JP3856518B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3856518B2
JP3856518B2 JP05546597A JP5546597A JP3856518B2 JP 3856518 B2 JP3856518 B2 JP 3856518B2 JP 05546597 A JP05546597 A JP 05546597A JP 5546597 A JP5546597 A JP 5546597A JP 3856518 B2 JP3856518 B2 JP 3856518B2
Authority
JP
Japan
Prior art keywords
lithium
electrolyte secondary
secondary battery
manganese oxide
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05546597A
Other languages
Japanese (ja)
Other versions
JPH10241687A (en
Inventor
敏男 津端
倫子 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Microdevices Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP05546597A priority Critical patent/JP3856518B2/en
Publication of JPH10241687A publication Critical patent/JPH10241687A/en
Application granted granted Critical
Publication of JP3856518B2 publication Critical patent/JP3856518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムマンガン酸化物を正極活物質として利用した非水電解質二次電池の高温下でのサイクル性能の改善に関するものである。
【0002】
【従来の技術】
近年の電子技術の発展はめざましく、機器の小型化、軽量化が進められている。このため、移動体通信機器やポータブルコンピュータなどのモバイル機器が広く普及してきていて、これらモバイル機器の電源として高エネルギー密度の二次電池が要望されており、特に、非水電解質二次電池は高電圧が期待できることから、機器の更なる小型化、軽量化が期待できるとして渇望されている。しかしながら、リチウム金属およびリチウム合金を負極材料として用いた非水電解質二次電池では、充放電を繰り返した時に負極上にリチウムの樹枝状突起が形成されサイクル性能が低下したり、高温下での信頼性に問題があるなどの理由によりなかなか実用化されなかった。
【0003】
これらの問題点を解決する手段として、負極活物質としてリチウムを吸蔵放出可能な炭素材料を用い、正極活物質としてリチウムとコバルトとの複合酸化物を用いた非水電解質二次電池(特許第1989293号明細書)が開発され、充電状態で4V以上の電圧を有することから、モバイル機器の電源として広く普及するようになってきている。しかし、現在の非水電解質二次電池はコバルトを大量に含有していることから高価であり、電源としての低価格化に限界があった。このためコバルトを他の遷移金属で置き換える試みが活発である。遷移金属の中でも価格の安いマンガンはコバルトを置き換えられるものとして最も期待されている。しかし、化学量論組成のリチウムマンガン酸化物はサイクル性能が悪く、これを改善する方法として、例えば特開平5−205744号公報に開示されているようにマンガンの一部をリチウムで置換することが提案されている。
【0004】
このようにマンガンの一部をリチウムで置換したリチウムマンガン酸化物の従来の合成方法は、Mn原料とLi原料を所望の割合で混合し、700℃以下の比較的低温で熱処理することで得るというものであった。特に、Li原料として炭酸リチウムの代わりに融点の低い水酸化リチウム(無水物で融点445℃)や硝酸リチウム(融点255℃)を用いることで500℃以下の温度で熱処理することも提案されている。しかし、いずれの場合も低温で熱処理されるために結晶性が高くならず、その結果として対リチウム金属の酸化還元電位に対して約4V付近の可逆容量が低下するという問題点があった。さらに、Li原料として水酸化リチウムを用いた場合には、未反応のまま残ると、電池化するために結着剤と湿式混合してペーストを作成する際にそのアルカリ成分のためにペーストがゲル化してしまい使用できなくなるといった問題点があった。
また、700℃以上の高温で熱処理を行なうと、Li2 MnO3 などの副相が生成しやすく、マンガンが十分リチウムに置換されないために室温よりも高い温度で充放電を行なった場合にはマンガンの溶出が起こり、高温下でのサイクル性能に問題があった。
【0005】
【発明が解決しようとする課題】
マンガンの一部をリチウムで置き換えたリチウムマンガン酸化物は室温付近でのサイクル性能を向上させることが可能であったが、温度が高い、より厳しい状況下では依然としてマンガンの溶出が起こり、そのサイクル性能が低下するという問題点を有していた。さらに、結晶性が低く容量も大きく低下するという問題点を有していた。
本発明の課題は、マンガンの一部をリチウムで置換し、かつ、結晶性の良好なリチウムマンガン酸化物を使用することで、高容量を保ったまま、特に室温以上の温度でもサイクル性能が良好な非水電解質二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、マンガンの一部をリチウムで置換したスピネル系リチウムマンガン酸化物の熱処理条件及び置換方法について鋭意検討した結果、高い結晶性を維持したまま所望の置換量が得られ、非水電解質二次電池の正極材料として好適であるスピネル系リチウムマンガン酸化物を見出し本発明に至った。
すなわち、本発明は、
(1)リチウムイオンを吸蔵放出することが可能な負極活物質、リチウムイオン伝導性の非水電解液、及びリチウムイオンを吸蔵放出することが可能なリチウム含有金属酸化物からなる正極活物質を備えた非水電解質二次電池において、前記リチウム含有金属酸化物が次の一般式で示されるスピネル系のリチウムマンガン酸化物であり、X線回折ピークを4.26±0.02Å、4.08±0.02Å、2.75±0.02Åには有さず、かつ、少なくとも4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、該X線回折ピークの半価巾が各々0.1±0.05であることを特徴とする非水電解質二次電池であり、
Li[Lix Mn2-x ]O4(ただし、0.07≦x≦0.18
(2)一般式Li[Lix Mn2-x ]O4(ただし、0.07≦x≦0.18)で示されるスピネル系リチウムマンガン酸化物の格子定数が8.20Å以上8.24Å以下であることを特徴とする非水電解質二次電池であり、
(3)電解二酸化マンガンと水酸化リチウムまたは硝酸リチウムの混合物を大気雰囲気中で700℃以上の温度で熱処理した後、300℃以上600℃以下の温度で再度熱処理をして、X線回折ピークを4.26±0.02Å、4.08±0.02Å、2.75±0.02Åには有さず、かつ、少なくとも4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、該X線回折ピークの半価巾が各々0.1±0.05である一般式Li[Li x Mn 2-x ]O 4 (ただし、0.07≦x≦0.18)で示されるスピネル系リチウムマンガン酸化物を得る工程を含むことを特徴とする請求項1または請求項2記載の非水電解質二次電池の製造方法である。
【0007】
以下、本発明について具体的に説明する。
本発明で用いられるリチウムマンガン酸化物のマンガン原料には、例えば、EMD( Electolytic Manganese Dioxide) 、CMD(Chemical Manganese Dioxide)、γ−MnOOHが挙げられるが、4価のMn含有量の高いEMDが好ましい。また、リチウム原料についても、例えば、Li2 CO3 、LiOH、LiCl、LiNO3 、Li2 SO4 、CH3 COOLiが挙げられるが、Li2 CO3 、LiOH又はLiNO3 が好ましい。
【0008】
本発明に用いられるリチウムマンガン酸化物は次のようにして作成することが可能である。
例えば、平均粒径が5〜25μmになるように粉砕したEMDとLiOHまたはLiNO3 またはLi2 CO3 とをMn/Li比が0.5になるように混合した後、大気中800〜900℃で熱処理を行い、室温付近まで冷却した後、所望のLi量になるようにLiOHまたはLiNO3 を添加し、混合し300〜600℃、更に好ましくは300〜500℃で熱処理することにより得ることができる。第2の熱処理の温度が300℃未満では、特にLiOHが残存する可能性があり、電極化するためのペーストを作成することができなくなるので好ましくない。600℃を超えるとLi2 MnO3 などの副相が合成されやすくなるため、やはり好ましくない。
【0009】
他の例を挙げれば、粉砕したEMDとLiOHまたはLiNO3 をあらかじめ所望のMn/Li比で混合して熱処理をすることも可能である。熱処理は、まず800〜900℃で行ない、次いで300〜600℃、更に好ましくは300〜500℃で行なうことが必要である。この場合にも第2の熱処理を行うことが重要であり、第2の熱処理を行なわないとLi2 MnO3 などのスピネル以外の相が生成するため好ましくない。
【0010】
LiによるMnの置換量は0.05〜0.18原子%の範囲が好ましく、更には0.07〜0.16原子%の範囲が好ましい。置換量が0.05原子%未満であるとリチウムでマンガンを置換した効果が小さく、室温におけるサイクル性能が低下する。また、0.18原子%を超えると容量の低下が大きくなり好ましくない。
【0011】
次に本発明におけるX線回折模様の測定手法について説明をする。
X線回折模様の測定は、理学電気(株)製のRINT2500を用いた。X線線源にCu−Kα1(波長1.5405Å)を用いて以下の機器条件で行なった。管電圧と電流は各々50kV、160mA、発散スリット0.5゜、散乱スリット0.5゜、受光スリット巾0.15mm、さらにモノクロメータを使用した。測定は走査速度2゜/分、走査ステップ0.01゜で走査軸は2θ/θの条件で行なった。また、半価巾は2θ軸で表記した回折模様の測定値からバックグラウンドを引き、回折ピーク強度(h)の半分の高さ(h/2)のピークの巾とした。
【0012】
前述のような手法で合成されたリチウムマンガン酸化物は少なくとも(111)面、(311)面、(222)面に由来するX線回折ピークを4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、かつ、これらの回折ピークの結晶性の指標となる半価巾が0.1±0.05であることを特徴とする。半価巾が0.1±0.05以上であるとMnの溶出が起こりやすく、また容量も低下するため好ましくない。また、Mn2 3 もしくはMn 3 4 に起因する2.75±0.02Åの回折ピーク、さらにLiOHおよび/またはLi2MnO3 に起因する4.26±0.02Å、4.08±0.02Åを有しないことを特徴とする。
【0013】
従来の化学量論組成であるLiMn2 4 はJCPDS(The JointCommittee on Power Diffraction Standards)カード35−782によれば、格子定数が8.248Åである。本発明のリチウムマンガン酸化物の格子定数は8.20Å以上8.24Å以下が好ましい。本発明のリチウムマンガン酸化物の格子定数が小さい理由は、結晶単位胞内のMnの一部が、Mnよりイオン半径が小さいLiに置換されたためと考えられる。格子定数が8.20Å以下では容量が著しく以下する。これはMnの平均価数が4に近すぎるためであると考えられる。また8.24Å以上では、Mnの一部をLiで置換した効果が得られず、Mnの溶出が起こりサイクル性能が低下する。
【0014】
本発明に用いられる負極材料としては、リチウムをイオン状態で吸蔵放出できれば特に限定されないが、例えば、コークス、天然黒鉛、人造黒鉛、難黒鉛化炭素などの炭素材料、SiSnO等の金属酸化物、LiCoN2 等の金属窒化物などを挙げることができるが、好ましくは炭素材料である。
【0015】
本発明において、活物質を電極化する場合には、必要に応じて導電剤を添加し、結着剤で集電材に固定することができる。導電剤の例としては、天然黒鉛、人造黒鉛、カーボンブラック、ケッチェンブラック、アセチレンブラックなどを挙げることができるが、黒鉛もしくは黒鉛とアセチレンブラックの併用が好ましい。その添加量としては特に限定されないが、1〜20重量%が好ましく、更に好ましくは3〜10重量%の範囲である。添加量が1重量%未満であると導電性が均一にならず、20重量%を超えると単位体積あたりの容量が低下する。また、結着剤には、通常、ポリ4フッ化エチレン、ポリフッ化ビニリデン、エチレン−プロピレン−ジエンターポリマー、カルボキシメチルセルロース、スチレンブタジエンゴム、フッ素ゴム等が単独もしくは混合されて用いられるが、特に限定されない。これらの添加量としては1〜20重量%が好ましく、更に好ましくは1〜10重量%の範囲である。添加量が1重量%未満では結着力が弱く、20重量%超えるとLiイオンの移動を阻害し、電池としての性能が低下する。
【0016】
電解液としては、リチウム塩を電解質とし、これを種々の有機溶媒に溶解させた混合物が用いられる。電解質としては、特に限定されないが、LiClO4 、LiBF4 、LiPF6 、LiAsF6 、LiCF3 SO3 などの単独もしくは混合物を使用することができる。また有機溶媒としては特に限定されないが、例示すれば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン等の単独もしくは2種類以上の混合溶媒を使用することができる。
【0017】
【作用】
本発明のリチウムマンガン酸化物では、Mn2 3 及びまたはMn3 4 を含有しないために、副生成物からのMnの溶出を防止することができる。また、高温で熱処理された後に低温で熱処理される為に、副生成物であるLi2 Mn3 4 が消失し、MnとLiの置換を所望量正確に置換することが可能である。さらには、一度700℃以上の高温で熱処理されている為に、X線回折模様のピークの半値幅に示されるように結晶性を高くすることができる。これらの結果、本発明のリチウムマンガン酸化物を使用した非水電解質二次電池では、従来のリチウムマンガン酸化物を使用した電池と比較して高温下でのMnの溶出量が低減され、良好なサイクル特性が得られる。
【0018】
【実施例】
以下、本発明を具体的実施例などを用いて更に詳細に説明するが、本発明はこれら実施例などのより何等限定されるものではない。
(実施例1)
出発原料として平均粒径20μmのEMDと、Li2 CO3 とをLi/Mn=0.5(原子比)の組成比で混合し、空気中850℃で20時間熱処理したのちに室温付近まで冷却した。このリチウムマンガン酸化物のX線回折模様とJCPDSカードとを比較した結果から、このリチウムマンガン酸化物がLiMn2 4 であることを確認した。次いで、得られたLiMn2 4 とLiOHを、Li/Mn=0.61(原子比)の組成比で混合し、空気中400℃で10時間熱処理することによって本発明のリチウムマンガン酸化物を得た。このリチウムマンガン酸化物のX線回折模様は図1に示すように(111)面、(311)面、(222)面に由来する各々の回折ピークを4.741Å、2.476Å、2.053Åに有し、かつその半価巾はおのおの0.094、0.118、0.118であり、結晶性が高く、Mn2 3 、Mn3 4 及びLi2 MnO3 、LiOHなど副相の回折ピークを有さないことから単一の立方晶スピネルであることが確認された。
【0019】
標準物質となるSiを用いて格子定数を正確に求めたところ8.213Åであった。さらに、元素分析の結果から、Li[Li0.12Mn1.88]O4 であることを確認した。このようにして作成されたリチウムマンガン酸化物の表面を走査型電子顕微鏡で観察した結果、二次粒子は直径がおおよそ0.3から1.0μmの一次粒子の集合体により形成されていることが確認できた。
本発明における具体的な電池作成について説明する。
【0020】
上記リチウムマンガン酸化物100重量部に対して導電剤としてアセチレンブラック3重量部と鱗状天然黒鉛3重量部を混合した後に、総重量に対して3重量部の割合でフッ素ゴムを混合し、フッ素ゴムの溶剤である酢酸エチル/エチルセロソルブの混合溶剤を添加して湿式混合を行ないペーストとした。次いでこのペーストを正極集電体となる厚さ20μmのアルミニウム箔の両面に均一に塗布し、乾燥させた後にローラープレス機によって加圧成形することで帯状の正極を作成した。次に3000℃で黒鉛化したメソカーボンファイバー95重量部と鱗状天然黒鉛5重量部の混合物に対して、カルボキシメチルセルロース1重量部とスチレンブタジエンゴム2重量部、溶剤として精製水を添加して湿式混合を行ないペーストとした。次いでこのペーストを負極集電体となる厚さ12μmの銅箔の両面に均一に塗布し、乾燥させた後にローラープレス機によって加圧成形することで帯状の負極を作成した。さらに、上記正極と上記負極の間にセパレーターとして25μm厚みのポリエチレン微多孔膜を挟んでロール状に巻くことで捲廻体とした。
【0021】
ニッケルメッキを施した鉄製の円筒缶の底部に絶縁性のフィルムを挿入し、前記捲廻体を挿入した。次いで捲廻体より取り出した負極タブを缶底に溶接し、正極タブをガスケット、防爆ディスク、PTC素子からなる閉塞蓋体に溶接した。電池缶の中にエチレンカーボネートとジエチルカーボネートの混合溶媒に1モル/リットルの濃度でLiPF6 を溶解した電解液を注液して、捲廻体上部に絶縁性のフィルムを挿入した後、前記閉塞蓋体を入れ、電池缶の端部をかしめることで外形17mm高さ500mmの円筒型非水電解質二次電池を作成した。
【0022】
(実施例2)
リチウムマンガン酸化物の合成法を以下のように変えた以外は、実施例1と同様にして非水電解質二次電池を作成した。出発原料として平均粒径15μmのEMDと、LiOHとをLi/Mn=0.61(原子比)の組成比で混合し、空気中900℃で20時間熱処理したのちに500℃まで降温して12時間熱処理することによって本発明のリチウムマンガン酸化物を得た。得られた物質のX線回折模様は少なくとも(111)面、(311)面、(222)面に由来する各々の回折ピークを4.751Å、2.479Å、2.055Åに有し、かつその半価巾はおのおの0.094、0.094、0.094であり、結晶性が高く、副相のピークを有さない単一の立方晶スピネルであった。標準物質となるSiを用いて格子定数を正確に求めたところ8.215Åであった。さらに、元素分析の結果から、Li[Li0.11Mn1.89]O4 であることを確認した。このようにして作成されたリチウムマンガン酸化物の表面を走査型電子顕微鏡で観察した結果、二次粒子は直径がおおよそ0.5から1.5μmの一次粒子の集合体により形成されていることが確認できた。
【0023】
(比較例)
リチウムマンガン酸化物の合成法を以下のように変えた以外は、実施例1と同様にして非水電解質二次電池を作成した。出発原料として平均粒径20μmのEMDと、LiOHとをLi/Mn=0.6(原子比)の組成比で混合し、空気中650℃で12時間熱処理したのちに900℃まで昇温して12時間熱処理することによってリチウムマンガン酸化物を得た。このリチウムマンガン酸化物のX線回折模様は図2に示すように(111)面、(311)面、(222)面に由来する各々の回折ピークを4.767Å、2.487Å、2.063Åに有し、かつその半価巾はおのおの0.094、0.118、0.141であり、結晶性は高いが2.767ÅにMn2 3 もしくはMn3 4 に起因すると考えられる回折ピークおよびLi2 MnO3 に起因すると考えられる回折ピークが存在した。さらに標準物質となるSiを用いて格子定数を正確に求めたところ8.247Åであった。この結果より、LiMn2 4 及びMn2 3 及びMn3 4 及びLi2 MnO3 の混合物であり均一な立方晶スピネル単相ではないと考えられた。
【0024】
〔試験結果〕
上記実施例1、2及び比較例で作成した電池はいずれも電池内部の安定化を目的に24時間のエージング期間を経過させた後に、充電電圧を4.2Vに設定して5時間で充電を行なった。ついで500mAの一定電流で2.7Vまで放電を行ない、それぞれの電池の初期容量を測定し、電池内の単位正極活物質あたりの容量を求めた。次いで、電池を60℃に調整された恒温槽にいれ、充電電圧を4.2Vに設定して3時間で充電し、1Aの一定電流で2.7Vまで放電を繰り返し行なうサイクル試験を行ない、50サイクル目の放電容量を測定し、電池内の単位正極活物質あたりの容量を求めた。さらにこれら基づいて初期容量(X)に対する50サイクル目の放電容量(Y)の劣化率を次式に従って算出した。
劣化率(%)=〔(X−Y)/X〕×100
【0025】
表1に、初期放電量および50サイクル目の放電容量から算出された単位正極活物質あたりの放電量とそれらから算出された劣化率を示す。
表1に示すように、実施例1および2の電池は比較例と比べると初期容量は低いが、50サイクルでの劣化率が小さい。
これは一度700℃以上で熱処理されているために結晶性が高い均一なスピネルが作成できるとともに副相が無くなることで、仕込んだリチウムがマンガンの一部を正確に置換しているためであると考えられる。
【0026】
【表1】

Figure 0003856518
【0027】
【発明の効果】
以上説明してきたように、本発明のX線回折ピークを少なくとも2.75±0.02Åには有せず、4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、その半価巾が各々0.1±0.05であるLi[Lix Mn2-x ]O4 で示されるスピネル系のリチウムマンガン酸化物を使用した非水電解質二次電池では、初期容量が高く、かつ、室温以上の温度下でもMnの溶出が起こらなくなり良好なサイクル性能が維持される。また、LiOHが残存しないためにペーストのゲル化も起こらない。さらに、高価な他の元素を使用しないので安価である。その結果、安価な材料のリチウムマンガン酸化物を使用して、高価なリチウムコバルト酸化物を使用した場合と遜色のない非水電解質二次電池を提供できる。高性能な非水電解質二次電池が安価で供給できるようになりその工業的価値は大きい。
【図面の簡単な説明】
【図1】実施例1で得られたリチウムマンガン酸化物のX線回折模様である。
【図2】比較例で得られたリチウムマンガン酸化物のX線回折模様である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in cycle performance at high temperature of a nonaqueous electrolyte secondary battery using lithium manganese oxide as a positive electrode active material.
[0002]
[Prior art]
In recent years, the development of electronic technology is remarkable, and downsizing and weight reduction of devices are being promoted. For this reason, mobile devices such as mobile communication devices and portable computers have become widespread, and secondary batteries with high energy density are demanded as power sources for these mobile devices. In particular, non-aqueous electrolyte secondary batteries are expensive. Since voltage can be expected, there is a craving for further miniaturization and weight reduction of equipment. However, in non-aqueous electrolyte secondary batteries using lithium metal and lithium alloys as negative electrode materials, lithium dendrites are formed on the negative electrode when charging and discharging are repeated, resulting in poor cycle performance and reliability at high temperatures. It was difficult to put it to practical use because of problems such as sex.
[0003]
As a means for solving these problems, a non-aqueous electrolyte secondary battery using a carbon material capable of occluding and releasing lithium as a negative electrode active material and a composite oxide of lithium and cobalt as a positive electrode active material (Japanese Patent No. 1989293). No. specification) has been developed and has a voltage of 4 V or more in a charged state, and therefore has become widely used as a power source for mobile devices. However, current non-aqueous electrolyte secondary batteries are expensive because they contain a large amount of cobalt, and there has been a limit to reducing the price of the power supply. For this reason, attempts to replace cobalt with other transition metals are active. Among the transition metals, manganese, which is inexpensive, is most expected to replace cobalt. However, the lithium manganese oxide having a stoichiometric composition has poor cycle performance, and as a method for improving this, for example, as disclosed in JP-A-5-205744, a part of manganese can be replaced with lithium. Proposed.
[0004]
Thus, the conventional synthesis method of lithium manganese oxide in which a part of manganese is substituted with lithium is obtained by mixing Mn raw material and Li raw material in a desired ratio and heat-treating at a relatively low temperature of 700 ° C. or lower. It was a thing. In particular, heat treatment at a temperature of 500 ° C. or less has been proposed by using lithium hydroxide having a low melting point (an anhydride, melting point: 445 ° C.) or lithium nitrate (melting point: 255 ° C.) instead of lithium carbonate as a Li raw material. . However, in any case, since the heat treatment is performed at a low temperature, the crystallinity does not increase, and as a result, there is a problem that the reversible capacity in the vicinity of about 4 V is lowered with respect to the oxidation-reduction potential of the lithium metal. Furthermore, when lithium hydroxide is used as the Li raw material, if it remains unreacted, the paste will gel due to its alkaline components when making a paste by wet mixing with a binder to form a battery. There is a problem that it becomes impossible to use it.
Further, when heat treatment is performed at a high temperature of 700 ° C. or higher, a secondary phase such as Li 2 MnO 3 is likely to be formed, and manganese is not sufficiently substituted with lithium. Elution occurred, and there was a problem in cycle performance at high temperatures.
[0005]
[Problems to be solved by the invention]
Lithium manganese oxide in which a part of manganese was replaced with lithium was able to improve the cycle performance near room temperature, but manganese was still eluted under higher temperatures and severer conditions. Had the problem of lowering. Furthermore, the crystallinity is low and the capacity is greatly reduced.
The object of the present invention is to replace a part of manganese with lithium and to use a lithium manganese oxide with good crystallinity, so that the cycle performance is good especially at a temperature of room temperature or higher while maintaining a high capacity. And providing a non-aqueous electrolyte secondary battery.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on the heat treatment conditions and substitution method of spinel-type lithium manganese oxide in which a part of manganese is substituted with lithium, the present inventors have obtained a desired substitution amount while maintaining high crystallinity. The present inventors have found a spinel lithium manganese oxide suitable as a positive electrode material for an electrolyte secondary battery and have reached the present invention.
That is, the present invention
(1) A negative electrode active material capable of occluding and releasing lithium ions, a lithium ion conductive non-aqueous electrolyte, and a positive electrode active material comprising a lithium-containing metal oxide capable of occluding and releasing lithium ions In the non-aqueous electrolyte secondary battery, the lithium-containing metal oxide is a spinel-type lithium manganese oxide represented by the following general formula, and the X-ray diffraction peak is 4.26 ± 0.02Å, 4.08 ±. 0.02 mm, 2.75 ± 0.02 mm, and at least 4.74 ± 0.02 mm, 2.47 ± 0.02 mm, 2.05 ± 0.02 mm, and the X-ray A non-aqueous electrolyte secondary battery characterized in that the half-value widths of diffraction peaks are each 0.1 ± 0.05,
Li [Li x Mn 2-x ] O 4 (where 0.07 ≦ x ≦ 0.18 )
(2) The lattice constant of the spinel-type lithium manganese oxide represented by the general formula Li [Li x Mn 2−x ] O 4 (where 0.07 ≦ x ≦ 0.18 ) is 8.20 to 8.24 A non-aqueous electrolyte secondary battery characterized in that
(3) After heat-treating a mixture of electrolytic manganese dioxide and lithium hydroxide or lithium nitrate in air at a temperature of 700 ° C. or higher, heat-treat again at a temperature of 300 ° C. or higher and 600 ° C. or lower to obtain an X-ray diffraction peak. 4.26 ± 0.02 mm, 4.08 ± 0.02 mm, 2.75 ± 0.02 mm, and at least 4.74 ± 0.02 mm, 2.47 ± 0.02 mm, 2. The general formula Li [Li x Mn 2−x ] O 4 (where 0.07 ≦ x is 0.5 ± 0.02 mm) and the half width of each X-ray diffraction peak is 0.1 ± 0.05. The method for producing a nonaqueous electrolyte secondary battery according to claim 1 , further comprising a step of obtaining a spinel lithium manganese oxide represented by ≦ 0.18) .
[0007]
Hereinafter, the present invention will be specifically described.
Examples of the manganese raw material of the lithium manganese oxide used in the present invention include EMD (Electrolytic Manganese Dioxide), CMD (Chemical Manganese Dioxide), and γ-MnOOH, but EMD having a high tetravalent Mn content is preferable. . Examples of the lithium raw material include Li 2 CO 3 , LiOH, LiCl, LiNO 3 , Li 2 SO 4 , and CH 3 COOLi, and Li 2 CO 3 , LiOH, or LiNO 3 is preferable.
[0008]
The lithium manganese oxide used in the present invention can be prepared as follows.
For example, after mixing EMD and LiOH or LiNO 3 or Li 2 CO 3 pulverized so as to have an average particle diameter of 5 to 25 μm so that the Mn / Li ratio is 0.5, 800 to 900 ° C. in the atmosphere. It can be obtained by performing heat treatment at room temperature, cooling to near room temperature, adding LiOH or LiNO 3 so as to obtain a desired amount of Li, mixing and heat-treating at 300 to 600 ° C., more preferably at 300 to 500 ° C. it can. If the temperature of the second heat treatment is less than 300 ° C., LiOH may remain particularly, and it is not preferable because a paste for forming an electrode cannot be formed. If it exceeds 600 ° C., subphases such as Li 2 MnO 3 are easily synthesized, which is also not preferable.
[0009]
As another example, the pulverized EMD and LiOH or LiNO 3 may be mixed in advance at a desired Mn / Li ratio and heat-treated. The heat treatment must first be performed at 800 to 900 ° C., then 300 to 600 ° C., more preferably 300 to 500 ° C. Also in this case, it is important to perform the second heat treatment. If the second heat treatment is not performed, a phase other than spinel such as Li 2 MnO 3 is generated, which is not preferable.
[0010]
The amount of substitution of Mn by Li is preferably in the range of 0.05 to 0.18 atomic%, and more preferably in the range of 0.07 to 0.16 atomic%. When the substitution amount is less than 0.05 atomic%, the effect of substituting manganese with lithium is small, and the cycle performance at room temperature is lowered. On the other hand, if it exceeds 0.18 atomic%, the capacity decreases greatly, which is not preferable.
[0011]
Next, an X-ray diffraction pattern measurement method in the present invention will be described.
For the measurement of the X-ray diffraction pattern, RINT 2500 manufactured by Rigaku Corporation was used. The test was performed under the following equipment conditions using Cu-Kα1 (wavelength 1.5405 mm) as the X-ray source. The tube voltage and current were 50 kV and 160 mA, the divergence slit was 0.5 °, the scattering slit was 0.5 °, the light receiving slit width was 0.15 mm, and a monochromator was used. The measurement was performed under the conditions of a scanning speed of 2 ° / min, a scanning step of 0.01 °, and a scanning axis of 2θ / θ. Further, the half width was obtained by subtracting the background from the measured value of the diffraction pattern expressed by the 2θ axis, and setting the width of the peak at half the height (h / 2) of the diffraction peak intensity (h).
[0012]
The lithium manganese oxide synthesized by the method described above has X-ray diffraction peaks derived from at least the (111) plane, the (311) plane, and the (222) plane by 4.74 ± 0.02Å, 2.47 ± 0. 0.02% and 2.05 ± 0.02%, and the half-value width as an index of crystallinity of these diffraction peaks is 0.1 ± 0.05. If the half width is 0.1 ± 0.05 or more, Mn elution is likely to occur and the capacity is also reduced, which is not preferable. Further, a diffraction peak of 2.75 ± 0.02Å caused by Mn 2 O 3 or Mn 3 O 4 , and 4.26 ± 0.02Å, 4.08 ± 0 caused by LiOH and / or Li 2 MnO 3 .02 Å does not have.
[0013]
According to JCPDS (The Joint Commitment on Power Diffraction Standards) card 35-782, LiMn 2 O 4, which is a conventional stoichiometric composition, has a lattice constant of 8.248 Å. The lattice constant of the lithium manganese oxide of the present invention is preferably 8.20 to 8.24. The reason why the lattice constant of the lithium manganese oxide of the present invention is small is thought to be that a part of Mn in the crystal unit cell was replaced with Li having an ionic radius smaller than that of Mn. When the lattice constant is 8.20 mm or less, the capacity is remarkably reduced. This is presumably because the average valence of Mn is too close to 4. On the other hand, if it is 8.24 mm or more, the effect of substituting part of Mn with Li cannot be obtained, and elution of Mn occurs and the cycle performance deteriorates.
[0014]
The negative electrode material used in the present invention is not particularly limited as long as lithium can be occluded and released in an ionic state. For example, carbon materials such as coke, natural graphite, artificial graphite and non-graphitizable carbon, metal oxides such as SiSnO, LiCoN A metal nitride such as 2 can be mentioned, and a carbon material is preferable.
[0015]
In the present invention, when the active material is formed into an electrode, a conductive agent can be added as necessary and fixed to the current collector with a binder. Examples of the conductive agent include natural graphite, artificial graphite, carbon black, ketjen black, acetylene black, etc., and graphite or a combination of graphite and acetylene black is preferable. The addition amount is not particularly limited, but is preferably 1 to 20% by weight, more preferably 3 to 10% by weight. When the addition amount is less than 1% by weight, the conductivity is not uniform, and when it exceeds 20% by weight, the capacity per unit volume is lowered. Further, as the binder, polytetrafluoroethylene, polyvinylidene fluoride, ethylene-propylene-diene terpolymer, carboxymethylcellulose, styrene butadiene rubber, fluororubber, etc. are usually used alone or mixed, but particularly limited. Not. These addition amounts are preferably 1 to 20% by weight, more preferably 1 to 10% by weight. When the addition amount is less than 1% by weight, the binding force is weak, and when it exceeds 20% by weight, the movement of Li ions is inhibited, and the performance as a battery is deteriorated.
[0016]
As the electrolytic solution, a mixture in which a lithium salt is used as an electrolyte and is dissolved in various organic solvents is used. The electrolyte is not particularly limited, it may be used LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, alone or a mixture of such LiCF 3 SO 3. Further, the organic solvent is not particularly limited, but for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran and the like alone or two or more kinds Mixed solvents can be used.
[0017]
[Action]
Since the lithium manganese oxide of the present invention does not contain Mn 2 O 3 and / or Mn 3 O 4 , it is possible to prevent elution of Mn from the by-product. In addition, since the heat treatment is performed at a low temperature after the heat treatment at a high temperature, Li 2 Mn 3 O 4 as a by-product disappears, and substitution of Mn and Li can be accurately performed in a desired amount. Furthermore, since the heat treatment is once performed at a high temperature of 700 ° C. or higher, the crystallinity can be increased as shown by the half-value width of the peak of the X-ray diffraction pattern. As a result, in the non-aqueous electrolyte secondary battery using the lithium manganese oxide of the present invention, the elution amount of Mn at a high temperature is reduced as compared with the battery using the conventional lithium manganese oxide, which is favorable. Cycle characteristics can be obtained.
[0018]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated still in detail using a specific Example etc., this invention is not limited at all more than these Examples.
Example 1
EMD with an average particle size of 20 μm as a starting material and Li 2 CO 3 were mixed at a composition ratio of Li / Mn = 0.5 (atomic ratio), heat-treated in air at 850 ° C. for 20 hours, and then cooled to near room temperature. did. From the result of comparing the X-ray diffraction pattern of this lithium manganese oxide and the JCPDS card, it was confirmed that this lithium manganese oxide was LiMn 2 O 4 . Next, the obtained LiMn 2 O 4 and LiOH were mixed at a composition ratio of Li / Mn = 0.61 (atomic ratio), and heat-treated at 400 ° C. for 10 hours in the air to obtain the lithium manganese oxide of the present invention. Obtained. As shown in FIG. 1, the X-ray diffraction pattern of this lithium manganese oxide shows diffraction peaks derived from the (111) plane, (311) plane, and (222) plane as 4.7414, 2.476Å, and 2.053Å, respectively. And the half widths thereof are 0.094, 0.118, and 0.118, respectively, and the crystallinity is high, and subphases such as Mn 2 O 3 , Mn 3 O 4, Li 2 MnO 3 , and LiOH are included. Since it has no diffraction peak, it was confirmed to be a single cubic spinel.
[0019]
When the lattice constant was accurately determined using Si as a standard material, it was 8.213 mm. Furthermore, it was confirmed from the results of elemental analysis that it was Li [Li 0.12 Mn 1.88 ] O 4 . As a result of observing the surface of the lithium manganese oxide thus prepared with a scanning electron microscope, it is confirmed that the secondary particles are formed by an aggregate of primary particles having a diameter of approximately 0.3 to 1.0 μm. It could be confirmed.
Specific battery creation in the present invention will be described.
[0020]
After mixing 3 parts by weight of acetylene black and 3 parts by weight of scale-like natural graphite as a conductive agent with respect to 100 parts by weight of the lithium manganese oxide, fluorine rubber is mixed at a ratio of 3 parts by weight with respect to the total weight. A solvent mixture of ethyl acetate / ethyl cellosolve was added and wet-mixed to obtain a paste. Next, this paste was uniformly applied to both surfaces of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then subjected to pressure molding with a roller press to prepare a belt-like positive electrode. Next, with respect to a mixture of 95 parts by weight of mesocarbon fiber graphitized at 3000 ° C. and 5 parts by weight of scale-like natural graphite, 1 part by weight of carboxymethylcellulose, 2 parts by weight of styrene butadiene rubber, and purified water as a solvent are added and wet mixed. To make a paste. Next, this paste was uniformly applied to both sides of a 12 μm thick copper foil serving as a negative electrode current collector, dried, and then pressure-formed by a roller press to prepare a belt-like negative electrode. Further, a wound body was obtained by winding a 25 μm thick polyethylene microporous film as a separator between the positive electrode and the negative electrode in a roll shape.
[0021]
An insulating film was inserted into the bottom of a nickel-plated iron cylindrical can, and the wound body was inserted. Next, the negative electrode tab taken out from the wound body was welded to the bottom of the can, and the positive electrode tab was welded to a closed lid made of a gasket, an explosion-proof disk, and a PTC element. An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 mol / liter in a mixed solvent of ethylene carbonate and diethyl carbonate was poured into a battery can, and an insulating film was inserted into the upper part of the winding body, and then the plug was closed. A cylindrical body of a nonaqueous electrolyte secondary battery having an outer shape of 17 mm and a height of 500 mm was prepared by inserting a lid and caulking the end of the battery can.
[0022]
(Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the synthesis method of lithium manganese oxide was changed as follows. EMD having an average particle size of 15 μm as a starting material and LiOH were mixed at a composition ratio of Li / Mn = 0.61 (atomic ratio), heat-treated in air at 900 ° C. for 20 hours, and then cooled to 500 ° C. to 12 The lithium manganese oxide of the present invention was obtained by heat treatment for a period of time. The X-ray diffraction pattern of the obtained substance has diffraction peaks derived from at least the (111) plane, the (311) plane, and the (222) plane at 4.751 mm, 2.479 mm, and 2.055 mm, and The half widths were 0.094, 0.094, and 0.094, respectively, and they were single cubic spinels with high crystallinity and no secondary phase peak. When the lattice constant was accurately determined using Si as a standard material, it was 8.215 mm. Furthermore, it was confirmed from the results of elemental analysis that it was Li [Li 0.11 Mn 1.89 ] O 4 . As a result of observing the surface of the lithium manganese oxide thus prepared with a scanning electron microscope, the secondary particles were found to be formed of aggregates of primary particles having a diameter of approximately 0.5 to 1.5 μm. It could be confirmed.
[0023]
(Comparative example)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the synthesis method of lithium manganese oxide was changed as follows. EMD with an average particle diameter of 20 μm as a starting material and LiOH were mixed at a composition ratio of Li / Mn = 0.6 (atomic ratio), heat-treated in air at 650 ° C. for 12 hours, and then heated to 900 ° C. Lithium manganese oxide was obtained by heat treatment for 12 hours. As shown in FIG. 2, the X-ray diffraction pattern of this lithium manganese oxide shows diffraction peaks derived from the (111) plane, (311) plane, and (222) plane as 4.7674, 2.487Å, and 2.063Å, respectively. And half-widths of 0.094, 0.118, and 0.141, respectively, and the crystallinity is high, but the diffraction peak is considered to be attributed to Mn 2 O 3 or Mn 3 O 4 at 2.767Å. And there was a diffraction peak believed to be due to Li 2 MnO 3 . Furthermore, when the lattice constant was accurately determined using Si as a standard material, it was 8.247 mm. From this result, it was considered that it was a mixture of LiMn 2 O 4 and Mn 2 O 3, Mn 3 O 4 and Li 2 MnO 3 and not a uniform cubic spinel single phase.
[0024]
〔Test results〕
In each of the batteries prepared in Examples 1 and 2 and the comparative example, after the aging period of 24 hours has elapsed for the purpose of stabilizing the inside of the battery, the charging voltage is set to 4.2 V and charging is performed in 5 hours. I did it. Subsequently, the battery was discharged to 2.7 V at a constant current of 500 mA, the initial capacity of each battery was measured, and the capacity per unit positive electrode active material in the battery was determined. Next, the battery was placed in a thermostatic chamber adjusted to 60 ° C., charged at a charging voltage of 4.2 V for 3 hours, and subjected to a cycle test in which discharging was repeated up to 2.7 V at a constant current of 1 A. 50 The discharge capacity at the cycle was measured, and the capacity per unit positive electrode active material in the battery was determined. Based on these, the deterioration rate of the discharge capacity (Y) at the 50th cycle relative to the initial capacity (X) was calculated according to the following equation.
Deterioration rate (%) = [(X−Y) / X] × 100
[0025]
Table 1 shows the discharge amount per unit positive electrode active material calculated from the initial discharge amount and the discharge capacity at the 50th cycle, and the deterioration rate calculated therefrom.
As shown in Table 1, the batteries of Examples 1 and 2 have a lower initial capacity than that of the comparative example, but the deterioration rate at 50 cycles is small.
This is because once heat-treated at 700 ° C. or higher, a uniform spinel with high crystallinity can be created and the subphase disappears, so that the charged lithium accurately replaces a part of manganese. Conceivable.
[0026]
[Table 1]
Figure 0003856518
[0027]
【The invention's effect】
As described above, the X-ray diffraction peak of the present invention does not have at least 2.75 ± 0.02Å, 4.74 ± 0.02Å, 2.47 ± 0.02Å, 2.05 ± 0. Nonaqueous electrolyte secondary using a spinel-type lithium manganese oxide represented by Li [Li x Mn 2−x ] O 4 having a half width of 0.1 ± 0.05 each In the battery, the initial capacity is high, and the elution of Mn does not occur even at a temperature equal to or higher than room temperature, and good cycle performance is maintained. Further, since no LiOH remains, the gelation of the paste does not occur. Furthermore, it is inexpensive because it does not use other expensive elements. As a result, it is possible to provide a non-aqueous electrolyte secondary battery that is inferior to the case of using expensive lithium cobalt oxide by using lithium manganese oxide that is an inexpensive material. A high-performance non-aqueous electrolyte secondary battery can be supplied at low cost, and its industrial value is great.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of lithium manganese oxide obtained in Example 1. FIG.
FIG. 2 is an X-ray diffraction pattern of lithium manganese oxide obtained in a comparative example.

Claims (3)

リチウムイオンを吸蔵放出することが可能な負極活物質、リチウムイオン伝導性の非水電解液、及びリチウムイオンを吸蔵放出することが可能なリチウム含有金属酸化物からなる正極活物質を備えた非水電解質二次電池において、前記リチウム含有金属酸化物が次の一般式で示されるスピネル系のリチウムマンガン酸化物であり、X線回折ピークを4.26±0.02Å、4.08±0.02Å、2.75±0.02Åには有さず、かつ、少なくとも4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、該X線回折ピークの半価巾が各々0.1±0.05であることを特徴とする非水電解質二次電池。
Li[Lix Mn2-x ]O4 (ただし、0.07≦x≦0.18
A non-aqueous device comprising a negative electrode active material capable of occluding and releasing lithium ions, a lithium ion conductive non-aqueous electrolyte, and a positive electrode active material comprising a lithium-containing metal oxide capable of occluding and releasing lithium ions In the electrolyte secondary battery, the lithium-containing metal oxide is a spinel-type lithium manganese oxide represented by the following general formula, and an X-ray diffraction peak is 4.26 ± 0.02Å, 4.08 ± 0.02Å. 2.75 ± 0.02 mm, and at least 4.74 ± 0.02 mm, 2.47 ± 0.02 mm, 2.05 ± 0.02 mm, and the X-ray diffraction peak A non-aqueous electrolyte secondary battery having a half width of 0.1 ± 0.05.
Li [Li x Mn 2-x ] O 4 (where 0.07 ≦ x ≦ 0.18 )
一般式Li[Lix Mn2-x ]O4(ただし、0.07≦x≦0.18)で示されるスピネル系リチウムマンガン酸化物の格子定数が、8.20Å以上8.24Å以下であることを特徴とする請求項1記載の非水電解質二次電池。The lattice constant of the spinel-type lithium manganese oxide represented by the general formula Li [Li x Mn 2−x ] O 4 (where 0.07 ≦ x ≦ 0.18 ) is 8.20 to 8.24. The nonaqueous electrolyte secondary battery according to claim 1. 電解二酸化マンガンと水酸化リチウムまたは硝酸リチウムの混合物を大気雰囲気中で700℃以上の温度で熱処理した後、300℃以上600℃以下の温度で再度熱処理をして、X線回折ピークを4.26±0.02Å、4.08±0.02Å、2.75±0.02Åには有さず、かつ、少なくとも4.74±0.02Å、2.47±0.02Å、2.05±0.02Åに有し、該X線回折ピークの半価巾が各々0.1±0.05である一般式Li[Li x Mn 2-x ]O 4 (ただし、0.07≦x≦0.18)で示されるスピネル系リチウムマンガン酸化物を得る工程を含むことを特徴とする請求項1または請求項2記載の非水電解質二次電池の製造方法A mixture of electrolytic manganese dioxide and lithium hydroxide or lithium nitrate was heat-treated at a temperature of 700 ° C. or higher in the air atmosphere, and then heat-treated again at a temperature of 300 ° C. or higher and 600 ° C. or lower to give an X-ray diffraction peak of 4.26. ± 0.02Å, 4.08 ± 0.02Å, 2.75 ± 0.02Å, and at least 4.74 ± 0.02Å, 2.47 ± 0.02Å, 2.05 ± 0 , And the half width of the X-ray diffraction peak is 0.1 ± 0.05, respectively. General formula Li [Li x Mn 2−x ] O 4 (where 0.07 ≦ x ≦ 0. The method for producing a nonaqueous electrolyte secondary battery according to claim 1 , further comprising a step of obtaining a spinel-type lithium manganese oxide represented by 18) .
JP05546597A 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3856518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05546597A JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05546597A JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10241687A JPH10241687A (en) 1998-09-11
JP3856518B2 true JP3856518B2 (en) 2006-12-13

Family

ID=12999367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05546597A Expired - Fee Related JP3856518B2 (en) 1997-02-25 1997-02-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3856518B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714978B2 (en) * 1999-10-01 2011-07-06 東ソー株式会社 Lithium manganese oxide, method for producing the same, and secondary battery using the same
JP4644895B2 (en) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 Lithium secondary battery
JP2002124258A (en) * 2000-10-13 2002-04-26 Toda Kogyo Corp Lithium manganate particle powder and its manufacturing method
JP2002151070A (en) * 2000-11-06 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH10241687A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US7666551B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery using the same
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4171848B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP3890185B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery including the same
JP4022937B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
KR20160030878A (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, method for producing said positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using said positive-electrode active material for non-aqueous electrolyte secondary battery
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP4111806B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4045600B2 (en) Non-aqueous secondary battery
JP2004227790A (en) Positive electrode active material for nonaqueous electrolyte solution secondary battery
KR20200041974A (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and a non-aqueous electrolyte secondary battery using the positive electrode active material
JP4235702B2 (en) Positive electrode active material, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JPH0935712A (en) Positive electrode active material, its manufacture and nonaqueous electrolyte secondary battery using it
JP2009535791A (en) Secondary electrochemical cell with novel electrode active material
JP3856518B2 (en) Nonaqueous electrolyte secondary battery
JP3856517B2 (en) Method for producing lithium manganese oxide
JP2001122626A (en) Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP2003238162A (en) Lithium manganese composite oxide powder and its manufacturing method
JP2007234607A (en) Positive electrode active material and non-aqueous electrolyte secondary battery having it
JPH1064520A (en) Lithium ion secondary battery
JP2002321919A (en) Lithium manganese compound oxide and lithium secondary battery
JPH10214626A (en) Lithium secondary battery and lithium secondary battery positive active material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees