JP2001196060A - Electrode for lithium secondary battery - Google Patents

Electrode for lithium secondary battery

Info

Publication number
JP2001196060A
JP2001196060A JP2000005317A JP2000005317A JP2001196060A JP 2001196060 A JP2001196060 A JP 2001196060A JP 2000005317 A JP2000005317 A JP 2000005317A JP 2000005317 A JP2000005317 A JP 2000005317A JP 2001196060 A JP2001196060 A JP 2001196060A
Authority
JP
Japan
Prior art keywords
electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000005317A
Other languages
Japanese (ja)
Inventor
Kazuhiko Mukai
和彦 向
Hideyuki Nakano
秀之 中野
Naruaki Okuda
匠昭 奥田
Itsuki Sasaki
厳 佐々木
Yoji Takeuchi
要二 竹内
Tetsuo Kobayashi
哲郎 小林
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000005317A priority Critical patent/JP2001196060A/en
Publication of JP2001196060A publication Critical patent/JP2001196060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a lithium secondary battery using a lithium-titanium composite oxide as an active material, having an improved rate and power characteristics and durability by using a conductive assistant to be mixed therein in good particle shape and mixed condition to form a sufficient conductive network in the electrode. SOLUTION: The electrode for the lithium secondary battery comprises the active material of a lithium-titanium composite oxide represented by a composition formula, LixTiyO4 (0.5<=x<=3, 1<=y←h2.5), the conductive assistant containing carbon fibers and a binder for binding the active material and the conductive assistant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用したリチウム二次電池に用いることので
きる電極に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to an electrode that can be used for a lithium secondary battery utilizing a desorption phenomenon.

【0002】[0002]

【従来の技術】通信機器、情報関連機器の分野では、携
帯電話、ノートパソコン等の小型化に伴い、高エネルギ
ー密度であるという理由から、リチウム二次電池が既に
実用化され、広く普及するに至っている。一方、自動車
の分野でも、大気汚染や二酸化炭素の増加等の環境問題
により、電気自動車の早期実用化が望まれており、この
電気自動車用電源として、リチウム二次電池を用いるこ
とも検討されている。電気自動車用電源としてリチウム
二次電池を用いる場合、高出力、高エネルギー密度であ
ることに加え、その寿命が長いこと、つまり繰り返され
る充放電に対しても容量が低下しないといった良好なサ
イクル特性を有することが要求される。
2. Description of the Related Art In the field of communication equipment and information-related equipment, lithium secondary batteries have already been put to practical use and spread widely because of the high energy density accompanying the miniaturization of mobile phones and notebook personal computers. Has reached. On the other hand, in the field of automobiles, early commercialization of electric vehicles is desired due to environmental problems such as air pollution and an increase in carbon dioxide, and the use of lithium secondary batteries as power sources for electric vehicles has been studied. I have. When a lithium secondary battery is used as a power source for an electric vehicle, in addition to high power and high energy density, it has good cycle characteristics such as long life, that is, the capacity does not decrease even after repeated charging and discharging. Required to have.

【0003】現在リチウム二次電池は、正極活物質にリ
チウムコバルト複合酸化物(LiCoO2)を用い、負
極活物質に黒鉛等の炭素材料を用いたものが主流となっ
ている。ところが、正極活物質および負極活物質ともに
サイクル劣化等を生じる要因を有しており、この主流と
なっているリチウム二次電池であっても、充分に満足す
る耐久性(サイクル特性、保存特性等)を得られていな
いのが現状である。
At present, lithium secondary batteries mainly use a lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material and a carbon material such as graphite as a negative electrode active material. However, both the positive electrode active material and the negative electrode active material have factors that cause cycle deterioration and the like, and even with this mainstream lithium secondary battery, sufficiently satisfactory durability (cycle characteristics, storage characteristics, etc.) ) Is not currently available.

【0004】リチウム二次電池用電極として、特開平6
−275263号公報に示されるように、リチウムチタ
ン複合酸化物を活物質に用いる電極も検討されている。
リチウムチタン複合酸化物は、優れた耐久性をもつこと
から、それを活物質として用いたリチウム二次電池はよ
り長寿命な二次電池になるものと考えられる。特に、電
気自動車用電源として使用されるリチウム二次電池は、
小型民生機器に使用されるリチウム二次電池に比べ、よ
り幅広い温度域でさらに長寿命であることが要求される
ことから、好適な活物質材料となるものと考えられる。
As an electrode for a lithium secondary battery, Japanese Patent Application Laid-Open
As disclosed in JP-A-275263, an electrode using a lithium titanium composite oxide as an active material is also being studied.
Since the lithium-titanium composite oxide has excellent durability, it is considered that a lithium secondary battery using it as an active material will be a secondary battery having a longer life. In particular, lithium secondary batteries used as electric vehicle power supplies,
Since it is required to have a longer life in a wider temperature range than a lithium secondary battery used for a small consumer device, it is considered to be a suitable active material.

【0005】リチウムチタン複合酸化物等の遷移金属複
合酸化物は一般に導電性が低く、活物質として用いる場
合、同時に、電極内の導電性を確保するための導電助材
を必要とする。現在、リチウムチタン複合酸化物を活物
質とする電極に混在させる導電助材としては、カーボン
ブラック、アセチレンブラック等が用いるのが、一般的
な技術となっている。リチウムチタン複合酸化物はそれ
自体の電子伝導性がリチウムコバルト複合酸化物、リチ
ウムニッケル複合酸化物(LiNiO2)等の他の活物
質材料とあまり変わらないにも関わらず、リチウムチタ
ン複合酸化物を活物質に用いた電極で構成されるリチウ
ム二次電池は、レート特性、パワー特性に劣る傾向にあ
る。そのため、電極としての導電性を確保する必要があ
り、活物質と導電助材との電極内での混在状態が重要に
なってくる。
[0005] A transition metal composite oxide such as a lithium titanium composite oxide generally has low conductivity, and when used as an active material, at the same time, a conductive auxiliary material for ensuring conductivity in an electrode is required. At present, it is a general technique to use carbon black, acetylene black or the like as a conductive additive mixed in an electrode using a lithium titanium composite oxide as an active material. Lithium-titanium composite oxides have the same electronic conductivity as other active material materials such as lithium-cobalt composite oxides and lithium-nickel composite oxides (LiNiO 2 ). Lithium secondary batteries composed of electrodes used as active materials tend to have poor rate characteristics and power characteristics. Therefore, it is necessary to ensure the conductivity of the electrode, and the mixed state of the active material and the conductive additive in the electrode becomes important.

【0006】[0006]

【発明が解決しようとする課題】リチウムチタン複合酸
化物を活物質に用い、カーボンブラック、アセチレンブ
ラック等を導電助材に用いた電極は、一般に、活物質お
よび導電助材に粉末状のものを用い、これら粉末を混合
したものを結着剤で結着して形成する。本発明者が活物
質粒子と導電助材粒子との混在状態を調査したところ、
このカーボンブラック、アセチレンブラック等の粒子が
微少な球状であるため、粒子が凝集しやすく、電極内に
不均一に分散し易いことが判った。また、充放電に伴い
活物質となるリチウムチタン複合酸化物が膨張・収縮を
繰り返すことから、微少な球状であることは、集電不良
を発生させやすいということも判った。
An electrode using a lithium-titanium composite oxide as an active material and using carbon black, acetylene black or the like as a conductive auxiliary material generally has a powdery active material and conductive auxiliary material. A mixture of these powders is formed by binding with a binder. When the present inventors investigated the mixed state of active material particles and conductive auxiliary particles,
Since the particles of carbon black, acetylene black and the like were minute spheres, it was found that the particles were easily aggregated and easily dispersed unevenly in the electrode. In addition, since the lithium-titanium composite oxide as an active material repeatedly undergoes expansion and contraction during charge and discharge, it was also found that a minute spherical shape easily causes poor current collection.

【0007】本発明は、上記知見に基づいてされたもの
であり、リチウムチタン複合酸化物を活物質に用いたリ
チウム二次電池用電極において、それに混在させる導電
助材の粒子形状およびその混在状態を適正なものとする
ことにより、電極内に充分な導電ネットワークを形成さ
せ、レート特性、パワー特性に優れ、かつ、耐久性に優
れた電極を提供することを課題としている。
The present invention has been made based on the above findings. In an electrode for a lithium secondary battery using a lithium-titanium composite oxide as an active material, the particle shape of a conductive auxiliary material mixed therein and the mixed state thereof It is an object of the present invention to provide an electrode having an excellent rate characteristic and power characteristic and an excellent durability by forming a sufficient conductive network in the electrode by adjusting the value of.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム二次電
池用電極は、組成式LixTiy4(0.5≦x≦3、
1≦y≦2.5)で表されるリチウムチタン複合酸化物
からなる活物質と、炭素繊維を含む導電助材と、該活物
質および該導電助材を結着する結着剤とを含んでなるこ
とを特徴とする。つまり、リチウムチタン複合酸化物を
活物質に用いたリチウム二次電池用電極において、それ
に混在させる導電助材を繊維状の炭素材料とするもので
ある。
The electrode for a lithium secondary battery of the present invention has a composition formula of Li x Ti y O 4 (0.5 ≦ x ≦ 3,
An active material comprising a lithium-titanium composite oxide represented by 1 ≦ y ≦ 2.5), a conductive auxiliary material containing carbon fibers, and a binder for binding the active material and the conductive auxiliary material. Is characterized by the following. That is, in the electrode for a lithium secondary battery using the lithium-titanium composite oxide as an active material, the conductive auxiliary material mixed therein is a fibrous carbon material.

【0009】炭素繊維は、導電性が金属並みに高く、従
来から使用されているカーボンブラック、アセチレンブ
ラック等と比べても充分な集電効果が得られる。そし
て、炭素繊維は、その形状の特徴から、電極形成におい
て電極内で凝集することなく均一に分散され、また、曲
げ剛性にも富むことから、充放電に伴う活物質の膨張・
収縮に充分対応でき、充放電サイクルに伴う集電不良を
抑制することができる。さらに、カーボンブラック、ア
セチレンブラック等よりもDBP吸油量が大きく電解液
の保持性に優れ、高電流密度での放電においてより多く
の電気量を取り出すことができる。したがって、本発明
のリチウム二次電池用電極は、電極内に充分な集電ネッ
トワークが形成されていることで、レート特性、パワー
特性に優れ、かつ、サイクル特性、保存特性等に優れた
耐久性の良好な電極となる。
The conductivity of carbon fibers is as high as that of metals, and a sufficient current collecting effect can be obtained as compared with conventionally used carbon black, acetylene black and the like. The carbon fibers are uniformly dispersed without agglomeration in the electrodes during electrode formation due to their shape characteristics, and have high flexural rigidity.
It is possible to sufficiently cope with shrinkage, and it is possible to suppress poor current collection due to charge / discharge cycles. Furthermore, it has a larger DBP oil absorption than carbon black, acetylene black, and the like, and is excellent in retention of an electrolytic solution, so that a larger amount of electricity can be taken out at high current density discharge. Therefore, the electrode for a lithium secondary battery of the present invention is excellent in rate characteristics and power characteristics, and excellent in cycle characteristics, storage characteristics, and the like, due to the formation of a sufficient current collection network in the electrodes. Good electrode.

【0010】[0010]

【発明の実施の形態】以下に、本発明のリチウム二次電
池用電極の実施形態について、活物質となるリチウムチ
タン複合酸化物、導電助材となる炭素繊維、電極の構成
および製造、本電極を使用したリチウム二次電池の順に
詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an electrode for a lithium secondary battery according to the present invention will be described with reference to a lithium-titanium composite oxide as an active material, a carbon fiber as a conductive additive, the structure and manufacture of the electrode, and the present electrode. Will be described in detail in the order of the lithium secondary batteries.

【0011】〈リチウムチタン複合酸化物〉本発明のリ
チウム二次電池用電極の活物質となるリチウムチタン複
合酸化物(以下、「本リチウムチタン複合酸化物」とい
う)は、組成式LixTiy4(0.5≦x≦3、1≦
y≦2.5)で表されるリチウムチタン複合酸化物であ
る。本リチウムチタン複合酸化物は、その結晶構造がス
ピネル構造あるいはそれに類似する構造となっており、
CuKα線を用いた粉末X線回折によれば、結晶構造中
の面間隔が少なくとも4.84Å、2.53Å、2.0
9Å、1.48Å(各面間とも±0.1Å)となる回折
面(反射面)において、回折ピークが存在する。
<Lithium-titanium composite oxide> A lithium-titanium composite oxide (hereinafter, referred to as “lithium-titanium composite oxide”) as an active material of the electrode for a lithium secondary battery of the present invention has a composition formula of Li x Ti y O 4 (0.5 ≦ x ≦ 3, 1 ≦
y ≦ 2.5). The lithium titanium composite oxide has a spinel structure or a structure similar thereto,
According to powder X-ray diffraction using CuKα ray, the interplanar spacing in the crystal structure was at least 4.84 °, 2.53 °, 2.0
There is a diffraction peak on the diffraction surface (reflection surface) at 9 ° and 1.48 ° (± 0.1 ° between each surface).

【0012】この結晶構造をもつ本リチウムチタン複合
酸化物は、結晶構造が安定しており、充放電に伴うリチ
ウムの吸蔵・脱離によっても、その基本となる構造が崩
壊しにくく、サイクル特性の良好なリチウム二次電池を
構成できる活物質材料となり得る。種々ある組成の中で
も、結晶構造の安定という点では、組成式Li0.8Ti
2.24、LiTi24、Li1.33Ti1.674、Li
1.14Ti1.714で表されるものが優れており、こらら
のうちの1種のものを単独でまたは2種以上のものを混
合して用いることが望ましい。活物質として用いた場
合、充放電による体積変化が小さくまた結晶構造がより
安定しているという点からすれば、組成式Li 1.33Ti
1.674で表されるものを用いることがより望ましい。
ちなみに、組成式Li0.8Ti2.24、Li1.33Ti
1.674、Li1.14Ti1.714は、それぞれ組成式Li
4Ti1120、Li4Ti512、Li2Ti37と表すこ
ともできる。
The present lithium-titanium composite having this crystal structure
Oxide has a stable crystal structure, and lithium
The basic structure is destroyed by the absorption and desorption of um.
Lithium secondary batteries that are hard to break and have good cycle characteristics
It can be a configurable active material. Among various compositions
However, in terms of stability of the crystal structure, the composition formula Li0.8Ti
2.2OFour, LiTiTwoOFour, Li1.33Ti1.67OFour, Li
1.14Ti1.71OFourWhat is represented by is excellent,
One type alone or a mixture of two or more types
It is desirable to use them together. Place used as active material
The change in volume due to charge and discharge is small and the crystal structure is
In terms of stability, the composition formula Li 1.33Ti
1.67OFourIt is more desirable to use the one represented by
By the way, the composition formula Li0.8Ti2.2OFour, Li1.33Ti
1.67OFour, Li1.14Ti1.71OFourIs the composition formula Li
FourTi11O20, LiFourTiFiveO12, LiTwoTiThreeO7Express
Can also be.

【0013】本リチウムチタン複合酸化物はその製造方
法を特に限定するものでないが、リチウム源となるリチ
ウム化合物とチタン源となる酸化チタンとを混合し、こ
の混合物を焼成することによって容易に合成することが
できる。リチウム化合物としては、Li2CO3、Li
(OH)等を用いることができる。焼成は、酸素気流中
あるいは大気中ににて行う。それぞれの原料の混合割合
は、合成しようとするリチウムチタン複合酸化物の組成
に応じた割合とすればよい。焼成は、その温度が低すぎ
ると活物質として良好な特性となる程に成長した粒径の
ものを得ることができず、また、高すぎると副相として
生じるルチル型酸化チタン相(TiO2相)の含有割合
が多くなることから、焼成温度は、500〜1000℃
とするのが望ましい。より望ましくは、700〜900
℃とするのがよい。
The production method of the present lithium-titanium composite oxide is not particularly limited, but a lithium compound as a lithium source and titanium oxide as a titanium source are mixed, and the mixture is easily synthesized by firing. be able to. As the lithium compound, Li 2 CO 3 , Li
(OH) or the like can be used. The firing is performed in an oxygen stream or in the atmosphere. The mixing ratio of each raw material may be a ratio according to the composition of the lithium titanium composite oxide to be synthesized. If the temperature is too low, it is not possible to obtain a particle having a particle size that has grown so as to have good characteristics as an active material. If the temperature is too high, a rutile-type titanium oxide phase (TiO 2 ), The firing temperature is 500 to 1000 ° C.
It is desirable that More preferably, 700 to 900
℃ is good.

【0014】副相として生じる酸化チタン相を完全に消
滅させることは困難を伴う。この酸化チタン相は、上記
リチウムチタン複合酸化物の主相と混晶状態で生成され
るため、少量存在するのであれば、活物質として用いた
場合の充放電特性、サイクル特性を極度に悪化させるも
のとはならない。したがって、本リチウムチタン複合酸
化物は、この酸化チタンを混晶状態で含有するものであ
ってもよく、また本明細書において、「リチウムチタン
複合酸化物」とは、それを含むことを意味する。
It is difficult to completely eliminate the titanium oxide phase generated as a sub phase. Since this titanium oxide phase is generated in a mixed crystal state with the main phase of the lithium-titanium composite oxide, if present in a small amount, the charge-discharge characteristics and cycle characteristics when used as an active material are extremely deteriorated. It does not matter. Therefore, the present lithium-titanium composite oxide may contain this titanium oxide in a mixed crystal state, and in the present specification, “lithium-titanium composite oxide” means containing the same. .

【0015】〈炭素繊維〉本発明のリチウム二次電池用
電極の導電助材となる炭素繊維は、その種類を特に限定
するものではない。例えば、カーボンウィスカー、グラ
ファイトウィスカー等の炭素質ウィスカー、PAN系炭
素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気
相成長炭素繊維等を使用することができる。これらの中
でも、製造が容易で、かつ均一な形状の炭素繊維を合成
できるという利点を考慮すれば、気相成長炭素繊維を用
いることが望ましい。
<Carbon Fiber> The type of the carbon fiber used as the conductive additive of the electrode for a lithium secondary battery of the present invention is not particularly limited. For example, carbonaceous whiskers such as carbon whiskers and graphite whiskers, PAN-based carbon fibers, cellulose-based carbon fibers, pitch-based carbon fibers, and vapor-grown carbon fibers can be used. Among these, vapor-grown carbon fibers are preferably used in view of the advantage that carbon fibers having a uniform shape can be easily produced and synthesized.

【0016】用いる炭素繊維は、その平均繊維長が0.
1μm以上10μm以下であることが望ましい。平均繊
維長が0.1μm未満の場合は、電極内の充分な導電ネ
ットワークの形成という点で劣るものとなり、また、1
0μmを超える場合は、結着剤で結着して電極を成形す
る際に調製する電極ペーストの粘性が高くなりすぎる等
の理由から、電極の成形性が悪くなるからである。な
お、電極の成形性を考慮した場合には、用いる炭素繊維
は、平均繊維直径が1μm以下であることがより望まし
い。
The carbon fiber used has an average fiber length of 0.1.
It is desirable that the thickness be 1 μm or more and 10 μm or less. When the average fiber length is less than 0.1 μm, it is inferior in forming a sufficient conductive network in the electrode.
If the thickness exceeds 0 μm, the moldability of the electrode deteriorates because the viscosity of the electrode paste prepared when forming the electrode by binding with a binder becomes too high. In consideration of the formability of the electrode, it is more desirable that the carbon fibers used have an average fiber diameter of 1 μm or less.

【0017】〈電極の構成および製造〉本発明のリチウ
ム二次電池用電極は、上記リチウムチタン複合酸化物か
らなる活物質と、上記炭素繊維を含む導電助材と、その
活物質およびその導電助材を結着する結着剤とを含んで
構成される。
<Constitution and Production of Electrode> The electrode for a lithium secondary battery of the present invention comprises an active material comprising the lithium-titanium composite oxide, a conductive auxiliary material containing the carbon fiber, the active material and the conductive auxiliary material. And a binder for binding the material.

【0018】活物質には上記リチウムチタン複合酸化物
を用いる。なお、電極特性の改良等の理由から、上記リ
チウムチタン複合酸化物を主たる活物質材料とした上
で、本電極を正極とする場合であれば、既に公知のLi
CoO2、LiNiO2等のリチウム遷移金属複合酸化物
等の正極活物質材料を福次的に混合して活物質とするこ
とも、負極とする場合であれば、黒鉛、ハードカーボン
等の炭素材料等の既に公知の負極活物質材料を副次的に
混合して活物質とすることも考えられる。本発明の電極
では、このような混合物を活物質とすることをを妨げる
ものではない。また、上記リチウムチタン複合酸化物
は、組成により種々のリチウムチタン複合酸化物があ
り、そのうちの1種を単独で用いることもでき、また、
2種以上を混合して用いることもできる。
As the active material, the above-mentioned lithium titanium composite oxide is used. For reasons such as improvement of electrode characteristics, if the lithium-titanium composite oxide is used as a main active material and the present electrode is used as a positive electrode, a known Li
A positive electrode active material such as a lithium transition metal composite oxide such as CoO 2 or LiNiO 2 may be mixed in a positive manner to form an active material, or a carbon material such as graphite or hard carbon if the negative electrode is used. It is also conceivable to mix an already known negative electrode active material such as the above as a secondary material to form an active material. The electrode of the present invention does not prevent such a mixture from being used as an active material. The lithium-titanium composite oxide includes various lithium-titanium composite oxides depending on the composition, and one of them can be used alone.
Two or more kinds may be used as a mixture.

【0019】導電助材として上記炭素繊維のみを用いて
電極を構成することもでき、また、上記炭素繊維に、カ
ーボンブラック、アセチレンブラック等の炭素材料を混
合して導電助材とすることもできる。後に説明する実施
例にも示すように、本発明者が行った実験によって明ら
かになったことであるが、炭素繊維にカーボンブラッ
ク、アセチレンブラック等の炭素材料を混合して導電助
材とする場合には、レート特性、より長期的な充放電サ
イクル特性等点で優れたものになる。この理由は、異な
る形状の導電助材を用いることでさらに導電性が向上し
たためと考えられる。この場合、炭素繊維とカーボンブ
ラック、アセチレンブラック等との混合比は、重量比で
2:8〜9:1とするのが望ましい。
An electrode can be formed by using only the above-mentioned carbon fiber as the conductive auxiliary material, or a conductive auxiliary material can be prepared by mixing a carbon material such as carbon black and acetylene black with the carbon fiber. . As shown in the examples described later, it has been clarified by an experiment performed by the present inventor that when carbon fibers such as carbon black and acetylene black are mixed as a conductive auxiliary material, Are excellent in terms of rate characteristics and longer-term charge / discharge cycle characteristics. It is considered that the reason for this is that the conductivity was further improved by using conductive assistants having different shapes. In this case, it is desirable that the mixing ratio of the carbon fiber to the carbon black, acetylene black or the like is 2: 8 to 9: 1 by weight.

【0020】結着剤は、特に限定するものではなく、既
に公知のものを用いればよい。例えば、ポリテトラフル
オロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の
含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可
塑性樹脂を用いることができる。
The binder is not particularly limited, and any known binder may be used. For example, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used.

【0021】本発明の電極は、その製造方法を特に限定
するものではなく、一般に実施されているリチウム二次
電池用電極の製造方法に従えばよい。例えば、上記活物
質に上記導電助材および上記結着剤を混合し、必要に応
じ適量の溶剤(分散媒)を加えて、ペースト状の電極合
材としたものを、金属箔製の集電体表面に塗布、乾燥
し、その後必要に応じプレス等によって電極合材の密度
を高めることによって作成することができる。なお、集
電体は、本電極を正極として用いるときにはアルミニウ
ム箔等を用い、負極として用いるときには銅箔等を用い
ればよい。また、溶剤には、N−メチル−2−ピロリド
ン等の有機溶剤を用いることができる。この製造方法に
よれば、作製された電極は、シート状の電極となる。こ
のシート状の電極は、作製しようとするリチウム二次電
池の仕様に応じた大きさに裁断して用いればよい。
The method for producing the electrode of the present invention is not particularly limited, and may be in accordance with a generally practiced method for producing an electrode for a lithium secondary battery. For example, the active material is mixed with the conductive additive and the binder, and an appropriate amount of a solvent (dispersion medium) is added as necessary to obtain a paste-like electrode mixture. It can be prepared by coating and drying on the body surface and then increasing the density of the electrode mixture by pressing or the like as necessary. As the current collector, an aluminum foil or the like may be used when the present electrode is used as a positive electrode, and a copper foil or the like may be used when the current electrode is used as a negative electrode. Further, as the solvent, an organic solvent such as N-methyl-2-pyrrolidone can be used. According to this manufacturing method, the produced electrode becomes a sheet-like electrode. This sheet-shaped electrode may be cut into a size according to the specification of the lithium secondary battery to be manufactured.

【0022】本発明のリチウム二次電池用電極では、活
物質と導電助材との電極内での混在状態が重要になるこ
とから、電極合材中における活物質と導電助材との混合
割合にもより適切な範囲が存在する。本発明のリチウム
二次電池用電極では、活物質に対する導電助材の混合比
率を、重量比率で0.005以上0.2以下とすること
が望ましい。言い換えれば、活物質100重量部に対し
て導電助材を0.5重量部以上20重量部以下の割合で
混合するのが望ましい。導電助材の混合比率が0.00
5未満の場合つまり導電助材が少なすぎる場合は、効率
のよい導電ネットワークを形成できず、また、0.2を
超える場合つまり導電助材が多すぎる場合は、電極の成
形性が悪く、電極のエネルギー密度も低くなりすぎるか
らである。なお、電池容量、導電ネットワーク、電極の
成形性のいずれをも満足させる点から、活物質に対する
導電助材の混合比率を重量比率で0.05以上0.15
以下とすることがより望ましい。
In the electrode for a lithium secondary battery of the present invention, since the mixed state of the active material and the conductive auxiliary in the electrode is important, the mixing ratio of the active material and the conductive auxiliary in the electrode mixture is important. There is also a more appropriate range. In the electrode for a lithium secondary battery of the present invention, it is desirable that the mixing ratio of the conductive additive to the active material is 0.005 or more and 0.2 or less by weight. In other words, it is desirable to mix the conductive aid in a ratio of 0.5 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the active material. The mixing ratio of the conductive additive is 0.00
When the number is less than 5, that is, when the amount of the conductive aid is too small, an efficient conductive network cannot be formed. When the number is more than 0.2, that is, when the amount of the conductive aid is too large, the moldability of the electrode is poor. Is also too low. From the viewpoint of satisfying all of the battery capacity, the conductive network, and the moldability of the electrode, the mixing ratio of the conductive auxiliary to the active material is 0.05 to 0.15 by weight.
It is more desirable to set the following.

【0023】〈リチウム二次電池〉本発明の電極を使用
したリチウム二次電池では、本発明の電極を正極として
用いることも、また、負極として用いることもできる。
リチウムチタン複合酸化物は、還元電位がLi/Li+
に対して約1.5Vであり、これより高い電位を有する
活物質材料、例えば、LiCoO2、LiNiO2等のリ
チウム遷移金属複合酸化物等を活物質とする電極を正極
とし、本発明の電極を負極としてリチウム二次電池を構
成すればよい。また、逆に1.5Vより低い電位を有す
る活物質材料、例えば、金属リチウム、リチウム合金、
黒鉛、コークス、ハードカーボン等の炭素材料等を活物
質とする電極を負極とし、本発明の電極を正極としてリ
チウム二次電池を構成すればよい。本発明の電極に対向
するそれぞれの電極は、上記本発明の電極の製造方法に
準ずる一般的な製造方法によって作製すればよい。
<Lithium Secondary Battery> In a lithium secondary battery using the electrode of the present invention, the electrode of the present invention can be used as a positive electrode or a negative electrode.
The lithium-titanium composite oxide has a reduction potential of Li / Li +
Is about 1.5 V, and an electrode using an active material having a higher potential than this, for example, a lithium transition metal composite oxide such as LiCoO 2 or LiNiO 2 as an active material is used as a positive electrode. May be used as a negative electrode to constitute a lithium secondary battery. Conversely, an active material having a potential lower than 1.5 V, such as lithium metal, a lithium alloy,
A lithium secondary battery may be formed by using an electrode using a carbon material such as graphite, coke, hard carbon or the like as an active material as a negative electrode and using the electrode of the present invention as a positive electrode. Each electrode facing the electrode of the present invention may be manufactured by a general manufacturing method according to the above-described method of manufacturing the electrode of the present invention.

【0024】本発明の電極を用いたリチウム二次電池で
は、一般のリチウム二次電池と同様、正極および負極の
他に、正極と負極の間に挟装されるセパレータ、非水電
解液等を構成要素とする。セパレータは、正極と負極と
を分離し電解液を保持するものであり、ポリエチレン、
ポリプロピレン等の薄い微多孔膜を用いることができ
る。また非水電解液は、有機溶媒に電解質であるリチウ
ム塩を溶解させたもので、有機溶媒としては、非プロト
ン性有機溶媒、例えばエチレンカーボネート、プロピレ
ンカーボネート、ジメチルカーボネート、ジエチルカー
ボネート、エチルメチルカーボネート、γ−ブチロラク
トン、アセトニトリル、1,2−ジメトキシエタン、テ
トラヒドロフラン、ジオキソラン、塩化メチレン等の1
種またはこれらの2種以上の混合液を用いることができ
る。また、溶解させる電解質としては、LiI、LiC
lO4、LiAsF6、LiBF4、LiPF6、LiN
(CF 3SO22等のリチウム塩を用いることができ
る。
In a lithium secondary battery using the electrode of the present invention,
Is the same as the general lithium secondary battery,
In addition, a separator sandwiched between the positive and negative electrodes,
The lysis solution is a constituent element. The separator consists of a positive electrode and a negative electrode.
To separate the electrolyte and retain the electrolyte.
A thin microporous membrane such as polypropylene can be used.
You. In addition, the non-aqueous electrolyte is made up of an organic solvent such as lithium.
Is a non-prototype organic solvent.
Organic solvents such as ethylene carbonate, propylene
Carbonate, dimethyl carbonate, diethyl carbonate
Bonate, ethyl methyl carbonate, γ-butyrolact
Ton, acetonitrile, 1,2-dimethoxyethane,
1 such as trahydrofuran, dioxolan, methylene chloride, etc.
Species or a mixture of two or more of these can be used.
You. The electrolyte to be dissolved is LiI, LiC
10Four, LiAsF6, LiBFFour, LiPF6, LiN
(CF ThreeSOTwo)TwoEtc. can be used
You.

【0025】以上のように構成される本発明の電極を用
いたリチウム二次電池であるが、その形状は円筒型、積
層型、コイン型等、種々のものとすることができる。い
ずれの形状を採る場合であっても、正極および負極にセ
パレータを挟装させ電極体とし、正極集電体および負極
集電体から外部に通ずる正極端子および負極端子までの
間を集電用リード等を用いて接続し、この電極体を非水
電解液とともに電池ケースに密閉して電池が完成させら
れる。
The lithium secondary battery using the electrode of the present invention configured as described above can have various shapes such as a cylindrical type, a laminated type and a coin type. Regardless of the shape used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and a current collecting lead extends from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that lead to the outside. The electrode body is sealed together with the non-aqueous electrolyte in a battery case to complete the battery.

【0026】なお、上述したように、リチウムチタン複
合酸化物は還元電位が約1.5Vと比較的高いことか
ら、本発明の電極を負極として用いた場合は、負極表面
での非水電解液の分解を抑制できるという作用をも期待
でき、この作用に基づくサイクル特性向上効果をも得ら
れることになる。
As described above, since the lithium-titanium composite oxide has a relatively high reduction potential of about 1.5 V, when the electrode of the present invention is used as a negative electrode, the nonaqueous electrolyte The effect of suppressing the decomposition of the compound can also be expected, and the effect of improving the cycle characteristics based on this effect can be obtained.

【0027】以上、本発明のリチウム二次電池用電極の
実施形態について説明したが、上述した実施形態は一実
施形態にすぎず、本発明のリチウム二次電池用電極は、
上記実施形態を始めとして、当業者の知識に基づいて種
々の変更、改良を施した種々の形態で実施することがで
きる。
Although the embodiment of the electrode for a lithium secondary battery of the present invention has been described above, the above-described embodiment is merely an embodiment, and the electrode for a lithium secondary battery of the present invention is
The present invention can be implemented in various forms including various modifications and improvements based on the knowledge of those skilled in the art, including the above embodiment.

【0028】[0028]

【実施例】上記実施形態に基づいて、リチウムチタン複
合酸化物を活物質とし炭素繊維を導電助材に含むリチウ
ム二次電池用電極を作製した。さらにこれと比較すべく
カーボンブラックのみを導電助材としたリチウム二次電
池用電極をも作製した。そして、これらの電極を負極に
用いたリチウム二次電池を作製し、これらの二次電池の
特性を評価することで、本発明のリチウム二次電池用電
極の優秀性を確認した。以下、これらについて説明す
る。
EXAMPLE Based on the above embodiment, an electrode for a lithium secondary battery including a lithium-titanium composite oxide as an active material and carbon fibers as a conductive additive was produced. Further, for comparison, an electrode for a lithium secondary battery using only carbon black as a conductive additive was prepared. Then, lithium secondary batteries using these electrodes as negative electrodes were produced, and the characteristics of these secondary batteries were evaluated, thereby confirming the superiority of the lithium secondary battery electrodes of the present invention. Hereinafter, these will be described.

【0029】〈実施例1のリチウム二次電池用電極〉本
電極の活物質には、組成式Li1.33Ti1.674で表さ
れるリチウムチタン複合酸化物を用いた。このリチウム
チタン複合酸化物は、Li源としてLi2CO3を、チタ
ン源としてアナターゼ型TiO2を用い、これらを所定
割合混合し、酸素気流中、800℃で12時間焼成する
ことにより合成した。合成したリチウムチタン複合酸化
物は、CuKα線を用いた粉末X線回折分析法により、
面間隔4.83Å、2.52Å、2.09Å、1.48
Åとなる回折面(反射面)によって得られるそれぞれの
回折ピークが存在することが確認できた。また、本電極
の導電助材には、平均繊維径0.2μm、平均繊維長2
μmの気相成長炭素繊維のみを用いた。
<Electrode for Lithium Secondary Battery of Example 1> A lithium-titanium composite oxide represented by a composition formula of Li 1.33 Ti 1.67 O 4 was used as an active material of the present electrode. This lithium-titanium composite oxide was synthesized by using Li 2 CO 3 as a Li source and anatase TiO 2 as a titanium source, mixing these at a predetermined ratio, and calcining at 800 ° C. for 12 hours in an oxygen stream. The synthesized lithium titanium composite oxide was subjected to powder X-ray diffraction analysis using CuKα radiation,
4.834, 2.52Å, 2.09Å, 1.48
It was confirmed that there were respective diffraction peaks obtained by the diffractive surface (reflective surface) as Å. The conductive material of the present electrode has an average fiber diameter of 0.2 μm and an average fiber length of 2 μm.
Only the μm vapor-grown carbon fiber was used.

【0030】上記リチウムチタン複合酸化物90重量部
に上記炭素繊維10重量部を混合し、さらに結着剤とし
てポリフッ化ビニリデンを5重量部混合し、適量のN−
メチル−2−ピロリドンを添加して充分に混練してペー
スト状の電極合材を調整した。次いで、この電極合材を
厚さ10μmの銅箔製集電体の両面に塗布し、乾燥後プ
レスを施してシート状の電極を作製した。この電極を実
施例1のリチウム二次電池用電極とした。
90 parts by weight of the lithium-titanium composite oxide was mixed with 10 parts by weight of the carbon fiber, and 5 parts by weight of polyvinylidene fluoride was further mixed as a binder.
Methyl-2-pyrrolidone was added and kneaded well to prepare a paste-like electrode mixture. Next, this electrode mixture was applied to both surfaces of a copper foil current collector having a thickness of 10 μm, dried, and pressed to prepare a sheet-like electrode. This electrode was used as the electrode for a lithium secondary battery of Example 1.

【0031】〈実施例2のリチウム二次電池用電極〉本
実施例の電極は、導電助材に炭素繊維とカーボンブラッ
クとを混合して用いた電極である。活物質に実施例1の
場合と同じリチウムチタン複合酸化物を用い、導電助材
となる炭素繊維も実施例1の場合と同じものを使用し
た。上記リチウムチタン複合酸化物90重量部に上記炭
素繊維5重量部とカーボンブラック5重量部とを混合
し、さらに結着剤としてポリフッ化ビニリデンを5重量
部混合し、適量のN−メチル−2−ピロリドンを添加し
て充分に混練してペースト状の電極合材を調整した。次
いで、この電極合材を厚さ10μmの銅箔製集電体の両
面に塗布し、乾燥後プレスを施してシート状の電極を作
製した。電極単位面積当たりの活物質量は実施例1の場
合と同じとした。この電極を実施例2のリチウム二次電
池用電極とした。
<Electrode for Lithium Secondary Battery of Example 2> The electrode of this example is an electrode using a mixture of carbon fiber and carbon black as a conductive additive. The same lithium-titanium composite oxide as in Example 1 was used as the active material, and the same carbon fibers as those in Example 1 were used as the conductive assistant. 90 parts by weight of the lithium-titanium composite oxide was mixed with 5 parts by weight of the carbon fiber and 5 parts by weight of carbon black, and 5 parts by weight of polyvinylidene fluoride was further mixed as a binder. Pyrrolidone was added and kneaded well to prepare a paste-like electrode mixture. Next, this electrode mixture was applied to both surfaces of a copper foil current collector having a thickness of 10 μm, dried, and pressed to prepare a sheet-like electrode. The amount of active material per unit area of the electrode was the same as in Example 1. This electrode was used as an electrode for a lithium secondary battery of Example 2.

【0032】〈比較例1のリチウム二次電池用電極〉本
比較例の電極は、導電助材にカーボンブラックのみを用
いた電極である。活物質には実施例1の場合と同じリチ
ウムチタン複合酸化物を用いた。上記リチウムチタン複
合酸化物90重量部にカーボンブラック10重量部を混
合し、さらに結着剤としてポリフッ化ビニリデンを5重
量部混合し、適量のN−メチル−2−ピロリドンを添加
して充分に混練してペースト状の電極合材を調整した。
次いで、この電極合材を厚さ10μmの銅箔製集電体の
両面に塗布し、乾燥後プレスを施してシート状の電極を
作製した。電極単位面積当たりの活物質量は実施例1の
場合と同じとした。この電極を比較例1のリチウム二次
電池用電極とした。
<Electrode for Lithium Secondary Battery of Comparative Example 1> The electrode of this comparative example is an electrode using only carbon black as a conductive additive. As the active material, the same lithium titanium composite oxide as in Example 1 was used. 90 parts by weight of the lithium-titanium composite oxide is mixed with 10 parts by weight of carbon black, 5 parts by weight of polyvinylidene fluoride is further mixed as a binder, and an appropriate amount of N-methyl-2-pyrrolidone is added and kneaded sufficiently. Thus, a paste-like electrode mixture was prepared.
Next, this electrode mixture was applied to both surfaces of a copper foil current collector having a thickness of 10 μm, dried, and pressed to prepare a sheet-like electrode. The amount of active material per unit area of the electrode was the same as in Example 1. This electrode was used as an electrode for a lithium secondary battery of Comparative Example 1.

【0033】〈リチウム二次電池の作製〉上記実施例お
よび比較例の電極をそれぞれ負極に用いたリチウム二次
電池を作製した。対向させる正極は、組成式LiNi
0.85Co0.1Al0.052で表される層状岩塩構造リチウ
ムニッケル複合酸化物を活物質に用いた。このリチウム
ニッケル複合酸化物85重量部に、導電助材としてアセ
チレンブラックを10重量部と結着剤としてポリフッ化
ビニリデンを5重量部混合し、適量のN−メチル−2−
ピロリドンを添加して充分に混練してペースト状の正極
合材を調整した。次いで、この正極合材を厚さ20μm
のアルミニウム箔製集電体の両面に塗布し、乾燥後プレ
スを施してシート状の正極を作製した。
<Preparation of Lithium Secondary Battery> A lithium secondary battery using the electrodes of the above Examples and Comparative Examples as negative electrodes was prepared. The positive electrode to be opposed is composed of LiNi
A layered rock-salt lithium nickel composite oxide represented by 0.85 Co 0.1 Al 0.05 O 2 was used as an active material. To 85 parts by weight of this lithium nickel composite oxide, 10 parts by weight of acetylene black as a conductive additive and 5 parts by weight of polyvinylidene fluoride as a binder were mixed, and an appropriate amount of N-methyl-2-
Pyrrolidone was added and sufficiently kneaded to prepare a paste-like positive electrode mixture. Next, this positive electrode mixture was applied to a thickness of 20 μm.
Was coated on both sides of an aluminum foil current collector, dried and pressed to produce a sheet-shaped positive electrode.

【0034】上記正極と、上記実施例および比較例のそ
れぞれの電極である負極とを所定の大きさに裁断したも
のを、厚さ25μmのポリエチレンセパレータをそれら
の間に挟装して捲回し、ロール状の電極体を形成させ
た。この電極体に正極および負極集電用リードを付設
し、18650型電池ケースに収納し、非水電解液を注
入し、その後にこの電池ケースを密閉して円筒型リチウ
ム二次電池を作製した。なお、非水電解液は、エチレン
カーボネートをジエチルカーボネートとを体積比で3:
7に混合した混合溶媒にLiPF6を1Mの濃度で溶解
したものを用いた。
The above-mentioned positive electrode and the negative electrode which is each electrode of the above-mentioned Examples and Comparative Examples were cut to a predetermined size, and a polyethylene separator having a thickness of 25 μm was sandwiched between them and wound. A roll-shaped electrode body was formed. A positive electrode and a negative electrode current collecting lead were attached to this electrode body, housed in a 18650 type battery case, a non-aqueous electrolyte was injected, and then the battery case was sealed to produce a cylindrical lithium secondary battery. The non-aqueous electrolyte was prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 3:
A solution obtained by dissolving LiPF 6 at a concentration of 1 M in the mixed solvent mixed in Example 7 was used.

【0035】実施例1の電極を負極に用いたリチウム二
次電池を実施例1のリチウム二次電池とし、同様にそれ
ぞれ、実施例2の電極を用いた二次電池を実施例2のリ
チウム二次電池と、比較例1の電極を用いた二次電池
を、比較例1のリチウム二次電池とした。
The lithium secondary battery using the electrode of Example 1 as a negative electrode was the lithium secondary battery of Example 1, and the secondary battery using the electrode of Example 2 was the lithium secondary battery of Example 2. The secondary battery using the electrode of Comparative Example 1 and the secondary battery was defined as a lithium secondary battery of Comparative Example 1.

【0036】〈リチウム二次電池の特性評価〉上記それ
ぞれのリチウム二次電池に対して充放電試験を行い、初
期放電容量およびレート特性を評価した。まず、20℃
の環境温度下、充電終止電圧2.7Vまで電流密度1m
A/cm2の定電流で充電を行った後、放電終止電圧
1.5Vまで電流密度1mA/cm2の定電流で放電を
行うものとし、その放電時の放電容量をもって初期放電
容量とした。次いで、同条件で充電を行った後、放電終
止電圧1.5Vまで電流密度10mA/cm2の定電流
で放電を行い、このときの放電容量を求め、その放電容
量の初期放電容量に対する放電容量割合(百分率)を求
めた。下記表1に、それぞれのリチウム二次電池の正極
活物質単位重量当たりの初期放電容量および放電容量割
合を示す。
<Characteristic Evaluation of Lithium Secondary Battery> A charge / discharge test was performed on each of the above lithium secondary batteries, and the initial discharge capacity and rate characteristics were evaluated. First, 20 ° C
Under the ambient temperature, the current density is 1m up to the charging end voltage 2.7V.
After charging at a constant current of A / cm 2 , discharging was performed at a constant current of 1 mA / cm 2 at a current density of 1 mA / cm 2 until the discharge end voltage was 1.5 V, and the discharge capacity at the time of discharging was defined as the initial discharge capacity. Next, after charging under the same conditions, the battery was discharged at a constant current of a current density of 10 mA / cm 2 to a discharge end voltage of 1.5 V, the discharge capacity at this time was determined, and the discharge capacity was compared with the initial discharge capacity. The ratio (percentage) was determined. Table 1 below shows the initial discharge capacity and the discharge capacity ratio per unit weight of the positive electrode active material of each lithium secondary battery.

【0037】[0037]

【表1】 上記表1から判るように、実施例1および実施例2の二
次電池は、比較例1の二次電池よりも、初期放電容量が
大きい。また、高電流密度で放電した場合の放電容量割
合についても、実施例1および実施例2の二次電池の方
が優れている。このことから、リチウムチタン複合酸化
物を活物質に用いた電極を使用したリチウム二次電池の
場合、その電極の導電助材に炭素繊維を含むリチウム二
次電池がレート特性に優れていることが確認できる。な
お、実施例1の二次電池と実施例2の二次電池を比較し
た場合、初期放電容量、レート特性とも、炭素繊維とカ
ーボンブラックとを混合して導電助材とした電極を用い
た実施例2の二次電池のほうが優れていることが判っ
た。
[Table 1] As can be seen from Table 1 above, the secondary batteries of Example 1 and Example 2 have a larger initial discharge capacity than the secondary battery of Comparative Example 1. Further, the secondary batteries of Example 1 and Example 2 are also superior in terms of the discharge capacity ratio when discharging at a high current density. From this, in the case of a lithium secondary battery using an electrode using a lithium-titanium composite oxide as an active material, the lithium secondary battery containing carbon fiber as a conductive additive for the electrode has excellent rate characteristics. You can check. When the secondary battery of Example 1 was compared with the secondary battery of Example 2, both the initial discharge capacity and the rate characteristics were measured using an electrode in which carbon fiber and carbon black were mixed and used as a conductive auxiliary material. It was found that the secondary battery of Example 2 was more excellent.

【0038】さらに、上記それぞれの二次電池に対して
充放電サイクル試験を行い、サイクル特性を評価した。
充放電サイクル試験はリチウム二次電池が実際に使用さ
れる上限温度と目される60℃の高温環境下で行い、そ
の充放電サイクルの条件は、充電終止電圧2.7Vまで
電流密度2mA/cm2の定電流で充電を行い、次いで
放電終止電圧1.5Vまで電流密度2mA/cm2の定
電流で放電を行うことを1サイクルとし、そのサイクル
を500サイクルまで行うものとした。この試験の結果
として、それぞれの二次電池の各サイクルにおける容量
維持率(そのサイクルの放電容量/1サイクル目の放電
容量×100%)を図1に示す。
Further, each of the above secondary batteries was subjected to a charge / discharge cycle test to evaluate the cycle characteristics.
The charge / discharge cycle test is performed in a high temperature environment of 60 ° C., which is considered to be the upper limit temperature at which the lithium secondary battery is actually used. The conditions of the charge / discharge cycle are as follows. Charging at a constant current of 2 and then discharging at a constant current of 2 mA / cm 2 to a discharge end voltage of 1.5 V were defined as one cycle, and the cycle was performed up to 500 cycles. As a result of this test, FIG. 1 shows the capacity retention ratio of each secondary battery in each cycle (discharge capacity of that cycle / discharge capacity of first cycle × 100%).

【0039】図1から判るように、比較例1の二次電池
と比べて、実施例1および実施例2の二次電池が、充放
電を繰り返した場合においても放電容量の低下の小さい
二次電池となっている。したがって、リチウムチタン複
合酸化物を活物質に用いた電極を使用したリチウム二次
電池の場合、その電極の導電助材に炭素繊維を含むリチ
ウム二次電池がサイクル特性、特に高温サイクル特性に
優れていることが確認できる。なお、実施例1の二次電
池と実施例2の二次電池を比較した場合、炭素繊維とカ
ーボンブラックとを混合して導電助材とした電極を用い
た実施例2の二次電池のほうが、より長期的なつまり多
くのサイクルを経た場合のサイクル特性に優れているこ
とが確認できる。
As can be seen from FIG. 1, as compared with the secondary battery of Comparative Example 1, the secondary batteries of Examples 1 and 2 showed a small decrease in the discharge capacity even when charging and discharging were repeated. Has become a battery. Therefore, in the case of a lithium secondary battery using an electrode using a lithium-titanium composite oxide as an active material, a lithium secondary battery containing carbon fiber as a conductive additive of the electrode has excellent cycle characteristics, particularly excellent high-temperature cycle characteristics. Can be confirmed. In addition, when comparing the secondary battery of Example 1 with the secondary battery of Example 2, the secondary battery of Example 2 using an electrode in which carbon fiber and carbon black were mixed and used as a conductive auxiliary material was better. It can be confirmed that the cycle characteristics after a longer period, that is, after many cycles, are excellent.

【0040】[0040]

【発明の効果】本発明のリチウム二次電池用電極は、リ
チウムチタン複合酸化物を活物質に用いた電極であっ
て、その導電助材に炭素繊維を含むように構成したもの
である。このように構成したことにより、上述した作用
から、本電極を用いたリチウム二次電池は、レート特
性、パワー特性に優れ、かつ、サイクル特性に優れ良好
な耐久性を有するリチウム二次電池となる。
The electrode for a lithium secondary battery according to the present invention is an electrode using a lithium-titanium composite oxide as an active material, and is constituted so that its conductive auxiliary material contains carbon fibers. With such a configuration, the lithium secondary battery using the present electrode becomes a lithium secondary battery having excellent rate characteristics, power characteristics, and excellent cycle characteristics and excellent durability due to the above-described operation. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例および比較例のリチウム二次電池につ
いて行った充放電サイクル試験の結果として、それぞれ
の二次電池の各サイクルにおける容量維持率を示す。
FIG. 1 shows the capacity retention ratio in each cycle of each secondary battery as a result of a charge / discharge cycle test performed on lithium secondary batteries of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥田 匠昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 佐々木 厳 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 竹内 要二 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 小林 哲郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 4G047 CA05 CB04 CC03 CD07 5H003 AA01 AA04 BB05 BB15 BC02 BC06 BD00 BD02 5H014 AA02 EE07 EE10 HH00 HH06 5H029 AJ02 AJ05 AK03 AM03 AM04 AM05 AM07 BJ02 BJ03 DJ08 DJ15 HJ05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takuaki Okuda 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (72) Inventor Takeshi Sasaki, Nagakute-machi, Aichi-gun, Aichi Prefecture No. 41, Chochu-Yokomichi, at Toyota Central Research Institute, Inc. (72) Inventor Koji Takeuchi, No. 41, Nagachute-cho, Aichi-gun, Aichi Prefecture, Japan No. 41, Toyota Chuo Research Institute, Inc. (72) Inventor, Tetsuro Kobayashi No. 41, Toyota Chuo R & D Co., Ltd., No. 41, Nagakute-cho, Aichi-gun, Aichi-gun, Toyota-Central Research Institute, Inc. (72) Inventor Yoshio Ukyo Yoshichio Ukyo 41, Toyota-Chuo Central Research Institute, F-41, Nagakute-cho, Aichi-gun, Aichi Terms (reference) 4G047 CA05 CB04 CC03 CD07 5H003 AA01 AA04 BB05 BB15 BC02 BC06 BD00 BD02 5H014 AA02 EE07 EE10 HH00 HH06 5H029 AJ02 AJ05 AK03 AM03 A M04 AM05 AM07 BJ02 BJ03 DJ08 DJ15 HJ05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 組成式LixTiy4(0.5≦x≦
3、1≦y≦2.5)で表されるリチウムチタン複合酸
化物からなる活物質と、炭素繊維を含む導電助材と、該
活物質および該導電助材を結着する結着剤とを含んでな
るリチウム二次電池用電極。
A composition formula Li x Ti y O 4 (0.5 ≦ x ≦
3, 1 ≦ y ≦ 2.5), an active material composed of a lithium-titanium composite oxide, a conductive auxiliary material containing carbon fibers, and a binder for binding the active material and the conductive auxiliary material. An electrode for a lithium secondary battery comprising:
【請求項2】 前記炭素繊維は、平均繊維長が0.1μ
m以上10μm以下である請求項1に記載のリチウム二
次電池用電極。
2. The carbon fiber has an average fiber length of 0.1 μm.
The electrode for a lithium secondary battery according to claim 1, wherein the electrode has a length of not less than m and not more than 10 µm.
【請求項3】 前記活物質に対する前記導電助材の混合
比率は、重量比率で0.005以上0.2以下である請
求項1または請求項2に記載のリチウム二次電池用電
極。
3. The electrode for a lithium secondary battery according to claim 1, wherein a mixing ratio of the conductive auxiliary to the active material is 0.005 to 0.2 in weight ratio.
【請求項4】 前記リチウムチタン複合酸化物は、その
組成がLi0.8Ti2.24、LiTi24、Li1.33
1.674、Li1.14Ti1.714となるものから選ばれ
る1種以上のものである請求項1ないし請求項3のいず
れかに記載のリチウム二次電池用電極。
4. The lithium-titanium composite oxide has a composition of Li 0.8 Ti 2.2 O 4 , LiTi 2 O 4 , Li 1.33 T
4. The electrode for a lithium secondary battery according to claim 1, wherein the electrode is at least one member selected from the group consisting of i 1.67 O 4 and Li 1.14 Ti 1.71 O 4 .
JP2000005317A 2000-01-14 2000-01-14 Electrode for lithium secondary battery Pending JP2001196060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005317A JP2001196060A (en) 2000-01-14 2000-01-14 Electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005317A JP2001196060A (en) 2000-01-14 2000-01-14 Electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001196060A true JP2001196060A (en) 2001-07-19

Family

ID=18533995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005317A Pending JP2001196060A (en) 2000-01-14 2000-01-14 Electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001196060A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157502A (en) * 2005-12-05 2007-06-21 Nissan Motor Co Ltd Lithium ion secondary battery
US7655356B2 (en) * 2005-03-23 2010-02-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2012069454A (en) * 2010-09-27 2012-04-05 Panasonic Corp Nonaqueous electrolyte secondary battery
KR101227308B1 (en) * 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101227308B1 (en) * 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery
US7655356B2 (en) * 2005-03-23 2010-02-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007157502A (en) * 2005-12-05 2007-06-21 Nissan Motor Co Ltd Lithium ion secondary battery
JP2012069454A (en) * 2010-09-27 2012-04-05 Panasonic Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5302456B1 (en) Non-aqueous secondary battery
JP5030123B2 (en) Lithium secondary battery
JP4897223B2 (en) Nonaqueous electrolyte secondary battery
JP4748949B2 (en) Nonaqueous electrolyte secondary battery
EP2549577B1 (en) Lithium secondary battery using ionic liquid
JP5565465B2 (en) Nonaqueous electrolyte secondary battery
JP2001210324A (en) Lithium secondary battery
JP5250948B2 (en) Nonaqueous electrolyte secondary battery
WO2011129066A1 (en) Lithium-ion secondary battery
JP3609612B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP3430058B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
JP5644083B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2023538082A (en) Negative electrode and secondary battery containing the same
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
EP4109593A1 (en) Anode and secondary battery comprising same
WO2024055730A1 (en) Positive electrode sheet, battery cell and battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP2002117832A (en) Lithium secondary battery
JP2000077097A (en) Nonaqueous electrolyte secondary battery
JP2000268878A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090114

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228