JPH10241687A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10241687A
JPH10241687A JP9055465A JP5546597A JPH10241687A JP H10241687 A JPH10241687 A JP H10241687A JP 9055465 A JP9055465 A JP 9055465A JP 5546597 A JP5546597 A JP 5546597A JP H10241687 A JPH10241687 A JP H10241687A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
electrolyte secondary
manganese oxide
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055465A
Other languages
Japanese (ja)
Other versions
JP3856518B2 (en
Inventor
Toshio Tsubata
敏男 津端
Tomoko Okuda
倫子 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP05546597A priority Critical patent/JP3856518B2/en
Publication of JPH10241687A publication Critical patent/JPH10241687A/en
Application granted granted Critical
Publication of JP3856518B2 publication Critical patent/JP3856518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery in which cycle performances are superior even at the temperature of a room temperature or more, since keeping high capacity having such a structure as lithium- containing metal oxide is spinel lithium manganese oxide, an X-ray diffraction peak exists in specified ranges, and the half-value width of the X-ray diffraction peak exists in a specified range. SOLUTION: In a nonaqueous electrolyte secondary battery, a lithium- containing metal oxide is spinel lithium manganese oxide which is expressed by a general formula Li[Lix Mn2-x ]O4 (where 0.05<=x<=0.18), no X-ray diffraction peak exists in ranges of 4.26±0.02Å, 4.08±0.02Å, 2.75±0.02Å, at least the X-ray diffraction peaks exist in ranges of 4.74±0.02Å, 2.47±0.02Å, 2.05±0.02Å, and the half-value widths of the X-ray diffraction peak exist in a range of 0.1±0.05 respectively. Therein, the initial capacity is high, no occurrence of Mn elusion occurs even at the temperature of a room temperature or more, and good cycle performances are maintained. Thereby, using the low-cost lithium manganese oxide, a high performance nonaqueous electrolyte secondary battery, which is in no way inferior to the one using high-cost lithium cobalt oxide, can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムマンガン
酸化物を正極活物質として利用した非水電解質二次電池
の高温下でのサイクル性能の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of cycle performance at high temperature of a non-aqueous electrolyte secondary battery using lithium manganese oxide as a positive electrode active material.

【0002】[0002]

【従来の技術】近年の電子技術の発展はめざましく、機
器の小型化、軽量化が進められている。このため、移動
体通信機器やポータブルコンピュータなどのモバイル機
器が広く普及してきていて、これらモバイル機器の電源
として高エネルギー密度の二次電池が要望されており、
特に、非水電解質二次電池は高電圧が期待できることか
ら、機器の更なる小型化、軽量化が期待できるとして渇
望されている。しかしながら、リチウム金属およびリチ
ウム合金を負極材料として用いた非水電解質二次電池で
は、充放電を繰り返した時に負極上にリチウムの樹枝状
突起が形成されサイクル性能が低下したり、高温下での
信頼性に問題があるなどの理由によりなかなか実用化さ
れなかった。
2. Description of the Related Art In recent years, the development of electronic technology has been remarkable, and devices have been reduced in size and weight. For this reason, mobile devices such as mobile communication devices and portable computers have become widespread, and high energy density secondary batteries have been demanded as power sources for these mobile devices.
In particular, since a non-aqueous electrolyte secondary battery can be expected to have a high voltage, it is desired to further reduce the size and weight of the device. However, in non-aqueous electrolyte secondary batteries using lithium metal and lithium alloy as the negative electrode material, when charge and discharge are repeated, lithium dendrites are formed on the negative electrode, resulting in poor cycle performance and reliability at high temperatures. It was not easily put into practical use due to problems such as the nature of the product.

【0003】これらの問題点を解決する手段として、負
極活物質としてリチウムを吸蔵放出可能な炭素材料を用
い、正極活物質としてリチウムとコバルトとの複合酸化
物を用いた非水電解質二次電池(特許第1989293
号明細書)が開発され、充電状態で4V以上の電圧を有
することから、モバイル機器の電源として広く普及する
ようになってきている。しかし、現在の非水電解質二次
電池はコバルトを大量に含有していることから高価であ
り、電源としての低価格化に限界があった。このためコ
バルトを他の遷移金属で置き換える試みが活発である。
遷移金属の中でも価格の安いマンガンはコバルトを置き
換えられるものとして最も期待されている。しかし、化
学量論組成のリチウムマンガン酸化物はサイクル性能が
悪く、これを改善する方法として、例えば特開平5−2
05744号公報に開示されているようにマンガンの一
部をリチウムで置換することが提案されている。
As means for solving these problems, a non-aqueous electrolyte secondary battery using a carbon material capable of inserting and extracting lithium as a negative electrode active material and a composite oxide of lithium and cobalt as a positive electrode active material ( Patent No. 1989293
Has been developed and has a voltage of 4 V or more in a charged state, and thus has become widely used as a power source for mobile devices. However, current non-aqueous electrolyte secondary batteries are expensive because they contain a large amount of cobalt, and there has been a limit in reducing the price as a power source. For this reason, attempts to replace cobalt with other transition metals are active.
Among the transition metals, manganese, which is inexpensive, is most expected to replace cobalt. However, a lithium manganese oxide having a stoichiometric composition has poor cycle performance.
It has been proposed to replace part of manganese with lithium, as disclosed in US Pat.

【0004】このようにマンガンの一部をリチウムで置
換したリチウムマンガン酸化物の従来の合成方法は、M
n原料とLi原料を所望の割合で混合し、700℃以下
の比較的低温で熱処理することで得るというものであっ
た。特に、Li原料として炭酸リチウムの代わりに融点
の低い水酸化リチウム(無水物で融点445℃)や硝酸
リチウム(融点255℃)を用いることで500℃以下
の温度で熱処理することも提案されている。しかし、い
ずれの場合も低温で熱処理されるために結晶性が高くな
らず、その結果として対リチウム金属の酸化還元電位に
対して約4V付近の可逆容量が低下するという問題点が
あった。さらに、Li原料として水酸化リチウムを用い
た場合には、未反応のまま残ると、電池化するために結
着剤と湿式混合してペーストを作成する際にそのアルカ
リ成分のためにペーストがゲル化してしまい使用できな
くなるといった問題点があった。また、700℃以上の
高温で熱処理を行なうと、Li2 MnO3 などの副相が
生成しやすく、マンガンが十分リチウムに置換されない
ために室温よりも高い温度で充放電を行なった場合には
マンガンの溶出が起こり、高温下でのサイクル性能に問
題があった。
[0004] A conventional method for synthesizing a lithium manganese oxide in which a part of manganese is replaced with lithium is as follows.
It was obtained by mixing the n raw material and the Li raw material at a desired ratio and performing a heat treatment at a relatively low temperature of 700 ° C. or less. In particular, heat treatment at a temperature of 500 ° C. or less by using lithium hydroxide having a low melting point (anhydrous and having a melting point of 445 ° C.) or lithium nitrate (a melting point of 255 ° C.) instead of lithium carbonate has been proposed. . However, in any case, since the heat treatment is performed at a low temperature, the crystallinity does not increase, and as a result, there is a problem that the reversible capacity around about 4 V with respect to the oxidation-reduction potential of lithium metal decreases. Furthermore, when lithium hydroxide is used as the Li raw material, if it remains unreacted, the paste is gelled due to the alkali component when the paste is prepared by wet mixing with a binder to form a battery. There was a problem that it became impossible to use it. In addition, when heat treatment is performed at a high temperature of 700 ° C. or more, a sub-phase such as Li 2 MnO 3 is easily generated, and manganese is not sufficiently replaced with lithium. Was eluted, and there was a problem in the cycle performance at high temperatures.

【0005】[0005]

【発明が解決しようとする課題】マンガンの一部をリチ
ウムで置き換えたリチウムマンガン酸化物は室温付近で
のサイクル性能を向上させることが可能であったが、温
度が高い、より厳しい状況下では依然としてマンガンの
溶出が起こり、そのサイクル性能が低下するという問題
点を有していた。さらに、結晶性が低く容量も大きく低
下するという問題点を有していた。本発明の課題は、マ
ンガンの一部をリチウムで置換し、かつ、結晶性の良好
なリチウムマンガン酸化物を使用することで、高容量を
保ったまま、特に室温以上の温度でもサイクル性能が良
好な非水電解質二次電池を提供することにある。
Lithium manganese oxide in which part of manganese has been replaced by lithium has been able to improve the cycle performance near room temperature, but still has a high temperature and in more severe conditions. There is a problem that manganese is eluted and the cycle performance is reduced. Further, there is a problem that the crystallinity is low and the capacity is greatly reduced. An object of the present invention is to replace a part of manganese with lithium, and by using a lithium manganese oxide having good crystallinity, while maintaining high capacity, particularly good cycle performance even at room temperature or higher. To provide a nonaqueous electrolyte secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明者らは、マンガン
の一部をリチウムで置換したスピネル系リチウムマンガ
ン酸化物の熱処理条件及び置換方法について鋭意検討し
た結果、高い結晶性を維持したまま所望の置換量が得ら
れ、非水電解質二次電池の正極材料として好適であるス
ピネル系リチウムマンガン酸化物を見出し本発明に至っ
た。すなわち、本発明は、 (1)リチウムイオンを吸蔵放出することが可能な負極
活物質、リチウムイオン伝導性の非水電解液、及びリチ
ウムイオンを吸蔵放出することが可能なリチウム含有金
属酸化物からなる正極活物質を備えた非水電解質二次電
池において、前記リチウム含有金属酸化物が次の一般式
で示されるスピネル系のリチウムマンガン酸化物であ
り、X線回折ピークを4.26±0.02Å、4.08
±0.02Å、2.75±0.02Åには有さず、か
つ、少なくとも4.74±0.02Å、2.47±0.
02Å、2.05±0.02Åに有し、該X線回折ピー
クの半価巾が各々0.1±0.05であることを特徴と
する非水電解質二次電池であり、 Li[Lix Mn2-x ]O4 (ただし、0.05≦x≦
0.18) (2)一般式Li[Lix Mn2-x ]O4 (ただし、
0.05≦x≦0.18) で示されるスピネル系リチウムマンガン酸化物の格子定
数が8.20Å以上8.24Å以下であることを特徴と
する非水電解質二次電池であり、 (3)一般式Li[Lix Mn2-x ]O4 (ただし、
0.05≦x≦0.18) で示されるスピネル系リチウムマンガン酸化物が、電解
二酸化マンガンと水酸化リチウムまたは硝酸リチウムの
混合物を大気雰囲気中で700℃以上の温度で熱処理し
た後、300℃以上600℃以下の温度で再度熱処理を
して得られたものであることを特徴とする非水電解質二
次電池である。
Means for Solving the Problems The present inventors have conducted intensive studies on the heat treatment conditions and the replacement method of a spinel-based lithium manganese oxide in which a part of manganese has been replaced with lithium. Was obtained, and a spinel-based lithium manganese oxide suitable as a positive electrode material of a nonaqueous electrolyte secondary battery was found, and the present invention was reached. That is, the present invention provides: (1) a negative electrode active material capable of inserting and extracting lithium ions, a non-aqueous electrolytic solution having lithium ion conductivity, and a lithium-containing metal oxide capable of inserting and extracting lithium ions. In the non-aqueous electrolyte secondary battery provided with the positive electrode active material, the lithium-containing metal oxide is a spinel-based lithium manganese oxide represented by the following general formula, and has an X-ray diffraction peak of 4.26 ± 0. 02Å, 4.08
± 0.02Å, 2.75 ± 0.02Å, and at least 4.74 ± 0.02Å, 2.47 ± 0.
A non-aqueous electrolyte secondary battery having an X-ray diffraction peak at 0. 02 ± 2.05 ± 0.02 ° and a half-value width of each of the X-ray diffraction peaks of 0.1 ± 0.05. x Mn 2-x ] O 4 (provided that 0.05 ≦ x ≦
0.18) (2) General formula Li [Li x Mn 2-x ] O 4 (provided that
A nonaqueous electrolyte secondary battery, wherein the lattice constant of the spinel-based lithium manganese oxide represented by the formula: 0.05 ≦ x ≦ 0.18) is not less than 8.20 ° and not more than 8.24 °; General formula Li [Li x Mn 2-x ] O 4 (however,
0.05 ≦ x ≦ 0.18) After heat-treating a mixture of electrolytic manganese dioxide and lithium hydroxide or lithium nitrate at a temperature of 700 ° C. or higher in an air atmosphere, the spinel-based lithium manganese oxide represented by the following formula: A non-aqueous electrolyte secondary battery obtained by performing a heat treatment again at a temperature of at least 600 ° C. or lower.

【0007】以下、本発明について具体的に説明する。
本発明で用いられるリチウムマンガン酸化物のマンガン
原料には、例えば、EMD( Electolytic
Manganese Dioxide) 、CMD(Ch
emical Manganese Dioxid
e)、γ−MnOOHが挙げられるが、4価のMn含有
量の高いEMDが好ましい。また、リチウム原料につい
ても、例えば、Li2 CO3 、LiOH、LiCl、L
iNO3 、Li2 SO4 、CH3 COOLiが挙げられ
るが、Li2 CO3 、LiOH又はLiNO3 が好まし
い。
Hereinafter, the present invention will be described specifically.
The manganese raw material of the lithium manganese oxide used in the present invention includes, for example, EMD (Electrolytic).
Manganese Dioxide), CMD (Ch
electronic Manganese Dioxide
e) and γ-MnOOH, but EMD having a high tetravalent Mn content is preferable. Further, as for the lithium raw material, for example, Li 2 CO 3 , LiOH, LiCl, L
Examples include iNO 3 , Li 2 SO 4 , and CH 3 COOLi, with Li 2 CO 3 , LiOH or LiNO 3 being preferred.

【0008】本発明に用いられるリチウムマンガン酸化
物は次のようにして作成することが可能である。例え
ば、平均粒径が5〜25μmになるように粉砕したEM
DとLiOHまたはLiNO3 またはLi2 CO3 とを
Mn/Li比が0.5になるように混合した後、大気中
800〜900℃で熱処理を行い、室温付近まで冷却し
た後、所望のLi量になるようにLiOHまたはLiN
3 を添加し、混合し300〜600℃、更に好ましく
は300〜500℃で熱処理することにより得ることが
できる。第2の熱処理の温度が300℃未満では、特に
LiOHが残存する可能性があり、電極化するためのペ
ーストを作成することができなくなるので好ましくな
い。600℃を超えるとLi2 MnO3 などの副相が合
成されやすくなるため、やはり好ましくない。
[0008] The lithium manganese oxide used in the present invention can be prepared as follows. For example, EM pulverized to have an average particle size of 5 to 25 μm
D and LiOH or LiNO 3 or Li 2 CO 3 are mixed so that the Mn / Li ratio becomes 0.5, heat-treated at 800 to 900 ° C. in the air, cooled to around room temperature, and then cooled to a desired Li. LiOH or LiN
It can be obtained by adding O 3 , mixing and heat-treating at 300 to 600 ° C., more preferably at 300 to 500 ° C. If the temperature of the second heat treatment is lower than 300 ° C., LiOH may remain in particular, and it is not preferable because a paste for forming an electrode cannot be formed. When the temperature exceeds 600 ° C., a secondary phase such as Li 2 MnO 3 is easily synthesized, which is not preferable.

【0009】他の例を挙げれば、粉砕したEMDとLi
OHまたはLiNO3 をあらかじめ所望のMn/Li比
で混合して熱処理をすることも可能である。熱処理は、
まず800〜900℃で行ない、次いで300〜600
℃、更に好ましくは300〜500℃で行なうことが必
要である。この場合にも第2の熱処理を行うことが重要
であり、第2の熱処理を行なわないとLi2 MnO3
どのスピネル以外の相が生成するため好ましくない。
As another example, pulverized EMD and Li
OH or LiNO 3 may be mixed in advance with a desired Mn / Li ratio and heat-treated. Heat treatment is
First at 800-900 ° C, then at 300-600
C., more preferably at 300 to 500.degree. Also in this case, it is important to perform the second heat treatment. If the second heat treatment is not performed, a phase other than spinel such as Li 2 MnO 3 is generated, which is not preferable.

【0010】LiによるMnの置換量は0.05〜0.
18原子%の範囲が好ましく、更には0.07〜0.1
6原子%の範囲が好ましい。置換量が0.05原子%未
満であるとリチウムでマンガンを置換した効果が小さ
く、室温におけるサイクル性能が低下する。また、0.
18原子%を超えると容量の低下が大きくなり好ましく
ない。
The substitution amount of Mn by Li is 0.05 to 0.1.
The range of 18 atomic% is preferable, and more preferably 0.07 to 0.1
A range of 6 atomic% is preferred. If the substitution amount is less than 0.05 atomic%, the effect of substituting manganese with lithium is small, and the cycle performance at room temperature decreases. Also, 0.
If it exceeds 18 atomic%, the capacity is greatly reduced, which is not preferable.

【0011】次に本発明におけるX線回折模様の測定手
法について説明をする。X線回折模様の測定は、理学電
気(株)製のRINT2500を用いた。X線線源にC
u−Kα1(波長1.5405Å)を用いて以下の機器
条件で行なった。管電圧と電流は各々50kV、160
mA、発散スリット0.5゜、散乱スリット0.5゜、
受光スリット巾0.15mm、さらにモノクロメータを
使用した。測定は走査速度2゜/分、走査ステップ0.
01゜で走査軸は2θ/θの条件で行なった。また、半
価巾は2θ軸で表記した回折模様の測定値からバックグ
ラウンドを引き、回折ピーク強度(h)の半分の高さ
(h/2)のピークの巾とした。
Next, a method of measuring an X-ray diffraction pattern according to the present invention will be described. The measurement of the X-ray diffraction pattern used RINT2500 manufactured by Rigaku Corporation. C for X-ray source
The measurement was performed using u-Kα1 (wavelength: 1.5405 °) under the following instrument conditions. The tube voltage and current are 50 kV and 160 kV, respectively.
mA, divergence slit 0.5 ゜, scattering slit 0.5 ゜,
The light receiving slit width was 0.15 mm, and a monochromator was used. The measurement was performed at a scanning speed of 2 ° / min.
The scanning was performed under the condition of 2θ / θ at 01 °. Further, the half width was obtained by subtracting the background from the measured value of the diffraction pattern expressed on the 2θ axis, and was defined as the width of the peak at half the height (h / 2) of the diffraction peak intensity (h).

【0012】前述のような手法で合成されたリチウムマ
ンガン酸化物は少なくとも(111)面、(311)
面、(222)面に由来するX線回折ピークを4.74
±0.02Å、2.47±0.02Å、2.05±0.
02Åに有し、かつ、これらの回折ピークの結晶性の指
標となる半価巾が0.1±0.05であることを特徴と
する。半価巾が0.1±0.05以上であるとMnの溶
出が起こりやすく、また容量も低下するため好ましくな
い。また、Mn2 3 もしくはMn34O4に起因する
2.75±0.02Åの回折ピーク、さらにLiOHお
よび/またはLi2MnO3 に起因する4.26±0.
02Å、4.08±0.02Åを有しないことを特徴と
する。
The lithium manganese oxide synthesized by the method described above has at least a (111) plane and a (311) plane.
X-ray diffraction peaks derived from the (222) plane
± 0.02 °, 2.47 ± 0.02 °, 2.05 ± 0.
02 °, and the half width as an index of crystallinity of these diffraction peaks is 0.1 ± 0.05. When the half width is 0.1 ± 0.05 or more, elution of Mn tends to occur, and the capacity is undesirably reduced. Further, a diffraction peak of 2.75 ± 0.02 ° caused by Mn 2 O 3 or Mn 34 O4, and a diffraction peak of 4.26 ± 0.02 caused by LiOH and / or Li 2 MnO 3 .
02 {4.08 ± 0.02}.

【0013】従来の化学量論組成であるLiMn2 4
はJCPDS(The JointCommittee
on Power Diffraction Sta
ndards)カード35−782によれば、格子定数
が8.248Åである。本発明のリチウムマンガン酸化
物の格子定数は8.20Å以上8.24Å以下が好まし
い。本発明のリチウムマンガン酸化物の格子定数が小さ
い理由は、結晶単位胞内のMnの一部が、Mnよりイオ
ン半径が小さいLiに置換されたためと考えられる。格
子定数が8.20Å以下では容量が著しく以下する。こ
れはMnの平均価数が4に近すぎるためであると考えら
れる。また8.24Å以上では、Mnの一部をLiで置
換した効果が得られず、Mnの溶出が起こりサイクル性
能が低下する。
The conventional stoichiometric composition LiMn 2 O 4
Is JCPDS (The Joint Committee)
on Power Diffraction Sta
According to the ndards card 35-782, the lattice constant is 8.248 °. The lattice constant of the lithium manganese oxide of the present invention is preferably from 8.20 ° to 8.24 °. The reason why the lattice constant of the lithium manganese oxide of the present invention is small is considered that a part of Mn in the crystal unit cell was replaced with Li having an ionic radius smaller than Mn. When the lattice constant is 8.20 ° or less, the capacity is significantly reduced. This is probably because the average valence of Mn is too close to 4. On the other hand, at 8.24 ° or more, the effect of substituting a part of Mn with Li cannot be obtained, and Mn is eluted to lower the cycle performance.

【0014】本発明に用いられる負極材料としては、リ
チウムをイオン状態で吸蔵放出できれば特に限定されな
いが、例えば、コークス、天然黒鉛、人造黒鉛、難黒鉛
化炭素などの炭素材料、SiSnO等の金属酸化物、L
iCoN2 等の金属窒化物などを挙げることができる
が、好ましくは炭素材料である。
The negative electrode material used in the present invention is not particularly limited as long as it can occlude and release lithium in an ion state. For example, carbon materials such as coke, natural graphite, artificial graphite and non-graphitizable carbon, and metal oxides such as SiSnO Thing, L
Although a metal nitride such as iCoN 2 can be used, a carbon material is preferable.

【0015】本発明において、活物質を電極化する場合
には、必要に応じて導電剤を添加し、結着剤で集電材に
固定することができる。導電剤の例としては、天然黒
鉛、人造黒鉛、カーボンブラック、ケッチェンブラッ
ク、アセチレンブラックなどを挙げることができるが、
黒鉛もしくは黒鉛とアセチレンブラックの併用が好まし
い。その添加量としては特に限定されないが、1〜20
重量%が好ましく、更に好ましくは3〜10重量%の範
囲である。添加量が1重量%未満であると導電性が均一
にならず、20重量%を超えると単位体積あたりの容量
が低下する。また、結着剤には、通常、ポリ4フッ化エ
チレン、ポリフッ化ビニリデン、エチレン−プロピレン
−ジエンターポリマー、カルボキシメチルセルロース、
スチレンブタジエンゴム、フッ素ゴム等が単独もしくは
混合されて用いられるが、特に限定されない。これらの
添加量としては1〜20重量%が好ましく、更に好まし
くは1〜10重量%の範囲である。添加量が1重量%未
満では結着力が弱く、20重量%超えるとLiイオンの
移動を阻害し、電池としての性能が低下する。
In the present invention, when the active material is formed into an electrode, a conductive agent can be added as necessary, and the active material can be fixed to the current collector with a binder. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, Ketjen black, acetylene black, and the like,
Graphite or a combination of graphite and acetylene black is preferred. The addition amount is not particularly limited, but may be from 1 to 20.
% By weight, and more preferably in the range of 3 to 10% by weight. If the amount is less than 1% by weight, the conductivity will not be uniform, and if it exceeds 20% by weight, the capacity per unit volume will decrease. In addition, the binder is usually polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, carboxymethylcellulose,
Styrene butadiene rubber, fluorine rubber, or the like is used alone or in combination, but is not particularly limited. The amount of these additives is preferably 1 to 20% by weight, more preferably 1 to 10% by weight. If the addition amount is less than 1% by weight, the binding force is weak, and if it exceeds 20% by weight, the movement of Li ions is inhibited, and the performance as a battery is reduced.

【0016】電解液としては、リチウム塩を電解質と
し、これを種々の有機溶媒に溶解させた混合物が用いら
れる。電解質としては、特に限定されないが、LiCl
4 、LiBF4 、LiPF6 、LiAsF6 、LiC
3 SO3 などの単独もしくは混合物を使用することが
できる。また有機溶媒としては特に限定されないが、例
示すれば、プロピレンカーボネート、エチレンカーボネ
ート、γ−ブチロラクトン、ジメチルカーボネート、ジ
エチルカーボネート、メチルエチルカーボネート、1,
2−ジメトキシエタン、テトラヒドロフラン等の単独も
しくは2種類以上の混合溶媒を使用することができる。
As the electrolytic solution, a mixture obtained by dissolving a lithium salt as an electrolyte in various organic solvents is used. The electrolyte is not particularly limited.
O 4, LiBF 4, LiPF 6 , LiAsF 6, LiC
A single or a mixture such as F 3 SO 3 can be used. The organic solvent is not particularly limited, but, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate,
A single solvent such as 2-dimethoxyethane and tetrahydrofuran or a mixture of two or more solvents can be used.

【0017】[0017]

【作用】本発明のリチウムマンガン酸化物では、Mn2
3 及びまたはMn3 4 を含有しないために、副生成
物からのMnの溶出を防止することができる。また、高
温で熱処理された後に低温で熱処理される為に、副生成
物であるLi2 Mn3 4 が消失し、MnとLiの置換
を所望量正確に置換することが可能である。さらには、
一度700℃以上の高温で熱処理されている為に、X線
回折模様のピークの半値幅に示されるように結晶性を高
くすることができる。これらの結果、本発明のリチウム
マンガン酸化物を使用した非水電解質二次電池では、従
来のリチウムマンガン酸化物を使用した電池と比較して
高温下でのMnの溶出量が低減され、良好なサイクル特
性が得られる。
According to the lithium manganese oxide of the present invention, Mn 2
Since it does not contain O 3 and / or Mn 3 O 4 , elution of Mn from by-products can be prevented. In addition, since the heat treatment is performed at a low temperature after the heat treatment at a high temperature, Li 2 Mn 3 O 4 as a by-product disappears, and the substitution between Mn and Li can be accurately substituted in a desired amount. Moreover,
Since the heat treatment is performed once at a high temperature of 700 ° C. or more, the crystallinity can be increased as indicated by the half-width of the peak of the X-ray diffraction pattern. As a result, in the nonaqueous electrolyte secondary battery using the lithium manganese oxide of the present invention, the elution amount of Mn at a high temperature is reduced as compared with the battery using the conventional lithium manganese oxide, and Cycle characteristics can be obtained.

【0018】[0018]

【実施例】以下、本発明を具体的実施例などを用いて更
に詳細に説明するが、本発明はこれら実施例などのより
何等限定されるものではない。 (実施例1)出発原料として平均粒径20μmのEMD
と、Li2 CO3 とをLi/Mn=0.5(原子比)の
組成比で混合し、空気中850℃で20時間熱処理した
のちに室温付近まで冷却した。このリチウムマンガン酸
化物のX線回折模様とJCPDSカードとを比較した結
果から、このリチウムマンガン酸化物がLiMn2 4
であることを確認した。次いで、得られたLiMn2
4 とLiOHを、Li/Mn=0.61(原子比)の組
成比で混合し、空気中400℃で10時間熱処理するこ
とによって本発明のリチウムマンガン酸化物を得た。こ
のリチウムマンガン酸化物のX線回折模様は図1に示す
ように(111)面、(311)面、(222)面に由
来する各々の回折ピークを4.741Å、2.476
Å、2.053Åに有し、かつその半価巾はおのおの
0.094、0.118、0.118であり、結晶性が
高く、Mn2 3 、Mn3 4 及びLi2 MnO3 、L
iOHなど副相の回折ピークを有さないことから単一の
立方晶スピネルであることが確認された。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples. Example 1 EMD having an average particle size of 20 μm as a starting material
And Li 2 CO 3 were mixed at a composition ratio of Li / Mn = 0.5 (atomic ratio), heat-treated in air at 850 ° C. for 20 hours, and then cooled to around room temperature. From the result of comparing the X-ray diffraction pattern of this lithium manganese oxide with the JCPDS card, this lithium manganese oxide was found to be LiMn 2 O 4
Was confirmed. Then, the obtained LiMn 2 O
4 and LiOH were mixed at a composition ratio of Li / Mn = 0.61 (atomic ratio) and heat-treated in air at 400 ° C. for 10 hours to obtain a lithium manganese oxide of the present invention. As shown in FIG. 1, the X-ray diffraction pattern of this lithium manganese oxide shows the respective diffraction peaks derived from the (111) plane, the (311) plane, and the (222) plane as 4.741Å, 2.476.
{2.03}, and their half-value widths are 0.094, 0.118, and 0.118, respectively, and have high crystallinity, Mn 2 O 3 , Mn 3 O 4, and Li 2 MnO 3 , L
Since it did not have a diffraction peak of a secondary phase such as iOH, it was confirmed to be a single cubic spinel.

【0019】標準物質となるSiを用いて格子定数を正
確に求めたところ8.213Åであった。さらに、元素
分析の結果から、Li[Li0.12Mn1.88]O4 である
ことを確認した。このようにして作成されたリチウムマ
ンガン酸化物の表面を走査型電子顕微鏡で観察した結
果、二次粒子は直径がおおよそ0.3から1.0μmの
一次粒子の集合体により形成されていることが確認でき
た。本発明における具体的な電池作成について説明す
る。
When the lattice constant was accurately determined using Si as a standard substance, it was 8.213 °. Furthermore, from the result of elemental analysis, it was confirmed that the substance was Li [Li 0.12 Mn 1.88 ] O 4 . As a result of observing the surface of the lithium manganese oxide thus prepared with a scanning electron microscope, it was found that the secondary particles were formed by an aggregate of primary particles having a diameter of about 0.3 to 1.0 μm. It could be confirmed. A description will be given of a specific battery preparation in the present invention.

【0020】上記リチウムマンガン酸化物100重量部
に対して導電剤としてアセチレンブラック3重量部と鱗
状天然黒鉛3重量部を混合した後に、総重量に対して3
重量部の割合でフッ素ゴムを混合し、フッ素ゴムの溶剤
である酢酸エチル/エチルセロソルブの混合溶剤を添加
して湿式混合を行ないペーストとした。次いでこのペー
ストを正極集電体となる厚さ20μmのアルミニウム箔
の両面に均一に塗布し、乾燥させた後にローラープレス
機によって加圧成形することで帯状の正極を作成した。
次に3000℃で黒鉛化したメソカーボンファイバー9
5重量部と鱗状天然黒鉛5重量部の混合物に対して、カ
ルボキシメチルセルロース1重量部とスチレンブタジエ
ンゴム2重量部、溶剤として精製水を添加して湿式混合
を行ないペーストとした。次いでこのペーストを負極集
電体となる厚さ12μmの銅箔の両面に均一に塗布し、
乾燥させた後にローラープレス機によって加圧成形する
ことで帯状の負極を作成した。さらに、上記正極と上記
負極の間にセパレーターとして25μm厚みのポリエチ
レン微多孔膜を挟んでロール状に巻くことで捲廻体とし
た。
After mixing 3 parts by weight of acetylene black and 3 parts by weight of scale-like natural graphite as a conductive agent with respect to 100 parts by weight of the lithium manganese oxide, 3 parts by weight based on the total weight are mixed.
The fluororubber was mixed at a ratio of parts by weight, and a mixed solvent of ethyl acetate / ethyl cellosolve, which is a solvent for the fluororubber, was added to obtain a paste by wet mixing. Next, this paste was uniformly applied to both sides of a 20-μm-thick aluminum foil serving as a positive electrode current collector, dried, and then pressure-formed by a roller press to form a belt-shaped positive electrode.
Next, mesocarbon fiber 9 graphitized at 3000 ° C.
To a mixture of 5 parts by weight and 5 parts by weight of scale-like natural graphite, 1 part by weight of carboxymethylcellulose, 2 parts by weight of styrene-butadiene rubber, and purified water as a solvent were added to obtain a paste by wet mixing. Next, this paste was uniformly applied to both surfaces of a copper foil having a thickness of 12 μm serving as a negative electrode current collector,
After drying, a belt-shaped negative electrode was formed by pressure molding with a roller press. Furthermore, a 25-μm-thick polyethylene microporous membrane was sandwiched between the positive electrode and the negative electrode as a separator to form a roll.

【0021】ニッケルメッキを施した鉄製の円筒缶の底
部に絶縁性のフィルムを挿入し、前記捲廻体を挿入し
た。次いで捲廻体より取り出した負極タブを缶底に溶接
し、正極タブをガスケット、防爆ディスク、PTC素子
からなる閉塞蓋体に溶接した。電池缶の中にエチレンカ
ーボネートとジエチルカーボネートの混合溶媒に1モル
/リットルの濃度でLiPF6 を溶解した電解液を注液
して、捲廻体上部に絶縁性のフィルムを挿入した後、前
記閉塞蓋体を入れ、電池缶の端部をかしめることで外形
17mm高さ500mmの円筒型非水電解質二次電池を
作成した。
An insulating film was inserted into the bottom of a nickel-plated iron cylindrical can, and the wound body was inserted. Next, the negative electrode tab taken out from the wound body was welded to the bottom of the can, and the positive electrode tab was welded to a closing lid made of a gasket, an explosion-proof disk, and a PTC element. An electrolyte in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate was injected into the battery can, and an insulating film was inserted into the upper part of the wound body. A cylindrical non-aqueous electrolyte secondary battery having an outer shape of 17 mm and a height of 500 mm was prepared by inserting the lid and crimping the end of the battery can.

【0022】(実施例2)リチウムマンガン酸化物の合
成法を以下のように変えた以外は、実施例1と同様にし
て非水電解質二次電池を作成した。出発原料として平均
粒径15μmのEMDと、LiOHとをLi/Mn=
0.61(原子比)の組成比で混合し、空気中900℃
で20時間熱処理したのちに500℃まで降温して12
時間熱処理することによって本発明のリチウムマンガン
酸化物を得た。得られた物質のX線回折模様は少なくと
も(111)面、(311)面、(222)面に由来す
る各々の回折ピークを4.751Å、2.479Å、
2.055Åに有し、かつその半価巾はおのおの0.0
94、0.094、0.094であり、結晶性が高く、
副相のピークを有さない単一の立方晶スピネルであっ
た。標準物質となるSiを用いて格子定数を正確に求め
たところ8.215Åであった。さらに、元素分析の結
果から、Li[Li0.11Mn1.89]O4 であることを確
認した。このようにして作成されたリチウムマンガン酸
化物の表面を走査型電子顕微鏡で観察した結果、二次粒
子は直径がおおよそ0.5から1.5μmの一次粒子の
集合体により形成されていることが確認できた。
Example 2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the method of synthesizing lithium manganese oxide was changed as follows. As a starting material, EMD having an average particle size of 15 μm and LiOH were mixed with Li / Mn =
Mix at a composition ratio of 0.61 (atomic ratio) and 900 ° C in air
And then heat down to 500 ° C for 12 hours.
The lithium manganese oxide of the present invention was obtained by heat treatment for an hour. The X-ray diffraction pattern of the obtained substance shows at least diffraction peaks derived from (111), (311) and (222) planes of 4.751 °, 2.479 °,
2.055 ° and the half-value width is 0.0
94, 0.094, 0.094, high crystallinity,
It was a single cubic spinel with no subphase peak. When the lattice constant was accurately determined using Si as a standard material, it was 8.215 °. Furthermore, from the result of elemental analysis, it was confirmed that the substance was Li [Li 0.11 Mn 1.89 ] O 4 . As a result of observing the surface of the lithium manganese oxide thus produced with a scanning electron microscope, it was found that the secondary particles were formed by an aggregate of primary particles having a diameter of about 0.5 to 1.5 μm. It could be confirmed.

【0023】(比較例)リチウムマンガン酸化物の合成
法を以下のように変えた以外は、実施例1と同様にして
非水電解質二次電池を作成した。出発原料として平均粒
径20μmのEMDと、LiOHとをLi/Mn=0.
6(原子比)の組成比で混合し、空気中650℃で12
時間熱処理したのちに900℃まで昇温して12時間熱
処理することによってリチウムマンガン酸化物を得た。
このリチウムマンガン酸化物のX線回折模様は図2に示
すように(111)面、(311)面、(222)面に
由来する各々の回折ピークを4.767Å、2.487
Å、2.063Åに有し、かつその半価巾はおのおの
0.094、0.118、0.141であり、結晶性は
高いが2.767ÅにMn2 3 もしくはMn3 4
起因すると考えられる回折ピークおよびLi2 MnO3
に起因すると考えられる回折ピークが存在した。さらに
標準物質となるSiを用いて格子定数を正確に求めたと
ころ8.247Åであった。この結果より、LiMn2
4 及びMn2 3 及びMn3 4 及びLi2 MnO3
の混合物であり均一な立方晶スピネル単相ではないと考
えられた。
Comparative Example A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the method of synthesizing lithium manganese oxide was changed as follows. As a starting material, EMD having an average particle diameter of 20 μm and LiOH were mixed with Li / Mn = 0.
6 (atomic ratio) in air at 650 ° C.
After heat treatment for 900 hours, the temperature was raised to 900 ° C. and heat treatment was performed for 12 hours to obtain lithium manganese oxide.
As shown in FIG. 2, the X-ray diffraction pattern of this lithium manganese oxide shows the respective diffraction peaks derived from the (111) plane, the (311) plane, and the (222) plane as 4.767 ° and 2.487.
{2.063}, and their half-value widths are 0.094, 0.118, and 0.141, respectively. Although the crystallinity is high, it is caused by Mn 2 O 3 or Mn 3 O 4 at 2.767 °. Diffraction peak and Li 2 MnO 3
There was a diffraction peak thought to be due to Further, when the lattice constant was accurately determined using Si as a standard substance, it was 8.247 °. From this result, LiMn 2
O 4 and Mn 2 O 3 and Mn 3 O 4 and Li 2 MnO 3
And it was not considered to be a uniform cubic spinel single phase.

【0024】〔試験結果〕上記実施例1、2及び比較例
で作成した電池はいずれも電池内部の安定化を目的に2
4時間のエージング期間を経過させた後に、充電電圧を
4.2Vに設定して5時間で充電を行なった。ついで5
00mAの一定電流で2.7Vまで放電を行ない、それ
ぞれの電池の初期容量を測定し、電池内の単位正極活物
質あたりの容量を求めた。次いで、電池を60℃に調整
された恒温槽にいれ、充電電圧を4.2Vに設定して3
時間で充電し、1Aの一定電流で2.7Vまで放電を繰
り返し行なうサイクル試験を行ない、50サイクル目の
放電容量を測定し、電池内の単位正極活物質あたりの容
量を求めた。さらにこれら基づいて初期容量(X)に対
する50サイクル目の放電容量(Y)の劣化率を次式に
従って算出した。 劣化率(%)=〔(X−Y)/X〕×100
[Test Results] The batteries prepared in Examples 1 and 2 and Comparative Example were all used for the purpose of stabilizing the inside of the batteries.
After the aging period of 4 hours had elapsed, charging was performed in 5 hours with the charging voltage set to 4.2V. Then 5
The battery was discharged at a constant current of 00 mA to 2.7 V, the initial capacity of each battery was measured, and the capacity per unit positive electrode active material in the battery was determined. Next, the battery was placed in a thermostat adjusted to 60 ° C., and the charging voltage was set to 4.2 V to 3
A cycle test was performed in which the battery was charged over time and repeatedly discharged to 2.7 V at a constant current of 1 A, the discharge capacity at the 50th cycle was measured, and the capacity per unit positive electrode active material in the battery was determined. Further, based on these, the deterioration rate of the discharge capacity (Y) at the 50th cycle with respect to the initial capacity (X) was calculated according to the following equation. Deterioration rate (%) = [(XY) / X] × 100

【0025】表1に、初期放電量および50サイクル目
の放電容量から算出された単位正極活物質あたりの放電
量とそれらから算出された劣化率を示す。表1に示すよ
うに、実施例1および2の電池は比較例と比べると初期
容量は低いが、50サイクルでの劣化率が小さい。これ
は一度700℃以上で熱処理されているために結晶性が
高い均一なスピネルが作成できるとともに副相が無くな
ることで、仕込んだリチウムがマンガンの一部を正確に
置換しているためであると考えられる。
Table 1 shows the discharge amount per unit positive electrode active material calculated from the initial discharge amount and the discharge capacity at the 50th cycle, and the deterioration rate calculated from them. As shown in Table 1, the batteries of Examples 1 and 2 had lower initial capacities than the comparative examples, but had a low deterioration rate after 50 cycles. This is because the heat treatment is performed once at 700 ° C. or higher, so that a uniform spinel having high crystallinity can be formed and the subphase is eliminated, so that the charged lithium substitutes a part of manganese accurately. Conceivable.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上説明してきたように、本発明のX線
回折ピークを少なくとも2.75±0.02Åには有せ
ず、4.74±0.02Å、2.47±0.02Å、
2.05±0.02Åに有し、その半価巾が各々0.1
±0.05であるLi[Lix Mn2-x ]O4 で示され
るスピネル系のリチウムマンガン酸化物を使用した非水
電解質二次電池では、初期容量が高く、かつ、室温以上
の温度下でもMnの溶出が起こらなくなり良好なサイク
ル性能が維持される。また、LiOHが残存しないため
にペーストのゲル化も起こらない。さらに、高価な他の
元素を使用しないので安価である。その結果、安価な材
料のリチウムマンガン酸化物を使用して、高価なリチウ
ムコバルト酸化物を使用した場合と遜色のない非水電解
質二次電池を提供できる。高性能な非水電解質二次電池
が安価で供給できるようになりその工業的価値は大き
い。
As described above, the X-ray diffraction peak of the present invention is not present at least at 2.75 ± 0.02 ° but at 4.74 ± 0.02 °, 2.47 ± 0.02 °,
2.05 ± 0.02Å, the half width of each is 0.1
A non-aqueous electrolyte secondary battery using a spinel lithium manganese oxide represented by Li [Li x Mn 2-x ] O 4 of ± 0.05 has a high initial capacity and a temperature above room temperature. However, Mn does not elute and good cycle performance is maintained. Further, no gelation of the paste occurs because no LiOH remains. Further, the cost is low because other expensive elements are not used. As a result, it is possible to provide a non-aqueous electrolyte secondary battery using lithium manganese oxide, which is an inexpensive material, which is comparable to the case using expensive lithium cobalt oxide. A high-performance nonaqueous electrolyte secondary battery can be supplied at low cost, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたリチウムマンガン酸化物の
X線回折模様である。
FIG. 1 is an X-ray diffraction pattern of a lithium manganese oxide obtained in Example 1.

【図2】比較例で得られたリチウムマンガン酸化物のX
線回折模様である。
FIG. 2 shows X of lithium manganese oxide obtained in a comparative example.
It is a line diffraction pattern.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出することが可
能な負極活物質、リチウムイオン伝導性の非水電解液、
及びリチウムイオンを吸蔵放出することが可能なリチウ
ム含有金属酸化物からなる正極活物質を備えた非水電解
質二次電池において、前記リチウム含有金属酸化物が次
の一般式で示されるスピネル系のリチウムマンガン酸化
物であり、X線回折ピークを4.26±0.02Å、
4.08±0.02Å、2.75±0.02Åには有さ
ず、かつ、少なくとも4.74±0.02Å、2.47
±0.02Å、2.05±0.02Åに有し、該X線回
折ピークの半価巾が各々0.1±0.05であることを
特徴とする非水電解質二次電池。 Li[Lix Mn2-x ]O4 (ただし、0.05≦x≦
0.18)
1. A negative electrode active material capable of inserting and extracting lithium ions, a lithium ion conductive non-aqueous electrolyte,
And a non-aqueous electrolyte secondary battery comprising a positive electrode active material comprising a lithium-containing metal oxide capable of inserting and extracting lithium ions, wherein the lithium-containing metal oxide is represented by the following general formula: A manganese oxide having an X-ray diffraction peak of 4.26 ± 0.02 °,
4.08 ± 0.02Å, not at 2.75 ± 0.02Å, and at least 4.74 ± 0.02Å, 2.47
A non-aqueous electrolyte secondary battery having ± 0.02 ° and 2.05 ± 0.02 °, and a half width of each of the X-ray diffraction peaks is 0.1 ± 0.05. Li [Li x Mn 2-x ] O 4 (provided that 0.05 ≦ x ≦
0.18)
【請求項2】 一般式Li[Lix Mn2-x ]O4 (た
だし、0.05≦x≦0.18)で示されるスピネル系
リチウムマンガン酸化物の格子定数が、8.20Å以上
8.24Å以下であることを特徴とする請求項1記載の
非水電解質二次電池。
2. The lattice constant of a spinel lithium manganese oxide represented by the general formula Li [Li x Mn 2-x ] O 4 (where 0.05 ≦ x ≦ 0.18) is at least 8.20 ° 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the angle is not more than .24 °.
【請求項3】 一般式Li[Lix Mn2-x ]O4 (た
だし、0.05≦x≦0.18)で示されるスピネル系
リチウムマンガン酸化物が、電解二酸化マンガンと水酸
化リチウムまたは硝酸リチウムの混合物を大気雰囲気中
で700℃以上の温度で熱処理した後、300℃以上6
00℃以下の温度で再度熱処理をして得ることを特徴と
する請求項1または請求項2記載の非水電解質二次電
池。
3. A spinel-based lithium manganese oxide represented by a general formula Li [Li x Mn 2-x ] O 4 (where 0.05 ≦ x ≦ 0.18), comprising electrolytic manganese dioxide and lithium hydroxide or After heat-treating the mixture of lithium nitrate at a temperature of 700 ° C. or more in an air atmosphere,
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is obtained by performing heat treatment again at a temperature of 00 ° C. or less.
JP05546597A 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3856518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05546597A JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05546597A JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10241687A true JPH10241687A (en) 1998-09-11
JP3856518B2 JP3856518B2 (en) 2006-12-13

Family

ID=12999367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05546597A Expired - Fee Related JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3856518B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163622A (en) * 1999-10-01 2001-06-19 Tosoh Corp Lithium manganese oxide, its production process and secondary cell using the same oxide
JP4714978B2 (en) * 1999-10-01 2011-07-06 東ソー株式会社 Lithium manganese oxide, method for producing the same, and secondary battery using the same
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP4644895B2 (en) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 Lithium secondary battery
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3856518B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US8026003B2 (en) Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4022937B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP5544163B2 (en) High performance cathode material for lithium batteries
JP3195175B2 (en) Non-aqueous solvent secondary battery
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
KR102420738B1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using this positive electrode active material
JP2001196063A (en) Active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3007859B2 (en) Method for preparing high capacity LiMn2O4 secondary battery anode compound
JP2000348722A (en) Nonaqueous electrolyte battery
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JPH07249409A (en) Nonaqueous electrolyte secondary battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP3856518B2 (en) Nonaqueous electrolyte secondary battery
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JPH06267539A (en) Lithium secondary battery
JPH10302795A (en) Non-aqueous electrolytic secondary battery
JPH1173989A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees