JP2008171661A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2008171661A
JP2008171661A JP2007003212A JP2007003212A JP2008171661A JP 2008171661 A JP2008171661 A JP 2008171661A JP 2007003212 A JP2007003212 A JP 2007003212A JP 2007003212 A JP2007003212 A JP 2007003212A JP 2008171661 A JP2008171661 A JP 2008171661A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
negative electrode
active material
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007003212A
Other languages
Japanese (ja)
Inventor
Tomokazu Kumeuchi
友一 粂内
Shinsuke Enomoto
真介 榎本
Takao Daidoji
孝夫 大道寺
Koichi Zama
浩一 座間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007003212A priority Critical patent/JP2008171661A/en
Publication of JP2008171661A publication Critical patent/JP2008171661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery capable of quick charging. <P>SOLUTION: In the lithium-ion secondary battery provided with a negative electrode made of a negative electrode active material capable of inserting/desorbing lithium ion, a positive electrode made of a positive electrode active material capable of inserting/desorbing lithium ion, a porous plastic sheet arranged between the negative electrode and the positive electrode for insulating each electrode from the other, and nonaqueous electrolyte solution containing lithium ion, a ratio A/C of a volume A of lithium which the negative electrode can insert/desorb to a volume C of lithium which the cathode can insert/desorb is to be set at: 1.1≤A/C≤1.6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、急速充電に適し、かつサイクル特性が良好となるようなリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery suitable for rapid charging and having good cycle characteristics.

リチウムイオン二次電池は、そのエネルギー密度がニッケルカドミウム電池やニッケル水素電池など他の二次電池よりも高いことから、携帯電話やノート型パソコン、ビデオカメラなどへの搭載が相次ぎ、携帯機器の駆動用電源として広がった。現在、携帯機器用の小型電池からハイブリッド自動車や電気自動車などの大型電池まで、仕様に合わせて様々な性能を持つリチウムイオン電池の研究開発が進められている。特に、持ち運びが便利で屋外での利用が可能な携帯電話、デジタルカメラ、デジタルオーディオなどの携帯機器では、電池の更なる小型化・高容量化、また、急速可能な充電特性が求められている。   Lithium ion secondary batteries have higher energy density than other secondary batteries such as nickel cadmium batteries and nickel metal hydride batteries, so they are used in mobile phones, laptop computers, video cameras, etc. Spread as a power source. Currently, research and development of lithium-ion batteries with various performances are being carried out according to specifications, from small batteries for portable devices to large batteries such as hybrid cars and electric cars. In particular, portable devices such as mobile phones, digital cameras, and digital audio devices that are convenient to carry and can be used outdoors are required to have smaller and higher capacity batteries and rapid charging characteristics. .

リチウムイオン二次電池は、コバルト酸リチウムやニッケル酸リチウム、マンガン酸リチウムなどリチウム含有遷移金属酸化物で構成される正極と、カーボンなどリチウムイオンを挿入・脱離可能な材料で構成される負極と、LiPF6などのリチウム塩を有機溶媒に溶解した非水電解液から構成される。 A lithium ion secondary battery includes a positive electrode composed of a lithium-containing transition metal oxide such as lithium cobaltate, lithium nickelate, and lithium manganate, and a negative electrode composed of a material capable of inserting and removing lithium ions such as carbon. And a non-aqueous electrolytic solution in which a lithium salt such as LiPF 6 is dissolved in an organic solvent.

リチウムイオン二次電池は、正極からリチウムイオンが脱離し、負極に挿入されることによって充電が行われる。実際の電池内部では、リチウムイオンの移動が起こっている。このリチウムイオンの移動量が負極への挿入量よりも大きいと負極上へリチウム金属が析出してしまう。リチウム金属が析出する場合、その形態はデンドライト状となる場合が多い。この析出金属が負極上から成長し、正極と負極を絶縁しているセパレータを突き破って正極に到達してしまうと、内部ショートが起こり、電池電圧の低下、ひいては発熱に至る場合もある。   The lithium ion secondary battery is charged by detaching lithium ions from the positive electrode and inserting the lithium ion into the negative electrode. Lithium ion migration occurs inside the actual battery. If the movement amount of the lithium ions is larger than the insertion amount into the negative electrode, lithium metal is deposited on the negative electrode. When lithium metal is deposited, the form is often dendritic. If this deposited metal grows from above the negative electrode and breaks through the separator that insulates the positive electrode from the negative electrode and reaches the positive electrode, an internal short circuit may occur, leading to a decrease in battery voltage and eventually heat generation.

このような問題を引き起こさないため、つまり負極上にリチウム金属を析出させないためにも、特許文献1〜3のように、負極が受け入れることが可能なリチウムイオン量を正極から脱離するリチウムイオン量よりも多くなるような設計としている。   In order not to cause such a problem, that is, to prevent lithium metal from being deposited on the negative electrode, as in Patent Documents 1 to 3, the amount of lithium ions that can be removed from the positive electrode by the amount of lithium ions that can be accepted by the negative electrode It is designed to be more than that.

また、エネルギー密度を高めるための視点から、負極が受け入れることが可能なリチウムイオン量が、正極から脱離するリチウムイオン量とほぼ同様となるような工夫もなされている。   Further, from the viewpoint of increasing the energy density, a device has been devised so that the amount of lithium ions that can be accepted by the negative electrode is substantially the same as the amount of lithium ions desorbed from the positive electrode.

このように、負極が受け入れることが可能なリチウムイオン量が、正極から脱離するリチウムイオン量よりも多くなるようにした場合、理論上では負極にリチウム金属は析出しない。   Thus, when the amount of lithium ions that can be received by the negative electrode is larger than the amount of lithium ions desorbed from the positive electrode, theoretically, no lithium metal is deposited on the negative electrode.

特許第2734822号Japanese Patent No. 2734822 特許第3028582号Japanese Patent No. 3028582 特許第3413656号Japanese Patent No. 3413656

急速充電の要求の高まりにより、急速充電を行う場合、充電元の電源からリチウムイオン二次電池内へ大きな電流を流す必要があるが、負極内に挿入されるリチウムイオンの速度が充電速度に対して追いつかなくなり、負極上の電子がリチウムイオンと反応し、その負極上にてリチウム金属が析出し、電池特性や安全性に悪影響を与えるという問題があった。このため、今までは急速充電を行うことができなかった。   Due to the increasing demand for rapid charging, when performing rapid charging, it is necessary to flow a large current from the power source of the charging source into the lithium ion secondary battery, but the speed of the lithium ions inserted into the negative electrode is higher than the charging speed. As a result, the electrons on the negative electrode react with lithium ions, and lithium metal is deposited on the negative electrode, which adversely affects battery characteristics and safety. For this reason, quick charging has not been possible until now.

本発明は上記問題点に鑑みてなされたものであり、急速充電を行っても、負極の受け入れ性向上によってリチウム金属の析出が抑制され、かつサイクル特性が良好なリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a lithium ion secondary battery in which the deposition of lithium metal is suppressed by improving the acceptability of the negative electrode even when rapid charging is performed, and the cycle characteristics are good. For the purpose.

本発明者らは上記の目的を達成するために種々の検討を重ねた結果、対向する負極のリチウム容量Aと正極のリチウム容量Cとの比率A/Cを1.1≦A/C≦1.6とする事によって、負極上へのリチウム金属を析出させることなく急速充電が可能であることを見出し、本発明を完成させるに至った。従来技術においても、5%程度負極のリチウム容量Aが大きく設定されているが、充電完了時のみを考慮しているためにこれで充分とされていたが、急速充電のためには不充分で、格段の比率の増大が必要である。   As a result of various studies to achieve the above object, the present inventors have determined that the ratio A / C between the lithium capacity A of the opposing negative electrode and the lithium capacity C of the positive electrode is 1.1 ≦ A / C ≦ 1. .6, it was found that rapid charging was possible without precipitating lithium metal on the negative electrode, and the present invention was completed. Even in the prior art, the lithium capacity A of the negative electrode is set large by about 5%, but this was sufficient because it considered only the completion of charging, but it was insufficient for rapid charging. It is necessary to increase the ratio significantly.

本発明は、リチウムイオンを挿入・脱離可能な負極活物質からなる負極と、リチウムイオンを挿入・脱離可能な正極活物質からなる正極と、前記正極及び前記負極の間に配置されて、電極間を絶縁するセパレータと、リチウムイオンを含む非水電解液と、を備えたリチウムイオン二次電池において、前記負極が挿入・脱離可能なリチウム容量Aと、前記正極が挿入・脱離可能なリチウム容量Cとの比率A/Cが、1.1≦A/C≦1.6に設定されることを特徴とする。   The present invention is arranged between a negative electrode made of a negative electrode active material capable of inserting and removing lithium ions, a positive electrode made of a positive electrode active material capable of inserting and removing lithium ions, and between the positive electrode and the negative electrode, In a lithium ion secondary battery comprising a separator that insulates between electrodes and a non-aqueous electrolyte containing lithium ions, a lithium capacity A in which the negative electrode can be inserted and removed, and the positive electrode can be inserted and removed The ratio A / C to the lithium capacity C is set to 1.1 ≦ A / C ≦ 1.6.

負極のリチウム容量Aが正極のリチウム容量Cよりも十分に大きいことによって、受け入れ性が高くなり、1.1≦A/C≦1.6に設定すると、急速充電を行ってもリチウム金属の析出が抑制されることになり、利便性が向上する。つまり、本発明によれば、急速充電が可能であり、またサイクル特性も良好なリチウムイオン二次電池を提供することができる。   When the lithium capacity A of the negative electrode is sufficiently larger than the lithium capacity C of the positive electrode, the acceptability is increased. When 1.1 ≦ A / C ≦ 1.6, the lithium metal is deposited even when rapid charging is performed. Is suppressed, and convenience is improved. That is, according to the present invention, it is possible to provide a lithium ion secondary battery that can be rapidly charged and also has good cycle characteristics.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施の形態のリチウムイオン二次電池は、正極、負極、セパレータを備えている。正極の活物質としては、リチウム含有遷移金属酸化物であるコバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウムが好適である。また、負極は、リチウムイオンを挿入脱離が可能な黒鉛や非晶質炭素を用い、電池として重視する特性に応じて適宜選択したバインダーと混合した電極とするのが好適である。さらに、負極が挿入・脱離可能なリチウム容量Aと、正極が挿入・脱離可能なリチウム容量Cとの比率A/Cを、1.1≦A/C≦1.6に設定する。A/Cが1.1より低い場合は、急速充電には向いておらず、A/Cが1.6より高い場合は、急速充電特性は優れているものの、電池のエネルギー密度が低くなるため実用的ではなくなる。   The lithium ion secondary battery of the present embodiment includes a positive electrode, a negative electrode, and a separator. As the positive electrode active material, lithium-containing transition metal oxides such as lithium cobaltate, lithium nickelate and lithium manganate are suitable. The negative electrode is preferably an electrode made of graphite or amorphous carbon capable of inserting and removing lithium ions and mixed with a binder appropriately selected according to characteristics important for the battery. Furthermore, the ratio A / C between the lithium capacity A in which the negative electrode can be inserted / removed and the lithium capacity C in which the positive electrode can be inserted / removed is set to 1.1 ≦ A / C ≦ 1.6. When A / C is lower than 1.1, it is not suitable for rapid charging. When A / C is higher than 1.6, the rapid charging characteristics are excellent, but the energy density of the battery is low. It is no longer practical.

コバルト酸リチウムは、金属リチウム対極で4V付近にプラトーを有する一般的なLiCoO2で良く、熱安定性を向上させ、リチウムイオンの脱離量が多くなっても結晶構造が不安定にならないようにMgやAl、Zrなどを表面に付加させたり、Coサイトに挿入、置換したものが望ましい。 The lithium cobaltate may be a general LiCoO 2 having a plateau near 4 V at the metallic lithium counter electrode, improving the thermal stability so that the crystal structure does not become unstable even when the amount of lithium ion desorption increases. It is desirable to add Mg, Al, Zr or the like to the surface, or insert or substitute at the Co site.

ニッケル酸リチウムは金属リチウム対極で4V付近にプラトーを有し、熱安定性及びサイクル特性を良好なものとするために、Niサイトを一部Coで置換したLiNi1-xCox2、更にAlを挿入したLiNi1-x-yCoxAly2、が望ましい。 Lithium nickelate has a plateau in the vicinity of 4 V at the metallic lithium counter electrode, and LiNi 1-x Co x O 2 in which Ni sites are partially substituted with Co in order to improve thermal stability and cycle characteristics. LiNi 1-xy Co x Al y O 2 into which Al is inserted is desirable.

マンガン酸リチウムは、金属リチウム対極で4V付近にプラトーを有する組成式Li1+xMn2-x-yy4-z(0.03≦x≦0.16、0≦y≦0.1、−0.1≦z≦0.1、M=Mg,Al,Ti,Co,Niから選ばれる1種以上)が好ましい。 Lithium manganate composition formula Li 1 + x Mn 2-xy M y O 4-z (0.03 ≦ x ≦ 0.16,0 ≦ y ≦ 0.1 with plateau 4V near lithium metal counter electrode, −0.1 ≦ z ≦ 0.1, and M = Mg, Al, Ti, Co, or Ni is preferably selected.

これらのLi含有遷移金属酸化物の粒子形状は塊状・球状・板状その他、特に限定されず、粒径・比表面積も正極膜厚・正極の電極密度・バインダー種などを考慮して適宜選択すれば良いが、エネルギー密度を高く保つために、集電体金属箔を除去した部分の正極電極密度が2.8×10-6g/m3以上となるようにするのが望ましい。また、正極活物質、バインダー、導電性付与剤などにより構成される正極合剤のうち、正極活物質が占める重量比率が80%以上となるようにするのが望ましい。 The particle shape of these Li-containing transition metal oxides is not particularly limited, such as a lump, a sphere, or a plate, and the particle size and specific surface area are appropriately selected in consideration of the positive electrode film thickness, the positive electrode density, the binder type, and the like. However, in order to keep the energy density high, it is desirable that the density of the positive electrode in the portion from which the current collector metal foil is removed is 2.8 × 10 −6 g / m 3 or more. Moreover, it is desirable that the weight ratio of the positive electrode active material in the positive electrode mixture composed of the positive electrode active material, the binder, the conductivity imparting agent, etc. is 80% or more.

マンガン酸リチウムの場合は、Li1+xMn2-x-yy4-z(0.03≦x≦0.16、0≦y≦0.1、−0.1≦z≦0.1、M=Mg,Al,Ti,Co,Niから選ばれる1種以上)の合成に用いる出発原料として、Li源としてLi2CO3、LiOH、Li2O、Li2SO4などを用いることができるが、その粒径はMn源との反応性や合成されるマンガン酸リチウムの結晶性向上のために最大粒径が2μm以下のものが適している。Mn源としてMnO2、Mn23、Mn34、MnOOH、MnCO3、Mn(NO32などを用いることができるが、その最大粒径は30μm以下が望ましい。以上の中で、コスト、取り扱いの容易さ、充填性の高い活物質を得られやすいという観点からLi源としてLi2CO3が、Mn源としてはMnO2、Mn23またはMn34が特に好ましい。 For lithium manganate, Li 1 + x Mn 2- xy M y O 4-z (0.03 ≦ x ≦ 0.16,0 ≦ y ≦ 0.1, -0.1 ≦ z ≦ 0.1 , M = Mg, Al, Ti, Co, Ni), as a starting material used for the synthesis of Li 2 CO 3 , LiOH, Li 2 O, Li 2 SO 4 or the like as a Li source. However, the maximum particle size is preferably 2 μm or less in order to improve the reactivity with the Mn source and the crystallinity of the synthesized lithium manganate. MnO 2 , Mn 2 O 3 , Mn 3 O 4 , MnOOH, MnCO 3 , Mn (NO 3 ) 2 or the like can be used as the Mn source, but the maximum particle size is preferably 30 μm or less. Among them, Li 2 CO 3 is used as the Li source and MnO 2 , Mn 2 O 3, or Mn 3 O 4 is used as the Mn source from the viewpoint of cost, ease of handling, and ease of obtaining an active material with high filling properties. Is particularly preferred.

同様に、ニッケル酸リチウムの場合は、Ni源としてNiO2、Ni23、Ni34、NiOOH、NiCO3、Ni(NO32などを用いることができるが、その最大粒径は30μm以下が望ましい。また、コスト、取り扱いの容易さ、充填性の高い活物質を得られやすいという観点からLi源としてLi2CO3が、Ni源としてはNiO2、Ni23またはNi34が特に好ましい。 Similarly, in the case of lithium nickelate, NiO 2 , Ni 2 O 3 , Ni 3 O 4 , NiOOH, NiCO 3 , Ni (NO 3 ) 2, etc. can be used as the Ni source. 30 μm or less is desirable. Further, from the viewpoint of cost, ease of handling, and ease of obtaining an active material with high filling properties, Li 2 CO 3 is particularly preferable as the Li source, and NiO 2 , Ni 2 O 3 or Ni 3 O 4 is particularly preferable as the Ni source. .

同様に、コバルト酸リチウムの場合は、Co源としてCoO2、Co23、Co34、CoOOH、CoCO3、Co(NO32などを用いることができるが、その最大粒径は30μm以下が望ましい。また、コスト、取り扱いの容易さ、充填性の高い活物質を得られやすいという観点からLi源としてLi2CO3が、Co源としてはCoO2、Co23またはCo34が特に好ましい。 Similarly, in the case of lithium cobaltate, CoO 2 , Co 2 O 3 , Co 3 O 4 , CoOOH, CoCO 3 , Co (NO 3 ) 2, etc. can be used as the Co source. 30 μm or less is desirable. Further, from the viewpoint of cost, ease of handling, and ease of obtaining an active material with high filling properties, Li 2 CO 3 is particularly preferable as the Li source, and CoO 2 , Co 2 O 3 or Co 3 O 4 is particularly preferable as the Co source. .

以下、Li含有遷移金属酸化物の合成方法について説明する。上記の出発原料を適宜選択し、所定の金属組成比となるように秤量・混合する。この際、Li源とMn源、Ni源、およびCo源の反応性を良くするため、また、Mn23、Ni23、およびCo23の異相の残留を避けるため、Li源の原料の最大粒径は2μm以下が、Mn源、Ni源、およびCo源の原料の最大粒径は30μm以下が好ましい。混合はボールミル、V型混合機、カッターミキサ、シェーカなど、装置を選択して行えば良い。得られた混合紛は600℃〜950℃の温度範囲で、空気中の酸素濃度以上の雰囲気中で焼成する。 Hereinafter, a method for synthesizing the Li-containing transition metal oxide will be described. The above starting materials are appropriately selected, and weighed and mixed so that a predetermined metal composition ratio is obtained. At this time, in order to improve the reactivity of the Li source with the Mn source, the Ni source, and the Co source, and to avoid the remaining of different phases of Mn 2 O 3 , Ni 2 O 3 , and Co 2 O 3 , the Li source The maximum particle size of the raw material is preferably 2 μm or less, and the maximum particle size of the raw materials of the Mn source, Ni source, and Co source is preferably 30 μm or less. Mixing may be performed by selecting an apparatus such as a ball mill, a V-type mixer, a cutter mixer, or a shaker. The obtained mixed powder is fired in an atmosphere having an oxygen concentration in air or higher in a temperature range of 600 ° C to 950 ° C.

このマンガン酸リチウム、ニッケル酸リチウム、およびコバルト酸リチウムをバインダーとアセチレンブラックやカーボンなどの導電性付与剤と混合し電極とする。バインダーは通常用いられている樹脂系結着剤で良く、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等が用いることができる。集電体金属箔としてはAl箔が好ましい。   This lithium manganate, lithium nickelate, and lithium cobaltate are mixed with a binder and a conductivity imparting agent such as acetylene black or carbon to form an electrode. The binder may be a commonly used resin binder, and polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be used. The current collector metal foil is preferably an Al foil.

負極は、リチウムイオンを挿入・脱離が可能な黒鉛や非晶質炭素を用い、レート特性・出力特性・低温放電特性・パルス放電特性・エネルギー密度・軽量化・小型化などの電池として重視する特性に応じて適宜選択したバインダーと混合し電極とする。バインダーは通常、用いられているポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等を用いることができる他、ゴム系バインダーを用いることもできる。集電体金属箔としてはCu箔が好ましい。   The negative electrode uses graphite or amorphous carbon that can insert and desorb lithium ions, and attach importance to batteries such as rate characteristics, output characteristics, low-temperature discharge characteristics, pulse discharge characteristics, energy density, weight reduction, and miniaturization. It mixes with the binder suitably selected according to the characteristic, and it is set as an electrode. As the binder, commonly used polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), or the like can be used, and a rubber-based binder can also be used. As the current collector metal foil, a Cu foil is preferable.

セパレータにはポリプロピレンもしくはポリプロピレン、ポリエチレン、ポリプロピレンの三層構造の多孔質プラスッチクフィルムを使用することができる。厚さは特に限定はしないが、レート特性や電池のエネルギー密度、機械的強度を考慮して10μmから30μmが好ましい。   For the separator, a porous plastic film having a three-layer structure of polypropylene or polypropylene, polyethylene, and polypropylene can be used. The thickness is not particularly limited, but is preferably 10 μm to 30 μm in consideration of rate characteristics, battery energy density, and mechanical strength.

非水電解液の溶媒としては、通常、よく用いられるもので良く、例えばカーボネート類、エーテル類、ケトン類等を用いることができる。好ましくは高誘電率溶媒としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)等から少なくとも1種類、低粘度溶媒としてジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、エステル類等から少なくとも1種類選択し、その混合液を用いる。EC+DEC、EC+EMC、EC+DMC、PC+DEC、PC+EMC、PC+DMC、PC+EC+DECなどが好ましいが、溶媒の純度が低い場合や含有水分量が多い場合などは、電位窓が高電位側に広い溶媒種の混合比率を高めると良い。さらに水分消費や耐酸化性向上、安全性向上等の目的で微量の添加剤を加えても良い。   As the solvent for the non-aqueous electrolyte, those commonly used may be used. For example, carbonates, ethers, ketones and the like can be used. Preferably, at least one kind from ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (GBL), etc. as the high dielectric constant solvent, diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate as the low viscosity solvent At least one selected from (EMC), esters and the like, and a mixed solution thereof is used. EC + DEC, EC + EMC, EC + DMC, PC + DEC, PC + EMC, PC + DMC, PC + EC + DEC, etc. are preferable. good. Furthermore, a trace amount of additives may be added for the purpose of improving water consumption, oxidation resistance, safety, and the like.

支持塩としては、LiBF4、LiPF6、LiClO4、LiAsF6、Li(CF3SO2)N、Li(C25SO22Nなどを用いるが、LiPF6を含む系が好ましい。支持塩の濃度は0.8mol/L〜1.5mol/Lが好ましく、さらに0.9mol/L〜1.2mol/Lがより好ましい。 As the supporting salt, LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) N, Li (C 2 F 5 SO 2 ) 2 N or the like is used, but a system containing LiPF 6 is preferable. The concentration of the supporting salt is preferably 0.8 mol / L to 1.5 mol / L, more preferably 0.9 mol / L to 1.2 mol / L.

次に、本願発明の実施例における、リチウムイオン二次電池の基本作製手順について説明する。   Next, a basic manufacturing procedure of the lithium ion secondary battery in the example of the present invention will be described.

図1は、本発明の電池内部にある積層体の斜視図である。ただし、説明上、厚さ方向を強調した図になっている。正極活物質4として、例えばマンガン酸リチウムを使用し、これと導電性付与剤を乾式混合し、バインダであるPVdFを溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させスラリーを作製した。そのスラリーを厚さ20μmのアルミニウム金属箔5上に塗布後、NMPを蒸発させることにより正極シートを作製した。正極中の固形分比率は重量%で、マンガン酸リチウム:導電性付与剤:PVdF=90:6:4とした。その正極シートを、幅55mm、高さ100mmの大きさに、活物質未塗布部分6のアルミニウム金属箔5を電極部用に幅10mm、高さ15mmの大きさに成形した。   FIG. 1 is a perspective view of a laminate inside the battery of the present invention. However, for the sake of explanation, the thickness direction is emphasized. As the positive electrode active material 4, for example, lithium manganate is used, and this and a conductivity-imparting agent are dry-mixed, and uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVdF as a binder is dissolved. Was made. The slurry was applied on an aluminum metal foil 5 having a thickness of 20 μm, and NMP was evaporated to prepare a positive electrode sheet. The solid content ratio in the positive electrode was wt%, and lithium manganate: conductivity imparting agent: PVdF = 90: 6: 4. The positive electrode sheet was formed to have a width of 55 mm and a height of 100 mm, and the aluminum metal foil 5 of the active material uncoated portion 6 was formed to have a width of 10 mm and a height of 15 mm for the electrode part.

負極活物質7としてグラファイトを、バインダーであるPVdFを溶解させたN−メチル−2−ピロリドン(NMP)中に均一に分散させスラリーを作製し、そのスラリーを厚さ15μmの銅箔8上に塗布後、NMPを蒸発させることにより負極シートを作製した。負極中の固形分比率は重量%でグラファイト:PVdF=90:10とした。その負極シートを、幅59mm、高さ104mmの大きさに、活物質未塗布部分6の銅箔8を電極部用に幅10mm、高さ15mmの大きさに成形した。   A negative electrode active material 7 is uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which PVdF as a binder is dissolved to prepare a slurry, and the slurry is applied onto a copper foil 8 having a thickness of 15 μm. Then, the negative electrode sheet was produced by evaporating NMP. The solid content ratio in the negative electrode was set to graphite: PVdF = 90: 10 by weight%. The negative electrode sheet was formed to have a width of 59 mm and a height of 104 mm, and the copper foil 8 of the active material uncoated portion 6 was formed to have a width of 10 mm and a height of 15 mm for the electrode part.

このようにして作製した正極シートおよび負極シートを厚さ25μmのポリプロピレンもしくはポリプロピレン/ポリエチレン/ポリプロピレンの三層構造の多孔質膜セパレータ9を介して複数層に積み重ねて積層体を作製した。その際、正極及び負極それぞれの活物質未塗布部分6は正極電極用または負極電極用に集められ、正極にはアルミニウム、負極にはニッケルの外部電流取り出し用タブを超音波溶接した。得られた積層体を片方には積層体の形状に合わせてエンボス形成したラミネートフィルム、もう一方は平面のラミネートフィルムを用いて熱融着した。電解液には1mol/LのLiPF6を支持塩とし、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=30:70(体積%)を溶媒とした。 The positive electrode sheet and the negative electrode sheet thus prepared were stacked in a plurality of layers via a porous membrane separator 9 having a three-layer structure of polypropylene or polypropylene / polyethylene / polypropylene having a thickness of 25 μm to prepare a laminate. At that time, the active material uncoated portions 6 of the positive electrode and the negative electrode were collected for the positive electrode or the negative electrode, and an external current extraction tab of aluminum was used for the positive electrode and nickel was applied to the negative electrode by ultrasonic welding. The obtained laminate was heat-sealed using a laminate film embossed in accordance with the shape of the laminate on one side and a flat laminate film on the other. In the electrolytic solution, 1 mol / L LiPF 6 was used as a supporting salt, and ethylene carbonate (EC): diethyl carbonate (DEC) = 30: 70 (volume%) was used as a solvent.

作製したリチウムイオン二次電池は、実際に、電池として機能させるために、0.3C(Cは時間率。1Cは1時間で充電または放電が完了する電流値。0.2Cは5時間で完了する電流値。)の電流値で、4.2Vまで10時間、定電流定電圧の充電を行った。   The manufactured lithium ion secondary battery is actually 0.3 C (C is a time rate. 1 C is a current value at which charging or discharging is completed in 1 hour. 0.2 C is completed in 5 hours in order to function as a battery. The battery was charged with a constant current and a constant voltage up to 4.2 V for 10 hours.

(実施例1)
図2は、ラミネートセルの外形模式図である。図2に、正極にマンガン酸リチウムを使用して作製したラミネートフィルム外装リチウムイオン二次電池1(以後、ラミネートセル1)を示す。このラミネートセル1には、正極端子2及び負極端子3が突出した状態で設けられている。本ラミネートセル1の負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.1となるように、正極シートに用いるアルミニウム金属箔の活物質塗布量と負極シートに用いる銅箔の活物質塗布量を調整して塗布し、乾燥によりNMPを蒸発させてラミネートセル1を作製した。リチウム容量Cの塗布重量を1として、リチウム容量Aの塗布重量を1.1とすることでA/Cの値を変化させた。以下実施例では、A/Cの値の変化は、正極の塗布重量を一定として負極の塗布重量を変えて比較を行った。
(Example 1)
FIG. 2 is a schematic external view of a laminate cell. FIG. 2 shows a laminated film-covered lithium ion secondary battery 1 (hereinafter, laminated cell 1) produced using lithium manganate as the positive electrode. The laminate cell 1 is provided with a positive terminal 2 and a negative terminal 3 protruding. The active material coating amount of the aluminum metal foil used for the positive electrode sheet and the copper foil used for the negative electrode sheet so that the ratio A / C of the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode of the laminate cell 1 is 1.1. The active material application amount was adjusted and applied, and NMP was evaporated by drying to produce a laminate cell 1. The A / C value was changed by setting the coating weight of the lithium capacity C to 1 and the coating weight of the lithium capacity A to 1.1. In the following examples, the change in the A / C value was compared by changing the coating weight of the negative electrode while keeping the coating weight of the positive electrode constant.

(実施例2)
負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.6となるようにしてラミネートセル1を作製した。なお、それ以外は実施例1と同様に構成した。
(Example 2)
The laminate cell 1 was produced such that the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode was 1.6. The rest of the configuration was the same as in Example 1.

(実施例3)
正極にマンガン酸リチウムとニッケル酸リチウムの混合正極(マンガン酸リチウム:ニッケル酸リチウム=80:20の重量%)を使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.1となるようにしてラミネートセル1を作製した。なお、それ以外は実施例1と同様に構成した。
(Example 3)
A mixed positive electrode of lithium manganate and lithium nickelate (lithium manganate: lithium nickelate = 80: 20 wt%) is used as the positive electrode, and the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode is 1 A laminate cell 1 was produced so that the ratio was 1. The rest of the configuration was the same as in Example 1.

(実施例4)
正極にマンガン酸リチウムとニッケル酸リチウムの混合正極(マンガン酸リチウム:ニッケル酸リチウム=80:20の重量%)を使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.6となるようにしてラミネートセル1を作製した。なお、それ以外は実施例1と同様に構成した。
Example 4
A mixed positive electrode of lithium manganate and lithium nickelate (lithium manganate: lithium nickelate = 80: 20 wt%) is used as the positive electrode, and the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode is 1 A laminate cell 1 was produced so that the thickness was 6. The rest of the configuration was the same as in Example 1.

(実施例5)
正極にコバルト酸リチウムを使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.1となるようにしてラミネートセル1を作製した。なお、それ以外は実施例1と同様に構成した。
(Example 5)
Laminate cell 1 was produced using lithium cobaltate as the positive electrode and the ratio A / C of lithium capacity A of the negative electrode to lithium capacity C of the positive electrode being 1.1. The rest of the configuration was the same as in Example 1.

(実施例6)
正極にコバルト酸リチウムを使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.6となるようにしてラミネートセル1を作製した。なお、それ以外は実施例1と同様に構成した。
(Example 6)
Laminate cell 1 was produced using lithium cobaltate as the positive electrode and the ratio A / C of lithium capacity A of the negative electrode to lithium capacity C of the positive electrode being 1.6. The rest of the configuration was the same as in Example 1.

(比較例1)
正極にマンガン酸リチウムを使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.05となるようにしてラミネートセルを作製した。それ以外は実施例1と同様にした。
(Comparative Example 1)
A laminate cell was prepared using lithium manganate as the positive electrode and the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode being 1.05. Otherwise, the same procedure as in Example 1 was performed.

(比較例2)
正極にマンガン酸リチウムとニッケル酸リチウムの混合正極(マンガン酸リチウム:ニッケル酸リチウム=80:20の重量%)を使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.05となるようにしてラミネートセルを作製した。それ以外は実施例3と同様にした。
(Comparative Example 2)
A mixed positive electrode of lithium manganate and lithium nickelate (lithium manganate: lithium nickelate = 80: 20 wt%) is used as the positive electrode, and the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode is 1 A laminate cell was prepared so that the thickness was .05. Other than that was carried out similarly to Example 3.

(比較例3)
正極にコバルト酸リチウムを使用し、負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.05となるようにしてラミネートセルを作製した。それ以外は実施例5と同様にした。
(Comparative Example 3)
A laminate cell was prepared using lithium cobalt oxide as the positive electrode and the ratio A / C of the lithium capacity A of the negative electrode to the lithium capacity C of the positive electrode being 1.05. Other than that was carried out similarly to Example 5.

(急速充電試験)
これらのラミネートセルを7Cの電流値で、4.2Vの急速充電試験を行った。ここで、充電は始め定電流充電を行うが、充電電圧が4.2Vに到達した後は、充電電圧4.2Vで定電圧充電を行うように装置を設定した。図3は、急速充電試験結果である。実施例1、実施例2、比較例1の充電時間と充電割合の結果を図3に示す。負極のリチウム容量Aと正極のリチウム容量Cの比率A/Cが1.6の実施例2は非常に急速充電特性が優れていることが分かる。また実施例1のA/C=1.1も20分で充電割合が90%に到達する。一方、比較例1は急速充電には向いていないことが分かる。
(Quick charge test)
These laminate cells were subjected to a quick charge test of 4.2 V at a current value of 7C. Here, constant charge charging is performed at the beginning, but after the charge voltage reaches 4.2V, the apparatus is set to perform constant voltage charge at a charge voltage of 4.2V. FIG. 3 shows the results of the quick charge test. The results of the charging time and charging ratio of Example 1, Example 2, and Comparative Example 1 are shown in FIG. It can be seen that Example 2 in which the ratio A / C between the lithium capacity A of the negative electrode and the lithium capacity C of the positive electrode is 1.6 is very excellent in quick charge characteristics. In addition, A / C = 1.1 in Example 1 reaches 90% in 20 minutes. On the other hand, it can be seen that Comparative Example 1 is not suitable for rapid charging.

同様にして、実施例3〜6、比較例2〜3について実験を行い、充電割合が90%に到達するまでの時間を表1に示す。   Similarly, experiments were performed on Examples 3 to 6 and Comparative Examples 2 to 3, and Table 1 shows times until the charging ratio reaches 90%.

Figure 2008171661
Figure 2008171661

表1の急速充電試験の結果から、対向する負極のリチウム容量Aと正極のリチウム容量Cとの比率A/Cが1.1≦A/C≦1.6の範囲において急速充電が優れていることが明らかとなった。比較例1〜3のA/C=1.05では、負極受け入れ性が低いため、電池電圧が4.2Vに達するのが早いので定電圧領域が長くなり、充電に時間を要する。A/C=1.05では急速充電には向いておらず、A/Cは1.1以上が顕著に好ましいことも明らかとなった。なお、A/Cが1.6を超えると、急速充電特性は優れているものの、電池のエネルギー密度が低くなるため実用的ではない。以上、上記実施例として各種説明したが、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲において各種変更することが可能である。   From the results of the quick charge test shown in Table 1, the rapid charge is excellent when the ratio A / C between the lithium capacity A of the opposing negative electrode and the lithium capacity C of the positive electrode is 1.1 ≦ A / C ≦ 1.6. It became clear. In A / C = 1.05 of Comparative Examples 1 to 3, since the negative electrode acceptability is low, the battery voltage quickly reaches 4.2 V, so the constant voltage region becomes long and charging takes time. It was also found that A / C = 1.05 is not suitable for rapid charging, and that A / C is preferably 1.1 or more. In addition, when A / C exceeds 1.6, although quick charge characteristics are excellent, the energy density of the battery becomes low, which is not practical. As described above, various embodiments have been described. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明の電池内部にある積層体の斜視図。The perspective view of the laminated body in the battery inside of this invention. ラミネートセルの外形模式図。Schematic external view of laminate cell. 急速充電試験結果。Rapid charge test results.

符号の説明Explanation of symbols

1 ラミネートセル
2 正極端子
3 負極端子
4 正極活物質
5 アルミニウム金属箔
6 活物質未塗布部分
7 負極活物質
8 銅箔
9 多孔質膜セパレータ
DESCRIPTION OF SYMBOLS 1 Laminate cell 2 Positive electrode terminal 3 Negative electrode terminal 4 Positive electrode active material 5 Aluminum metal foil 6 Active material uncoated part 7 Negative electrode active material 8 Copper foil 9 Porous membrane separator

Claims (1)

リチウムイオンを挿入・脱離可能な負極活物質からなる負極と、リチウムイオンを挿入・脱離可能な正極活物質からなる正極と、前記正極および前記負極の間に配置されて、電極間を絶縁するセパレータと、リチウムイオンを含む非水電解液と、を備えたリチウムイオン二次電池において、前記負極が挿入・脱離可能なリチウム容量Aと、前記正極が挿入・脱離可能なリチウム容量Cとの比率A/Cが、1.1≦A/C≦1.6に設定されたことを特徴とするリチウムイオン二次電池。   A negative electrode made of a negative electrode active material capable of inserting / extracting lithium ions, a positive electrode made of a positive electrode active material capable of inserting / extracting lithium ions, and disposed between the positive electrode and the negative electrode to insulate the electrodes from each other In a lithium ion secondary battery comprising a separator that performs the above operation and a non-aqueous electrolyte solution containing lithium ions, a lithium capacity A into which the negative electrode can be inserted and removed, and a lithium capacity C into which the positive electrode can be inserted and removed A / C ratio is set to 1.1 ≦ A / C ≦ 1.6.
JP2007003212A 2007-01-11 2007-01-11 Lithium-ion secondary battery Pending JP2008171661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003212A JP2008171661A (en) 2007-01-11 2007-01-11 Lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003212A JP2008171661A (en) 2007-01-11 2007-01-11 Lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008171661A true JP2008171661A (en) 2008-07-24

Family

ID=39699556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003212A Pending JP2008171661A (en) 2007-01-11 2007-01-11 Lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008171661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052533A1 (en) 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
JP2022509032A (en) * 2018-11-06 2022-01-20 ポスコ Lithium compound, nickel-based positive electrode active material, manufacturing method of lithium oxide, manufacturing method of nickel-based positive electrode active material, and secondary battery using this

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000228199A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution secondary battery
JP2000228224A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002203608A (en) * 2000-11-01 2002-07-19 Nissan Motor Co Ltd Nonaqueous secondary battery for car use
JP2003264006A (en) * 2002-03-08 2003-09-19 Mitsubishi Chemicals Corp Lithium ion secondary battery and charging method of lithium ion secondary battery
JP2004296098A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005063674A (en) * 2003-08-08 2005-03-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006202529A (en) * 2005-01-18 2006-08-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
JP2007335143A (en) * 2006-06-13 2007-12-27 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138072A (en) * 1998-08-28 2000-05-16 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000228199A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution secondary battery
JP2000228224A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000348725A (en) * 1999-06-08 2000-12-15 Toyota Motor Corp Lithium ion secondary battery
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002203608A (en) * 2000-11-01 2002-07-19 Nissan Motor Co Ltd Nonaqueous secondary battery for car use
JP2003264006A (en) * 2002-03-08 2003-09-19 Mitsubishi Chemicals Corp Lithium ion secondary battery and charging method of lithium ion secondary battery
JP2004296098A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005063674A (en) * 2003-08-08 2005-03-10 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006202529A (en) * 2005-01-18 2006-08-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
JP2007335143A (en) * 2006-06-13 2007-12-27 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052533A1 (en) 2009-10-30 2011-05-05 第一工業製薬株式会社 Lithium secondary battery
JP2022509032A (en) * 2018-11-06 2022-01-20 ポスコ Lithium compound, nickel-based positive electrode active material, manufacturing method of lithium oxide, manufacturing method of nickel-based positive electrode active material, and secondary battery using this

Similar Documents

Publication Publication Date Title
US10601038B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4878683B2 (en) Lithium secondary battery
JP6137088B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
JP2010062113A (en) Lithium ion secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2008077990A (en) Non-aqueous electrolyte secondary battery
JP2008084665A (en) Nonaqueous electrolyte secondary battery and positive electrode for same
KR100922685B1 (en) Cathode active material for lithium secondary battery
WO2022198660A1 (en) Positive electrode lithium supplementing material, and positive electrode plate and electrochemical device including same
CN108370026B (en) Non-aqueous electrolyte secondary battery
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
JP2008135245A (en) Non-aqueous electrolyte secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JP2006216305A (en) Secondary battery
WO2016103571A1 (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP6400364B2 (en) Cathode active material for non-aqueous secondary battery and method for producing the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP2010033998A (en) Nonaqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2008171661A (en) Lithium-ion secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211