JP2001210324A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001210324A
JP2001210324A JP2000014275A JP2000014275A JP2001210324A JP 2001210324 A JP2001210324 A JP 2001210324A JP 2000014275 A JP2000014275 A JP 2000014275A JP 2000014275 A JP2000014275 A JP 2000014275A JP 2001210324 A JP2001210324 A JP 2001210324A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
composite oxide
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000014275A
Other languages
Japanese (ja)
Other versions
JP4644895B2 (en
Inventor
Kazuhiko Mukai
和彦 向
Hideyuki Nakano
秀之 中野
Naruaki Okuda
匠昭 奥田
Itsuki Sasaki
厳 佐々木
Yoji Takeuchi
要二 竹内
Tetsuo Kobayashi
哲郎 小林
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000014275A priority Critical patent/JP4644895B2/en
Publication of JP2001210324A publication Critical patent/JP2001210324A/en
Application granted granted Critical
Publication of JP4644895B2 publication Critical patent/JP4644895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which is low in price and superior in a cycle characteristic, especially under high temperature. SOLUTION: The lithium secondary battery is composed of a positive electrode which contains lithium manganese oxide compound expressed by the composition formula as Li1+x, My, Mn2-x-yO4-z (M is one of the followings, Ti, V, Cr, Fe, Co, Ni, Zn, Cu, W, Mg, and Al; 0<=x<0.2, 0<=y<0.5, 0<=z<0.2), and the half band width of the (400) diffraction peak by the powder X ray diffraction method using CuK α beam is 0.02 θ to 0.1 θ (θ is a diffraction angle), and the form of its first particles is octahedron as a positive electrode active substance, and a negative electrode which contains lithium titanium oxide compound expressed by the composition formula as LiaTibO4, (0.5<=a<=3, 1<=b<=2.5) as a negative electrode active substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
脱離現象を利用して充放電するリチウム二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to a lithium secondary battery that charges and discharges using a desorption phenomenon.

【0002】[0002]

【従来の技術】携帯電話、パソコン等の小型化に伴い、
エネルギー密度の高い二次電池が必要とされ、通信機
器、情報関連機器の分野では、リチウム二次電池が広く
普及するに至っている。また、資源問題、環境問題か
ら、自動車の分野でも電気自動車に対する要望が高ま
り,安価であってかつ容量が大きく、サイクル特性が良
好なリチウム二次電池の開発が急がれている。
2. Description of the Related Art As mobile phones and personal computers become smaller,
Secondary batteries with high energy density are required, and lithium secondary batteries have come into widespread use in the fields of communication devices and information-related devices. In addition, demands for electric vehicles are increasing in the field of automobiles due to resource problems and environmental problems, and development of lithium secondary batteries that are inexpensive, have large capacities, and have good cycle characteristics is urgently required.

【0003】現在、リチウム二次電池の正極活物質に
は、4V級の二次電池を構成できるものとして、層状岩
塩構造のLiCoO2が採用されるに至っている。Li
CoO2は、合成が容易でかつ取り扱いも比較的容易で
あることに加え、充放電サイクル特性において優れるこ
とから、LiCoO2を正極活物質に使用する二次電池
が主流となっている。
At present, as a positive electrode active material of a lithium secondary battery, LiCoO 2 having a layered rock salt structure has been adopted as a material capable of constituting a 4 V class secondary battery. Li
Since CoO 2 is easy to synthesize and relatively easy to handle and has excellent charge / discharge cycle characteristics, secondary batteries using LiCoO 2 as a positive electrode active material are mainly used.

【0004】ところが、コバルトは資源として少なく、
LiCoO2を正極活物質に使用した二次電池では、自
動車用電池をにらんだ将来の量産化、大型化に対応しに
くく、また価格的にも極めて高価なものにならざるを得
ない。そこでコバルトに代えて、比較的資源として豊富
でありかつ安価なマンガンを構成元素として含む、スピ
ネル構造のLiMn24を正極活物質に用いる試みが為
されている。
However, cobalt is scarce as a resource,
A secondary battery using LiCoO 2 as a positive electrode active material is difficult to cope with future mass production and enlargement of an automotive battery, and is inevitably expensive in price. Therefore, an attempt has been made to use, as a positive electrode active material, LiMn 2 O 4 having a spinel structure and containing manganese, which is relatively abundant and inexpensive as a constituent element, as a constituent element instead of cobalt.

【0005】しかし、LiMn24は、LiCoO2
比べサイクル劣化が激しく、特に高温下においてそれが
顕著であるため、厳しい使用環境下に置かれる電気自動
車用電池としては未だ実用化されるに至っていない。L
iMn24のサイクル劣化の機構は、未だ明らかではな
いが、正極活物質と電解液との反応によるMnの溶出、
充放電を繰り返すことによる結晶構造の破壊等が考えら
れる。
[0005] However, LiMn 2 O 4 is much more liable to cycle degradation than LiCoO 2 , and is particularly remarkable at high temperatures, so that LiMn 2 O 4 is still in practical use as a battery for electric vehicles placed under severe use environments. Not reached. L
Although the mechanism of the cycle deterioration of iMn 2 O 4 is not yet clear, the elution of Mn due to the reaction between the positive electrode active material and the electrolyte,
Destruction of the crystal structure due to repetition of charging and discharging is considered.

【0006】このLiMn24のサイクル劣化の問題を
解決する手段として、例えば特開平9−147867号
公報等に示されるように、LiMn24の結晶のMnサ
イトを一部Co、Cr、Fe等で置換して結晶構造のを
安定化させる手段、また、G.G.Amatucci et al.,J.Powe
r Sources 69,11(1997) に示されるように、電解液との
反応を抑えるため正極をホウ素化合物で表面修飾する手
段などが検討されている。
As a means for solving the problem of the cycle deterioration of LiMn 2 O 4 , for example, as shown in Japanese Patent Application Laid-Open No. 9-147867, the Mn site of the LiMn 2 O 4 crystal is partially Co, Cr, Means for stabilizing the crystal structure by substituting with Fe or the like, and GGAmatucci et al., J. Powe
As shown in r Sources 69, 11 (1997), means for modifying the surface of the positive electrode with a boron compound to suppress the reaction with the electrolyte are being studied.

【0007】従来、LiMn24は、一般に、MnO2
等のマンガン化合物の粉末とLi2CO3等のリチウム化
合物の粉末とを乾式混合させた混合物を焼成するといっ
た固相反応法によって合成されている。しかし、この方
法による合成では、結晶性に優れたLiMn24を合成
することは困難であり、特にMnサイトを他の元素で置
換するような場合、置換元素が未反応のまま残存すると
いった現象を生じ易く、均一に置換することはさらに困
難であった。このような未反応相の存在は、正極活物質
としての容量低下を招くとともに、充放電時の相変化が
大きいため、良好なサイクル特性を得られない一因とも
なっていた。
[0007] Conventionally, LiMn 2 O 4 is generally MnO 2
Is synthesized by a solid-phase reaction method in which a mixture obtained by dry-mixing a powder of a manganese compound such as Li and a powder of a lithium compound such as Li 2 CO 3 is fired. However, in the synthesis by this method, it is difficult to synthesize LiMn 2 O 4 having excellent crystallinity. In particular, when the Mn site is replaced with another element, the replacement element remains unreacted. The phenomenon easily occurred, and it was more difficult to perform uniform substitution. The presence of such an unreacted phase causes a decrease in the capacity of the positive electrode active material, and also causes a large phase change at the time of charge / discharge, so that good cycle characteristics cannot be obtained.

【0008】一方、リチウム二次電池のサイクル劣化
は、正極のみならず、負極、非水電解液といった他の構
成要素に依存する部分も大きい。現在主流となっている
リチウム二次電池は、負極活物質に黒鉛、コークス、ハ
ードカーボン等の炭素材料を用いたいわゆるリチウムイ
オン二次電池であるが、これらの炭素材料は、初回充放
電時に不可逆反応が生じるといったリテンションの問題
に加え、その還元電位がLi/Li+に対して約0.1
V付近と低く、負極表面上での非水電解液の分解を引き
起こし易く、この現象に起因したサイクル劣化も問題と
なっている。
On the other hand, the cycle deterioration of a lithium secondary battery largely depends not only on the positive electrode but also on other components such as a negative electrode and a non-aqueous electrolyte. Currently, the mainstream lithium secondary battery is a so-called lithium ion secondary battery that uses carbon materials such as graphite, coke, and hard carbon as the negative electrode active material.However, these carbon materials are irreversible during the first charge / discharge. In addition to the retention problem that a reaction occurs, the reduction potential is about 0.1 with respect to Li / Li + .
As low as around V, the non-aqueous electrolyte is likely to be decomposed on the negative electrode surface, and cycle deterioration due to this phenomenon is also a problem.

【0009】[0009]

【発明が解決しようとする課題】本発明者は、結晶性の
高いリチウムマンガン複合酸化物を正極活物質として用
いることにより、リチウム二次電池のコストの低減を図
るとともに、そのリチウム二次電池のサイクル特性、特
に高温下でのサイクル特性を向上させる得るとの知見を
得た。また、負極活物質として、リチウムチタン複合酸
化物を用いることにより負極および非水電解液に起因す
るサイクル劣化をも抑制できるとの知見を得た。つま
り、リチウムチタン複合酸化物は、還元電位がLi/L
+に対して約1.5Vと高く、負極表面における非水
電解液の分解を抑制できることに加え、その結晶構造の
安定さから、負極および非水電解液に起因するサイクル
劣化をも抑制できるとする知見である。
SUMMARY OF THE INVENTION The present inventor has attempted to reduce the cost of a lithium secondary battery by using a lithium manganese composite oxide having high crystallinity as a positive electrode active material, and to reduce the cost of the lithium secondary battery. It has been found that cycle characteristics, especially cycle characteristics at high temperatures, can be improved. In addition, it has been found that the use of a lithium-titanium composite oxide as a negative electrode active material can also suppress cycle deterioration caused by the negative electrode and the non-aqueous electrolyte. That is, the lithium-titanium composite oxide has a reduction potential of Li / L
It is as high as about 1.5 V with respect to i + , and in addition to being able to suppress the decomposition of the nonaqueous electrolyte on the negative electrode surface, it is also possible to suppress the cycle deterioration caused by the negative electrode and the nonaqueous electrolyte from the stability of the crystal structure It is a finding that.

【0010】本発明は上記知見に基づきなされたもので
あり、安価であり、かつ、サイクル特性、特に高温下で
のサイクル特性に優れたリチウム二次電池を提供するこ
とを課題としている。
The present invention has been made based on the above findings, and has as its object to provide a lithium secondary battery which is inexpensive and has excellent cycle characteristics, particularly excellent cycle characteristics at high temperatures.

【0011】[0011]

【課題を解決するための手段】本発明のリチウム二次電
池は、組成式Li1+xyMn2-x-y4-z(MはTi、
V、Cr、Fe、Co、Ni、Zn、Cu、W、Mg、
Alのうちの1種以上、0≦x<0.2、0≦y<0.
5、0≦z<0.2)で表され、CuKα線を用いた粉
末X線回折法による(400)回折ピークの半値幅が
0.02θ以上0.1θ以下(θは回折角)であり、1
次粒子の形状が八面体をなすリチウムマンガン複合酸化
物を正極活物質として含む正極と、組成式LiaTib
4(0.5≦a≦3、1≦b≦2.5)で表されるリチ
ウムチタン複合酸化物を負極活物質として含む負極とを
備えてなることを特徴とする。
The lithium secondary battery of the present invention According to an aspect of the composition formula Li 1 + x M y Mn 2 -xy O 4-z (M is Ti,
V, Cr, Fe, Co, Ni, Zn, Cu, W, Mg,
At least one of Al, 0 ≦ x <0.2, 0 ≦ y <0.
5, 0 ≦ z <0.2, and the half-width of the (400) diffraction peak by the powder X-ray diffraction method using CuKα radiation is 0.02θ or more and 0.1θ or less (θ is a diffraction angle). , 1
A positive electrode containing, as a positive electrode active material, a lithium manganese composite oxide in which the shape of secondary particles forms an octahedron; and a composition formula Li a Ti b O
4 (0.5 ≦ a ≦ 3, 1 ≦ b ≦ 2.5) and a negative electrode containing a lithium titanium composite oxide as a negative electrode active material.

【0012】つまり、正極については、スピネル構造の
リチウムマンガン複合酸化物であって、非常に結晶性の
よいものを正極活物質に用いることにより、繰り返され
る充放電によっても結晶構造が崩壊されることなく、リ
チウム二次電池のサイクル特性が向上することとなる。
In other words, for the positive electrode, the use of a lithium manganese composite oxide having a spinel structure and having a very good crystallinity as the positive electrode active material allows the crystal structure to be destroyed by repeated charging and discharging. Therefore, the cycle characteristics of the lithium secondary battery are improved.

【0013】なお、八面体の1次粒子形状を表した走査
型電子顕微鏡(SEM)写真については、例示として、
図1に掲げる。この写真は、倍率70,000倍のもの
で、中央部に撮影されている八面体形状の1次粒子の大
きさは、約6μmである。八面体形状の1次粒子を有す
ることによる作用は、現在のところ明らかでないが、充
放電に伴う結晶格子の膨張・収縮を粒子間で吸収しやす
いものとなり、正極を構成する要素の1つである導電材
との接触不良に伴う導電性の低下を抑制するように作用
するものと考えられる。
A scanning electron microscope (SEM) photograph showing the primary particle shape of an octahedron is shown as an example.
It is shown in FIG. This photograph is at a magnification of 70,000, and the size of the octahedral primary particles photographed in the center is about 6 μm. The effect of having octahedral primary particles is not clear at present, but the expansion and contraction of the crystal lattice due to charge and discharge can be easily absorbed between the particles, and it is one of the elements constituting the positive electrode. It is considered that this acts to suppress a decrease in conductivity due to poor contact with a certain conductive material.

【0014】また、負極についていえば、例えば組成式
Li0.8Ti2.24、LiTi24、Li1.33Ti1.67
4、Li1.14Ti1.714等で表されるリチウムチタン
複合酸化物を負極活物質に用いることにより、その結晶
構造の安定さ、および、還元電位が比較的高く負極表面
での非水電解液の分解を抑制できるという作用から、リ
チウム二次電池のサイクル特性が向上することになる。
As for the negative electrode, for example, the composition formulas Li 0.8 Ti 2.2 O 4 , LiTi 2 O 4 , and Li 1.33 Ti 1.67
By using a lithium-titanium composite oxide represented by O 4 , Li 1.14 Ti 1.71 O 4 or the like as the negative electrode active material, the stability of the crystal structure and the reduction potential are relatively high, and the nonaqueous electrolysis on the negative electrode surface is performed. From the effect that the decomposition of the liquid can be suppressed, the cycle characteristics of the lithium secondary battery are improved.

【0015】したがって、上記正極および負極を対向さ
せて構成した本発明のリチウム二次電池は、正極材料に
Coをベースとする材料を用いないことによって安価で
あり、かつ、サイクル特性、特にリチウムマンガン複合
酸化物で問題となっていた高温環境下で使用する場合の
サイクル特性が改善された、耐久性に優れたリチウム二
次電池となる。
Therefore, the lithium secondary battery of the present invention in which the positive electrode and the negative electrode are opposed to each other is inexpensive by not using a Co-based material for the positive electrode material, and has low cycle characteristics, especially lithium manganese. A lithium secondary battery with improved cycle characteristics when used in a high-temperature environment, which has been a problem with composite oxides, and having excellent durability.

【0016】[0016]

【発明の実施の形態】以下に本発明のリチウム二次電池
の実施形態について、正極活物質となるリチウムマンガ
ン複合酸化物、負極活物質となるリチウムチタン複合酸
化物、リチウム二次電池の全体構成の順に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a lithium secondary battery according to the present invention will be described with reference to a lithium manganese composite oxide serving as a positive electrode active material, a lithium titanium composite oxide serving as a negative electrode active material, and an overall configuration of a lithium secondary battery. Will be described in this order.

【0017】〈リチウムマンガン複合酸化物〉本発明の
リチウム二次電池の正極活物質となるリチウムマンガン
複合酸化物(以下、「本リチウムマンガン複合酸化物」
という)は、スピネル構造のリチウムマンガン複合酸化
物である。スピネル構造リチウムマンガン複合酸化物の
基本的な組成式はLiMn24で表され、この化学量論
的なLiMn24を本正極活物質として用いることがで
きる。
<Lithium-manganese composite oxide> A lithium-manganese composite oxide serving as a positive electrode active material of the lithium secondary battery of the present invention (hereinafter referred to as “the lithium-manganese composite oxide”)
Is a spinel-structured lithium manganese composite oxide. The basic composition formula of the spinel-structured lithium manganese composite oxide is represented by LiMn 2 O 4 , and this stoichiometric LiMn 2 O 4 can be used as the present positive electrode active material.

【0018】また、過剰のリチウムを結晶内に存在させ
たもの、結晶構造をより安定させるべくMnサイトの一
部を他の金属で置換したもの、あるいはOサイトに欠損
を生じたものをも用いることもできる。Mnサイトを置
換させることのできる他の金属としては、Ti、V、C
r、Fe、Co、Ni、Zn、Cu、W、Mg、Alを
挙げることができ、これらのもののうち1種のものまた
は2種以上のもので置換することができる。これらの置
換可能な金属元素のうち、活物質合成の容易性、コスト
等から総合的に判断すれば、置換元素にNiを用いるの
が望ましい。
In addition, a material in which an excess of lithium is present in the crystal, a material in which a part of the Mn site is substituted with another metal in order to further stabilize the crystal structure, or a material in which an O site has a defect is also used. You can also. Other metals that can replace the Mn site include Ti, V, C
Examples thereof include r, Fe, Co, Ni, Zn, Cu, W, Mg, and Al, and one or more of these can be substituted. Of these replaceable metal elements, it is desirable to use Ni as the replacement element, when comprehensively judged from the ease of synthesis of the active material, cost, and the like.

【0019】上記のすべてのリチウムマンガン酸化物を
一般的な組成式で表せば、Li1+xyMn2-x-y
4-z(Mは、上記他の金属)となるが、リチウム二次電
池の正極活物質としての特性を満足する置換および欠損
の範囲が存在する。本リチウムマンガン複合酸化物とし
ては、0≦x<0.2、0≦y<0.5、0≦z<0.
2の範囲のものを用いることができる。これは、x≧
0.2の場合やy≧0.5の場合には、固相法による製
造が困難で、スピネル相以外の不純物相が生成して結晶
性を低下させ、サイクル特性を劣化させる可能性がある
からであり、また単位重量当たりの容量が減少し過ぎる
からである。また、z≧0.2では、スピネル構造が破
壊され結晶構造が不安定になり、サイクル劣化が大きく
なるおそれがあるからである。なお、より望ましい範囲
は、0.01≦x≦0.1、0.05≦y≦0.3であ
り、zの値は0に近い程よい。
[0019] Expressed all lithium manganese oxide of above general formula, Li 1 + x M y Mn 2-xy O
4-z (M is the other metal described above), but there is a range of substitution and deficiency that satisfies the characteristics as a positive electrode active material of a lithium secondary battery. As the present lithium manganese composite oxide, 0 ≦ x <0.2, 0 ≦ y <0.5, 0 ≦ z <0.
A range of 2 can be used. This is because x ≧
In the case of 0.2 or y ≧ 0.5, it is difficult to produce by the solid phase method, and an impurity phase other than the spinel phase is generated, which may lower crystallinity and deteriorate cycle characteristics. This is because the capacity per unit weight is excessively reduced. If z ≧ 0.2, the spinel structure is destroyed, the crystal structure becomes unstable, and the cycle deterioration may increase. Note that a more desirable range is 0.01 ≦ x ≦ 0.1, 0.05 ≦ y ≦ 0.3, and the value of z is preferably as close to 0 as possible.

【0020】本リチウムマンガン複合酸化物は、結晶性
の高いスピネル構造である必要がある。結晶性の高さを
定義する方法として、粉末X線回折法によるピークの半
値幅を用いれば、スピネル構造固有の(400)面の反
射によるピークが、0.02θ以上0.1θ以下(θは
回折角)のものを用いる。0.1θを超えるものの場合
は、結晶性が低く、正極活物質として用いたときには、
繰り返される充放電によってスピネル構造の結晶構造が
崩壊してサイクル特性の劣化が激しいものとのなり、ま
た0.02θ未満のものは、製造時間が非常に長時間に
及ぶこととなり、かえって正極活物質のコストを引き上
げることとなるからである。ちなみに、X線回折チャー
ト上で、(400)面の回折ピークは、2θで42〜4
5°位置に現れる。例えば、2θ=44°のところにピ
ークが現れた場合には、適正な半値幅は、0.44°以
上2.2°以下となる。結晶性により優れたリチウムマ
ンガン複合酸化物といった観点からは、0.05θ以下
とするのがより望ましい。なお、Wilson法による
格子歪みで表現する場合には、0.035%以下のもの
とするのが望ましい。
The lithium manganese composite oxide needs to have a spinel structure with high crystallinity. As a method of defining the crystallinity height, if the half width of the peak by the powder X-ray diffraction method is used, the peak due to the reflection of the (400) plane unique to the spinel structure is 0.02θ or more and 0.1θ or less (θ is Diffraction angle). In the case of exceeding 0.1θ, the crystallinity is low, and when used as a positive electrode active material,
The crystal structure of the spinel structure collapses due to repeated charging and discharging, resulting in severe deterioration of the cycle characteristics. In the case of less than 0.02θ, the production time is extremely long, and on the contrary, the cathode active material This will increase the cost. Incidentally, on the X-ray diffraction chart, the diffraction peak of the (400) plane is 42 to 4 at 2θ.
Appears at the 5 ° position. For example, when a peak appears at 2θ = 44 °, the appropriate half width is 0.44 ° or more and 2.2 ° or less. From the viewpoint of a lithium manganese composite oxide having better crystallinity, it is more preferable to set the thickness to 0.05θ or less. In addition, when expressing by lattice distortion by the Wilson method, it is desirable to set it as 0.035% or less.

【0021】本リチウムマンガン複合酸化物はその1次
粒子が八面体形状をしている。上述したが、この1次粒
子を写した走査型電子顕微鏡(SEM)写真について
は、図1に例示する。この写真は、倍率70,000倍
のもので、中央部に撮影されている八面体形状の1次粒
子の大きさは、約6μmである。また、本リチウムマン
ガン複合酸化物は、上述した八面体形状をした1次粒子
が凝集し2次粒子を形成する粉末状のものを用いるのが
望ましい。1次粒子が凝集して2次粒子を形成する様子
を写したSEM写真については、図2に例示する。この
写真の2次粒子の平均粒径(球換算平均粒径)は約10
μmとなっている。
In the present lithium manganese composite oxide, the primary particles have an octahedral shape. As described above, a scanning electron microscope (SEM) photograph of the primary particles is illustrated in FIG. This photograph is at a magnification of 70,000, and the size of the octahedral primary particles photographed in the center is about 6 μm. Further, as the lithium manganese composite oxide, it is desirable to use a powdery one in which the octahedral primary particles are aggregated to form secondary particles. FIG. 2 illustrates an SEM photograph showing a state in which the primary particles are aggregated to form secondary particles. The average particle size of the secondary particles in this photograph (sphere-converted average particle size) is about 10
μm.

【0022】本リチウムマンガン複合酸化物の粒子形状
と比較すべく、市販されている市販されている組成式L
iMn24で表されるリチウムマンガン複合酸化物のS
EM写真を図3に示す。この写真のリチウムマンガン複
合酸化物は非常に小さな不規則形状の1次粒子が集合し
た状態となっている。この状態のものと比べれば、八面
体形状の1次粒子を有する本リチウムマンガン複合酸化
物は結晶性のよいものであることが容易に確認できる。
For comparison with the particle shape of the present lithium manganese composite oxide, a commercially available composition formula L
S of lithium manganese composite oxide represented by iMn 2 O 4
The EM photograph is shown in FIG. The lithium manganese composite oxide in this photograph is in a state where very small irregularly shaped primary particles are aggregated. Compared to the one in this state, it can be easily confirmed that the present lithium manganese composite oxide having octahedral primary particles has good crystallinity.

【0023】本リチウムマンガン複合酸化物において
は、2次粒子の粒子径も電池のサイクル特性を左右す
る。粒子径が大きすぎる場合は活物質内のイオン拡散
性、電子伝導性が低下し、またデンドライトの析出によ
る内部ショートの原因ともなる。また、粒子径が大きす
ぎる場合には、充填性が悪く、密度の高い正極が得られ
ず、高容量の電池を構成するという点で劣るものとな
る。これに対して、粒子径が小さすぎる場合は電解液と
の反応性が増し、活物質、電解液の分解を引き起こす原
因となる。したがって2次粒子の平均粒径が、球換算平
均粒径で5μm以上25μm以下の粉末を用いるのが望
ましい。なお、この球換算平均粒径は、レーザ回折/散
乱式粒度分布測定装置によって求めた値である。
In the present lithium manganese composite oxide, the particle diameter of the secondary particles also affects the cycle characteristics of the battery. If the particle size is too large, the ion diffusivity and the electron conductivity in the active material are reduced, and the internal short circuit due to the precipitation of dendrites is caused. On the other hand, if the particle size is too large, the filling property is poor, a high-density positive electrode cannot be obtained, and it is inferior in that a high-capacity battery is formed. On the other hand, when the particle size is too small, the reactivity with the electrolyte increases, which causes the decomposition of the active material and the electrolyte. Therefore, it is desirable to use a powder having an average particle diameter of secondary particles of not less than 5 μm and not more than 25 μm in sphere equivalent average particle diameter. The sphere-converted average particle diameter is a value determined by a laser diffraction / scattering particle size distribution analyzer.

【0024】粉末の比表面積もサイクル特性に影響を与
える。そこで、高温でのサイクル劣化をより抑制するた
めには、比表面積が比較的小さいものを用いるのが望ま
しく、本リチウムマンガン複合酸化物では、BET比表
面積が0.2m2/g以上2m2/g以下のものを用いる
のが望ましい。上記2次粒子径との関係と同様、0.2
2/g未満の場合は、大きな容量の電池を構成するの
が難しくなり、また、2m2/gを超える場合は、電解
液の分解が起こりやすくサイクル特性の点で劣るものと
なるからである。なお、BET比表面積はN2吸着1点
法によって求めた値とする。
The specific surface area of the powder also affects the cycle characteristics. Therefore, in order to further suppress the cycle degradation at high temperature, is desirable to use a specific surface area is relatively small, in the lithium manganese composite oxide, BET specific surface area of 0.2 m 2 / g or more 2m 2 / It is desirable to use one having g or less. Similar to the relationship with the secondary particle diameter, 0.2
If it is less than m 2 / g, it becomes difficult to form a battery having a large capacity, and if it exceeds 2 m 2 / g, decomposition of the electrolyte solution is likely to occur, resulting in inferior cycle characteristics. is there. The BET specific surface area is a value determined by the N 2 adsorption one-point method.

【0025】本リチウムマンガン複合酸化物を製造方法
は特に限定するものではないが、以下の方法により容易
に製造することができる。その製造方法は、Liを含有
する原料と、Mnを含有する原料と、必要に応じて前記
金属Mを含有する原料とを、湿式粉砕・混合して混合物
を得る粉砕混合工程と、前記粉砕混合工程で得られた混
合物を焼成してリチウムマンガン複合酸化物を得る焼成
工程とを有する製造方法である。つまり、この製造方法
では、従来の固相反応法と異なり、焼成工程前に湿式で
粉砕混合工程を行い、この工程で均一な混合物を作製す
ることによって、その後の焼成工程を経たリチウムマン
ガン複合酸化物は、均一でかつ非常に結晶性のよいもの
となる。
The production method of the present lithium manganese composite oxide is not particularly limited, but it can be easily produced by the following method. The production method includes a pulverization-mixing step of wet-pulverizing and mixing a raw material containing Li, a raw material containing Mn, and a raw material containing the metal M, if necessary, to obtain a mixture. And a firing step of firing the mixture obtained in the step to obtain a lithium manganese composite oxide. In other words, in this manufacturing method, unlike the conventional solid-phase reaction method, the pulverization-mixing step is performed in a wet manner before the firing step, and a uniform mixture is produced in this step. The product is uniform and very crystalline.

【0026】製造するための原料には、Li源となるリ
チウム化合物、Mn源となるマンガン化合物、Mnサイ
トをその他の金属で置換する場合はその置換金属を含有
する化合物を用いる。これらの化合物は、特に限定され
るものではないが、これらの金属が安定的に存在する価
数となっている化合物であることが望ましい。例えば、
マンガン化合物にはMnO2、Mn34、Mn(COO
H)2等が、リチウム化合物には、Li2CO3、Li
(OH)、Li2O、LiI、LiNO3等が挙げられ
る。また置換金属を含む化合物も酸化物、水酸化物等を
用いることができる。例えばNiで置換する場合には、
Ni(OH)2等を用いることができる。
As a raw material for the production, a lithium compound serving as a Li source, a manganese compound serving as a Mn source, and a compound containing the substituted metal when the Mn site is substituted with another metal are used. These compounds are not particularly limited, but are desirably compounds having a valence in which these metals are stably present. For example,
Manganese compounds include MnO 2 , Mn 3 O 4 , Mn (COO
H) 2 and the like include lithium compounds such as Li 2 CO 3 and Li
(OH), Li 2 O, LiI, LiNO 3 and the like. As the compound containing a substituted metal, an oxide, a hydroxide, or the like can be used. For example, when replacing with Ni,
Ni (OH) 2 or the like can be used.

【0027】粉砕混合工程は、上記化合物を、得ようと
するリチウムマンガン複合酸化物のLi、Mn、置換金
属の組成比に応じた割合で混合させる。混合にはボール
ミル、ビスコミル、アトライター等を用いて、湿式で行
う。ボールミル、ビスコミル、アトライター等を用いる
理由は、混合と同時に粉砕を行うことができ、しかも粉
砕混合時間等の条件を変更することにより、任意の粒径
および粒度分布をもつ混合物が得られることにある。湿
式で行うのは、均一な混合物を得るためである。なお、
ボールミル、ビスコミル、アトライター等のなかでは、
ボールの大きさ、種類を変えることによって混合粉砕条
件を容易に変更できるという理由から、ボールミルを用
いるのがより望ましい。
In the pulverizing and mixing step, the above compounds are mixed at a ratio according to the composition ratio of Li, Mn, and the substitution metal in the lithium-manganese composite oxide to be obtained. The mixing is performed by a wet method using a ball mill, a visco mill, an attritor, or the like. The reason for using a ball mill, a viscomiler, an attritor, etc. is that a mixture having an arbitrary particle size and particle size distribution can be obtained by changing conditions such as mixing and mixing time, which can be performed simultaneously with mixing. is there. The wet process is performed to obtain a uniform mixture. In addition,
Among ball mills, visco mills, attritors, etc.,
It is more preferable to use a ball mill because the mixing and grinding conditions can be easily changed by changing the size and type of the ball.

【0028】ボールミルで粉砕混合を行う場合、ボール
ミルのポットおよびポット内に入れるボールには、原料
と反応しにくく、重く、硬く、かつ摩耗しにくい必要が
あるという理由から、セラミック材料を用いるのが望ま
しい。中でも硬質であるSi 3Ni4、ZrO2等の材質
のものがより好ましい。また湿式とするために混入させ
る液体には、水、アルコール、ヘキサン等様々なものが
用いられる。中でも、原料と反応せず、また蒸発後に凝
固しにくいものが望ましく、コスト面等を総合的に考慮
すれば、エチルアルコール、イソプロピルアルコール等
の工業用アルコールを用いるのが望ましい。
When pulverizing and mixing with a ball mill,
Ingredients for the mill pot and the balls in the pot
Must be heavy, hard, and resistant to wear
Use of ceramic materials is desirable
New Among them, Si which is hard ThreeNiFour, ZrOTwoMaterials such as
Are more preferred. Also mixed in to make it wet
Liquids such as water, alcohol, hexane, etc.
Used. Among them, they do not react with the raw materials and after evaporation
It is desirable that it is hard to harden, and comprehensively considers costs etc.
If you do, ethyl alcohol, isopropyl alcohol, etc.
It is desirable to use industrial alcohols of the type described above.

【0029】ボールミルによって粉砕混合を行う場合、
粉砕混合時間は、原料化合物の粒度および得ようとする
リチウムマンガン複合酸化物の粒度等によって変化させ
る必要があるが、2時間以上100時間以下であること
が望ましい。これは、2時間未満の場合は、均一な混合
が達成できないからであり、100時間を超える場合
は、得られるリチウムマンガン複合酸化物の粒径が小さ
くなりすぎまた製造コストをいたずらに押し上げること
となるからである。混合物の均一性、製造コスト等を総
合的に勘案すれば、4時間以上24時間以下とするのが
さらに望ましい。
When pulverizing and mixing by a ball mill,
The pulverization and mixing time needs to be changed depending on the particle size of the raw material compound, the particle size of the lithium-manganese composite oxide to be obtained, and the like, but is preferably 2 hours or more and 100 hours or less. This is because if less than 2 hours, uniform mixing cannot be achieved, and if more than 100 hours, the particle size of the resulting lithium manganese composite oxide becomes too small and the production cost is unnecessarily increased. Because it becomes. In consideration of the uniformity of the mixture, the production cost, and the like, it is more preferable to set the time to 4 hours to 24 hours.

【0030】焼成工程は、上記粉砕混合工程によって得
られた混合物を、焼成する工程である。焼成に用いられ
る炉は、特に限定されるものではなく、通常の固相反応
法による合成で用いることができるものであればいずれ
のものをも用いることができる。焼成温度は、600℃
以上1200℃以下とするのが望ましい。600℃未満
の場合は、結晶粒の成長に時間がかかりすぎ、また12
00℃を超える場合は、スピネル構造の結晶が分解して
しまうからである。結晶性のより高いスピネル構造のリ
チウムマンガン複合酸化物を得るためには900℃以上
950℃以下の温度で焼成するのがより望ましい。焼成
時間は、焼成温度にもよるが、5時間以上50時間以下
とすることが望ましい。
The firing step is a step of firing the mixture obtained by the above-mentioned pulverizing and mixing step. The furnace used for firing is not particularly limited, and any furnace can be used as long as it can be used for synthesis by a usual solid phase reaction method. The firing temperature is 600 ° C
The temperature is desirably at least 1200 ° C. If the temperature is lower than 600 ° C., it takes too much time to grow crystal grains, and 12
If the temperature exceeds 00 ° C., crystals having a spinel structure will be decomposed. In order to obtain a lithium-manganese composite oxide having a higher crystallinity and a spinel structure, firing at a temperature of 900 ° C or more and 950 ° C or less is more preferable. The baking time depends on the baking temperature, but is preferably 5 hours or more and 50 hours or less.

【0031】〈リチウムチタン複合酸化物〉本発明のリ
チウム二次電池の負極活物質となるリチウムチタン複合
酸化物(以下、「本リチウムチタン複合酸化物」とい
う)は、組成式LiaTib4(0.5≦a≦3、1≦
b≦2.5)で表されるリチウムチタン複合酸化物であ
る。本リチウムチタン複合酸化物は、その結晶構造がス
ピネル構造あるいはそれに類似する構造となっており、
CuKα線を用いた粉末X線回折によれば、結晶構造中
の面間隔が少なくとも4.84Å、2.53Å、2.0
9Å、1.48Å(各面間とも±0.1Å)となる回折
面(反射面)において、回折ピークが存在することを特
徴とする。
[0031] <lithium-titanium composite oxide> lithium-titanium composite oxide having a negative electrode active material of a lithium secondary battery of the present invention (hereinafter, referred to as "the lithium-titanium composite oxide") the composition formula Li a Ti b O 4 (0.5 ≦ a ≦ 3, 1 ≦
b ≦ 2.5). The lithium titanium composite oxide has a spinel structure or a structure similar thereto,
According to powder X-ray diffraction using CuKα ray, the interplanar spacing in the crystal structure was at least 4.84 °, 2.53 °, 2.0
It is characterized in that a diffraction peak is present on a diffraction surface (reflection surface) at 9 ° and 1.48 ° (± 0.1 ° between each surface).

【0032】この結晶構造をもつ本リチウムチタン複合
酸化物は、結晶構造が安定しており、充放電に伴うリチ
ウムの吸蔵・離脱によっても、その基本となる構造が崩
壊しにくく、サイクル特性の良好なリチウム二次電池を
構成できる負極活物質材料となり得る。種々ある組成の
中でも、結晶構造の安定という点では、組成式Li0. 8
Ti2.24、LiTi24、Li1.33Ti1.674、L
1.14Ti1.714で表されるものが優れており、こら
らのうちの1種のものを単独でまたは2種以上のものを
混合して用いることが望ましい。負極活物質として用い
た場合、合成が容易で容量が大きくまた結晶構造がより
安定しているという点からすれば、組成式Li1.33Ti
1.674で表されるものを用いることがより望ましい。
ちなみに、組成式Li0.8Ti2.24、Li1.33Ti
1.674、Li1.14Ti1.714は、それぞれ組成式Li
4Ti1120、Li4Ti512、Li2Ti37と表すこ
ともできる。
The present lithium-titanium composite having this crystal structure
Oxide has a stable crystal structure, and lithium
The basic structure is also destroyed by the insertion and extraction of
Lithium secondary batteries that are hard to break and have good cycle characteristics
It can be a negative electrode active material that can be configured. Of various compositions
Among them, in terms of stability of the crystal structure, the composition formula Li0. 8
Ti2.2OFour, LiTiTwoOFour, Li1.33Ti1.67OFour, L
i1.14Ti1.71OFourWhat is represented by is excellent,
One of them alone or two or more
It is desirable to use a mixture. Used as negative electrode active material
Is easy to synthesize, has a large capacity, and has a better crystal structure.
In terms of stability, the composition formula Li1.33Ti
1.67OFourIt is more desirable to use the one represented by
By the way, the composition formula Li0.8Ti2.2OFour, Li1.33Ti
1.67OFour, Li1.14Ti1.71OFourIs the composition formula Li
FourTi11O20, LiFourTiFiveO12, LiTwoTiThreeO7Express
Can also be.

【0033】本リチウムチタン複合酸化物はその製造方
法を特に限定するものでないが、リチウム源となるリチ
ウム化合物とチタン源となる酸化チタンとを混合し、こ
の混合物を焼成することによって容易に合成することが
できる。リチウム化合物としては、Li2CO3、Li
(OH)等を用いることができる。焼成は、酸素気流中
あるいは大気中ににて行う。それぞれの原料の混合割合
は、合成しようとするリチウムチタン複合酸化物の組成
に応じた割合とすればよい。焼成は、その温度が低すぎ
ると活物質として良好な特性となる程に成長した粒径の
ものを得ることができず、また、高すぎると副相として
生じるルチル型酸化チタン相(TiO2相)の含有割合
が多くなることから、焼成温度は、500〜1000℃
とするのが望ましい。より望ましくは、700〜900
℃とするのがよい。
The production method of the present lithium-titanium composite oxide is not particularly limited, but is easily synthesized by mixing a lithium compound serving as a lithium source and titanium oxide serving as a titanium source, and firing the mixture. be able to. As the lithium compound, Li 2 CO 3 , Li
(OH) or the like can be used. The firing is performed in an oxygen stream or in the atmosphere. The mixing ratio of each raw material may be a ratio according to the composition of the lithium titanium composite oxide to be synthesized. If the temperature is too low, it is not possible to obtain a particle having a particle size that has grown so as to have good characteristics as an active material. If the temperature is too high, a rutile-type titanium oxide phase (TiO 2 ), The firing temperature is 500 to 1000 ° C.
It is desirable that More preferably, 700 to 900
℃ is good.

【0034】副相として生じる酸化チタン相を完全に消
滅させることは困難を伴う。この酸化チタン相は、上記
リチウムチタン複合酸化物の主相と混晶状態で生成され
るため、少量存在するのであれば、負極活物質として用
いた場合の充放電特性、サイクル特性を極度に悪化させ
るものとはならない。したがって、本リチウムチタン複
合酸化物は、この酸化チタンを混晶状態で含有するもの
であってもよく、また本明細書において、「リチウムチ
タン複合酸化物」とは、それを含むことを意味する。
It is difficult to completely eliminate the titanium oxide phase generated as a subphase. Since this titanium oxide phase is generated in a mixed crystal state with the main phase of the lithium-titanium composite oxide, if present in a small amount, the charge / discharge characteristics and cycle characteristics when used as a negative electrode active material are extremely deteriorated. It does not make you. Therefore, the present lithium-titanium composite oxide may contain this titanium oxide in a mixed crystal state, and in the present specification, “lithium-titanium composite oxide” means containing the same. .

【0035】〈リチウム二次電池の全体構成〉リチウム
二次電池の正極は、上記本リチウムマンガン複合酸化物
を正極活物質とし、これに導電材および結着剤を混合
し、必要に応じ適当な溶剤を加えて、ペースト状の正極
合材としたものを、アルミニウム等の金属箔製の集電体
表面に塗布、乾燥し、その後必要に応じプレス等によっ
て正極合材の密度を高めることによって形成する。な
お、本リチウムマンガン複合酸化物だけで正極活物質を
構成することもできるが、リチウム二次電池の特性改善
等を目的として、本リチウムマンガン複合酸化物に、既
に公知のLiCoO2、LiNiO2等他のリチウム複合
酸化物、あるいは結晶性の低いスピネル構造のリチウム
マンガン複合酸化物等を混合して正極活物質とするもの
であっても構わない。
<Overall Configuration of Lithium Secondary Battery> The positive electrode of the lithium secondary battery is prepared by mixing the above-mentioned lithium manganese composite oxide as a positive electrode active material, a conductive material and a binder, A paste-like positive electrode mixture is formed by adding a solvent to the surface of a current collector made of a metal foil such as aluminum, dried, and then formed as necessary by increasing the density of the positive electrode mixture by pressing or the like. I do. The positive electrode active material can be composed of the present lithium manganese composite oxide alone. However, for the purpose of improving the characteristics of the lithium secondary battery, the present lithium manganese composite oxide may be provided with a known LiCoO 2 , LiNiO 2, or the like. The positive electrode active material may be a mixture of another lithium composite oxide or a lithium manganese composite oxide having a low crystallinity and a spinel structure.

【0036】導電材は、リチウムマンガン複合酸化物が
それ自身の電気比抵抗が大きいことから、正極の電気伝
導性を確保するためのものであり、カーボンブラック、
アセチレンブラック、黒鉛等の炭素物質粉状体のうち1
種のものをまたは2種以上のものを混合して用いること
ができる。結着剤は、活物質粒子を繋ぎ止める役割を果
たすもので、ポリテトラフルオロエチレン、ポリフッ化
ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピ
レン、ポリエチレン等の熱可塑性樹脂を用いることがで
きる。また、これら活物質、導電材、結着剤を分散させ
る溶剤としては、N−メチル−2−ピロリドン等の有機
溶剤を用いることができる。
The conductive material is used to ensure the electrical conductivity of the positive electrode since the lithium manganese composite oxide itself has a large electric specific resistance.
One of powdered carbonaceous materials such as acetylene black and graphite
One kind or a mixture of two or more kinds can be used. The binder plays a role of binding the active material particles, and a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene can be used. Further, as a solvent for dispersing the active material, the conductive material, and the binder, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0037】負極は、上記本リチウムチタン複合酸化物
を負極活物質とし、これに導電材および結着剤を混合
し、必要に応じ適当な溶剤を加えて、ペースト状の負極
合材としたものを、銅等の金属箔製の集電体表面に塗
布、乾燥し、その後必要に応じプレス等によって負極合
材の密度を高めることによって形成する。なお、本リチ
ウムチタン複合酸化物だけで負極活物質を構成すること
もできるが、リチウム二次電池の特性改善等を目的とし
て、本リチウムマンガン複合酸化物に、既に公知の炭素
材料等を混合して負極活物質とするものであっても構わ
ない。
The negative electrode was prepared by using the above-mentioned lithium-titanium composite oxide as a negative electrode active material, mixing a conductive material and a binder with the mixture, and adding an appropriate solvent if necessary, to form a paste-like negative electrode mixture. Is applied to the surface of a current collector made of a metal foil such as copper, dried, and then, if necessary, increased in density of the negative electrode mixture by pressing or the like. The negative electrode active material can be composed of the lithium titanium composite oxide alone. However, for the purpose of improving the characteristics of the lithium secondary battery, a known carbon material or the like is mixed with the lithium manganese composite oxide. May be used as the negative electrode active material.

【0038】導電材は、正極同様、カーボンブラック、
アセチレンブラック、黒鉛等の炭素物質粉状体のうち1
種のものをまたは2種以上のものを混合して用いること
ができる。結着剤も、正極同様、ポリテトラフルオロエ
チレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ
素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹
脂を用いることができる。また、溶剤も、正極同様、N
−メチル−2−ピロリドン等の有機溶剤を用いることが
できる。
The conductive material is carbon black, like the positive electrode.
One of powdered carbonaceous materials such as acetylene black and graphite
One kind or a mixture of two or more kinds can be used. Like the positive electrode, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and a thermoplastic resin such as polypropylene and polyethylene can be used as the binder. Also, the solvent is N
Organic solvents such as -methyl-2-pyrrolidone can be used.

【0039】本発明のリチウム二次電池では、一般のリ
チウム二次電池と同様、正極および負極の他に、正極と
負極の間に挟装されるセパレータ、非水電解液等を構成
要素とする。セパレータは、正極と負極とを分離し電解
液を保持するものであり、ポリエチレン、ポリプロピレ
ン等の薄い微多孔膜を用いることができる。また非水電
解液は、有機溶媒に電解質であるリチウム塩を溶解させ
たもので、有機溶媒としては、非プロトン性有機溶媒、
例えばエチレンカーボネート、プロピレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネート、γ−ブチロラクトン、アセト
ニトリル、1,2−ジメトキシエタン、テトラヒドロフ
ラン、ジオキソラン、塩化メチレン等の1種またはこれ
らの2種以上の混合液を用いることができる。また、溶
解させる電解質としては、LiI、LiClO4、Li
AsF6、LiBF4、LiPF6、LiN(CF3
22等のリチウム塩を用いることができる。
The lithium secondary battery of the present invention comprises a positive electrode, a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, a non-aqueous electrolyte, and the like, similarly to a general lithium secondary battery. . The separator separates the positive electrode and the negative electrode and holds the electrolyte, and a thin microporous film of polyethylene, polypropylene, or the like can be used. The non-aqueous electrolyte is a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent. As the organic solvent, an aprotic organic solvent,
For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, or a mixture of two or more of these. Can be used. The electrolyte to be dissolved is LiI, LiClO 4 , Li
AsF 6 , LiBF 4 , LiPF 6 , LiN (CF 3 S
Lithium salts such as O 2 ) 2 can be used.

【0040】以上のように構成される本発明のリチウム
二次電池であるが、その形状は円筒型、積層型、コイン
型等、種々のものとすることができる。いずれの形状を
採る場合であっても、正極および負極にセパレータを挟
装させ電極体とし、正極集電体および負極集電体から外
部に通ずる正極端子および負極端子までの間を集電用リ
ード等を用いて接続し、この電極体を非水電解液ととも
に電池ケースに密閉して電池が完成させられる。
The lithium secondary battery of the present invention configured as described above can have various shapes such as a cylindrical type, a stacked type, and a coin type. Regardless of the shape used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and a current collecting lead extends from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that lead to the outside. The electrode body is sealed together with the non-aqueous electrolyte in a battery case to complete the battery.

【0041】なお、本発明のリチウム二次電池は、サイ
クル特性の改善を目指すものであり、このためには、正
極と負極との容量比(負極容量/正極容量)を0.5以
上1.5以下とすることが望ましい。この容量比が0.
5未満の場合は、正極を基準とした場合の電池容量が低
下しすぎることとなり、また、容量比が1.5を超える
場合は、正極が高電位になりすぎ、電解液との分解反応
が促進されることでサイクル特性が低下するからであ
る。電池容量とサイクル特性のバランスの良好なリチウ
ム二次電池とするためには、容量比を0.8以上1.1
以下とすることがより望ましい。
The lithium secondary battery of the present invention aims at improving the cycle characteristics. To this end, the capacity ratio between the positive electrode and the negative electrode (negative electrode capacity / positive electrode capacity) is 0.5 or more. It is desirably 5 or less. This capacity ratio is 0.
If it is less than 5, the battery capacity based on the positive electrode will be too low, and if the capacity ratio is more than 1.5, the positive electrode will have too high a potential and the decomposition reaction with the electrolytic solution will not occur. This is because the promotion promotes the deterioration of the cycle characteristics. In order to obtain a lithium secondary battery having a good balance between battery capacity and cycle characteristics, the capacity ratio should be 0.8 or more and 1.1 or more.
It is more desirable to set the following.

【0042】なお、ここで、「正極容量」、「負極容
量」とは、それぞれ、対極を金属リチウムとする電気化
学セルを構成して定電流定電圧充電−定電流放電を行っ
たときに得られる可逆的に利用できる最大の容量を意味
し、本明細書では、「正極容量」、「負極容量」は、上
記電気化学セルにおいて、電圧範囲をそれぞれ4.3V
〜3.5V、1.5V〜0Vとし、定電流充電および定
電流放電時の電流密度を0.1mA/cm2とする上記
充放電を行って評価した場合の値を採用するものとす
る。
Here, the “positive electrode capacity” and “negative electrode capacity” are obtained when an electrochemical cell in which the counter electrode is metallic lithium is configured to perform constant current constant voltage charge-constant current discharge. The term “positive electrode capacity” and “negative electrode capacity” as used herein mean the maximum capacity that can be used reversibly.
-3.5 V, 1.5 V-0 V, and the values obtained when the above-mentioned charge and discharge are performed with the current density at the time of constant current charging and constant current discharging being 0.1 mA / cm 2 are evaluated.

【0043】以上、本発明のリチウム二次電池の実施形
態について説明したが、上述した実施形態は一実施形態
にすぎず、本発明のリチウム二次電池は、上記実施形態
を始めとして、当業者の知識に基づいて種々の変更、改
良を施した種々の形態で実施することができる。
The embodiment of the lithium secondary battery of the present invention has been described above. However, the above-described embodiment is merely an embodiment, and the lithium secondary battery of the present invention can be implemented by those skilled in the art. Can be implemented in various forms with various changes and improvements based on the knowledge of

【0044】[0044]

【実施例】上記実施形態に基づき種々のリチウム二次電
池を実施例として作製した。また、これと比較すべく、
負極活物質に黒鉛質材料を用いたリチウム二次電池、お
よび、1次粒子が八面体形状をしていないリチウムマン
ガン複合酸化物を正極活物質に用いたリチウム二次電池
を比較例として作製した。これら実施例および比較例の
二次電池に対して、充放電サイクル試験を行い、それぞ
れの二次電池のサイクル特性を評価した。以下に、実施
例および比較例の二次電池の代表的なものを説明し、そ
の評価について説明する。
EXAMPLES Various lithium secondary batteries were manufactured as examples based on the above embodiment. Also, to compare with this,
A lithium secondary battery using a graphite material as a negative electrode active material and a lithium secondary battery using a lithium manganese composite oxide in which primary particles did not have an octahedral shape as a positive electrode active material were produced as comparative examples. . A charge / discharge cycle test was performed on the secondary batteries of these Examples and Comparative Examples, and the cycle characteristics of each secondary battery were evaluated. Hereinafter, typical secondary batteries of Examples and Comparative Examples will be described, and evaluation thereof will be described.

【0045】〈実施例1のリチウム二次電池〉本リチウ
ム二次電池の正極活物質には、組成式Li1.05Ni0.1
Mn1.854で表されるリチウムマンガン複合酸化物を
用いた。このリチウムマンガン複合酸化物は、Li源と
してLi2CO3を、Mn源としてMnO2を、Ni源と
してNi(OH)2を用い、これらを上記実施形態で説
明したような方法により湿式で粉砕混合し、酸素気流
中、930℃で12時間焼成することにより合成した。
<Lithium Secondary Battery of Example 1> The positive electrode active material of this lithium secondary battery includes the composition formula Li 1.05 Ni 0.1
A lithium manganese composite oxide represented by Mn 1.85 O 4 was used. This lithium manganese composite oxide uses Li 2 CO 3 as a Li source, MnO 2 as a Mn source, and Ni (OH) 2 as a Ni source, and wet crushes them by the method described in the above embodiment. It was synthesized by mixing and firing at 930 ° C. for 12 hours in an oxygen stream.

【0046】合成したLi1.05Ni0.1Mn1.854は、
CuKα線を用いた粉末X線回折分析法により、スピネ
ル構造を有することが確認でき、(400)回折ピーク
の半値幅が0.08θであることが確認された。また、
1次粒子は図1の写真に示すような八面体形状をしてお
り、この1次粒子が凝集して形成する2次粒子の平均粒
径は約10μmであった。さらに、このリチウムマンガ
ン複合酸化物のBET比表面積は、0.37m2/gで
あった。
The synthesized Li 1.05 Ni 0.1 Mn 1.85 O 4 is
It was confirmed by powder X-ray diffraction analysis using CuKα radiation that the powder had a spinel structure, and that the half width of the (400) diffraction peak was 0.08θ. Also,
The primary particles had an octahedral shape as shown in the photograph of FIG. 1, and the secondary particles formed by aggregation of the primary particles had an average particle size of about 10 μm. Further, the BET specific surface area of this lithium manganese composite oxide was 0.37 m 2 / g.

【0047】本リチウム二次電池の負極活物質には、組
成式Li1.33Ti1.674で表されるリチウムチタン複
合酸化物を用いた。このリチウムチタン複合酸化物は、
Li源としてLi2CO3を、チタン源としてアナターゼ
型TiO2を用い、これらを所定割合混合し、酸素気流
中、800℃で12時間焼成することにより合成した。
合成したリチウムチタン複合酸化物は、CuKα線を用
いた粉末X線回折分析法により、面間隔4.83Å、
2.52Å、2.09Å、1.48Åとなる回折面(反
射面)によって得られるそれぞれの回折ピークが存在す
ることが確認できた。
As the negative electrode active material of the present lithium secondary battery, a lithium-titanium composite oxide represented by the composition formula Li 1.33 Ti 1.67 O 4 was used. This lithium titanium composite oxide,
Li 2 CO 3 was used as a Li source and anatase type TiO 2 was used as a titanium source. These were mixed at a predetermined ratio, and calcined at 800 ° C. for 12 hours in an oxygen stream to synthesize.
The synthesized lithium-titanium composite oxide was analyzed by powder X-ray diffraction analysis using CuKα radiation to have a spacing of 4.83 °,
It was confirmed that there were respective diffraction peaks obtained by the diffraction planes (reflection planes) of 2.52 °, 2.09 ° and 1.48 °.

【0048】正極は、上記リチウムマンガン複合酸化物
の90重量部に、導電材としてカーボンブラックを7重
量部、結着剤としてポリフッ化ビニリデンを10重量部
混合し、適量のN−メチル−2−ピロリドンを添加して
混練しすることでペースト状の正極合材を得、この正極
合材を厚さ20μmのAl箔製正極集電体の両面に塗
布、乾燥し、プレス工程を経て、シート状のものを作製
した。
The positive electrode was prepared by mixing 90 parts by weight of the above lithium manganese composite oxide, 7 parts by weight of carbon black as a conductive material, and 10 parts by weight of polyvinylidene fluoride as a binder. A paste-like positive electrode mixture was obtained by adding and kneading pyrrolidone, and this positive electrode mixture was applied to both sides of a 20-μm-thick aluminum foil positive electrode current collector, dried, passed through a pressing step, and then formed into a sheet. Was prepared.

【0049】負極は、上記リチウムチタン複合酸化物の
90重量部に、導電材としてカーボンブラックを5重量
部、結着剤としてポリフッ化ビニリデンを5重量部混合
し、適量のN−メチル−2−ピロリドンを添加して混練
しすることでペースト状の負極合材を得、この負極合材
を厚さ10μmのCu箔製正極集電体の両面に塗布、乾
燥し、プレス工程を経て、シート状のものを作製した。
The negative electrode was prepared by mixing 5 parts by weight of carbon black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder with 90 parts by weight of the lithium-titanium composite oxide, and adding an appropriate amount of N-methyl-2- A paste-like negative electrode mixture was obtained by adding and kneading pyrrolidone, and this negative electrode mixture was applied to both sides of a 10-μm-thick Cu foil-made positive electrode current collector, dried, passed through a pressing step, and then formed into a sheet-like material. Was prepared.

【0050】上記正極および負極をそれぞれ所定の大き
さに裁断し、裁断した正極と負極とを、その間に厚さ2
5μmのポリエチレン製セパレータを挟装して捲回し、
ロール状の電極体を形成した。この電極体に集電用リー
ドを付設し、18650型電池ケースに挿入し、その後
その電池ケース内に非水電解液を注入した。非水電解液
には、エチレンカーボネートをジエチルカーボネートと
を体積比で1:1に混合した混合溶媒にLiPF6を1
Mの濃度で溶解させたものを用いた。最後に電池ケース
を密封して、本実施例1のリチウム二次電池を完成させ
た。
Each of the positive electrode and the negative electrode is cut into a predetermined size, and the cut positive electrode and negative electrode are separated by a thickness of 2 mm therebetween.
5μm polyethylene separator sandwiched and wound,
A roll-shaped electrode body was formed. A current collecting lead was attached to the electrode body, inserted into a 18650 type battery case, and then a non-aqueous electrolyte was injected into the battery case. The non-aqueous electrolyte contains LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1.
M dissolved at a concentration of M was used. Finally, the battery case was sealed to complete the lithium secondary battery of Example 1.

【0051】なお、本リチウム二次電池は、正極と負極
との容量比(負極容量/正極容量)が1.1となるよう
に、正極および負極を作製している。なお正極容量およ
び負極容量は、上記実施形態で説明した条件よるもの
で、それぞれの電極に含まれる正極活物質量および負極
活物質量を調整することによって、正極と負極との容量
比を決定した。ちなみに、その際の基準となる容量は、
正極活物質である上記リチウムマンガン複合酸化物につ
いては、単位重量当たり120mAh/g、負極活物質
である上記リチウムチタン複合酸化物については、単位
重量当たり160mAh/gという値を採用している。
In this lithium secondary battery, the positive electrode and the negative electrode are manufactured such that the capacity ratio between the positive electrode and the negative electrode (negative electrode capacity / positive electrode capacity) is 1.1. The positive electrode capacity and the negative electrode capacity were based on the conditions described in the above embodiment, and the capacity ratio between the positive electrode and the negative electrode was determined by adjusting the amount of the positive electrode active material and the amount of the negative electrode active material included in each electrode. . By the way, the reference capacity at that time,
A value of 120 mAh / g per unit weight is adopted for the lithium manganese composite oxide as the positive electrode active material, and 160 mAh / g per unit weight for the lithium titanium composite oxide as the negative electrode active material.

【0052】〈実施例2のリチウム二次電池〉本リチウ
ム二次電池は、上記実施例1の二次電池において、それ
ぞれの電極に含まれる正極活物質量および負極活物質量
を調整して、正極と負極との容量比を0.7に変更した
ものである。他の構成は、実施例1の二次電池と同様で
ある。
<Lithium Secondary Battery of Embodiment 2> This lithium secondary battery is different from the secondary battery of Embodiment 1 in that the amount of the positive electrode active material and the amount of the negative electrode active material contained in each electrode are adjusted. The capacity ratio between the positive electrode and the negative electrode is changed to 0.7. Other configurations are the same as those of the secondary battery of the first embodiment.

【0053】〈比較例1のリチウム二次電池〉本リチウ
ム二次電池は、負極活物質に黒鉛化メソフェーズ小球体
を用いたリチウム二次電池である。負極は、この黒鉛化
メソフェーズ小球体の90重量部に、結着剤としてポリ
フッ化ビニリデンを10重量部混合し、適量のN−メチ
ル−2−ピロリドンを添加して混練しすることでペース
ト状の負極合材を得、この負極合材を厚さ10μmのC
u箔製正極集電体の両面に塗布、乾燥し、プレス工程を
経て作製されたシート状のものである。正極と負極との
容量比は、1.2とし、他の構成は、実施例1の二次電
池と同様である。ちなみに、正極と負極との容量比を決
定する際の基準となる容量は、負極活物質である黒鉛化
メソフェーズ小球体については、単位重量当たり330
mAh/gという値を採用している。
<Lithium Secondary Battery of Comparative Example 1> This lithium secondary battery is a lithium secondary battery using graphitized mesophase spheres as the negative electrode active material. The negative electrode was formed into a paste by mixing 90 parts by weight of the graphitized mesophase microspheres with 10 parts by weight of polyvinylidene fluoride as a binder, adding an appropriate amount of N-methyl-2-pyrrolidone and kneading the paste. A negative electrode mixture was obtained, and the negative electrode mixture was coated with a 10 μm thick C
It is a sheet-like product produced by applying and drying both sides of a positive electrode current collector made of a u-foil and pressing. The capacity ratio between the positive electrode and the negative electrode was 1.2, and the other configuration was the same as that of the secondary battery of Example 1. By the way, the reference capacity for determining the capacity ratio between the positive electrode and the negative electrode is 330 g / unit weight for the graphitized mesophase spherules which are the negative electrode active material.
The value of mAh / g is adopted.

【0054】〈比較例2のリチウム二次電池〉本リチウ
ム二次電池は、負極活物質に黒鉛化メソフェーズ小球体
を用い、かつ、正極活物質となるリチウムマンガン複合
酸化物に、1次粒子が八面体形状をしていない、言い換
えれば、図3に示すような不定形な1次粒子を有するも
のを用いた二次電池である。
<Lithium Secondary Battery of Comparative Example 2> This lithium secondary battery uses graphitized mesophase microspheres as a negative electrode active material, and has primary particles in a lithium manganese composite oxide serving as a positive electrode active material. This is a secondary battery using one having no octahedral shape, in other words, having irregular primary particles as shown in FIG.

【0055】本リチウム二次電池に用いたリチウムマン
ガン複合酸化物は、組成式LiCo 0.1Mn1.94で表
されるもので、Li源としてLi2CO3を、Mn源とし
てMnO2を、Co源としてCo(NO32を用い、乾
式ミキサーで混合し、酸素気流中、930℃、12時間
焼成することによって合成した。このリチウムマンガン
複合酸化物は、CuKα線を用いた粉末X線回折法によ
る(400)回折ピークの半値幅が0.19θであり、
2次粒子の平均粒径が25μm、BET比表面積は、
0.21m2/gであった。
The lithium man used for the present lithium secondary battery
The cancer composite oxide has a composition formula of LiCo 0.1Mn1.9OFourIn table
Li as a Li sourceTwoCOThreeIs a Mn source
MnOTwoWith Co (NO) as the Co sourceThree)TwoAnd dry
Mix at 930 ° C for 12 hours in an oxygen stream
It was synthesized by firing. This lithium manganese
The composite oxide was obtained by powder X-ray diffraction using CuKα radiation.
Half width of the (400) diffraction peak is 0.19θ,
The average particle size of the secondary particles is 25 μm, and the BET specific surface area is
0.21mTwo/ G.

【0056】なお、本リチウム二次電池は、負極を始め
正極活物質を除く他の構成が比較例1の二次電池と同様
であり、正極と負極との容量比を1.2としている。ち
なみに、正極と負極との容量比を決定する際の基準とな
る容量は、このリチウムマンガン複合酸化物について
は、単位重量当たり120mAh/gという値を採用し
ている。
The present lithium secondary battery is the same as the secondary battery of Comparative Example 1 except for the negative electrode and the positive electrode active material except for the positive electrode active material. The capacity ratio between the positive electrode and the negative electrode is 1.2. By the way, as for the capacity as a reference when determining the capacity ratio between the positive electrode and the negative electrode, a value of 120 mAh / g per unit weight is adopted for this lithium manganese composite oxide.

【0057】〈サイクル特性の評価〉上記実施例および
比較例の二次電池に対して、充放電サイクル試験を行っ
た。充放電サイクル試験は、リチウム二次電池が実際に
使用される上限温度と目される60℃の高温環境下で行
った。実施例1および実施例2の二次電池に対する充放
電サイクルの条件は、充電終止電圧2.7Vまで電流密
度1mA/cm2の定電流で充電を行い、次いで放電終
止電圧1.5Vまで電流密度1mA/cm2の定電流で
放電を行うことを1サイクルとするものである。また、
比較例1および比較例2の二次電池に対する充放電サイ
クルの条件は、充電終止電圧4.2Vまで電流密度1m
A/cm2の定電流で充電を行い、次いで放電終止電圧
3.0Vまで電流密度1mA/cm2の定電流で放電を
行うことを1サイクルとするものである。すべての二次
電池に対して、それらのサイクルを300サイクル以上
繰り返すものとした。
<Evaluation of Cycle Characteristics> A charge / discharge cycle test was performed on the secondary batteries of the above Examples and Comparative Examples. The charge / discharge cycle test was performed in a high-temperature environment of 60 ° C., which is regarded as the upper limit temperature at which a lithium secondary battery is actually used. The conditions of the charge / discharge cycle for the secondary batteries of Example 1 and Example 2 were such that charging was performed at a constant current of 1 mA / cm 2 up to a charge end voltage of 2.7 V, and then the current density was increased to a discharge end voltage of 1.5 V. Discharging at a constant current of 1 mA / cm 2 is defined as one cycle. Also,
The conditions of the charge / discharge cycle for the secondary batteries of Comparative Example 1 and Comparative Example 2 were such that the current density was 1 m until the charge end voltage was 4.2 V.
Charging at a constant current of A / cm 2 and then discharging at a constant current of 1 mA / cm 2 to a discharge end voltage of 3.0 V constitute one cycle. These cycles were repeated for 300 cycles or more for all the secondary batteries.

【0058】充放電サイクル試験の結果として、それぞ
れの二次電池の各サイクルにおける正極活物質重量当た
りの放電容量を図4に、また、それぞれの二次電池の各
サイクルにおける容量維持率(そのサイクルにおける放
電容量/1サイクル目の放電容量×100%)を図5に
示す。
FIG. 4 shows the discharge capacity per positive electrode active material weight in each cycle of each secondary battery as a result of the charge / discharge cycle test, and the capacity retention rate (cycles) of each secondary battery in each cycle. (Discharge capacity / discharge capacity at first cycle × 100%) in FIG. 5 is shown in FIG.

【0059】図4および図5から明らかなように、炭素
材料を負極活物質に用いた比較例1および比較例2の二
次電池は、充放電サイクルを重ねるにつれ放電容量が大
きく減少し、サイクル劣化が激しい二次電池であること
が判る。また、結晶性の悪いリチウムマンガン複合酸化
物を用いた実施例2の二次電池は、放電容量自体が初期
の段階から小さく、正極活物質となるリチウムマンガン
複合酸化物の結晶性が、サイクル特性のみならず放電容
量の大きさにも影響を与えることが確認できる。
As is clear from FIGS. 4 and 5, in the secondary batteries of Comparative Examples 1 and 2 using a carbon material as the negative electrode active material, the discharge capacity was greatly reduced as charge / discharge cycles were repeated, It can be seen that the secondary battery is severely deteriorated. The secondary battery of Example 2 using the lithium manganese composite oxide having poor crystallinity has a small discharge capacity from the initial stage, and the crystallinity of the lithium manganese composite oxide serving as the positive electrode active material has a low cycle characteristic. It can be confirmed that the influence is exerted not only on the discharge capacity but also on the magnitude of the discharge capacity.

【0060】これに対して、本発明のリチウム二次電池
である実施例1および実施例2の二次電池は、充放電サ
イクルを経ても放電容量の減少が小さく、サイクル特性
の良好な二次電池であることが確認できる。なお、正極
と負極との容量比を小さくすれば、サイクル特性が良好
となる代わりに、放電容量自体が小さく、バランスのと
れたリチウム二次電池とするには、正極と負極との容量
比が、0.8〜1.1の範囲とすることがより望ましい
ことが確認できる。ちなみに正極と負極との容量比が比
較的小さい実施例2の二次電池の場合、充放電サイクル
の初期において、放電容量がサイクルの進行に伴い上昇
する現象が見られるが、これは、負極全体を使用するこ
とで導電パスや電解液との濡れ性等の“なじみ”が良く
なったためと考えられる。
On the other hand, the secondary batteries of Examples 1 and 2, which are the lithium secondary batteries of the present invention, have a small decrease in discharge capacity even after a charge / discharge cycle, and have good cycle characteristics. It can be confirmed that it is a battery. If the capacity ratio between the positive electrode and the negative electrode is reduced, the cycle characteristics are improved. Instead, the discharge capacity itself is small, and the capacity ratio between the positive electrode and the negative electrode is required to obtain a well-balanced lithium secondary battery. , 0.8 to 1.1. Incidentally, in the case of the secondary battery of Example 2 in which the capacity ratio between the positive electrode and the negative electrode is relatively small, a phenomenon in which the discharge capacity increases with the progress of the cycle at the beginning of the charge / discharge cycle is observed. It is presumed that the use of the compound improved the “fit-in” of the conductive path and the wettability with the electrolytic solution.

【0061】[0061]

【発明の効果】本発明のリチウム二次電池は、結晶性の
高いリチウムマンガン複合酸化物を正極活物質とし、リ
チウムチタン複合酸化物を負極活物質として構成され
る。このような構成とすることで、本発明のリチウム二
次電池は、安価であるというメリットを活かしつつ、サ
イクル特性、特に高温下でのサイクル特性が良好なリチ
ウム二次電池となる。
The lithium secondary battery of the present invention comprises a lithium manganese composite oxide having high crystallinity as a positive electrode active material and a lithium titanium composite oxide as a negative electrode active material. With such a configuration, the lithium secondary battery of the present invention can be a lithium secondary battery having good cycle characteristics, particularly, high-temperature cycle characteristics, while taking advantage of inexpensiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のリチウム二次電池に正極活物質とし
て用いるリチウムマンガン複合酸化物の1次粒子を写し
たSEM写真を示す。
FIG. 1 shows an SEM photograph of primary particles of a lithium manganese composite oxide used as a positive electrode active material in a lithium secondary battery of the present invention.

【図2】 本発明のリチウム二次電池に正極活物質とし
て用いるリチウムマンガン複合酸化物において、1次粒
子が凝集して2次粒子を形成する様子を写したSEM写
真を示す。
FIG. 2 is an SEM photograph showing a state where primary particles are aggregated to form secondary particles in a lithium manganese composite oxide used as a positive electrode active material in the lithium secondary battery of the present invention.

【図3】 本発明のリチウム二次電池に用いるリチウム
マンガン複合酸化物と異なる結晶性の悪いリチウムマン
ガン複合酸化物において、不規則形状の1次粒子が集合
した状態を写したSEM写真を示す。
FIG. 3 is an SEM photograph showing a state in which irregular primary particles are aggregated in a lithium manganese composite oxide having poor crystallinity different from the lithium manganese composite oxide used for the lithium secondary battery of the present invention.

【図4】 充放電サイクル試験の結果として、本発明の
実施例および比較例のリチウム二次電池の各サイクルに
おける正極活物質重量当たりの放電容量を示す。
FIG. 4 shows the discharge capacity per positive electrode active material weight in each cycle of the lithium secondary batteries of Examples of the present invention and Comparative Examples as a result of a charge / discharge cycle test.

【図5】 充放電サイクル試験の結果として、本発明の
実施例および比較例のリチウム二次電池の各サイクルに
おける容量維持率を示す。
FIG. 5 shows the capacity retention ratio in each cycle of the lithium secondary batteries of Examples of the present invention and Comparative Examples as a result of a charge / discharge cycle test.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年12月6日(2000.12.
6)
[Submission date] December 6, 2000 (200.12.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01M 4/02 C D 10/40 10/40 Z (72)発明者 奥田 匠昭 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 佐々木 厳 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 竹内 要二 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 小林 哲郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01M 4/02 H01M 4/02 CD 10/40 10/40 Z (72) Inventor Takuaki Okuda Nagakute, Aichi County, Aichi Prefecture (71) Inventor Takeshi Sasaki In the Toyota Central Research Institute, Inc. (72) Inventor Takeshi Sasaki Takeshiuchi, 41, Ogata Chochu, Yokomichi, Nagakute-cho, Aichi-gun, Aichi, Japan No. 1 Toyoda Central Research Institute, Inc. (No. 41), Toyota Chuo R & D Laboratories Co., Ltd. (72) Inventor Tetsuro Kobayashi, Toyota-Chuo Research Co., Ltd. In-house (72) Inventor Yoshio Ukyo 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture 1 Toyota Central Research Laboratory Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式Li1+xyMn2-x-y4-z(Mは
Ti、V、Cr、Fe、Co、Ni、Zn、Cu、W、
Mg、Alのうちの1種以上、0≦x<0.2、0≦y
<0.5、0≦z<0.2)で表され、CuKα線を用
いた粉末X線回折法による(400)回折ピークの半値
幅が0.02θ以上0.1θ以下(θは回折角)であ
り、1次粒子の形状が八面体をなすリチウムマンガン複
合酸化物を正極活物質として含む正極と、 組成式LiaTib4(0.5≦a≦3、1≦b≦2.
5)で表されるリチウムチタン複合酸化物を負極活物質
として含む負極とを備えてなるリチウム二次電池。
1. A composition formula Li 1 + x M y Mn 2 -xy O 4-z (M is Ti, V, Cr, Fe, Co, Ni, Zn, Cu, W,
One or more of Mg and Al, 0 ≦ x <0.2, 0 ≦ y
<0.5, 0 ≦ z <0.2), and the half value width of the (400) diffraction peak by the powder X-ray diffraction method using CuKα ray is 0.02θ or more and 0.1θ or less (θ is the diffraction angle ), and a positive electrode containing a lithium manganese composite oxide form of primary particles constituting the octahedral as the positive electrode active material, the composition formula Li a Ti b O 4 (0.5 ≦ a ≦ 3,1 ≦ b ≦ 2 .
A lithium secondary battery comprising: a negative electrode containing the lithium-titanium composite oxide represented by 5) as a negative electrode active material.
【請求項2】 前記リチウムマンガン複合酸化物は、前
記1次粒子が凝集して2次粒子を形成している請求項1
に記載のリチウム二次電池。
2. The lithium manganese composite oxide, wherein the primary particles are aggregated to form secondary particles.
4. The lithium secondary battery according to 1.
【請求項3】 前記リチウムマンガン複合酸化物は、前
記2次粒子の球換算平均粒径が5μm以上25μm以下
であり、かつBET比表面積が0.2m2/g以上2m2
/g以下である請求項2に記載のリチウム二次電池。
3. The lithium-manganese composite oxide has an average spherical equivalent particle diameter of the secondary particles of 5 μm or more and 25 μm or less, and a BET specific surface area of 0.2 m 2 / g or more and 2 m 2.
/ G or less.
【請求項4】 前記リチウムチタン複合酸化物は、その
組成がLi0.8Ti2.24、LiTi24、Li1.33
1.674、Li1.14Ti1.714となるものから選ばれ
る1種以上のものである請求項1ないし請求項3のいず
れかに記載のリチウム二次電池。
4. The lithium-titanium composite oxide has a composition of Li 0.8 Ti 2.2 O 4 , LiTi 2 O 4 , Li 1.33 T
The lithium secondary battery according to any one of claims 1 to 3, wherein the lithium secondary battery is at least one member selected from the group consisting of i 1.67 O 4 and Li 1.14 Ti 1.71 O 4 .
【請求項5】 前記正極と前記負極との容量比(負極容
量/正極容量)が0.5以上1.5以下である請求項1
ないし請求項4のいずれかに記載のリチウム二次電池。
5. The capacity ratio between the positive electrode and the negative electrode (negative electrode capacity / positive electrode capacity) is 0.5 or more and 1.5 or less.
The lithium secondary battery according to claim 4.
JP2000014275A 2000-01-24 2000-01-24 Lithium secondary battery Expired - Fee Related JP4644895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014275A JP4644895B2 (en) 2000-01-24 2000-01-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014275A JP4644895B2 (en) 2000-01-24 2000-01-24 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001210324A true JP2001210324A (en) 2001-08-03
JP4644895B2 JP4644895B2 (en) 2011-03-09

Family

ID=18541756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014275A Expired - Fee Related JP4644895B2 (en) 2000-01-24 2000-01-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4644895B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831993A1 (en) * 2001-11-08 2003-05-09 Cit Alcatel Insertion lithium compound derived by substitution of dioxide of manganese lithia of spinel structure used for the active material of a rechargeable electrochemical generator
JP2003242981A (en) * 2002-02-14 2003-08-29 Hitachi Maxell Ltd Non-aqueous electrolyte battery and its manufacturing method
WO2003075376A1 (en) * 2002-03-01 2003-09-12 Matsushita Electric Industrial Co., Ltd. Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2006066341A (en) * 2004-08-30 2006-03-09 Toshiba Corp Nonaqueous electrolyte secondary cell
CN100373670C (en) * 2002-03-01 2008-03-05 松下电器产业株式会社 Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
JP2008519399A (en) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド Lithium-ion battery and medical device
JP2008171661A (en) * 2007-01-11 2008-07-24 Nec Tokin Corp Lithium-ion secondary battery
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2008282618A (en) * 2007-05-09 2008-11-20 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2008300180A (en) * 2007-05-31 2008-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009054319A (en) * 2007-08-23 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery
JP2009059665A (en) * 2007-09-03 2009-03-19 Sony Corp Charging method of secondary battery
WO2009063630A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2009277395A (en) * 2008-05-13 2009-11-26 Hitachi Maxell Ltd Nonaqueous secondary battery, and nonaqueous secondary battery system
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
EP2157640A1 (en) * 2007-03-30 2010-02-24 Toda Kogyo Corporation Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
JP2011065993A (en) * 2009-09-16 2011-03-31 Samsung Sdi Co Ltd Electrode assembly and secondary battery including the same
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
JP2012156087A (en) * 2011-01-28 2012-08-16 Kaneka Corp Nonaqueous electrolyte secondary battery
JP2012221799A (en) * 2011-04-11 2012-11-12 Kaneka Corp Nonaqueous electrolyte secondary battery
KR101227308B1 (en) * 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2013032005A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolyte secondary cell
JP2013110134A (en) * 2008-12-25 2013-06-06 Toshiba Corp Nonaqueous electrolyte battery
KR20130116827A (en) * 2012-04-16 2013-10-24 주식회사 엘지화학 The method of preparing electrodes for lithium secondary battery and the electrodes prepared by using the same
CN104137313A (en) * 2012-04-16 2014-11-05 株式会社Lg化学 Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
CN104185915A (en) * 2012-04-18 2014-12-03 株式会社Lg化学 Electrode for secondary battery, and secondary battery comprising same
CN104221206A (en) * 2012-04-20 2014-12-17 株式会社Lg化学 Lithium secondary battery having improved rate characteristics
KR101506451B1 (en) * 2012-04-16 2015-03-30 주식회사 엘지화학 Anode for Secondary Battery
KR101514297B1 (en) * 2012-04-13 2015-04-22 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101514303B1 (en) * 2012-04-13 2015-04-22 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
JP2015513184A (en) * 2012-04-17 2015-04-30 エルジー・ケム・リミテッド High performance lithium secondary battery
KR20150054745A (en) * 2012-04-20 2015-05-20 주식회사 엘지화학 Electrolyte for Secondary Battery and Lithium Secondary Battery Comprising The Same
KR101527748B1 (en) * 2012-04-13 2015-06-12 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
JP2015118742A (en) * 2013-12-16 2015-06-25 株式会社カネカ Nonaqueous electrolyte secondary battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
WO2015111585A1 (en) * 2014-01-23 2015-07-30 日立化成株式会社 Lithium ion battery system
KR101545886B1 (en) 2012-04-18 2015-08-20 주식회사 엘지화학 Multi Layered Electrode and the Method of the Same
WO2015151376A1 (en) * 2014-04-03 2015-10-08 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, electricity-storage apparatus, and electrical power system
WO2015151375A1 (en) * 2014-04-03 2015-10-08 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, electricity-storage apparatus, and electrical power system
US9246189B2 (en) 2012-04-19 2016-01-26 Lg Chem, Ltd. Secondary battery including electrolyte additive
JP2016506603A (en) * 2013-04-11 2016-03-03 エルジー・ケム・リミテッド Electrode laminate including electrodes having different areas and secondary battery including the same
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
WO2016113862A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Non-aqueous electrolyte battery and battery system
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
US9455438B2 (en) 2012-04-13 2016-09-27 Lg Chem, Ltd. Method for preparing electrode mix and the electrode mix prepared by using the same
WO2017078108A1 (en) * 2015-11-06 2017-05-11 日立化成株式会社 Lithium-ion secondary cell
JPWO2016060253A1 (en) * 2014-10-17 2017-07-06 日立化成株式会社 Lithium ion battery
US9954254B2 (en) 2012-04-20 2018-04-24 Lg Chem, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH08217452A (en) * 1995-02-14 1996-08-27 Tosoh Corp Needle manganese complex oxide, production and use thereof
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use
JPH09293538A (en) * 1995-09-06 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH10125324A (en) * 1996-08-29 1998-05-15 Sony Corp Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JPH10241685A (en) * 1997-02-25 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH10241687A (en) * 1997-02-25 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
JPH10287426A (en) * 1997-04-08 1998-10-27 Mitsubishi Chem Corp Production of lithium-based compound oxide and nonaqueous electrolyte secondary battery
JPH10312826A (en) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and charging method therefor
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JPH11204110A (en) * 1997-12-30 1999-07-30 Korea Kumho Petrochem Co Manufacture of anode material for lithium ion battery
JPH11302020A (en) * 1998-04-20 1999-11-02 Ube Ind Ltd Lithium manganese compound oxide, its production and its use
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Positive electrode material for lithium secondary battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH08217452A (en) * 1995-02-14 1996-08-27 Tosoh Corp Needle manganese complex oxide, production and use thereof
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use
JPH09293538A (en) * 1995-09-06 1997-11-11 Fuji Photo Film Co Ltd Lithium ion secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH10125324A (en) * 1996-08-29 1998-05-15 Sony Corp Manufacture of nonaqueous electrolyte secondary battery and positive active material thereof
JPH10241685A (en) * 1997-02-25 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH10241687A (en) * 1997-02-25 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10247496A (en) * 1997-03-04 1998-09-14 Japan Storage Battery Co Ltd Lithium battery and its active material
JPH10312826A (en) * 1997-03-10 1998-11-24 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and charging method therefor
JPH10287426A (en) * 1997-04-08 1998-10-27 Mitsubishi Chem Corp Production of lithium-based compound oxide and nonaqueous electrolyte secondary battery
JPH1171115A (en) * 1997-06-19 1999-03-16 Tosoh Corp Lithium manganese-based oxide, having spinel structure and containing another kind of element, its production and use thereof
JPH11204110A (en) * 1997-12-30 1999-07-30 Korea Kumho Petrochem Co Manufacture of anode material for lithium ion battery
JPH11302020A (en) * 1998-04-20 1999-11-02 Ube Ind Ltd Lithium manganese compound oxide, its production and its use
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Positive electrode material for lithium secondary battery

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
FR2831993A1 (en) * 2001-11-08 2003-05-09 Cit Alcatel Insertion lithium compound derived by substitution of dioxide of manganese lithia of spinel structure used for the active material of a rechargeable electrochemical generator
EP1311013A3 (en) * 2001-11-08 2006-12-27 Saft Finance S.à.r.l. Lithium insertion compound of high voltage used as cathodic active mass in a lithium rechargeable electrochemical generator
JP2003242981A (en) * 2002-02-14 2003-08-29 Hitachi Maxell Ltd Non-aqueous electrolyte battery and its manufacturing method
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
CN100373670C (en) * 2002-03-01 2008-03-05 松下电器产业株式会社 Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
WO2003075376A1 (en) * 2002-03-01 2003-09-12 Matsushita Electric Industrial Co., Ltd. Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
KR101227308B1 (en) * 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2006066341A (en) * 2004-08-30 2006-03-09 Toshiba Corp Nonaqueous electrolyte secondary cell
US7601463B2 (en) 2004-08-30 2009-10-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP2014038860A (en) * 2004-10-29 2014-02-27 Medtronic Inc Lithium-ion battery and medical device
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
JP2008519399A (en) * 2004-10-29 2008-06-05 メドトロニック・インコーポレーテッド Lithium-ion battery and medical device
JP2008186803A (en) * 2007-01-04 2008-08-14 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
US9728809B2 (en) 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP2008171661A (en) * 2007-01-11 2008-07-24 Nec Tokin Corp Lithium-ion secondary battery
EP2157640A1 (en) * 2007-03-30 2010-02-24 Toda Kogyo Corporation Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
US8440113B2 (en) 2007-03-30 2013-05-14 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
EP2157640A4 (en) * 2007-03-30 2012-05-30 Toda Kogyo Corp Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
US8821766B2 (en) 2007-03-30 2014-09-02 Toda Kogyo Corporation Lithium manganate for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
JP2008282618A (en) * 2007-05-09 2008-11-20 Toyota Central R&D Labs Inc Lithium ion secondary battery
JP2008300180A (en) * 2007-05-31 2008-12-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8728670B2 (en) 2007-08-23 2014-05-20 Kabushiki Kaisha Toshiba Nonaqueous-electrolyte battery containing a negative electrode with a coating film formed by an isocyanate-containing compound in the nonaqueous electrolyte
JP2009054319A (en) * 2007-08-23 2009-03-12 Toshiba Corp Nonaqueous electrolyte solution battery
JP2009059665A (en) * 2007-09-03 2009-03-19 Sony Corp Charging method of secondary battery
WO2009063630A1 (en) * 2007-11-12 2009-05-22 Toda Kogyo Corporation Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US9496551B2 (en) 2007-11-12 2016-11-15 Toda Kogyo Corporation Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
JP2010137996A (en) * 2007-11-12 2010-06-24 Toda Kogyo Corp Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery
JP2009277395A (en) * 2008-05-13 2009-11-26 Hitachi Maxell Ltd Nonaqueous secondary battery, and nonaqueous secondary battery system
JP2010009898A (en) * 2008-06-26 2010-01-14 Hitachi Maxell Ltd Nonaqueous secondary battery and nonaqueous secondary battery system
JP2013110134A (en) * 2008-12-25 2013-06-06 Toshiba Corp Nonaqueous electrolyte battery
US8808884B2 (en) 2009-09-16 2014-08-19 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery including the same
JP2011065993A (en) * 2009-09-16 2011-03-31 Samsung Sdi Co Ltd Electrode assembly and secondary battery including the same
JP5973167B2 (en) * 2010-01-06 2016-08-23 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery using the same
WO2011083648A1 (en) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery using same
JP2012043765A (en) * 2010-08-20 2012-03-01 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, method of producing the same, and lithium secondary battery including the negative electrode active material
JP2012156087A (en) * 2011-01-28 2012-08-16 Kaneka Corp Nonaqueous electrolyte secondary battery
JP2012221799A (en) * 2011-04-11 2012-11-12 Kaneka Corp Nonaqueous electrolyte secondary battery
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
JP2013054890A (en) * 2011-09-02 2013-03-21 Ntt Facilities Inc Nonaqueous electrolyte secondary battery
WO2013032005A1 (en) * 2011-09-02 2013-03-07 株式会社Nttファシリティーズ Nonaqueous electrolyte secondary cell
KR101514303B1 (en) * 2012-04-13 2015-04-22 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101527748B1 (en) * 2012-04-13 2015-06-12 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101514297B1 (en) * 2012-04-13 2015-04-22 주식회사 엘지화학 The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
US9455438B2 (en) 2012-04-13 2016-09-27 Lg Chem, Ltd. Method for preparing electrode mix and the electrode mix prepared by using the same
US9780359B2 (en) 2012-04-16 2017-10-03 Lg Chem, Ltd. Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same
KR101506451B1 (en) * 2012-04-16 2015-03-30 주식회사 엘지화학 Anode for Secondary Battery
US10026952B2 (en) 2012-04-16 2018-07-17 Lg Chem, Ltd. Method of manufacturing electrode for lithium secondary battery and electrode manufactured using the same
CN107425178A (en) * 2012-04-16 2017-12-01 株式会社Lg 化学 The method for manufacturing electrode for secondary battery
KR20130116827A (en) * 2012-04-16 2013-10-24 주식회사 엘지화학 The method of preparing electrodes for lithium secondary battery and the electrodes prepared by using the same
CN107425178B (en) * 2012-04-16 2020-12-01 株式会社Lg 化学 Method for manufacturing electrode for secondary battery
KR101542055B1 (en) * 2012-04-16 2015-08-05 주식회사 엘지화학 The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
CN104137313A (en) * 2012-04-16 2014-11-05 株式会社Lg化学 Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
CN104137307A (en) * 2012-04-16 2014-11-05 株式会社Lg化学 Method for manufacturing electrode for lithium secondary battery and electrode manufactured by using same
KR101603082B1 (en) * 2012-04-16 2016-03-14 주식회사 엘지화학 The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
JP2015513184A (en) * 2012-04-17 2015-04-30 エルジー・ケム・リミテッド High performance lithium secondary battery
JP2015514284A (en) * 2012-04-18 2015-05-18 エルジー・ケム・リミテッド Secondary battery electrode and secondary battery including the same
KR101495301B1 (en) 2012-04-18 2015-02-25 주식회사 엘지화학 The Electrodes For Secondary Battery and the Secondary Battery Comprising the Same
KR101545886B1 (en) 2012-04-18 2015-08-20 주식회사 엘지화학 Multi Layered Electrode and the Method of the Same
US10153480B2 (en) 2012-04-18 2018-12-11 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
CN104185915A (en) * 2012-04-18 2014-12-03 株式会社Lg化学 Electrode for secondary battery, and secondary battery comprising same
US9508993B2 (en) 2012-04-18 2016-11-29 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
US9246189B2 (en) 2012-04-19 2016-01-26 Lg Chem, Ltd. Secondary battery including electrolyte additive
US9954254B2 (en) 2012-04-20 2018-04-24 Lg Chem, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20150054745A (en) * 2012-04-20 2015-05-20 주식회사 엘지화학 Electrolyte for Secondary Battery and Lithium Secondary Battery Comprising The Same
CN104221206A (en) * 2012-04-20 2014-12-17 株式会社Lg化学 Lithium secondary battery having improved rate characteristics
US10170796B2 (en) 2012-04-20 2019-01-01 Lg Chem, Ltd. Lithium secondary battery of improved rate capability with cathode containing nickel manganese complex oxide for high-voltage applications
US9634356B2 (en) 2012-04-20 2017-04-25 Lg Chem, Ltd. Electrolyte for secondary battery and lithium secondary battery including the same
EP2919314A4 (en) * 2013-04-11 2016-05-25 Lg Chemical Ltd Electrode laminate comprising electrodes having different areas and secondary battery comprising same
JP2016506603A (en) * 2013-04-11 2016-03-03 エルジー・ケム・リミテッド Electrode laminate including electrodes having different areas and secondary battery including the same
US9666909B2 (en) 2013-04-11 2017-05-30 Lg Chem, Ltd. Electrode laminate comprising electrodes with different surface areas and secondary battery employed with the same
JP2015118742A (en) * 2013-12-16 2015-06-25 株式会社カネカ Nonaqueous electrolyte secondary battery
CN105940543A (en) * 2014-01-23 2016-09-14 日立化成株式会社 Lithium ion battery system
US10283809B2 (en) 2014-01-23 2019-05-07 Hitachi Chemical Company, Ltd. Lithium-ion battery system
WO2015111585A1 (en) * 2014-01-23 2015-07-30 日立化成株式会社 Lithium ion battery system
JPWO2015111585A1 (en) * 2014-01-23 2017-03-23 日立化成株式会社 Lithium ion battery system
WO2015151376A1 (en) * 2014-04-03 2015-10-08 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, electricity-storage apparatus, and electrical power system
JPWO2015151376A1 (en) * 2014-04-03 2017-04-13 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JPWO2015151375A1 (en) * 2014-04-03 2017-04-13 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, power storage device, and power system
CN106133981A (en) * 2014-04-03 2016-11-16 索尼公司 Secondary cell, set of cells, electronic installation, electric vehicle, power storage devices and power system
WO2015151375A1 (en) * 2014-04-03 2015-10-08 ソニー株式会社 Secondary battery, battery pack, electronic device, electric vehicle, electricity-storage apparatus, and electrical power system
JPWO2016060253A1 (en) * 2014-10-17 2017-07-06 日立化成株式会社 Lithium ion battery
US10283810B2 (en) 2014-10-17 2019-05-07 Hitachi Chemical Company, Ltd. Lithium-ion battery
WO2016113862A1 (en) * 2015-01-14 2016-07-21 株式会社 東芝 Non-aqueous electrolyte battery and battery system
JPWO2016113862A1 (en) * 2015-01-14 2017-04-27 株式会社東芝 Nonaqueous electrolyte battery and battery system
US9947923B2 (en) 2015-02-16 2018-04-17 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2016132436A1 (en) * 2015-02-16 2016-08-25 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JPWO2016132436A1 (en) * 2015-02-16 2017-04-27 株式会社東芝 Nonaqueous electrolyte battery and battery pack
CN108352561A (en) * 2015-11-06 2018-07-31 日立化成株式会社 Lithium rechargeable battery
JPWO2017078108A1 (en) * 2015-11-06 2018-06-07 日立化成株式会社 Lithium ion secondary battery
WO2017078108A1 (en) * 2015-11-06 2017-05-11 日立化成株式会社 Lithium-ion secondary cell
CN108352561B (en) * 2015-11-06 2021-10-15 昭和电工材料株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4644895B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP4216669B2 (en) Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
JP5030123B2 (en) Lithium secondary battery
JP6871888B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003221236A (en) Composite oxide containing lithium and nonaqueous secondary battery using it
JP2000277116A (en) Lithium secondary battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JP2004319105A (en) Positive active material and nonaqueous electrolyte secondary battery using it
JP2004319129A (en) Anode active material and nonaqueous electrolyte secondary battery using it
JP2005251716A (en) Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP4734684B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery
JP2000251892A (en) Positive electrode active material for lithium secondary battery, and the lithium secondary battery using the same
WO2019163846A1 (en) Metal composite hydroxide and method for producing same, positive electrode active substance for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP7028073B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries
JP2003208895A (en) Lithium-nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof and lithium secondary battery using the same
CN112424976A (en) Positive electrode active material and secondary battery
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP3832762A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP4940530B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2996234B1 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees