JP2012069454A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2012069454A
JP2012069454A JP2010214893A JP2010214893A JP2012069454A JP 2012069454 A JP2012069454 A JP 2012069454A JP 2010214893 A JP2010214893 A JP 2010214893A JP 2010214893 A JP2010214893 A JP 2010214893A JP 2012069454 A JP2012069454 A JP 2012069454A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
vapor
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010214893A
Other languages
Japanese (ja)
Other versions
JP5589720B2 (en
Inventor
Kanji Kawakami
幹児 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010214893A priority Critical patent/JP5589720B2/en
Publication of JP2012069454A publication Critical patent/JP2012069454A/en
Application granted granted Critical
Publication of JP5589720B2 publication Critical patent/JP5589720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which lithium titanate is used for a negative electrode active material, and 4 V-class active material is used for a positive electrode, and a LiPF-containing nonaqueous electrolyte is used as the electrolyte of the battery, and which realizes a high conductivity and offers an excellent reliability even in storage under a harsh environment such as a humid one.SOLUTION: The nonaqueous electrolyte secondary battery comprises: lithium titanate for a negative electrode; 4 V-class active material for a positive electrode; and LiPFas an electrolyte. As to the negative electrode, vapor-phase growing carbon fiber is used as a conducting agent, and polyacrylic acid is used as a binding agent, which allows a high conductivity and an excellent reliability to be achieved even in storage under a humid environment. With the addition amount of the polyacrylic acid, it is preferable to add not less than 1 to not more than 7 mass% of polyacrylic acid with respect to the whole negative electrode. Further, it is preferable that the vapor-phase growing carbon fiber has an average fiber length of 1 to 5 μm inclusive.

Description

本発明は、非水電解液二次電池の長期信頼性の向上、さらに詳しくは多湿環境下における信頼性に優れた非水電解液二次電池に関するものである。   The present invention relates to an improvement in long-term reliability of a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery excellent in reliability in a humid environment.

近年のエレクトロニクス分野における技術の急速な発展により、電子機器の小型化が進み、それらの機器の電源として、小型軽量で高エネルギー密度を有する電池の需要が高まっている。中でも充放電が可能である二次電池は環境負荷が小さいため、特に注目されている。    Due to the rapid development of technology in the electronics field in recent years, electronic devices have been miniaturized, and as a power source for these devices, there is an increasing demand for batteries that are small and light and have a high energy density. Among them, secondary batteries that can be charged and discharged are particularly attracting attention because of their low environmental impact.

前述の要望に応えるべく、正極活物質にLiCoO、LiNiOまたはLiMnなどの4V級リチウム含有遷移金属酸化物(金属リチウムを対極とした時の開回路電圧が4V以上になる酸化物)を用い、且つ、電解質として正極の高電位に耐え得る高い耐酸化性と、高いイオン伝導性とを併せ持つLiPFを用いることで、高い電池電圧と高エネルギー密度を実現でき、これらを用いた二次電池は幅広い電子機器の主電源として用いられている。 In order to meet the above-mentioned demand, the positive electrode active material is a transition metal oxide containing 4 V class lithium such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 (an oxide having an open circuit voltage of 4 V or more when metallic lithium is used as a counter electrode). ) And LiPF 6 having both high oxidation resistance capable of withstanding the high potential of the positive electrode and high ion conductivity as an electrolyte, a high battery voltage and high energy density can be realized, and these were used. Secondary batteries are used as the main power source for a wide range of electronic devices.

一方、負極活物質としては金属リチウムを用いたものが注目され、広く研究が行われてきた。ただ、金属リチウムを用いた場合、充放電の繰り返しによってリチウム負極の形状が損なわれ、十分な充放電サイクル寿命が得られなかったり、リチウムのデンドライトがセパレータを貫通し、電池の内部ショートを引き起こしたりするなどの問題があった。   On the other hand, as the negative electrode active material, a material using metallic lithium has attracted attention and has been extensively studied. However, when metallic lithium is used, the shape of the lithium negative electrode is impaired by repeated charge and discharge, and sufficient charge / discharge cycle life cannot be obtained, or lithium dendrite penetrates the separator, causing internal short circuit of the battery. There was a problem such as.

この問題を解決する手段として、負極にリチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金を用いたり、各種カーボン材料や遷移金属酸化物などを用いたりすることで改良がなされてきた。   As a means to solve this problem, improvements have been made by using lithium alloys such as lithium-aluminum alloys, lithium-lead alloys, lithium-tin alloys, and various carbon materials and transition metal oxides for the negative electrode. I came.

特に、化学式LiTi12で示されるチタン酸リチウムは、広範囲な電位領域で優れた安定性を有することから、充放電サイクル寿命の飛躍的な向上だけではなく、耐過放電特性や耐過充電特性といった電池の信頼性においても優れており、広く注目されている。 In particular, since lithium titanate represented by the chemical formula Li 4 Ti 5 O 12 has excellent stability in a wide range of potential regions, it not only dramatically improves the charge / discharge cycle life, but also has over-discharge resistance and resistance. It is also excellent in battery reliability such as overcharge characteristics, and has attracted widespread attention.

しかし、チタン酸リチウムは比抵抗が高いため、電池の内部抵抗が大きくなるという課題を抱えており、特に、小型の電池に使用する場合、電極面積が小さくなり、反応面積が減るために電池の内部抵抗が著しく大きくなり、十分な出力特性が得られないという問題がある。   However, since lithium titanate has a high specific resistance, it has a problem that the internal resistance of the battery is increased. Particularly, when used for a small battery, the electrode area is reduced and the reaction area is reduced. There is a problem that the internal resistance is remarkably increased and sufficient output characteristics cannot be obtained.

一般的に電池の電極は、活物質に加え、導電剤として黒鉛やカーボンブラックなどの炭素材料、その導電剤と活物質との導電経路を保持するための結着剤とを混合して作製する。しかし、炭素材料や結着剤を多量に混合すると、必然的に活物質の割合が減少し、エネルギー密度の低下を招くことになる。また、炭素材料や結着剤の種類や混合割合によっても、電池の内部抵抗や信頼性に大きな影響が出るため、炭素材料や結着剤に関しては、その種類や混合割合を含め、様々な検討がなされている。   In general, an electrode of a battery is prepared by mixing an active material, a carbon material such as graphite or carbon black as a conductive agent, and a binder for maintaining a conductive path between the conductive agent and the active material. . However, when a large amount of carbon material or binder is mixed, the ratio of the active material inevitably decreases, leading to a decrease in energy density. In addition, since the internal resistance and reliability of the battery are greatly affected by the type and mixing ratio of the carbon material and binder, various studies are conducted on the carbon material and binder, including the type and mixing ratio. Has been made.

例えば、特許文献1においては、結晶性が高く、且つ嵩密度の低い気相成長炭素繊維を用いることで、過充電劣化を抑制し、且つ優れた出力特性が得られることが開示されている。また、特許文献2では、気相成長炭素繊維と、結着剤の一部としてポリアクリル酸を少量添加したものを用いることで、良好なサイクル特性と高出力特性の両方が確保できる
ことが開示されている。
For example, Patent Document 1 discloses that by using a vapor-grown carbon fiber having high crystallinity and low bulk density, it is possible to suppress overcharge deterioration and obtain excellent output characteristics. Patent Document 2 discloses that both good cycle characteristics and high output characteristics can be secured by using vapor grown carbon fibers and a small amount of polyacrylic acid added as a part of the binder. ing.

特開2006−278282号公報JP 2006-278282 A 特開2006−32296号公報JP 2006-32296 A

これら特許文献にあるように、気相成長炭素繊維は繊維構造を持つという特徴により十分な導電ネットワークを構築でき、チタン酸リチウムを用いた場合においても導電性に優れた電極を得ることが可能である。しかしながら、これら特許文献に開示された電池を、実使用上起こり得る過酷な環境下で長期間使用した場合においては、十分な出力特性と信頼性を確保できないという課題を抱えている。   As described in these patent documents, a vapor-grown carbon fiber has a fiber structure, so that a sufficient conductive network can be constructed, and an electrode having excellent conductivity can be obtained even when lithium titanate is used. is there. However, when the batteries disclosed in these patent documents are used for a long time in a severe environment that may occur in actual use, there is a problem that sufficient output characteristics and reliability cannot be secured.

機器の主電源用途に用いられる非水電解液二次電池には長期間にわたる高い出力特性と信頼性とが求められる。しかも、実使用では高温環境下だけではなく、多湿環境下で使用されることも多々あるため、湿度に対する対策を講じることも重要である。   Non-aqueous electrolyte secondary batteries used for main power applications of equipment are required to have high output characteristics and reliability over a long period of time. Moreover, in actual use, it is often used not only in a high temperature environment but also in a humid environment, so it is important to take measures against humidity.

非水電解液電池は、水溶液電池とは異なり、水分に対して非常に弱い面を持っており、外部からの水分の浸入により電池特性が早期に劣化してしまうという課題をもっている。LiPFを電解質として用いた場合、電池内部へ水分が浸入すると、LiPFは浸入した水分と反応しフッ素イオンを解離する。このフッ素イオンが電極中の結着剤を劣化させ、電極構造の崩壊や導電ネットワークの分断等を引き起こし、電池の出力特性と信頼性を低下させると考えられる。 A non-aqueous electrolyte battery, unlike an aqueous battery, has a very weak surface against moisture, and has a problem that battery characteristics deteriorate early due to the ingress of moisture from the outside. When LiPF 6 is used as an electrolyte, when moisture enters the battery, LiPF 6 reacts with the entered moisture to dissociate fluorine ions. It is considered that this fluorine ion degrades the binder in the electrode, causes collapse of the electrode structure, disruption of the conductive network, and the like, thereby reducing the output characteristics and reliability of the battery.

特に、導電剤に気相成長炭素繊維を用いた電極においては、電極構造の崩壊や導電ネットワークの分断が顕著に大きくなる。一般的に導電剤として用いられる黒鉛は、グラフェンと呼ばれる六角形に並んだ炭素原子を平面状に敷き詰めた層状のシートを積層した構造を持つ。一方、気相成長炭素繊維は繊維の中心に沿ってグラフェンシートを巻き付けた円筒状構造をしており、黒鉛に比べ、強固な機械的特性を保有している。そのため、加圧充填された電極内において気相成長炭素繊維が大きな応力を蓄えた状態となり、結着剤の劣化により結着力が低下した場合において、その応力の影響が強くなり、電極構造の崩壊や導電ネットワークの分断に繋がるためであると考えられる。   In particular, in an electrode using vapor-grown carbon fibers as a conductive agent, the collapse of the electrode structure and the disruption of the conductive network are significantly increased. Graphite generally used as a conductive agent has a structure in which layered sheets of hexagonal carbon atoms called graphene are laid out in a plane. On the other hand, the vapor growth carbon fiber has a cylindrical structure in which a graphene sheet is wound along the center of the fiber, and has stronger mechanical characteristics than graphite. For this reason, the vapor-grown carbon fiber is in a state where a large amount of stress is accumulated in the pressure-filled electrode, and when the binding force is reduced due to the deterioration of the binder, the influence of the stress becomes stronger, and the electrode structure collapses. This is thought to be due to the disruption of the conductive network.

本発明は上記の課題に鑑みてなされており、チタン酸リチウムを負極活物質に用い、且つ、正極活物質に4V級リチウム含有遷移金属酸化物を、電解質にLiPFを含有する非水電解液を用いた非水電解液二次電池において、多湿環境下などの苛酷な環境下での保存に対しても、高い導電性を実現しつつ、優れた信頼性を発揮する非水電解液二次電池を提供することを目的とする。 The present invention has been made in view of the above problems, and uses a lithium titanate as a negative electrode active material, a non-aqueous electrolytic solution containing a 4V-class lithium-containing transition metal oxide as a positive electrode active material, and LiPF 6 as an electrolyte. Non-aqueous electrolyte secondary battery using a non-aqueous electrolyte secondary battery that exhibits high reliability while maintaining high conductivity even when stored in harsh environments such as humid environments An object is to provide a battery.

上記目的を達成するために、本発明の非水電解液二次電池は、チタン酸リチウムを負極活物質とする負極と、金属リチウムを対極とした時の開回路電圧が4V以上になる4V級リチウム含有遷移金属酸化物からなる正極とをセパレータを介して対向配置し、電解質としてLiPFを含有する非水電解液とともに、電池ケース、封口板及びガスケットからなる電池容器に収納した非水電解液二次電池において、前記負極は導電剤として気相成長炭素繊維を、結着剤としてポリアクリル酸を用いたことを特徴とする。 In order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention is a 4V class in which the open circuit voltage when a negative electrode using lithium titanate as a negative electrode active material and metallic lithium as a counter electrode is 4V or more. A non-aqueous electrolyte contained in a battery case composed of a battery case, a sealing plate and a gasket, together with a non-aqueous electrolyte containing LiPF 6 as an electrolyte, facing a positive electrode made of a lithium-containing transition metal oxide via a separator In the secondary battery, the negative electrode is characterized by using vapor grown carbon fiber as a conductive agent and polyacrylic acid as a binder.

より好ましくは、前記ポリアクリル酸を負極全体に対して1質量%以上7質量%以下の
割合で混合したものであり、また、前記気相成長炭素繊維として、個数基準での繊維長平均(50%積算径)が1μm以上5μm以下のものを用いたものである。
More preferably, the polyacrylic acid is mixed in a proportion of 1% by mass or more and 7% by mass or less with respect to the whole negative electrode, and the vapor-grown carbon fiber has an average fiber length (50 % Integrated diameter) is 1 μm or more and 5 μm or less.

本発明により、非水電解液二次電池において、多湿環境下での外部からの水分浸入による電池特性劣化を大きく抑制し、高出力特性と高い信頼性、さらに高エネルギー密度を併せ持つ優れた非水電解液二次電池が提供できる。   According to the present invention, in a non-aqueous electrolyte secondary battery, battery characteristics deterioration due to external moisture ingress in a humid environment is greatly suppressed, and excellent non-aqueous characteristics that combine high output characteristics, high reliability, and high energy density. An electrolyte secondary battery can be provided.

本発明の一実施の形態における非水電解液二次電池の断面図Sectional drawing of the nonaqueous electrolyte secondary battery in one embodiment of this invention

本発明による第1の発明は、チタン酸リチウムを負極活物質とする負極と、金属リチウムを対極とした時の開回路電圧が4V以上になる4V級リチウム含有遷移金属酸化物からなる正極とをセパレータを介して対向配置し、電解質としてLiPFを含有する非水電解液とともに、電池ケース、封口板及びガスケットからなる電池容器に収納した非水電解液二次電池において、前記負極は導電剤として気相成長炭素繊維を、結着剤としてポリアクリル酸を用いたことを特徴とする非水電解液二次電池である。 According to a first aspect of the present invention, there is provided a negative electrode using lithium titanate as a negative electrode active material, and a positive electrode made of a transition metal oxide containing 4V class lithium having an open circuit voltage of 4 V or more when metallic lithium is used as a counter electrode. In a non-aqueous electrolyte secondary battery that is disposed opposite to a separator and contains a non-aqueous electrolyte containing LiPF 6 as an electrolyte, and a battery case including a battery case, a sealing plate, and a gasket, the negative electrode serves as a conductive agent. A non-aqueous electrolyte secondary battery characterized by using vapor-grown carbon fiber and polyacrylic acid as a binder.

チタン酸リチウムを負極活物質とする負極において、導電剤として広く一般に用いられる黒鉛やカーボンブラックなどを用いた場合、十分な電極の導電性を得るには多量の添加が必要となる。また、チタン酸リチウムは、負極活物質として広く一般に用いられる黒鉛やコークス等の炭素材料に比べ比抵抗が非常に高く、物質そのもの自体の導電性が低いため、電極の導電性が導電剤と結着剤によって構築される導電ネットワークに大きく依存しており、電極構造の崩壊よる導電性への影響を顕著に受けることになる。そのため、結着剤として広く一般に用いられる、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂や、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いた場合においては、多湿環境下での保存において電極の膨張やひび割れによる電極構造の崩壊が起こり、電池内部抵抗の上昇を大きく引き起こす。   In a negative electrode using lithium titanate as a negative electrode active material, when graphite, carbon black or the like that is widely used as a conductive agent is used, a large amount of addition is required to obtain sufficient electrode conductivity. In addition, lithium titanate has a very high specific resistance compared to carbon materials such as graphite and coke that are widely used as a negative electrode active material, and the conductivity of the material itself is low. This greatly depends on the conductive network constructed by the adhesive, and is significantly affected by the collapse of the electrode structure. Therefore, in the case of using a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC) or the like that is widely used as a binder. In the storage in a humid environment, the electrode structure collapses due to the expansion and cracking of the electrode, which greatly increases the internal resistance of the battery.

我々は、種々検討の結果、導電剤として気相成長炭素繊維を、結着剤としてポリアクリル酸を用いることにより、電池内部へ水分が浸入した場合においても、少量の配合量で電極構造の崩壊や導電ネットワークの分断を大きく抑制でき、チタン酸リチウムを活物質に用いた電極においても、十分な電極の導電性を確保できることを見出した。   As a result of various studies, we have used vapor-grown carbon fiber as the conductive agent and polyacrylic acid as the binder, so that even when water enters the battery, the electrode structure can be collapsed with a small amount. It has been found that the separation of the conductive network can be greatly suppressed, and sufficient conductivity of the electrode can be secured even in an electrode using lithium titanate as an active material.

ポリアクリル酸は分子内に極性基である多量のカルボキシル基(−COOH)を含んでいる。このカルボキシル基が、電池内部へ浸入した水分子と水素結合を形成し、フッ素イオンの生成を抑制することで、ポリアクリル酸の劣化を抑制できる。これにより、気相成長炭素繊維により3次元網目状に形成された導電ネットワークが、多湿環境下においても長期間確保でき、優れた電極の導電性を維持できると考えられる。   Polyacrylic acid contains a large amount of carboxyl groups (—COOH) which are polar groups in the molecule. This carboxyl group forms a hydrogen bond with water molecules that have entered the inside of the battery and suppresses the generation of fluorine ions, so that the deterioration of polyacrylic acid can be suppressed. Thereby, it is considered that a conductive network formed in a three-dimensional network by vapor-grown carbon fibers can be secured for a long time even in a humid environment, and excellent conductivity of the electrode can be maintained.

本発明による第2の発明は、第1の発明において、ポリアクリル酸の含有量が、負極全体に対して1質量%以上7質量%以下の割合で用いたことを特徴とする非水電解液二次電池である。1質量%以上7質量%以下の割合であれば、電極形状を保持するのに十分な結着力と、電池内部へ浸入した水分子と水素結合を形成するのに十分なカルボキシル基が確保でき、且つ、十分な電極の導電性とエネルギー密度が保たれるので、より好ましい。   According to a second aspect of the present invention, there is provided the non-aqueous electrolyte according to the first aspect, wherein the content of polyacrylic acid is 1% by mass or more and 7% by mass or less based on the whole negative electrode. It is a secondary battery. If the ratio is 1% by mass or more and 7% by mass or less, a binding force sufficient to maintain the electrode shape and a sufficient carboxyl group to form hydrogen bonds with water molecules that have entered the battery can be secured. Moreover, it is more preferable because sufficient conductivity and energy density of the electrode can be maintained.

本発明による第3の発明は、第1の発明において、個数基準での繊維長平均(50%積算径)が1μm以上5μm以下の気相成長炭素繊維を用いたことを特徴とする非水電解液
二次電池である。個数基準での繊維長平均(50%積算径)が1μm以上5μm以下の気相成長炭素繊維を用いることで、十分な3次元網目構造の導電ネットワークを形成でき、且つ、電極内の残留応力を軽減でき、より好ましい。
According to a third aspect of the present invention, there is provided the non-aqueous electrolysis according to the first aspect, wherein vapor-grown carbon fibers having an average fiber length (50% integrated diameter) of 1 μm to 5 μm are used. It is a liquid secondary battery. By using vapor-grown carbon fibers with a fiber length average (50% integrated diameter) of 1 μm or more and 5 μm or less on a number basis, a sufficient conductive network with a three-dimensional network structure can be formed, and residual stress in the electrode can be reduced. This can be reduced and is more preferable.

なお、繊維長の測定は以下の方法で実施できる。まずフロー式粒子像分析装置を用い、その観察像をCCDカメラに画像データとして取り込む。得られた画像データを、画像解析装置を使用して、繊維長を算出する。測定本数は1000本以上として行い、個数基準での繊維長平均(50%積算径)を求めることができる。   The fiber length can be measured by the following method. First, using a flow type particle image analyzer, the observed image is captured as image data into a CCD camera. The fiber length of the obtained image data is calculated using an image analyzer. The number of measurement is 1000 or more, and the fiber length average (50% integrated diameter) on the basis of the number can be obtained.

以下、本発明の実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は、本発明の非水電解液二次電池の一例としての扁平形非水電解液二次電池の断面図である。   FIG. 1 is a cross-sectional view of a flat nonaqueous electrolyte secondary battery as an example of the nonaqueous electrolyte secondary battery of the present invention.

この電池は、正極1と負極2、セパレータ3及び非水電解液(図示しない)からなる発電要素を、正極端子を兼ねる電池ケース4、負極端子を兼ねる封口板5及び電池ケース4と封口板5を絶縁するガスケット6により収納、封止されている。電池ケース4及び封口板5の内面には集電体が配されている。   In this battery, a power generation element composed of a positive electrode 1 and a negative electrode 2, a separator 3 and a non-aqueous electrolyte (not shown), a battery case 4 also serving as a positive electrode terminal, a sealing plate 5 also serving as a negative electrode terminal, and a battery case 4 and a sealing plate 5 It is stored and sealed by a gasket 6 that insulates. A current collector is disposed on the inner surfaces of the battery case 4 and the sealing plate 5.

上記正極1はペレット状に成型した電極であり、正極活物質としては、リチウムを含有するコバルト酸リチウム、ニッケル酸リチウム、スピネル型のマンガン酸リチウムなどの4V級リチウム含有遷移金属酸化物が挙げられる。また、これらの酸化物にマグネシウムやアルミニウムなどが添加されていても良い。   The positive electrode 1 is an electrode molded into a pellet shape, and examples of the positive electrode active material include lithium cobalt oxide containing lithium, lithium nickelate, and spinel-type lithium-containing transition metal oxides such as lithium manganate. . Further, magnesium, aluminum, or the like may be added to these oxides.

負極2もペレット状に成型した電極であり、負極活物質としてチタン酸リチウム、導電剤として気相成長炭素繊維(VGCF)、結着剤としてポリアクリル酸が用いられる。さらには、導電剤として黒鉛やカーボンブラック、結着剤としてフッ素系樹脂、またはSBRやCMCなどが混合されていても良い。   The negative electrode 2 is also an electrode molded into a pellet, and lithium titanate is used as the negative electrode active material, vapor grown carbon fiber (VGCF) is used as the conductive agent, and polyacrylic acid is used as the binder. Furthermore, graphite or carbon black as a conductive agent, fluorine resin as a binder, or SBR or CMC may be mixed.

セパレータ3には、従来から用いられているポリエチレンやポリプロピレン、またはセルロース、ポリフェニレンサルファイドをはじめとするエンジニアリングプラスチックなどを用いるのが好ましい。   For the separator 3, it is preferable to use conventionally used polyethylene, polypropylene, engineering plastics such as cellulose and polyphenylene sulfide.

ガスケット6には、従来から広く用いられているポリプロピレン、またはポリフェニレンサルファイドをはじめとするエンジニアリングプラスチックなどを用いるのが好ましい。   For the gasket 6, it is preferable to use conventionally used polypropylene or engineering plastics such as polyphenylene sulfide.

非水電解液を構成する溶質としては、LiPF単体、もしくはLiBF、LiN(CFSO、LiN(CSOなどの複数成分を混合して使用することができる。また、非水電解液を構成する溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、γ−ブチロラクトンなどの単体または複数成分を使用することができるが、これらに限定されるものではない。 As a solute constituting the non-aqueous electrolyte, LiPF 6 alone or a mixture of a plurality of components such as LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 may be used. it can. In addition, as a solvent constituting the non-aqueous electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, γ-butyrolactone, or the like Multiple components can be used, but are not limited to these.

集電体7は導電性カーボン塗料を電池ケース4及び封口板5の内面に塗布したものである。   The current collector 7 is obtained by applying a conductive carbon paint to the inner surfaces of the battery case 4 and the sealing plate 5.

(導電剤種および結着剤種の検討)
正極1は、LiCoOに導電剤としてカーボンブラック、および結着剤としてフッ素樹脂粉末を質量比で90:5:5の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、200℃中で24時間乾燥したものを用いた。
(Examination of conductive agent type and binder type)
The positive electrode 1 is obtained by mixing LiCoO 2 with carbon black as a conductive agent and fluororesin powder as a binder in a mass ratio of 90: 5: 5, and forming into a pellet shape having a diameter of 10 mm and a thickness of 0.5 mm. What was dried at 200 ° C. for 24 hours was used.

負極2はチタン酸リチウムに、気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比92:5:3の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、190℃で24時間加熱処理したものを用いた。   The negative electrode 2 was prepared by mixing vapor-grown carbon fiber (VGCF) and polyacrylic acid with lithium titanate in a mass ratio of 92: 5: 3, and forming into a pellet shape having a diameter of 10 mm and a thickness of 0.5 mm. What was heat-processed at 24 degreeC for 24 hours was used.

セパレータ3はポリプロピレン製不織布を用い、また、電池ケース4、封口板5にはステンレス鋼を、ガスケット6にはポリプロピレン製ガスケットを用いた。集電体7は、導電性カーボン塗料を電池ケース4及び封口板5の内面に塗布した後、塗膜の水分を除去するために150℃で6時間乾燥したものを用いた。また、電解液としてはエチレンカーボネートとメチルエチルカーボネ−トを体積比1:3の割合で混合した溶媒に、電解質としてLiPFを1mol/lの割合で溶解したものを用いた電池を電池A1とした。
導電剤として、気相成長炭素繊維(VGCF)と黒鉛粉末を4:1の割合で用いた以外は電池A1と同様にして作製した電池を電池A2とした。
The separator 3 was made of a polypropylene nonwoven fabric, the battery case 4 and the sealing plate 5 were made of stainless steel, and the gasket 6 was made of a polypropylene gasket. As the current collector 7, a conductive carbon coating was applied to the inner surfaces of the battery case 4 and the sealing plate 5 and then dried at 150 ° C. for 6 hours in order to remove moisture from the coating film. In addition, a battery using a battery in which LiPF 6 was dissolved at a rate of 1 mol / l as an electrolyte in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a rate of 1: 3 as an electrolyte was used as a battery A1. It was.
A battery produced in the same manner as the battery A1 except that vapor-grown carbon fiber (VGCF) and graphite powder were used in a ratio of 4: 1 as a conductive agent was designated as a battery A2.

導電剤として、気相成長炭素繊維(VGCF)と黒鉛粉末を1:4の割合で用いた以外は電池A1と同様にして作製した電池を電池A3とした。   A battery produced in the same manner as the battery A1 except that vapor-grown carbon fiber (VGCF) and graphite powder were used in a ratio of 1: 4 as a conductive agent was designated as a battery A3.

導電剤として、黒鉛粉末を用いた以外は電池A1と同様にして作製した電池を電池B1とした。   A battery produced in the same manner as battery A1 except that graphite powder was used as the conductive agent was designated as battery B1.

導電剤として、アセチレンブラックを用いた以外は電池A1と同様にして作製した電池を電池B2とした。   A battery produced in the same manner as the battery A1 except that acetylene black was used as the conductive agent was designated as a battery B2.

導電剤として、ケッチェンブラックを用いた以外は電池A1と同様にして作製した電池を電池B3とした。   A battery produced in the same manner as the battery A1 except that ketjen black was used as the conductive agent was designated as a battery B3.

結着剤として、PVDFを用いた以外は電池A1と同様にして作製した電池を電池B4とした。   A battery produced in the same manner as the battery A1 except that PVDF was used as a binder was designated as a battery B4.

結着剤として、SBRを用いた以外は電池A1と同様にして作製した電池を電池B5とした。   A battery produced in the same manner as the battery A1 except that SBR was used as a binder was designated as a battery B5.

これらの電池はいずれも直径16mm、厚さ1.6mmである。   All of these batteries have a diameter of 16 mm and a thickness of 1.6 mm.

これらの非水電解液二次電池について、組み立て後、2.6Vの定電圧で24時間充電(保護抵抗50Ω)を行った。これらの電池について、70℃90%の高温多湿環境下で30日間保存した後の電池の内部抵抗を確認した。本実験では、各電池50個ずつについて試験開始前にも電池の内部抵抗を測定した。また、それぞれの電池について、試験前後で負極の体積を測定し、膨張率を試験前の負極の体積に対する試験後の負極の体積の比率(%)で算出した。これらの結果を(表1)に示す。   About these nonaqueous electrolyte secondary batteries, after assembling, they were charged with a constant voltage of 2.6 V for 24 hours (protection resistance 50Ω). About these batteries, the internal resistance of the battery after 30-day preservation | save in 70 degreeC90% high temperature and humidity environment was confirmed. In this experiment, the internal resistance of each battery was measured before starting the test for 50 batteries. For each battery, the volume of the negative electrode was measured before and after the test, and the expansion coefficient was calculated by the ratio (%) of the volume of the negative electrode after the test to the volume of the negative electrode before the test. These results are shown in (Table 1).

(表1)より、気相成長炭素繊維(VGCF)とポリアクリル酸を用いた電池A1〜A3は電池B1〜B5に比べ、多湿環境下での保存において電池内部抵抗の上昇を大幅に抑制できている。これは、電池内部へ水分が浸入した場合においても、ポリアクリル酸の結着力が保持され、負極の膨張が抑制でき、さらに気相成長炭素繊維(VGCF)の導電ネットワークにより、電極の導電性が確保できるためである。電池B1〜B3ではポリアクリル酸の結着力が保持され、負極の膨張が105%程度に抑制ができてはいるが、導電剤の導電ネットワークが不十分であるため、電極の導電性が確保できなくなったと考えられる。   From (Table 1), the batteries A1 to A3 using vapor grown carbon fiber (VGCF) and polyacrylic acid can significantly suppress the increase in battery internal resistance when stored in a humid environment compared to the batteries B1 to B5. ing. This is because even when moisture enters the battery, the binding force of the polyacrylic acid is maintained, the negative electrode can be prevented from expanding, and the conductivity of the electrode is improved by the conductive network of vapor grown carbon fiber (VGCF). This is because it can be secured. In the batteries B1 to B3, the binding force of polyacrylic acid is maintained, and the expansion of the negative electrode can be suppressed to about 105%, but the conductive network of the conductive agent is insufficient, so that the conductivity of the electrode can be secured. It is thought that it was gone.

電池B4〜B5では、PVDFおよびSBRが電池内部へ浸入した水分により発生したフッ素イオンにより劣化し、負極の膨張を引き起こしたことが電池内部抵抗の上昇に繋がったと考えられる。   In the batteries B4 to B5, it is considered that PVDF and SBR are deteriorated by fluorine ions generated by moisture that has penetrated into the inside of the battery and the expansion of the negative electrode has led to an increase in the internal resistance of the battery.

このことから、チタン酸リチウムを活物質に用いた負極において、気相成長炭素繊維(VGCF)とポリアクリル酸を混合することにより、実使用上不可避である電池内部への水分浸入時においても、電極の導電性を損なうことなく、優れた信頼性を実現できることが分かる。   From this, in the negative electrode using lithium titanate as an active material, by mixing vapor grown carbon fiber (VGCF) and polyacrylic acid, even when water enters the battery, which is inevitable in actual use, It can be seen that excellent reliability can be realized without impairing the conductivity of the electrode.

(ポリアクリル酸の配合比の検討)
負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比94:5:1の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池A4とした。
(Examination of compounding ratio of polyacrylic acid)
A battery produced in the same manner as the battery A1 except that the negative electrode 2 was prepared by mixing lithium titanate with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 94: 5: 1. The battery was A4.

負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比90:5:5の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池A5とした。   A battery produced in the same manner as the battery A1 except that the negative electrode 2 was prepared by mixing lithium titanate with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 90: 5: 5. The battery was A5.

負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比88:5:7の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池A6とした。   A battery produced in the same manner as the battery A1 except that the negative electrode 2 was prepared by mixing lithium titanate with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 88: 5: 7. Battery A6 was obtained.

負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸
を質量比94.5:5:0.5の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池B6とした。
The negative electrode 2 was the same as the battery A1, except that lithium titanate was mixed with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 94.5: 5: 0.5. The produced battery was designated as battery B6.

負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比87:5:8の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池B7とした。   A battery produced in the same manner as the battery A1, except that the negative electrode 2 was prepared by mixing lithium titanate with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 87: 5: 8. Battery B7 was obtained.

負極2として、チタン酸リチウムに気相成長炭素繊維(VGCF)及びポリアクリル酸を質量比85:5:10の割合で混合したものを用いた以外は、電池A1と同様にして作製した電池を電池B8とした。   A battery produced in the same manner as the battery A1 except that the negative electrode 2 was prepared by mixing lithium titanate with vapor grown carbon fiber (VGCF) and polyacrylic acid in a mass ratio of 85: 5: 10. Battery B8 was obtained.

これらの非水電解液二次電池について、組み立て後、2.6Vの定電圧で24時間充電(保護抵抗50Ω)を行った。これらの電池について、70℃90%の高温多湿環境下で30日間保存した後の電池の内部抵抗を確認した。本実験では、各電池50個ずつについて試験開始前にも電池の内部抵抗を測定した。また、それぞれの電池について、試験前後で負極の体積を測定し、膨張率を試験前の負極の体積に対する試験後の負極の体積の比率(%)で算出した。これらの結果を(表2)に示す。   About these nonaqueous electrolyte secondary batteries, after assembling, they were charged with a constant voltage of 2.6 V for 24 hours (protection resistance 50Ω). About these batteries, the internal resistance of the battery after 30-day preservation | save in 70 degreeC90% high temperature and humidity environment was confirmed. In this experiment, the internal resistance of each battery was measured before starting the test for 50 batteries. For each battery, the volume of the negative electrode was measured before and after the test, and the expansion coefficient was calculated by the ratio (%) of the volume of the negative electrode after the test to the volume of the negative electrode before the test. These results are shown in (Table 2).

(表2)より、ポリアクリル酸を負極全体に対して1質量%以上7質量%以下の割合で用いた電池A4〜A6は、多湿環境下での保存において、負極の膨張と電池内部抵抗の上昇を大きく抑制できている。一方、ポリアクリル酸の配合比が負極全体に対して1質量%未満である電池B6は負極の膨張が大きく、電池内部抵抗が上昇している。また、ポリアクリル酸の配合比が負極全体に対して7質量%より大きい電池B7とB8は、負極の膨張はほぼゼロに抑制できているが、試験前、試験後と共に電池内部抵抗の上昇が確認された。これは、絶縁物であるポリアクリル酸が増量されたことによる絶縁性の増加と、結着力の増加により電極内への電解液の浸透性が低下したためであると考えられる。   From (Table 2), the batteries A4 to A6 using polyacrylic acid in a proportion of 1% by mass or more and 7% by mass or less based on the whole of the negative electrode showed the expansion of the negative electrode and the internal resistance of the battery when stored in a humid environment. The rise is largely suppressed. On the other hand, in the battery B6 in which the blending ratio of polyacrylic acid is less than 1% by mass with respect to the whole negative electrode, the negative electrode is greatly expanded and the internal resistance of the battery is increased. Further, in the batteries B7 and B8, in which the blending ratio of polyacrylic acid is larger than 7% by mass with respect to the whole negative electrode, the expansion of the negative electrode can be suppressed to almost zero, but the internal resistance of the battery is increased before and after the test. confirmed. This is considered to be because the permeability of the electrolyte solution into the electrode decreased due to an increase in insulation due to an increase in the amount of polyacrylic acid as an insulator and an increase in binding force.

このことから、ポリアクリル酸を負極全体に対して1質量%以上7質量%以下の割合で用いた場合が、より好ましいことが分かる。   From this, it can be seen that it is more preferable that polyacrylic acid is used in a proportion of 1% by mass or more and 7% by mass or less with respect to the whole negative electrode.

(気相成長炭素繊維の繊維長の検討)
気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が3.2μmであるものを用いた以外は、電池A1と同様にして作製した電池を電池A7とした。
(Examination of fiber length of vapor grown carbon fiber)
A battery produced in the same manner as the battery A1 was used as the battery A7, except that the vapor-grown carbon fiber (VGCF) used had a fiber length average (50% integrated diameter) of 3.2 μm on a number basis. .

気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が1.1μmであるものを用いた以外は、電池A1と同様にして作製した電池を電池A8とした。   A battery produced in the same manner as the battery A1 was used as the battery A8, except that a vapor-grown carbon fiber (VGCF) having a fiber length average (50% integrated diameter) of 1.1 μm on a number basis was used. .

気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が4.8μmであるものを用いた以外は、電池A1と同様にして作製した電池を電池A9とした。   A battery produced in the same manner as the battery A1 was used as the battery A9, except that the vapor-grown carbon fiber (VGCF) used had a fiber length average (50% integrated diameter) of 4.8 μm based on the number. .

気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が0.8μmであるものを用いた以外は、電池A1と同様にして作製した電池を電池B9とした。   A battery produced in the same manner as the battery A1 was used as the battery B9, except that the vapor-grown carbon fiber (VGCF) used had a fiber length average (50% integrated diameter) of 0.8 μm based on the number. .

気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が5.5μmであるものを用いた以外は、電池A1と同様にして作製した電池を電池B10とした。   A battery produced in the same manner as the battery A1 was used as the battery B10, except that the vapor-grown carbon fiber (VGCF) used had a fiber length average (50% integrated diameter) of 5.5 μm based on the number. .

これらの非水電解液二次電池について、組み立て後、2.6Vの定電圧で24時間充電(保護抵抗50Ω)を行った。これらの電池について、70℃90%の高温多湿環境下で30日間保存した後の電池の内部抵抗を確認した。本実験では、各電池50個ずつについて試験開始前にも電池の内部抵抗を測定した。また、それぞれの電池について、試験前後で負極の体積を測定し、膨張率を試験前の負極の体積に対する試験後の負極の体積の比率(%)で算出した。これらの結果を(表3)に示す。   About these nonaqueous electrolyte secondary batteries, after assembling, they were charged with a constant voltage of 2.6 V for 24 hours (protection resistance 50Ω). About these batteries, the internal resistance of the battery after 30-day preservation | save in 70 degreeC90% high temperature and humidity environment was confirmed. In this experiment, the internal resistance of each battery was measured before starting the test for 50 batteries. For each battery, the volume of the negative electrode was measured before and after the test, and the expansion coefficient was calculated by the ratio (%) of the volume of the negative electrode after the test to the volume of the negative electrode before the test. These results are shown in (Table 3).

(表3)より、気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が1μm以上5μm以下のものを用いた電池A7〜A9は負極の膨張と電池内部抵抗の上昇を大きく抑制できている。一方、個数基準での繊維長平均(50%積算径)が1μm未満である電池B9と、個数基準での繊維長平均(50%積算径)が5μmより大きい電池B10では、電池内部抵抗の上昇が確認された。電池B9では繊維長が短いため負極の膨張に対して、十分な導電ネットワークが保持できないことが原因であると考えられる。電池B10では、繊維長が長いことにより電極内で気相成長炭素繊維(VGCF)の応力が大きく残っており、これが結着力の低下に伴い負極を大きく膨張させたことに起因すると考えられる。   From Table 3, batteries A7 to A9 using vapor-grown carbon fibers (VGCF) having a fiber length average (50% integrated diameter) of 1 μm or more and 5 μm or less on the basis of the number of expansion of the negative electrode and the inside of the battery The increase in resistance can be largely suppressed. On the other hand, in the battery B9 in which the fiber length average (50% integrated diameter) on the number basis is less than 1 μm and the battery B10 in which the fiber length average (50% integrated diameter) on the number basis is greater than 5 μm, the battery internal resistance increases. Was confirmed. In Battery B9, since the fiber length is short, it is considered that this is because a sufficient conductive network cannot be maintained against the expansion of the negative electrode. In the battery B10, since the fiber length is long, a large amount of vapor grown carbon fiber (VGCF) stress remains in the electrode, which is considered to be caused by the large expansion of the negative electrode with a decrease in the binding force.

このことから、気相成長炭素繊維(VGCF)として、個数基準での繊維長平均(50%積算径)が1μm以上5μm以下のものを用いた場合が、より好ましいことが分かる。   From this, it can be seen that it is more preferable to use a vapor-grown carbon fiber (VGCF) having an average fiber length (50% integrated diameter) of 1 μm or more and 5 μm or less on a number basis.

なお、本実施例においては、偏平形の非水電解液二次電池を例に示したが、偏平形に限
定されるわけではなく、円筒形、角形などさまざまな形状の電池に適用できる。しかし、封口部がカシメ封口である扁平形電池は外部からの水分浸入を抑制することが非常に難しいため、本発明の及ぼす効果は大きい。
In this embodiment, a flat nonaqueous electrolyte secondary battery is shown as an example. However, the present invention is not limited to the flat shape, and can be applied to batteries having various shapes such as a cylindrical shape and a rectangular shape. However, since the flat battery whose sealing portion is a caulking seal is very difficult to suppress moisture ingress from the outside, the effect of the present invention is great.

本発明の非水電解液二次電池は、電子機器等の主電源またはバックアップ用電源として有用である。   The non-aqueous electrolyte secondary battery of the present invention is useful as a main power source or backup power source for electronic devices and the like.

1 正極
2 負極
3 セパレータ
4 電池ケース
5 封口板
6 ガスケット
7 集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Sealing plate 6 Gasket 7 Current collector

Claims (3)

チタン酸リチウムを負極活物質とする負極と、金属リチウムを対極とした時の開回路電圧が4V以上になる4V級リチウム含有遷移金属酸化物からなる正極とをセパレータを介して対向配置し、電解質としてLiPFを含有する非水電解液とともに、電池ケース、封口板及びガスケットからなる電池容器に収納した非水電解液二次電池において、前記負極は導電剤として気相成長炭素繊維を、結着剤としてポリアクリル酸を用いたことを特徴とする非水電解液二次電池。 A negative electrode using lithium titanate as a negative electrode active material and a positive electrode made of a transition metal oxide containing 4 V class lithium containing 4 V or more of an open circuit voltage when metallic lithium is used as a counter electrode are arranged opposite to each other with a separator interposed therebetween. In the non-aqueous electrolyte secondary battery housed in a battery container comprising a battery case, a sealing plate and a gasket together with a non-aqueous electrolyte containing LiPF 6 as the negative electrode, the negative electrode binds vapor-grown carbon fiber as a conductive agent A non-aqueous electrolyte secondary battery using polyacrylic acid as an agent. 前記結着剤としてのポリアクリル酸を負極全体に対して1質量%以上7質量%以下の割合で用いた請求項1記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein polyacrylic acid as the binder is used in a proportion of 1% by mass or more and 7% by mass or less with respect to the whole negative electrode. 前記導電剤の気相成長炭素繊維として、個数基準での繊維長平均(50%積算径)が1μm以上5μm以下の気相成長炭素繊維を用いた請求項1記載の非水電解液二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the vapor-grown carbon fiber of the conductive agent is a vapor-grown carbon fiber having a fiber length average (50% integrated diameter) of 1 μm to 5 μm. .
JP2010214893A 2010-09-27 2010-09-27 Non-aqueous electrolyte secondary battery Expired - Fee Related JP5589720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214893A JP5589720B2 (en) 2010-09-27 2010-09-27 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214893A JP5589720B2 (en) 2010-09-27 2010-09-27 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012069454A true JP2012069454A (en) 2012-04-05
JP5589720B2 JP5589720B2 (en) 2014-09-17

Family

ID=46166455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214893A Expired - Fee Related JP5589720B2 (en) 2010-09-27 2010-09-27 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5589720B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043188A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2018163756A (en) * 2017-03-24 2018-10-18 積水化学工業株式会社 Active material-carbon material composite, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP2018163755A (en) * 2017-03-24 2018-10-18 積水化学工業株式会社 Active material-carbon material composite, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP2020161471A (en) * 2019-03-22 2020-10-01 トヨタ自動車株式会社 Manufacturing method of all-solid battery, and all-solid battery
CN115050961A (en) * 2022-06-17 2022-09-13 苏州易来科得科技有限公司 Lithium battery negative coating composition, preparation method of negative pole piece and lithium battery
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material
JP7336466B2 (en) 2019-01-08 2023-08-31 株式会社カネカ Negative electrode for non-aqueous electrolyte secondary battery and battery thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2001196060A (en) * 2000-01-14 2001-07-19 Toyota Central Res & Dev Lab Inc Electrode for lithium secondary battery
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006032296A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Negative electrode and nonaqueous electrolyte secondary battery
JP2006278282A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Non-aqueous electrolytic liquid secondary battery
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2001196060A (en) * 2000-01-14 2001-07-19 Toyota Central Res & Dev Lab Inc Electrode for lithium secondary battery
JP2005317509A (en) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006032296A (en) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd Negative electrode and nonaqueous electrolyte secondary battery
JP2006278282A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Non-aqueous electrolytic liquid secondary battery
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material
WO2018043188A1 (en) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2018043188A1 (en) * 2016-08-31 2019-06-24 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10903485B2 (en) 2016-08-31 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2018163756A (en) * 2017-03-24 2018-10-18 積水化学工業株式会社 Active material-carbon material composite, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP2018163755A (en) * 2017-03-24 2018-10-18 積水化学工業株式会社 Active material-carbon material composite, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and carbon material
JP7336466B2 (en) 2019-01-08 2023-08-31 株式会社カネカ Negative electrode for non-aqueous electrolyte secondary battery and battery thereof
JP2020161471A (en) * 2019-03-22 2020-10-01 トヨタ自動車株式会社 Manufacturing method of all-solid battery, and all-solid battery
JP7314768B2 (en) 2019-03-22 2023-07-26 トヨタ自動車株式会社 Method for manufacturing all-solid-state battery and all-solid-state battery
CN115050961A (en) * 2022-06-17 2022-09-13 苏州易来科得科技有限公司 Lithium battery negative coating composition, preparation method of negative pole piece and lithium battery

Also Published As

Publication number Publication date
JP5589720B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP6398985B2 (en) Lithium ion secondary battery
JP5582587B2 (en) Lithium ion secondary battery
JP5589720B2 (en) Non-aqueous electrolyte secondary battery
JP7223221B2 (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte, and non-aqueous electrolyte battery
CN106463768B (en) Lithium ion secondary battery
JP7172015B2 (en) Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2015037367A1 (en) Nonaqueous-electrolyte secondary battery
JP2017174648A (en) Power storage device
JP2013134922A (en) Nonaqueous electrolyte secondary battery
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
JPWO2016163282A1 (en) Lithium ion secondary battery
CN109768226A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
US20150147627A1 (en) Rechargeable lithium battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP6319092B2 (en) Secondary battery
JP6992362B2 (en) Lithium ion secondary battery
JP6658182B2 (en) Electrode structure and lithium secondary battery
JP4582684B2 (en) Non-aqueous secondary battery
JP7091574B2 (en) Non-aqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
CN110419134B (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
JP7199157B2 (en) Electrolyte solution containing lithium iodide, and lithium ion battery using the same
US20200076000A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6344470B2 (en) Lithium ion secondary battery
WO2019065871A1 (en) Cylindrical secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

LAPS Cancellation because of no payment of annual fees