JP4172175B2 - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same - Google Patents
Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same Download PDFInfo
- Publication number
- JP4172175B2 JP4172175B2 JP2001348426A JP2001348426A JP4172175B2 JP 4172175 B2 JP4172175 B2 JP 4172175B2 JP 2001348426 A JP2001348426 A JP 2001348426A JP 2001348426 A JP2001348426 A JP 2001348426A JP 4172175 B2 JP4172175 B2 JP 4172175B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- negative electrode
- nonaqueous electrolyte
- succinimide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、非水電解液およびこれを用いた非水電解液二次電池に関し、充放電サイクル特性および保存特性に優れた非水電解液、及びこれを用いた非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年の電気製品の小型・軽量化に伴い、高エネルギー密度を持つリチウム二次電池の開発が進められている。また、リチウム二次電池の適用分野の拡大に伴い電池特性の改善も要望されている。
【0003】
金属リチウムを負極活物質とする二次電池は、高容量化を達成できる電池として古くから盛んに研究が行われていた。このようなリチウム金属を用いたリチウム二次電池は、エネルギー密度は高いが、充電時に負極板にデンドライトが析出し、充放電サイクルを繰り返すことによりセパレータを突き破って正極板側に達し、内部短絡を起こす恐れがあった。また、析出したデンドライトは比表面積が大きいため反応活性度が高く、その表面で電解液中の溶媒と反応して電子伝導性に欠いた固体電解質的な界面皮膜を形成する。そのため電池の内部抵抗が高くなったり、電子伝導のネットワークから孤立した粒子が存在するようになり、これらが充放電効率を低下させる要因となっている。これらの理由で負極活物質としてリチウム金属を用いたリチウム二次電池は、充放電サイクル特性が短いといった信頼性に課題があった。
【0004】
そこで負極活物質に、たとえばコークス、人造黒鉛、天然黒鉛等のリチウムイオンを吸蔵・放出することが可能な炭素質材料を用いた非水電解液二次電池が提案されている。このような非水電解液二次電池では、リチウムが金属状態で存在しないためデンドライトの形成が抑制され、電池寿命と安全性を向上することができる。
【0005】
しかしながら、黒鉛系の種々の電極材を単独で、或いは、リチウムを吸蔵・放出可能な他の負極活物質とを混合して負極板とした非水電解液二次電池では、リチウム一次電池で一般に好んで使用されるプロピレンカーボネートを主溶媒とする電解液を用いると、黒鉛電極表面で溶媒の分解反応が激しく進行し、黒鉛電極への円滑なリチウムの吸蔵・放出が不可能になる。一方、エチレンカーボネートは、このような分解が少ないことから、黒鉛系負極活物質を用いた非水電解液二次電池の電解液にはエチレンカーボネートが主溶媒として多用されている。しかしエチレンカーボネートはプロピレンカーボネートに比べ、凝固点が36.4℃と高いため単独では用いられることはなく、鎖状カーボネート等の低粘度溶媒と混合して用いられる。
【0006】
特に鎖状カーボネートの中でも非対称鎖状カーボネートを含有する非水電解液を用いた非水電解液二次電池は、高容量と良好な充放電サイクル特性が得られることが知られている(Y.Ein−Eil etal,J.Electrochem.Soc.,145,L1(1998))。
【0007】
【発明が解決しようとする課題】
しかしながら、非対称鎖状カーボネートを含有する電解液を用いても、電解液の分解に起因すると思われる充放電サイクル特性、保存特性低下等の課題や、長期の充放電サイクル試験や保存試験を行った場合、電池内で非対称鎖状カーボネートのエステル交換反応が進行し、電解液組成が初期の状態と変わってくるために、初期通りの特性が得られないという課題がある。
【0008】
ところで、非水電解液の分解による電池特性の劣化を防止するために、イミド塩等の添加剤を添加する試みがなされている。その中で、コハク酸イミドを添加する方法は、特開平11−45724号公報、特開2001−43867号公報、特開2001−57231号公報等に開示されている。しかし、コハク酸イミドは電子供与性の官能基を有していないために、炭素材料からなる負極表面に薄い不導体皮膜を均一に形成するのが困難であった。
【0009】
本発明は非対称鎖状カーボネートを含有する非水電解液の課題を解決し、電池の充放電サイクル特性に優れ、さらに充電状態での保存特性にも優れた非水電解液およびこれを用いた非水電解液二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するための本発明の非水電解液は、鎖状カーボネートが含有されている非水溶媒と電解質から構成されてなり、前記鎖状カーボネートとして非対称鎖状カーボネートを用いており、非水電解液に(化2)で示されるコハク酸イミドの炭素原子または窒素原子に結合した水素原子を置換した誘導体を、非水電解液の総重量に対して0.01〜20重量%添加することを特徴とする。前記コハク酸イミド誘導体は、(化3)で示されるN−アルキルコハク酸イミドであり、前記N−アルキルコハク酸イミドのアルキル基Rが炭素数1〜4のアルキル基、もしくはフェニル基である。
【0011】
【化2】
【0012】
【化3】
【0013】
また、本発明の非水電解液二次電池は、リチウムを吸蔵、放出可能な正極板と炭素材料からなる負極板および前記非水電解液からなる非水電解液二次電池である。
【0014】
本発明の非水電解液二次電池を構成するこれらの構成部材以外については特に限定されず、従来使用されている種々の構成部材を使用できる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しながら説明する。
【0016】
図1は、本発明の一実施形態に係る円筒型リチウム二次電池の断面図である。
【0017】
図1に示すように、正極板1と負極板3とがセパレータ5を介在して渦巻状に巻回された極板群が、有底筒状の電池ケース8に収容されており、負極板3から連接する負極リード4が下部絶縁リング7を介して、前記ケース8と電気的に接続され、正極板1から連接する正極リード2が上部絶縁リング6を介して、封口板10の内部端子に電気的に接続されており、非水電解液(図示せず)を注液し、封口板10と電池ケース8とが絶縁ガスケット9を介してかしめ封口されている。
【0018】
本発明の非水電解液は、非水溶媒、電解質および添加剤からなる。非水溶媒としては低粘度溶媒である鎖状カーボネートを含有し、この鎖状カーボネートとして、非対称鎖状カーボネートを用いる。この非対称鎖状カーボネートとしては、エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、メチル−i−プロピルカーボネート、エチル−i−プロピルカーボネート等が挙げられる。
【0019】
この非対称鎖状カーボネートの一部を非対称鎖状カーボネートでない一種類、または二種類以上に置換することができ、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート等の対称鎖状カーボネート類、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類、酢酸メチル、プロピオン酸メチル等の鎖状エステル類、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類、ジメトキシエタン、ジメトキシメタン等の鎖状エーテル類、ジメチルホルムアミド等のアミド類を挙げることができる。
【0020】
また、前記非対称鎖状カーボネートからなる低粘度溶媒と高誘電率溶媒とを併用することが好ましく、この高誘電率溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類を挙げることができ、これらの高誘電率溶媒の一種類、または二種以上を組み合わせて使用することができる。
【0021】
なお前記高誘電率溶媒と低粘度溶媒である非対称鎖状カーボネートとの好ましい割合は、体積比(高誘電率溶媒:低粘度溶媒)で9:1〜1:4の範囲であり、5:1〜3:7の割合が好適である。
【0022】
本発明で使用する電解質としては、例えば、LiClO4、LiPF6、LiBF4から選ばれる無機リチウム塩やLiCF3SO3、LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3などの含フッ素有機リチウム塩等が挙げられる。中でもLiPF6、LiBF4を用いることが好ましい。これらの電解質は一種類、または二種類以上を組み合わせて用いることができる。これらの電解質は、上記の非水溶媒に通常0.1〜3モル/リットル、好ましくは0.5〜2モル/リットルの濃度で使用するのが望ましい。
【0023】
更に、本発明で使用する添加剤としては、コハク酸イミド誘導体を用いる。このコハク酸イミド誘導体としては、(化2)で示されるコハク酸イミドの炭素原子に結合した少なくとも一つの水素原子をメチル基、エチル基で置換したものや前記コハク酸イミドの窒素原子に結合した水素原子をアルキル基で置換した(化3)で示されるN−アルキルコハク酸イミドを挙げることができるが、N−アルキルコハク酸イミドが好ましく、前記N−アルキルコハク酸イミドのアルキル基Rが炭素数1〜4のアルキル基、もしくはフェニル基であることが最適である。
【0024】
非水電解液中にコハク酸イミド誘導体、好ましくはN−アルキルコハク酸イミドを添加することで、人造黒鉛や天然黒鉛等の活性で高結晶化した炭素質材料の表面を不導体被膜で被覆し、電池の正常な反応を損なうことなく非水電解液の分解を抑制する。また、低粘度溶媒である非対称鎖状カーボネートのエステル交換反応を抑制する効果を有するものと考えられる。非水電解液中に添加されるコハク酸イミド誘導体の添加量は、過度に少ないと十分な被膜が形成されず、期待した電池性能が得られない。また過度に多すぎると、炭素質材料の表面の不導体被膜が厚くなりすぎるため、負極の反応面積が減少し、電池性能が低下する。従って、非水電解液の総重量に対して0.01〜20重量%、特に0.1〜5重量%の範囲が好ましい。
【0025】
本発明のリチウム二次電池を構成する負極活物質としては、その成分として黒鉛を含む。黒鉛はリチウムを吸蔵・放出することが可能であればその物理的性状は特に制限されない。好ましいのは種々の原料から得た昜黒鉛性ピッチの高温熱処理によって製造された人造黒鉛及び精製天然黒鉛、或いはこれらの黒鉛にピッチを含む種々の表面処理を施した材料である。
【0026】
これらの黒鉛材料にリチウムを吸蔵・放出可能な負極活物質をさらに混合して用いることもできる。黒鉛以外のリチウムを吸蔵・放出可能な負極活物質としては、難黒鉛性炭素又は低温焼成炭素等の非黒鉛系炭素材料、酸化錫、酸化珪素等の金属酸化物材料、更にはリチウム金属並びに種々のリチウム合金を例示することができる。これらの負極活物質は必要に応じて二種類以上を混合して用いることができる。
【0027】
これらの負極材料を用いて負極板3を製造する方法については、特に限定されない。
【0028】
例えば、負極活物質に必要に応じて結着剤、増粘剤、導電剤、溶剤等を加えて混錬分散させたスラリーを、集電体の片面または両面に塗布、乾燥、圧延することにより負極板を作製することができる。
【0029】
結着剤については、使用する溶媒や電解液に対して安定な材料であれば、特に限定されない。その具体例としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプロピレンゴム、ブタジエンゴム、エチレンプロピレンジエタンポリマー等を挙げることができる。
【0030】
増粘剤としては、カルボシキメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、ガゼイン等が挙げられる。
【0031】
導電剤としては、銅やニッケル等の金属材料、グラファイト、カーボンブラック等のような炭素材料が挙げられる。
【0032】
負極用集電体の材質は、銅、ニッケル、ステンレス等の金属が使用できるが、これらの中で薄膜に加工しやすく、低コストであることから銅箔が好ましい。
【0033】
本発明のリチウム二次電池を構成する正極板の活物質材料としては、リチウムを吸蔵・放出可能な材料が望ましい。例えばコバルト、マンガン、ニッケル、クロム、鉄、バナジウムおよび銅からなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物が使用できる。このような複合金属酸化物としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等が挙げられる。
【0034】
これらの正極材料を用いて正極板を製造する方法については、特に限定されず、上記の負極板の製造方法に準じて製造することができる。また、その形状については、正極活物質に必要に応じて結着剤、導電剤、溶剤等を加えて混合後、集電体の片面または両面に塗布、乾燥、圧延することによって正極板を作製することができる。
【0035】
正極用集電体の材質は、アルミニウム、チタン、タンタル等の金属またはその合金が使用できるが、軽量でエネルギー密度の観点から有利であることから、特にアルミニウムまたはその合金を使用するのが望ましい。
【0036】
本発明のリチウム二次電池で使用するセパレータの材質や形状については、特に限定されない。但し、電解液に安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする微多孔性シートまたは不織布等を用いるのが好ましい。
【0037】
負極板、正極板及び非水電解液を少なくとも有する本発明のリチウム二次電池を製造する方法については、特に限定されず、通常採用されている方法の中から適宜選択することができる。
【0038】
また、電池の形状については特に限定されず、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が使用可能である。
【0039】
【実施例】
以下、本発明を実施例および比較例を用いて詳細に説明するが、これらは本発明を何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0040】
(実施例1)
まず、正極活物質として85重量%のLiCoO2、導電剤としてカーボンブラック6重量%、結着剤としてポリフッ化ビニリデンKF−1000(呉羽化学社製、商品名)9重量%を加え混合し、溶剤としてN−メチル−2−ピロリドンを用いて混錬分散させたスラリーを正極集電体である厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥後、圧延して、厚さ0.18mmの正極板1を作製した。
【0041】
次に、負極活物質として人造黒鉛粉末KS−44(ティムカル社製、商品名)94重量%、結着剤としてポリフッ化ビニリデン6重量%を混合し、溶剤としてN−メチル−2−ピロリドンを用いて混錬分散させたスラリーを負極集電体である厚さ18μmの銅箔の両面に均一に塗工し、乾燥後圧延して厚さ0.19mmの負極板3を作製した。
【0042】
そして正極板1にはアルミニウム製の正極リード2、負極板3にはニッケル製の負極リード4をそれぞれ取り付け、厚さ0.025mmのポリエチレン製微多孔質フィルム5を介して渦巻状に巻回したものを、上部絶縁リング6、下部絶縁リング7とともに直径18.0mm、高さ65.0mmの電池ケース8に収納した。
【0043】
非水電解液としては、乾燥アルゴン雰囲気下で、十分に乾燥を行った六フッ化リン酸リチウム(LiPF6)を溶質として用い、エチレンカーボネートとエチルメチルカーボネートの混合物(1:1体積比)からなる溶媒にLiPF6を1モル/リットルの割合で溶解した非水電解液に、更に(表1)に示す添加剤を非水電解液の総重量に対してそれぞれ0.01〜20重量%の比率で添加混合して9種の非水電解液を作製した。これらの非水電解液を注液し、絶縁パッキング9を介して電池ケース8と封口板10とをかしめ封口して、電池容量1600mAhの円筒形電池を作製し、電池A1〜電池A5とした。
【0044】
【表1】
【0045】
(実施例2)
プロピレンカーボネートとメチル−n−プロピルカーボネートの混合物(3:7体積比)からなる溶媒を用いた以外は実施例1と同様にして作製した非水電解液に、(表1)に示す添加剤を非水電解液の総重量に対して1重量%の比率で添加混合した非水電解液を注液した以外は、実施例1と同様にして電池を作製し、電池A6〜電池A9とした。
【0046】
(実施例3)
エチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合物(3:5:2体積比)からなる溶媒を用いた以外は実施例1と同様にして作製した非水電解液に、(表1)に示す添加剤を非水電解液の総重量に対して1重量%の比率で添加混合した非水電解液を注液した以外は、実施例1と同様にして電池を作製し、電池A10〜電池A12とした。
【0047】
(比較例1)
実施例1と同様の非水電解液に、(表1)に示す添加剤を非水電解液の総重量に対して添加混合した非水電解液を用いたこと以外は実施例1と同様にして電池を作製し、電池B1〜電池B4とした。
【0048】
(比較例2)
エチレンカーボネートとジメチルカーボネートの混合物(1:1体積比)からなる溶媒を用いた以外は実施例1と同様にして作製した非水電解液に、(表1)に示す添加剤を非水電解液の総重量に対して1重量%の比率で添加混合した非水電解液を注液した以外は、実施例1と同様にして電池を作製し、電池B5とした。
【0049】
表1に示すこれらの実施例1〜実施例3及び比較例1〜比較例2の電池を20℃において、1.6Aの定電流で充電終止電圧4.2V、放電終止電圧2.75Vで3サイクル充放電試験を行い、3サイクル目の放電容量を初期容量とした。その後、前記充電条件で充電状態にし環境温度60℃で1ヶ月の保存試験を行った。その後20℃の環境下に冷却後、初期と同様の方法で充放電試験を行い、3サイクル目の放電容量を保存後の放電容量とした。また初期の放電容量を測定後、20℃で500サイクル、充放電サイクル試験を行い、500サイクル後の放電容量についても同様に測定した。
【0050】
それぞれの電池における(60℃保存後の放電容量/初期容量)を60℃1ヶ月保存後の容量維持率とし、(500サイクル後の放電容量/初期容量)を20℃500サイクル試験後の容量維持率とした。各々の結果を(表2)に示す。
【0051】
【表2】
【0052】
表2に示すように、本発明電池A1〜A5は60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率ともに比較例電池B1に比べ、優れていることがわかる。また特にA2〜A4の電池特性が特に優れていることから、添加剤の添加量は非水電解液の重量に対して0.01〜20重量%が好ましく、特に0.1〜5重量%の範囲が最適であることが分かった。
【0053】
そして、本発明電池A6〜A9は60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率ともに比較例電池B1に比べ優れていた。添加剤の種類によらずほぼ同程度の電池特性が得られたことから、本発明の効果は前記(化3)で表されるN−アルキルコハク酸イミドの骨格構造を有する化合物であれば特にその置換基の種類によらないことがわかった。
【0054】
また、本発明電池A10〜A11は60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率ともに比較例電池B1に比べ優れていた。(化2)に示すコハク酸イミドの炭素原子に結合した水素原子を置換した電子供与性の置換基を有する化合物であれば効果のあることがわかった。
【0055】
さらに、本発明電池A12は、60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率において本発明電池A3とほとんど同じ特性の電池が得られたが、比較例電池B5は、コハク酸イミド誘導体を無添加の比較例電池B1より少し良い特性しか得られなかった。これらのことから、非対称鎖状カーボネートを含む場合には、溶媒の種類の組合せに限定されないが、非対称鎖状カーボネートを含まない場合には、コハク酸イミド誘導体の効果を充分に発揮できないことがわかった。
【0056】
ところで、比較例電池B2は60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率において比較例電池B1とほとんど同じ特性しか得られなかった。これは、添加剤の量が少なすぎたために負極の炭素質材料の表面に形成される不導体被膜が十分に形成されず、期待した電池性能が得られなかったものと思われる。
【0057】
そして、比較例電池B3において、60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率において比較例電池B1よりも電池特性が悪化した。これは、添加剤の量が多すぎると、炭素質材料の表面の不導体被膜が厚くなり、負極板の反応面積が減少するため、電池性能が低下したものであると考えられる。
【0058】
また、比較例電池B4は60℃1ヶ月保存後の容量維持率、並びに20℃充放電サイクル試験後の容量維持率において比較例電池B1より僅かに良い特性しか得られなかった。これは、コハク酸イミドが電子供与性の置換基を有さないため、負極の炭素質材料の表面に形成される不導体被膜が十分に形成されなかったと推測される。
【0059】
なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に類推可能な様々な組み合わせが可能である。更に、上記実施例は円筒形電池に関するものであるが、本発明は角形、扁平形、コイン形等の様々な形状の電池にも適用することができる。
【0060】
【発明の効果】
以上のように本発明によれば、リチウム二次電池用非水電解液として、コハク酸イミド誘導体、特に(化3)で表されるN−アルキルコハク酸イミドが含有されている非水電解液を使用することにより、高温下での保存特性、ならびに充放電サイクル特性に優れた非水電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す円筒形電池の断面図
【符号の説明】
1 正極板
2 正極リード
3 負極板
4 負極リード
5 セパレータ
6 上部絶縁リング
7 下部絶縁リング
8 電池ケース
9 絶縁パッキング
10 封口板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery using the same, a non-aqueous electrolyte excellent in charge / discharge cycle characteristics and storage characteristics, and a non-aqueous electrolyte secondary battery using the same. Is.
[0002]
[Prior art]
With the recent reduction in size and weight of electrical products, development of lithium secondary batteries with high energy density is in progress. In addition, with the expansion of the application field of lithium secondary batteries, improvement of battery characteristics is also demanded.
[0003]
Secondary batteries using metallic lithium as a negative electrode active material have been actively studied since long ago as batteries capable of achieving higher capacities. The lithium secondary battery using such a lithium metal has a high energy density, but dendrite is deposited on the negative electrode plate during charging, and the charge / discharge cycle is repeated to break through the separator and reach the positive electrode plate side, causing an internal short circuit. There was a risk of waking up. In addition, the deposited dendrites have a high specific surface area and thus have high reaction activity, and react with the solvent in the electrolytic solution on the surface to form a solid electrolyte-like interface film lacking in electron conductivity. For this reason, the internal resistance of the battery is increased, or particles isolated from the electron conduction network are present, which are factors that lower the charge / discharge efficiency. For these reasons, the lithium secondary battery using lithium metal as the negative electrode active material has a problem in reliability such as short charge / discharge cycle characteristics.
[0004]
Therefore, a nonaqueous electrolyte secondary battery using a carbonaceous material capable of inserting and extracting lithium ions such as coke, artificial graphite, and natural graphite has been proposed as a negative electrode active material. In such a non-aqueous electrolyte secondary battery, since lithium does not exist in a metal state, formation of dendrites is suppressed, and battery life and safety can be improved.
[0005]
However, in non-aqueous electrolyte secondary batteries that use various graphite-based electrode materials alone or mixed with other negative electrode active materials capable of occluding and releasing lithium as negative electrode plates, lithium primary batteries are generally used. When an electrolyte containing propylene carbonate, which is preferably used, is used as the main solvent, the decomposition reaction of the solvent proceeds violently on the surface of the graphite electrode, and smooth occlusion / release of lithium into the graphite electrode becomes impossible. On the other hand, since ethylene carbonate has little such decomposition, ethylene carbonate is frequently used as the main solvent in the electrolyte of non-aqueous electrolyte secondary batteries using a graphite-based negative electrode active material. However, ethylene carbonate has a high freezing point of 36.4 ° C. compared to propylene carbonate, so it is not used alone, and is used by mixing with a low viscosity solvent such as chain carbonate.
[0006]
In particular, it is known that a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing an asymmetric chain carbonate among chain carbonates can obtain high capacity and good charge / discharge cycle characteristics (Y. Ein-Eil et al, J. Electrochem. Soc., 145, L1 (1998)).
[0007]
[Problems to be solved by the invention]
However, even when using an electrolyte containing an asymmetrical chain carbonate, problems such as charge / discharge cycle characteristics and storage characteristic degradation that may be caused by decomposition of the electrolyte, and long-term charge / discharge cycle tests and storage tests were performed. In this case, the transesterification reaction of the asymmetric chain carbonate proceeds in the battery, and the composition of the electrolyte solution changes from the initial state. Therefore, there is a problem that the initial characteristics cannot be obtained.
[0008]
By the way, an attempt to add an additive such as an imide salt has been made in order to prevent deterioration of battery characteristics due to decomposition of the nonaqueous electrolytic solution. Among them, methods for adding succinimide are disclosed in JP-A-11-45724, JP-A-2001-43867, JP-A-2001-57231, and the like. However, since succinimide has no electron-donating functional group, it has been difficult to uniformly form a thin non-conductive film on the negative electrode surface made of a carbon material.
[0009]
The present invention solves the problems of a non-aqueous electrolyte containing an asymmetric chain carbonate, has excellent battery charge / discharge cycle characteristics, and excellent storage characteristics in a charged state, and a non-aqueous electrolyte using the same An object is to provide a water electrolyte secondary battery.
[0010]
[Means for Solving the Problems]
The non-aqueous electrolyte solution of the present invention for solving the above problems is composed of a non-aqueous solvent containing a chain carbonate and an electrolyte, and uses an asymmetric chain carbonate as the chain carbonate. A derivative obtained by substituting a hydrogen atom bonded to a carbon atom or a nitrogen atom of succinimide represented by (Chemical Formula 2) shown in (Chemical Formula 2) is added in an amount of 0.01 to 20% by weight based on the total weight of the non-aqueous electrolyte. It is characterized by that. The succinimide derivative is N- alkyl succinimide represented by (Formula 3), the alkyl group R of the N- alkyl succinimide Ru alkyl group or phenyl group der, of 1 to 4 carbon atoms .
[0011]
[Chemical 2]
[0012]
[Chemical 3]
[0013]
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode plate capable of inserting and extracting lithium, a negative electrode plate made of a carbon material, and the non-aqueous electrolyte solution.
[0014]
There are no particular limitations on the components other than those constituting the non-aqueous electrolyte secondary battery of the present invention, and various conventionally used components can be used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0016]
FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery according to an embodiment of the present invention.
[0017]
As shown in FIG. 1, an electrode plate group in which a
[0018]
The nonaqueous electrolytic solution of the present invention comprises a nonaqueous solvent, an electrolyte, and an additive. The non-aqueous solvent contains a chain carbonate which is a low viscosity solvent, and an asymmetric chain carbonate is used as the chain carbonate. Examples of the asymmetric chain carbonate include ethyl methyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, methyl-i-propyl carbonate, and ethyl-i-propyl carbonate.
[0019]
A part of this asymmetric chain carbonate can be substituted with one or more than one asymmetric chain carbonate, for example, symmetric chain carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, Cyclic esters such as γ-butyrolactone and γ-valerolactone, chain esters such as methyl acetate and methyl propionate, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and tetrahydropyran, chains such as dimethoxyethane and dimethoxymethane And amides such as dimethylformamide.
[0020]
Further, it is preferable to use a low-viscosity solvent composed of the asymmetric chain carbonate and a high dielectric constant solvent in combination, and examples of the high dielectric constant solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate. These high dielectric constant solvents can be used alone or in combination of two or more.
[0021]
The preferred ratio of the high dielectric constant solvent and the low viscosity solvent asymmetric chain carbonate is in the range of 9: 1 to 1: 4 by volume ratio (high dielectric constant solvent: low viscosity solvent), 5: 1 A ratio of ˜3: 7 is preferred.
[0022]
Examples of the electrolyte used in the present invention include inorganic lithium salts selected from LiClO 4 , LiPF 6 , and LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2. And fluorine-containing organic lithium salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and LiC (CF 3 SO 2 ) 3 . Of these, LiPF 6 and LiBF 4 are preferably used. These electrolytes can be used alone or in combination of two or more. These electrolytes are desirably used in the non-aqueous solvent at a concentration of usually 0.1 to 3 mol / liter, preferably 0.5 to 2 mol / liter.
[0023]
Furthermore, a succinimide derivative is used as an additive used in the present invention. As this succinimide derivative, at least one hydrogen atom bonded to the carbon atom of succinimide represented by (Chemical Formula 2) is substituted with a methyl group or an ethyl group, or bonded to the nitrogen atom of the succinimide. An N-alkyl succinimide represented by (Chemical Formula 3) in which a hydrogen atom is substituted with an alkyl group can be exemplified, and N-alkyl succinimide is preferable, and the alkyl group R of the N-alkyl succinimide is carbon. It is optimal that they are an alkyl group of
[0024]
By adding a succinimide derivative, preferably N-alkyl succinimide, to the non-aqueous electrolyte, the surface of an active and highly crystallized carbonaceous material such as artificial graphite or natural graphite is coated with a non-conductive coating. The decomposition of the nonaqueous electrolyte solution is suppressed without impairing the normal reaction of the battery. Moreover, it is thought that it has the effect which suppresses transesterification of the asymmetric chain carbonate which is a low-viscosity solvent. If the amount of the succinimide derivative added to the non-aqueous electrolyte is too small, a sufficient film is not formed, and the expected battery performance cannot be obtained. On the other hand, when the amount is excessively large, the non-conductive film on the surface of the carbonaceous material becomes too thick, so that the reaction area of the negative electrode is reduced and the battery performance is lowered. Therefore, the range of 0.01 to 20% by weight, particularly 0.1 to 5% by weight is preferable with respect to the total weight of the nonaqueous electrolytic solution.
[0025]
As a negative electrode active material which comprises the lithium secondary battery of this invention, graphite is included as the component. As long as graphite can occlude and release lithium, its physical properties are not particularly limited. Preference is given to artificial graphite and purified natural graphite produced by high-temperature heat treatment of soot graphite pitch obtained from various raw materials, or materials obtained by subjecting these graphites to various surface treatments containing pitch.
[0026]
These graphite materials can be used by further mixing a negative electrode active material capable of inserting and extracting lithium. Examples of negative electrode active materials capable of occluding and releasing lithium other than graphite include non-graphitic carbon materials such as non-graphite carbon or low-temperature calcined carbon, metal oxide materials such as tin oxide and silicon oxide, lithium metal, and various The lithium alloy can be illustrated. These negative electrode active materials can be used as a mixture of two or more if necessary.
[0027]
A method for producing the
[0028]
For example, by applying a slurry, kneaded and dispersed by adding a binder, a thickener, a conductive agent, a solvent, etc. to the negative electrode active material as necessary, it is applied to one side or both sides of the current collector, dried, and rolled. A negative electrode plate can be produced.
[0029]
The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used. Specific examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isopropylene rubber, butadiene rubber, and ethylene propylene diethane polymer.
[0030]
Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
[0031]
Examples of the conductive agent include metal materials such as copper and nickel, and carbon materials such as graphite and carbon black.
[0032]
As the material for the current collector for the negative electrode, metals such as copper, nickel, and stainless steel can be used. Among these, copper foil is preferable because it can be easily processed into a thin film and is low in cost.
[0033]
As the active material of the positive electrode plate constituting the lithium secondary battery of the present invention, a material capable of inserting and extracting lithium is desirable. For example, a composite metal oxide of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron, vanadium and copper and lithium can be used. Examples of such composite metal oxides include lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide.
[0034]
A method for producing a positive electrode plate using these positive electrode materials is not particularly limited, and the positive electrode plate can be produced according to the above-described method for producing a negative electrode plate. As for its shape, a positive electrode plate is prepared by adding a binder, a conductive agent, a solvent, etc. to the positive electrode active material as necessary, mixing, applying, drying and rolling on one or both sides of the current collector. can do.
[0035]
The positive electrode current collector may be made of a metal such as aluminum, titanium or tantalum or an alloy thereof. However, since it is lightweight and advantageous from the viewpoint of energy density, it is particularly preferable to use aluminum or an alloy thereof.
[0036]
The material and shape of the separator used in the lithium secondary battery of the present invention are not particularly limited. However, it is preferable to select from materials that are stable in the electrolytic solution and excellent in liquid retention properties, and it is preferable to use a microporous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene.
[0037]
The method for producing the lithium secondary battery of the present invention having at least a negative electrode plate, a positive electrode plate, and a non-aqueous electrolyte is not particularly limited, and can be appropriately selected from commonly employed methods.
[0038]
In addition, the shape of the battery is not particularly limited, and a cylinder type in which a sheet electrode and a separator are spiraled, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like are used. Is possible.
[0039]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these are not intended to limit the present invention in any way, and can be appropriately modified and implemented without departing from the scope of the present invention. It is.
[0040]
(Example 1)
First, 85% by weight of LiCoO 2 as a positive electrode active material, 6% by weight of carbon black as a conductive agent, and 9% by weight of polyvinylidene fluoride KF-1000 (trade name, manufactured by Kureha Chemical Co., Ltd.) as a binder are added and mixed. A slurry kneaded and dispersed using N-methyl-2-pyrrolidone as a positive electrode current collector is uniformly applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode current collector, dried and rolled to a thickness of 0.18 mm A
[0041]
Next, 94% by weight of artificial graphite powder KS-44 (trade name, manufactured by Timcal Co., Ltd.) as a negative electrode active material, 6% by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a solvent are used. The slurry kneaded and dispersed was uniformly coated on both surfaces of a negative electrode current collector 18 μm thick copper foil, dried and rolled to prepare a
[0042]
A
[0043]
As a non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) sufficiently dried under a dry argon atmosphere was used as a solute, and a mixture (1: 1 volume ratio) of ethylene carbonate and ethyl methyl carbonate was used. In a non-aqueous electrolyte obtained by dissolving LiPF 6 in a solvent at a rate of 1 mol / liter, the additives shown in (Table 1) were added in an amount of 0.01 to 20% by weight based on the total weight of the non-aqueous electrolyte. Nine types of non-aqueous electrolytes were prepared by adding and mixing at a ratio. These non-aqueous electrolytes were injected, and the
[0044]
[Table 1]
[0045]
(Example 2)
The additive shown in (Table 1) was added to the non-aqueous electrolyte prepared in the same manner as in Example 1 except that a solvent composed of a mixture of propylene carbonate and methyl-n-propyl carbonate (3: 7 volume ratio) was used. Batteries were produced in the same manner as in Example 1 except that the nonaqueous electrolytic solution added and mixed at a ratio of 1% by weight with respect to the total weight of the nonaqueous electrolytic solution was poured into batteries A6 to A9.
[0046]
(Example 3)
Addition shown in (Table 1) to the non-aqueous electrolyte produced in the same manner as in Example 1 except that a solvent composed of a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (3: 5: 2 volume ratio) was used. A battery was produced in the same manner as in Example 1 except that a nonaqueous electrolyte solution in which an agent was added and mixed at a ratio of 1% by weight with respect to the total weight of the nonaqueous electrolyte solution was prepared. did.
[0047]
(Comparative Example 1)
The same procedure as in Example 1 was used except that a non-aqueous electrolyte solution in which the additives shown in (Table 1) were added and mixed with the same non-aqueous electrolyte solution as in Example 1 with respect to the total weight of the non-aqueous electrolyte solution was used. Thus, batteries were prepared as Battery B1 to Battery B4.
[0048]
(Comparative Example 2)
The additive shown in (Table 1) was added to the non-aqueous electrolyte prepared in the same manner as in Example 1 except that a solvent composed of a mixture of ethylene carbonate and dimethyl carbonate (1: 1 volume ratio) was used. A battery was produced in the same manner as in Example 1 except that a non-aqueous electrolyte solution added and mixed at a ratio of 1% by weight with respect to the total weight of was prepared as Battery B5.
[0049]
The batteries of Examples 1 to 3 and Comparative Examples 1 to 2 shown in Table 1 are 3 at 20 ° C. with a constant current of 1.6 A and a charge end voltage of 4.2 V and a discharge end voltage of 2.75 V, respectively. A cycle charge / discharge test was conducted, and the discharge capacity at the third cycle was defined as the initial capacity. Thereafter, the battery was charged under the above charging conditions, and a storage test was conducted for 1 month at an environmental temperature of 60 ° C. Thereafter, after cooling in an environment of 20 ° C., a charge / discharge test was conducted in the same manner as in the initial stage, and the discharge capacity at the third cycle was defined as the discharge capacity after storage. Further, after measuring the initial discharge capacity, a charge / discharge cycle test was conducted at 20 ° C. for 500 cycles, and the discharge capacity after 500 cycles was measured in the same manner.
[0050]
In each battery, (discharge capacity after storage at 60 ° C./initial capacity) is defined as the capacity maintenance rate after storage at 60 ° C. for one month, and (discharge capacity after 500 cycles / initial capacity) is maintained at 20 ° C. after 500 cycle tests. Rate. Each result is shown in (Table 2).
[0051]
[Table 2]
[0052]
As shown in Table 2, the batteries A1 to A5 of the present invention are superior to the comparative battery B1 in both the capacity retention ratio after storage at 60 ° C. for one month and the capacity retention ratio after 20 ° C. charge / discharge cycle test. Recognize. In particular, since the battery characteristics of A2 to A4 are particularly excellent, the additive is preferably added in an amount of 0.01 to 20% by weight, particularly 0.1 to 5% by weight, based on the weight of the non-aqueous electrolyte. The range was found to be optimal.
[0053]
And this invention battery A6-A9 was excellent compared with comparative example battery B1 in the capacity maintenance rate after 60
[0054]
In addition, the batteries A10 to A11 of the present invention were superior to the comparative battery B1 in both the capacity retention rate after storage at 60 ° C. for 1 month and the capacity retention rate after the 20 ° C. charge / discharge cycle test. It has been found that any compound having an electron-donating substituent in which a hydrogen atom bonded to a carbon atom of the succinimide shown in (Chemical Formula 2) is substituted is effective.
[0055]
Furthermore, the battery A12 of the present invention obtained a battery having almost the same characteristics as the battery A3 of the present invention in terms of the capacity retention rate after storage at 60 ° C. for 1 month and the capacity retention rate after the 20 ° C. charge / discharge cycle test. Battery B5 obtained only slightly better characteristics than Comparative Battery B1 with no succinimide derivative added. From these facts, it is understood that when the asymmetric chain carbonate is included, the combination of the solvent types is not limited, but when the asymmetric chain carbonate is not included, the effect of the succinimide derivative cannot be sufficiently exhibited. It was.
[0056]
By the way, the comparative example battery B2 obtained almost the same characteristics as the comparative example battery B1 in the capacity maintenance rate after storage at 60 ° C. for one month and the capacity maintenance rate after the 20 ° C. charge / discharge cycle test. This is probably because the non-conductive film formed on the surface of the carbonaceous material of the negative electrode was not sufficiently formed because the amount of the additive was too small, and the expected battery performance was not obtained.
[0057]
And in comparative example battery B3, the battery characteristic deteriorated compared with comparative example battery B1 in the capacity maintenance rate after 60
[0058]
In addition, Comparative Battery B4 obtained only slightly better characteristics than Comparative Battery B1 in terms of capacity retention after storage at 60 ° C. for 1 month and capacity retention after 20 ° C. charge / discharge cycle test. This is presumed that since the succinimide has no electron-donating substituent, the non-conductive film formed on the surface of the carbonaceous material of the negative electrode was not sufficiently formed.
[0059]
In addition, this invention is not limited to the Example described, The various combination which can be easily guessed from the meaning of invention is possible. Furthermore, although the said Example is related with a cylindrical battery, this invention is applicable also to batteries of various shapes, such as a square shape, a flat shape, and a coin shape.
[0060]
【The invention's effect】
As described above, according to the present invention, a non-aqueous electrolyte containing a succinimide derivative, particularly an N-alkyl succinimide represented by (Chemical Formula 3), as a non-aqueous electrolyte for a lithium secondary battery. By using this, it is possible to provide a non-aqueous electrolyte secondary battery excellent in storage characteristics at high temperatures and charge / discharge cycle characteristics.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical battery showing an example of an embodiment of the present invention.
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348426A JP4172175B2 (en) | 2001-11-14 | 2001-11-14 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001348426A JP4172175B2 (en) | 2001-11-14 | 2001-11-14 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003151622A JP2003151622A (en) | 2003-05-23 |
JP4172175B2 true JP4172175B2 (en) | 2008-10-29 |
Family
ID=19161249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001348426A Expired - Fee Related JP4172175B2 (en) | 2001-11-14 | 2001-11-14 | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4172175B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10352484B2 (en) | 2004-08-05 | 2019-07-16 | Faurecia Emissions Control Technologies Germany Gmbh | Exhaust system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102119463B (en) * | 2008-08-04 | 2014-09-10 | 宇部兴产株式会社 | Nonaqueous electrolyte and lithium cell using the same |
CN102044675A (en) * | 2009-10-23 | 2011-05-04 | 深圳市比克电池有限公司 | Lithium battery anode slurry additive, slurry, battery and preparation method |
JP5448175B2 (en) * | 2010-03-16 | 2014-03-19 | 日立マクセル株式会社 | Non-aqueous electrolyte for electrochemical element and electrochemical element |
KR102188424B1 (en) * | 2013-12-19 | 2020-12-08 | 에스케이이노베이션 주식회사 | Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Containing the Same |
CN112201852B (en) * | 2020-09-30 | 2022-11-15 | 香河昆仑新能源材料股份有限公司 | Lithium ion battery electrolyte additive, preparation method thereof and lithium ion battery electrolyte |
CN112467212B (en) * | 2020-10-30 | 2022-04-12 | 合肥国轩高科动力能源有限公司 | Lithium ion battery electrolyte for silicon-carbon cathode and lithium ion battery |
-
2001
- 2001-11-14 JP JP2001348426A patent/JP4172175B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10352484B2 (en) | 2004-08-05 | 2019-07-16 | Faurecia Emissions Control Technologies Germany Gmbh | Exhaust system |
Also Published As
Publication number | Publication date |
---|---|
JP2003151622A (en) | 2003-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3844733B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3797197B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4151060B2 (en) | Non-aqueous secondary battery | |
JP3815087B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP5426763B2 (en) | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery | |
US8105711B2 (en) | Nonaqueous electrolyte secondary battery | |
US8029934B2 (en) | Lithium secondary battery | |
WO2011039949A1 (en) | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same | |
JP5089828B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP3579280B2 (en) | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode | |
JP5204929B1 (en) | Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery | |
JP2000235866A (en) | Nonaqueous electrolyte secondary battery | |
JP3820748B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery using the same | |
JP2001222995A (en) | Lithium ion secondary battery | |
JP2002110230A (en) | Non-acqueous electrolyte lithium secondary battery | |
JP2001052699A (en) | Lithium secondary battery | |
JP4172175B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same | |
JP4915025B2 (en) | Nonaqueous electrolyte and lithium secondary battery | |
JP5117649B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP2003007331A (en) | Nonaqueous electrolyte secondary battery | |
JP4636650B2 (en) | Non-aqueous secondary battery | |
JP4016497B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JPH08339824A (en) | Nonaqueous electrolyte secondary battery | |
JP4075180B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
JP3610898B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041115 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |