001146427A (en) * 1999-09-25 2001-05-29 Merck Patent Gmbh Coated lithium-mixed oxide particle and use thereof
JP2001202954A (en) * 1999-11-12 2001-07-27 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032325A (en) * 2004-06-17 2006-02-02 Toyota Motor Corp Lithium secondary battery, positive electrode used in lithium secondary battery, and its manufacturing method
JP2007234277A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2010534392A (en) * 2007-07-25 2010-11-04 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery comprising an electrode and a novel electrode binder
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2013114945A (en) * 2011-11-30 2013-06-10 Hitachi Ltd Covering material for positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, lithium secondary battery, and methods for manufacturing the same
WO2013094942A1 (en) * 2011-12-22 2013-06-27 주식회사 엘지화학 Cathode active material and lithium secondary battery comprising same
CN103891016A (en) * 2011-12-22 2014-06-25 株式会社Lg化学 Cathode active material and lithium secondary battery comprising same
JP2014535136A (en) * 2011-12-22 2014-12-25 エルジー・ケム・リミテッド Positive electrode active material and lithium secondary battery including the same
EP2760068A4 (en) * 2011-12-22 2015-05-06 Lg Chemical Ltd Cathode active material and lithium secondary battery comprising same
US9812708B2 (en) 2011-12-22 2017-11-07 Lg Chem, Ltd. Cathode active material and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP4636650B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4794893B2 (en) Non-aqueous electrolyte secondary battery
WO2013099279A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery comprising negative electrode for nonaqueous electrolyte secondary batteries
JP2008243684A (en) Lithium secondary battery
JP2008135245A (en) Non-aqueous electrolyte secondary battery
JP2001351624A (en) Non-aqueous secondary battery and method for using it
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP5126851B2 (en) Lithium-containing transition metal chalcogenide, method for producing the same, and method for producing a non-aqueous secondary battery
JP4636650B2 (en) Non-aqueous secondary battery
JP2005019149A (en) Lithium secondary battery
JP2003045494A (en) Flat non-aqueous electrolyte secondary battery
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP4172175B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2002110251A (en) Lithium ion secondary battery
JPH11111293A (en) Organic electrolyte secondary battery
JP2003077478A (en) Lithium ion secondary battery
JP2005078799A (en) Nonaqueous electrolyte battery
WO2023157470A1 (en) Cylindrical nonaqueous electrolyte secondary battery
JP2003308844A (en) Nonaqueous secondary battery and its positive electrode
JP2001297762A (en) Secondary cell with nonaqueous electrolyte
JPH1021961A (en) Organic electrolyte lithium secondary battery
JPH1131527A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees