JP2006032296A - Negative electrode and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006032296A
JP2006032296A JP2004213526A JP2004213526A JP2006032296A JP 2006032296 A JP2006032296 A JP 2006032296A JP 2004213526 A JP2004213526 A JP 2004213526A JP 2004213526 A JP2004213526 A JP 2004213526A JP 2006032296 A JP2006032296 A JP 2006032296A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
battery
mass
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004213526A
Other languages
Japanese (ja)
Inventor
Yukihiro Oki
雪尋 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004213526A priority Critical patent/JP2006032296A/en
Publication of JP2006032296A publication Critical patent/JP2006032296A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode and a nonaqueous electrolyte secondary battery capable of providing excellent permeability of an electrolyte into the high-density negative electrode and of improving a cycle life characteristic. <P>SOLUTION: This negative electrode containing lithium polyacrylate, vapor-phase growth carbon fiber or carbon black as the negative electrode 3 of this nonaqueous electrolyte secondary battery 1 such as a lithium secondary battery. The negative electrode 3 and a positive electrode 4 are rolled by interlaying a separator 5, and the rolled electrode group 2 and an electrolyte are housed in a battery case 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池などの非水電解質二次電池に用いる負極、及び、該負極を備える非水電解質二次電池に関する。   The present invention relates to a negative electrode used for a nonaqueous electrolyte secondary battery such as a lithium secondary battery, and a nonaqueous electrolyte secondary battery including the negative electrode.

近年、携帯機器などの電子機器の高性能化に伴い、前記電子機器に内蔵する二次電池の性能向上に対する要求が高まっている。その中でも、電池容量とサイクル寿命特性との向上に対する要求が高まっている。代表的な二次電池としてリチウム二次電池があるが、リチウム二次電池においても高容量化が求められており、規定サイズ内でできるだけ大きな容量を得るために、正極及び負極をプレスにより圧縮するなどして活物質を可能な限り詰込んでいる。リチウム二次電池は、一般に、活物質粒子と結着剤(バインダ)とを圧縮して極板を成形しているが、前記圧縮を行うことにより、極板中の空隙が減少して電解液の浸透性が悪くなり、サイクル寿命特性が低下する傾向にある。特に、炭素材料を主成分とする負極に関しては、サイクル寿命特性の低下が顕著に表れる。   In recent years, with the improvement in performance of electronic devices such as portable devices, there is an increasing demand for improving the performance of secondary batteries built in the electronic devices. Among them, there is an increasing demand for improvement of battery capacity and cycle life characteristics. As a typical secondary battery, there is a lithium secondary battery. However, a lithium secondary battery is also required to have a high capacity, and in order to obtain as large a capacity as possible within a specified size, the positive electrode and the negative electrode are compressed by a press. The active material is packed as much as possible. In general, a lithium secondary battery compresses active material particles and a binder (binder) to form an electrode plate. However, by performing the compression, a void in the electrode plate is reduced and an electrolyte solution is formed. , The cycle life characteristics tend to deteriorate. In particular, for a negative electrode mainly composed of a carbon material, the cycle life characteristics are significantly reduced.

なお、リチウム二次電池の負極への電解液の浸透性を向上させる手法として、負極を構成する結着剤の量を少なくする手法が知られている。負極の結着剤にはカルボキシメチルセルロースとスチレンブタジエンゴム(SBR)とが用いられる場合が多いが、カルボキシメチルセルロースは、結着性を付与する作用の他に、ペーストを安定させる増粘剤としての役割も果たしている。そのため、カルボキシメチルセルロースの量を少なくした場合、増粘効果が減少し、ペーストの安定性が著しく低下するため、生産性に支障をきたすという問題が生じる。   As a technique for improving the permeability of the electrolyte solution to the negative electrode of the lithium secondary battery, a technique for reducing the amount of the binder constituting the negative electrode is known. Carboxymethylcellulose and styrene butadiene rubber (SBR) are often used as the binder for the negative electrode, but carboxymethylcellulose plays a role as a thickening agent that stabilizes the paste in addition to the action of imparting binding properties. Also plays. Therefore, when the amount of carboxymethylcellulose is reduced, the thickening effect is reduced, and the stability of the paste is remarkably lowered, resulting in a problem that the productivity is hindered.

このような問題を解決する方法として、カルボキシメチルセルロースよりも少ない添加量で、ペーストの安定性を良好に保つことができるポリアクリル酸を負極の結着剤に用いたリチウム二次電池が提案されている(例えば、特許文献1参照)。ポリアクリル酸を用いることにより、例えば充填密度が1.5g/cc以上の高密度負極においても、生産性を損ねることなく負極への電解液の浸透性を保つことができ、高率放電特性、サイクル特性などの電池性能の向上を図ることができる。
特開平5−21068号公報
As a method for solving such a problem, a lithium secondary battery using polyacrylic acid as a negative electrode binder capable of maintaining good paste stability with an addition amount smaller than that of carboxymethyl cellulose has been proposed. (For example, refer to Patent Document 1). By using polyacrylic acid, for example, even in a high-density negative electrode having a packing density of 1.5 g / cc or more, the permeability of the electrolyte solution to the negative electrode can be maintained without impairing productivity, and high-rate discharge characteristics, Battery performance such as cycle characteristics can be improved.
Japanese Patent Laid-Open No. 5-21068

ポリアクリル酸リチウムを負極の結着剤として用いる際に、ポリアクリル酸リチウムの特徴である負極板への電解液の浸透性の良さを生かすためには、その添加量を炭素材料に対して、0.05%〜0.5%などの少ない量にする必要がある。しかし、ポリアクリル酸リチウムの量を少なくした場合、活物質と集電体とをつなぐ結着剤の量が減少するため、繰返しの充放電に伴う負極活物質の膨張収縮作用により、活物質と集電体との間の導電経路が断裂され、サイクル寿命特性の低下が起こる。このように、ポリアクリル酸リチウムの添加量を少なくした場合、負極への電解液の浸透性が良くなって高率放電特性、サイクル特性は改善するが、サイクルの進行に伴いポリアクリル酸の結着力が弱くなり、良好なサイクル寿命特性を維持することができなくなるという問題がある。   When using lithium polyacrylate as a binder for the negative electrode, in order to take advantage of the good permeability of the electrolyte to the negative electrode plate, which is a feature of lithium polyacrylate, the amount of addition to the carbon material, It is necessary to make the amount as small as 0.05% to 0.5%. However, when the amount of lithium polyacrylate is reduced, the amount of the binder that connects the active material and the current collector decreases, so that the active material and the active material The conductive path between the current collector and the current collector is broken, and the cycle life characteristics are deteriorated. As described above, when the amount of lithium polyacrylate added is reduced, the permeability of the electrolyte to the negative electrode is improved and the high rate discharge characteristics and cycle characteristics are improved. There is a problem that the adhering force becomes weak and it becomes impossible to maintain good cycle life characteristics.

本発明は斯かる事情に鑑みてなされたものであり、ポリアクリル酸と、気相成長炭素繊維又はカーボンブラックと、他の炭素材料とを含んだ負極を用いることにより、高密度負極への電解液の良好な浸透性が得られることに加え、サイクル寿命特性を向上させることができる負極及び非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and by using a negative electrode containing polyacrylic acid, vapor-grown carbon fiber or carbon black, and another carbon material, electrolysis to a high-density negative electrode is achieved. An object of the present invention is to provide a negative electrode and a non-aqueous electrolyte secondary battery that can improve cycle life characteristics in addition to obtaining good liquid permeability.

第1発明に係る負極は、非水電解質二次電池に用いる負極において、ポリアクリル酸と、気相成長炭素繊維又はカーボンブラックと、気相成長炭素繊維又はカーボンブラック以外の炭素材料とを含むことを特徴とする。   The negative electrode according to the first invention is a negative electrode used for a nonaqueous electrolyte secondary battery, and includes polyacrylic acid, vapor-grown carbon fiber or carbon black, and a carbon material other than vapor-grown carbon fiber or carbon black. It is characterized by.

第2発明に係る非水電解質二次電池は、第1発明の負極を備えることを特徴とする。   A nonaqueous electrolyte secondary battery according to a second aspect of the invention includes the negative electrode of the first aspect of the invention.

本発明において、負極は、ポリアクリル酸と、気相成長炭素繊維又はカーボンブラックと、他の炭素材料とを含む。一般的な黒鉛系の導電助剤である鱗片状黒鉛は、極板をプレスした場合に配向してしまい、粒子間をつなぐ導電経路が不十分になる。一方、気相成長炭素繊維又はカーボンブラックは、このような配向は起こらないため、極板をプレスした場合であっても十分な導電経路を確保できる。ポリアクリル酸リチウムなどのポリアクリル酸を用いることにより、高率放電特性、サイクル特性を改善できることに加え、気相成長炭素繊維又はカーボンブラックを用いることにより、導電性を向上させて、サイクル寿命特性を向上できる。   In the present invention, the negative electrode includes polyacrylic acid, vapor-grown carbon fiber or carbon black, and another carbon material. Scale-like graphite, which is a general graphite-based conductive additive, is oriented when the electrode plate is pressed, and the conductive path that connects the particles becomes insufficient. On the other hand, since the vapor-grown carbon fiber or carbon black does not cause such orientation, a sufficient conductive path can be secured even when the electrode plate is pressed. By using polyacrylic acid such as lithium polyacrylate, the high rate discharge characteristics and cycle characteristics can be improved, and by using vapor-grown carbon fiber or carbon black, conductivity is improved and cycle life characteristics are improved. Can be improved.

本発明によれば、高密度負極への電解液の良好な浸透性が得られることに加え、サイクル寿命特性を向上させることができる。   According to the present invention, it is possible to improve cycle life characteristics in addition to obtaining good permeability of the electrolytic solution to the high-density negative electrode.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施例1)
図1は、本発明に係るリチウム二次電池(非水電解質二次電池)の一例を示す断面図である。図1において、1はリチウム二次電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は負極リードである。電極群2は、負極3と正極4とをセパレータ5を介して巻回したものである。電極群2は電池ケース6に収納してあり、電池ケース6の開口部は、負極端子9及び安全弁8を備える電池蓋7をレーザー溶接することにより密封されている。負極端子9は負極リード10と接続され、正極4は電池ケース6と接続されている。
Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof.
Example 1
FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery (nonaqueous electrolyte secondary battery) according to the present invention. In FIG. 1, 1 is a lithium secondary battery (hereinafter referred to as a battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, and 9 is The negative terminal 10 is a negative lead. The electrode group 2 is obtained by winding a negative electrode 3 and a positive electrode 4 with a separator 5 interposed therebetween. The electrode group 2 is housed in a battery case 6, and the opening of the battery case 6 is sealed by laser welding a battery lid 7 including a negative electrode terminal 9 and a safety valve 8. The negative electrode terminal 9 is connected to the negative electrode lead 10, and the positive electrode 4 is connected to the battery case 6.

正極合剤は、活物質としてLiCoO2 90質量%と、導電助剤としてアセチレンブラック5質量%と、結着剤としてポリフッ化ビニリデン(PVDF)5質量%とを混合し、N−メチル−2−ピロリドン(NPM)に分散させることによりペーストを調製した。このペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成形することにより正極を作製した。 The positive electrode mixture was prepared by mixing 90% by mass of LiCoO 2 as an active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-2- A paste was prepared by dispersing in pyrrolidone (NPM). This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm, dried, and then compression molded with a roll press to produce a positive electrode.

負極合剤は、負極活物質として炭素材料95.3質量%と、気相成長炭素繊維(VGCF)2質量%と、結着剤としてスチレンブタジエンゴム(SBR)2質量%と、カルボキシメチルセルロース(CMC)0.4質量%と、ポリアクリル酸リチウム0.3質量%とを混合し、水を適宜加えて分散させ、ペーストを調製した。このペーストを厚さ15μmの銅集電体に均一に塗布し、乾燥させて水を蒸発させた後、ロールプレスで圧縮成形することにより負極を作製した。   The negative electrode mixture comprises 95.3% by mass of a carbon material as a negative electrode active material, 2% by mass of vapor grown carbon fiber (VGCF), 2% by mass of styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC). ) 0.4% by mass and 0.3% by mass of lithium polyacrylate were mixed, and water was appropriately added and dispersed to prepare a paste. This paste was uniformly applied to a 15 μm thick copper current collector, dried to evaporate water, and then subjected to compression molding with a roll press to produce a negative electrode.

セパレータとしては、厚さ20μm程度の微多孔性ポリエチレンフィルムを用いた。電解質としては、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の体積比3:7混合溶媒にLiPF6 を1.1mol/l溶解させたものを用いた。電池のサイズは横幅30mm、高さ40mm、厚さ5mmであり、容量は720mAhである。 As the separator, a microporous polyethylene film having a thickness of about 20 μm was used. As the electrolyte, a solution obtained by dissolving 1.1 mol / l of LiPF 6 in a 3: 7 mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used. The battery has a width of 30 mm, a height of 40 mm, a thickness of 5 mm, and a capacity of 720 mAh.

(実施例2)
負極合剤は、負極活物質として炭素材料95.3質量%と、カーボンブラック2質量%と、結着剤としてスチレンブタジエンゴム(SBR)2質量%と、カルボキシメチルセルロース(CMC)0.4質量%と、ポリアクリル酸リチウム0.3質量%とを混合し、水を適宜加えて分散させ、ペーストを調製した。他は実施例1と同様にして電池を作製した。
(Example 2)
The negative electrode mixture is composed of 95.3% by mass of a carbon material as a negative electrode active material, 2% by mass of carbon black, 2% by mass of styrene butadiene rubber (SBR) as a binder, and 0.4% by mass of carboxymethyl cellulose (CMC). And 0.3% by mass of lithium polyacrylate were mixed, and water was appropriately added and dispersed to prepare a paste. A battery was fabricated in the same manner as in Example 1 except for the above.

(比較例1)
負極合剤は、負極活物質として炭素材料(ただし、VGCF、カーボンブラックは含んでいない)95.3質量%と、鱗片状黒鉛2質量%と、結着剤としてスチレンブタジエンゴム(SBR)2質量%と、カルボキシメチルセルロース(CMC)0.4質量%と、ポリアクリル酸リチウム0.3質量%とを混合し、水を適宜加えて分散させ、ペーストを調製した。他は実施例1と同様にして電池を作製した。
(Comparative Example 1)
The negative electrode mixture is 95.3% by mass of a carbon material (but not including VGCF and carbon black) as a negative electrode active material, 2% by mass of flaky graphite, and 2% by mass of styrene butadiene rubber (SBR) as a binder. %, Carboxymethyl cellulose (CMC) 0.4 mass%, and lithium polyacrylate 0.3 mass% were mixed, and water was added as appropriate to disperse to prepare a paste. A battery was fabricated in the same manner as in Example 1 except for the above.

(比較例2)
負極合剤は、負極活物質として炭素材料(ただし、VGCF、カーボンブラックは含んでいない)95質量%と、鱗片状黒鉛2質量%と、結着剤としてスチレンブタジエンゴム(SBR)2質量%と、カルボキシメチルセルロース(CMC)1質量%とを混合し、水を適宜加えて分散させ、ペーストを調製した。他は実施例1と同様にして電池を作製した。
(Comparative Example 2)
The negative electrode mixture comprises 95% by mass of a carbon material (but not including VGCF and carbon black) as a negative electrode active material, 2% by mass of flaky graphite, and 2% by mass of styrene butadiene rubber (SBR) as a binder. Then, 1% by mass of carboxymethylcellulose (CMC) was mixed, and water was appropriately added and dispersed to prepare a paste. A battery was fabricated in the same manner as in Example 1 except for the above.

各実施例及び各比較例の電池の負極に対して、電解液の浸透時間を測定した。浸透時間は、所定量の電解液を負極上に滴下し、滴下した電解液が負極に完全に染み込むまでの時間を測定した。測定は、各実施例及び各比較例の電池を10セルずつ用意し、10セルの平均を求めた。測定結果を表1に示す。ただし、表1においては、比較例2の時間を基準にした比率(%)を示している。よって、比率(%)が小さい方が電解液の浸透性に優れる。   The permeation time of the electrolyte was measured with respect to the negative electrode of the battery of each example and each comparative example. The permeation time was measured by dropping a predetermined amount of the electrolyte on the negative electrode and measuring the time until the dropped electrolyte completely penetrates the negative electrode. For the measurement, 10 cells of each example and each comparative example were prepared, and the average of 10 cells was obtained. The measurement results are shown in Table 1. However, in Table 1, the ratio (%) based on the time of Comparative Example 2 is shown. Therefore, the smaller the ratio (%), the better the electrolyte permeability.

Figure 2006032296
Figure 2006032296

表1の実施例1,2、比較例1に示すように、負極結着剤にポリアクリル酸リチウムを含む場合、負極活物質の種類に関係無く、電解液の浸透性は良好である。なお、比較例2のCMCの量を実施例1、2、又は比較例1と同程度まで少なくすることにより、電解液の浸透性は向上すると考えられるが、CMCによる増粘効果が低減するため、現実的ではない。   As shown in Examples 1 and 2 and Comparative Example 1 in Table 1, when the negative electrode binder contains lithium polyacrylate, the permeability of the electrolytic solution is good regardless of the type of the negative electrode active material. In addition, although it is thought that the permeability of electrolyte solution improves by reducing the quantity of CMC of the comparative example 2 to Example 1 and 2 or the comparative example 1, it is because the thickening effect by CMC reduces. Is not realistic.

次に、各実施例及び各比較例の電池の高率放電特性、低温放電特性、パルス放電特性、及びサイクル寿命特性を測定した。高率放電特性は、25℃の環境下において1CmA(=720mA)の一定電流で4.2Vまで充電後、4.2Vの一定電圧で3時間充電する。その後、25℃の環境下において2CmA(=1440mA)の一定電流で2.75Vまで放電し、放電容量を測定する。低温放電特性は、25℃の環境下において1CmAの一定電流で4.2Vまで充電後、4.2Vの一定電圧で3時間充電する。その後、0℃の環境下において1CmAの一定電流で2.75Vまで放電し、放電容量を測定する。パルス放電特性は、25℃の環境下において1CmAの一定電流で4.2Vまで充電後、4.2Vの一定電圧で3時間充電する。その後、0℃の環境下において741mA×6.6ms+65mA×13.4msの矩形波パルス電流で2.75Vまで放電し、放電容量を測定する。測定は、各実施例及び各比較例の電池を10セルずつ用意し、10セルの平均を求めた。測定結果を表2に示す。ただし、表2においては、比較例2の測定値を基準にした比率(%)を示している。よって、比率(%)が大きい方が優れた特性である。   Next, the high rate discharge characteristics, the low temperature discharge characteristics, the pulse discharge characteristics, and the cycle life characteristics of the batteries of each Example and each Comparative Example were measured. The high-rate discharge characteristic is that the battery is charged to 4.2 V with a constant current of 1 CmA (= 720 mA) in an environment of 25 ° C. and then charged with a constant voltage of 4.2 V for 3 hours. Thereafter, the battery is discharged to 2.75 V at a constant current of 2 CmA (= 1440 mA) in an environment of 25 ° C., and the discharge capacity is measured. The low-temperature discharge characteristic is that the battery is charged to 4.2 V with a constant current of 1 CmA in an environment of 25 ° C. and then charged with a constant voltage of 4.2 V for 3 hours. Thereafter, the battery is discharged to 2.75 V with a constant current of 1 CmA in an environment of 0 ° C., and the discharge capacity is measured. In the pulse discharge characteristic, the battery is charged to 4.2 V with a constant current of 1 CmA in an environment of 25 ° C., and then charged with a constant voltage of 4.2 V for 3 hours. Thereafter, the battery is discharged to 2.75 V with a square wave pulse current of 741 mA × 6.6 ms + 65 mA × 13.4 ms in an environment of 0 ° C., and the discharge capacity is measured. For the measurement, 10 cells of each example and each comparative example were prepared, and the average of 10 cells was obtained. The measurement results are shown in Table 2. However, in Table 2, the ratio (%) based on the measured value of Comparative Example 2 is shown. Therefore, a larger ratio (%) is a superior characteristic.

また、サイクル寿命特性は、25℃の環境下において1CmAの一定電流で4.2Vまで充電後、4.2Vの一定電圧で3時間充電する。その後、25℃の環境下において1CmAの一定電流で2.75Vまで放電し、放電容量を測定する。これら充電及び放電を500回繰返す。測定は、各実施例及び各比較例の電池を10セルずつ用意し、10セルの平均を求めた。測定結果を図2及び表2に示す。ただし、表2においては、充電及び放電を500回繰返した場合の比較例2の測定値を基準にした比率(%)を示している。よって、比率(%)が大きい方が優れた特性である。   The cycle life characteristic is that the battery is charged to 4.2 V at a constant current of 1 CmA in an environment of 25 ° C. and then charged at a constant voltage of 4.2 V for 3 hours. Thereafter, the battery is discharged to 2.75 V at a constant current of 1 CmA in an environment of 25 ° C., and the discharge capacity is measured. These charging and discharging are repeated 500 times. For the measurement, 10 cells of each example and each comparative example were prepared, and the average of 10 cells was obtained. The measurement results are shown in FIG. However, in Table 2, the ratio (%) based on the measured value of Comparative Example 2 when charging and discharging are repeated 500 times is shown. Therefore, a larger ratio (%) is a superior characteristic.

Figure 2006032296
Figure 2006032296

表2の実施例1,2、比較例1に示すように、負極結着剤にポリアクリル酸リチウムを含む場合、高率放電特性、低温放電特性、及びパルス放電特性は、負極活物質の種類に関係無く、良好である。これは、表1に示したように、負極への電解液の浸透性が良好であり、リチウムイオンが円滑に移動できるためであると考えられる。   As shown in Examples 1 and 2 and Comparative Example 1 of Table 2, when the negative electrode binder contains lithium polyacrylate, the high rate discharge characteristics, the low temperature discharge characteristics, and the pulse discharge characteristics are the types of the negative electrode active material. Regardless of, it is good. This is considered to be because, as shown in Table 1, the electrolyte has good permeability to the negative electrode, and lithium ions can move smoothly.

ここで、比較例1は、負極結着剤にポリアクリル酸リチウムを含むため、負極への電解液の浸透性が良好であり、サイクル序盤の容量低下が抑えられる。そのため、図2に示すように、サイクル序盤の特性は良好である。しかし、充放電の繰返しに伴って負極粒子間の導電性が不完全になっていくため、表2及び図2に示すように、サイクル終盤の特性は大きく劣化している。   Here, since Comparative Example 1 includes lithium polyacrylate in the negative electrode binder, the permeability of the electrolytic solution into the negative electrode is good, and the capacity reduction at the beginning of the cycle is suppressed. Therefore, as shown in FIG. 2, the characteristics at the beginning of the cycle are good. However, since the conductivity between the negative electrode particles becomes incomplete as charging and discharging are repeated, the characteristics at the end of the cycle are greatly degraded as shown in Table 2 and FIG.

また、実施例1,2は、負極結着剤にポリアクリル酸リチウムを含むため、比較例1と同様に、負極への電解液の浸透性が良好であり、サイクル序盤の容量低下が抑えられる。そのため、図2に示すように、サイクル序盤の特性は良好である。一方、負極活物質に比較例1とは異なるVGCF又はカーボンブラックを用いた実施例1,2は、表2及び図2に示すように、サイクル終盤の特性は良好である。   Moreover, since Examples 1 and 2 contain lithium polyacrylate in the negative electrode binder, the permeability of the electrolyte solution to the negative electrode is good as in Comparative Example 1, and the capacity reduction at the beginning of the cycle is suppressed. . Therefore, as shown in FIG. 2, the characteristics at the beginning of the cycle are good. On the other hand, Examples 1 and 2 using VGCF or carbon black different from Comparative Example 1 as the negative electrode active material have good cycle end characteristics as shown in Table 2 and FIG.

このように、負極結着剤にポリアクリル酸(ポリアクリル酸リチウム)を含むことに加え、負極活物質にVGCF又はカーボンブラックを含むことにより、効率放電特性、低温放電特性、及びパルス放電特性を向上できることに加え、サイクル寿命特性の低下を抑制することができる。   As described above, in addition to including polyacrylic acid (lithium polyacrylate) in the negative electrode binder, VGCF or carbon black is included in the negative electrode active material, thereby improving efficiency discharge characteristics, low temperature discharge characteristics, and pulse discharge characteristics. In addition to the improvement, it is possible to suppress a decrease in cycle life characteristics.

ここで、負極合剤は上述した実施の形態に限定はされず、炭素材料(VGCF、カーボンブラックは含まない)94.8〜98.1質量%と、VGCF又はカーボンブラック0.5〜2.5質量%と、ポリアクリル酸リチウム0.2〜0.6質量%と、CMC0.2〜0.6質量%と、SBR1.0〜1.5質量%と、適量の水とを混合して負極合剤のペーストを調整することが可能である。また、炭素材料(VGCF、カーボンブラックは含まない)と、VGCF又はカーボンブラック、及びポリアクリル酸リチウムとの最適な比率は、炭素材料が95〜99質量%、VGCF又はカーボンブラック、及びポリアクリル酸リチウムが1〜5質量%である。VGCF及びカーボンブラックは、鱗片状黒鉛と比べて少量の添加であっても優れた導電性が得られる。また、ポリアクリル酸リチウムは、CMCと比べて少量の添加であっても増粘効果が得られる。   Here, the negative electrode mixture is not limited to the above-described embodiment, and 94.8 to 98.1% by mass of a carbon material (not including VGCF and carbon black) and VGCF or carbon black 0.5 to 2. 5% by mass, lithium polyacrylate 0.2-0.6% by mass, CMC 0.2-0.6% by mass, SBR 1.0-1.5% by mass, and an appropriate amount of water It is possible to adjust the paste of the negative electrode mixture. The optimal ratio of carbon material (VGCF, carbon black not included), VGCF or carbon black, and lithium polyacrylate is 95 to 99% by mass of carbon material, VGCF or carbon black, and polyacrylic acid. Lithium is 1 to 5% by mass. VGCF and carbon black have excellent conductivity even when added in a small amount as compared with flaky graphite. In addition, lithium polyacrylate can provide a thickening effect even when added in a small amount as compared with CMC.

上述した実施の形態においては、ポリアクリル酸(ポリアクリル酸リチウム)を例にして説明したが、ポリアクリル酸に代えて、ポリメタアクリル酸を用いることも可能である。また、ビニレンカーボネート、グリコールサルフェート、プロピレングリコールサルフェート、ホスファゼン、およびジビニルカーボネートの何れかが添加された電解液を用いることにより、サイクル寿命特性をさらに向上させることも可能である。   In the above-described embodiment, polyacrylic acid (polylithium acrylate) has been described as an example. However, polymethacrylic acid can be used instead of polyacrylic acid. In addition, cycle life characteristics can be further improved by using an electrolytic solution to which any of vinylene carbonate, glycol sulfate, propylene glycol sulfate, phosphazene, and divinyl carbonate is added.

図1は、本発明に係るリチウム二次電池(非水電解質二次電池)の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a lithium secondary battery (nonaqueous electrolyte secondary battery) according to the present invention. 高率放電特性、低温放電特性、パルス放電特性、及びサイクル寿命特性の測定結果を示す図である。It is a figure which shows the measurement result of a high rate discharge characteristic, a low temperature discharge characteristic, a pulse discharge characteristic, and a cycle life characteristic.

符号の説明Explanation of symbols

1 電池(非水電解質二次電池)
2 電極群
3 負極
4 正極
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 負極リード
1 battery (non-aqueous electrolyte secondary battery)
2 Electrode group 3 Negative electrode 4 Positive electrode 5 Separator 6 Battery case 7 Battery cover 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead

Claims (2)

非水電解質二次電池に用いる負極において、
ポリアクリル酸と、
気相成長炭素繊維又はカーボンブラックと、
気相成長炭素繊維又はカーボンブラック以外の炭素材料と
を含むことを特徴とする負極。
In the negative electrode used for the nonaqueous electrolyte secondary battery,
With polyacrylic acid,
Vapor grown carbon fiber or carbon black;
And a carbon material other than vapor-grown carbon fiber or carbon black.
請求項1に記載する負極を備えることを特徴とする非水電解質二次電池。



A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 1.



JP2004213526A 2004-07-21 2004-07-21 Negative electrode and nonaqueous electrolyte secondary battery Pending JP2006032296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213526A JP2006032296A (en) 2004-07-21 2004-07-21 Negative electrode and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213526A JP2006032296A (en) 2004-07-21 2004-07-21 Negative electrode and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2006032296A true JP2006032296A (en) 2006-02-02

Family

ID=35898357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213526A Pending JP2006032296A (en) 2004-07-21 2004-07-21 Negative electrode and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2006032296A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287570A (en) * 2006-04-19 2007-11-01 Iwate Univ Lithium ion secondary battery
JP2009135103A (en) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery containing this
EP2122723A1 (en) * 2007-02-06 2009-11-25 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
JP2010519706A (en) * 2007-02-27 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Electrolyte, electrode composition, and electrochemical cell produced therefrom
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2012069454A (en) * 2010-09-27 2012-04-05 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287570A (en) * 2006-04-19 2007-11-01 Iwate Univ Lithium ion secondary battery
EP2122723A1 (en) * 2007-02-06 2009-11-25 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
JP2010518581A (en) * 2007-02-06 2010-05-27 スリーエム イノベイティブ プロパティズ カンパニー ELECTRODE CONTAINING NOVEL BINDING AGENT AND METHOD FOR PRODUCING AND USING THE SAME
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
EP2122723B1 (en) * 2007-02-06 2017-04-12 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
JP2010519706A (en) * 2007-02-27 2010-06-03 スリーエム イノベイティブ プロパティズ カンパニー Electrolyte, electrode composition, and electrochemical cell produced therefrom
JP2009135103A (en) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery containing this
JP2012069454A (en) * 2010-09-27 2012-04-05 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2012074167A (en) * 2010-09-28 2012-04-12 Sekisui Chem Co Ltd Electrode for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery
JP2013222550A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US7655356B2 (en) Nonaqueous electrolyte secondary battery
JP2004207120A (en) Nonaqueous electrolyte secondary battery
JP2008177346A (en) Energy storage device
JP2007035358A (en) Positive electrode active substance, its manufacturing method and lithium ion secondary battery
JP2008262768A (en) Lithium ion secondary battery
JPH08236155A (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP2010009898A (en) Nonaqueous secondary battery and nonaqueous secondary battery system
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
JP2005259635A (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP4503964B2 (en) Nonaqueous electrolyte secondary battery
JP2002151144A (en) Lithium secondary battery
JP2005142004A (en) Non-aqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5189466B2 (en) Lithium secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
JPH08171934A (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery