JP2004296098A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004296098A
JP2004296098A JP2003082624A JP2003082624A JP2004296098A JP 2004296098 A JP2004296098 A JP 2004296098A JP 2003082624 A JP2003082624 A JP 2003082624A JP 2003082624 A JP2003082624 A JP 2003082624A JP 2004296098 A JP2004296098 A JP 2004296098A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082624A
Other languages
Japanese (ja)
Other versions
JP4297709B2 (en
Inventor
Shingo Tode
晋吾 戸出
Toyoki Fujiwara
豊樹 藤原
Akira Kinoshita
晃 木下
Hiroyuki Fujimoto
洋行 藤本
Yasufumi Takahashi
康文 高橋
Ikuro Nakane
育朗 中根
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003082624A priority Critical patent/JP4297709B2/en
Publication of JP2004296098A publication Critical patent/JP2004296098A/en
Application granted granted Critical
Publication of JP4297709B2 publication Critical patent/JP4297709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance thermal stability under the coexistence of an electrolyte in a nonaqueous electrolyte secondary battery using a lithium-transition metal composite oxide containing at least Ni and Mn as the transition metal as a positive active material and designed so as to be charged at high charging potential. <P>SOLUTION: The nonaqueous electrolyte secondary battery is equipped with a positive electrode containing a positive active material, a negative electrode containing a negative active material, a nonaqueous electrolyte, and designed so that the charging potential of the positive electrode in full charge state is 4.5 V (vs. Li/LI<SP>+</SP>), and the positive active material is the transition metal composite oxide containing at least Ni and Mn as the transition metal and having lamellar structure, and further contains fluorine. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池及びその使用方法に関するものである。
【0002】
【従来の技術】
近年、金属リチウム、もしくはリチウムイオンを吸蔵・放出し得る合金、または炭素材料などを負極活物質とし、化学式LiMO(Mは遷移金属)で表されるリチウム遷移金属複合酸化物を正極活物質とした非水電解質二次電池が、高エネルギー密度を有する電池として注目されている。
【0003】
上記リチウム遷移金属複合酸化物の代表的な例としては、コバルト酸リチウム(LiCoO)が挙げられ、これは非水電解質二次電池の正極活物質として既に実用化されている。また、遷移金属としてNiまたはMnを含むリチウム遷移金属複合酸化物も正極活物質として検討されており、例えば、これら3種類の遷移元素、すなわち、Ni、Co、及びMnの全てを含む酸化物が検討されている(例えば、特許文献1、特許文献2、非特許文献1)。
【0004】
また、Ni、Co、及びMnを含むリチウム遷移金属複合酸化物の中でも、MnとNiの組成比が等しい化学式LiMnNiCo(1−2x)で表される材料が、充電状態(高い酸化状態)でも特異的に高い熱的安定性をを示すことが報告されている(例えば非特許文献2)。
【0005】
また、NiとMnの組成比が実質的に等しい複合酸化物が、LiCoOと同等の4V近傍の電圧を有し、かつ高い容量で優れた充放電効率を示すことが報告されている(特許文献3)。
【0006】
Ni、Mn及びCoを含み、層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用いた電池は、充電時に高い熱的安定性を有することから、電池の信頼性が飛躍的に向上することが期待される。さらに、このようなリチウム遷移金属複合酸化物は、その高い構造安定性から、充電電圧をより高く設定しても、LiCoOなどより良好なサイクル特性を示すことが報告されている(非特許文献3)。
【0007】
現在、例えばLiCoOなどのリチウム含有遷移金属酸化物を正極活物質として用い、炭素材料を負極活物質として用いた非水電解質二次電池においては、一般に充電終止電圧は4.1〜4.2Vとなっている。このような充電条件では、正極は理論容量に対して50〜60%しか利用されていない。従って、上記のNi、Mn及びCoを含み、層状構造を有するリチウム遷移金属複合酸化物を正極活物質として用い、充電電圧を高くすることができれば、正極の容量を理論容量に対して70%以上で利用することが可能となり、電池の高容量化及び高エネルギー密度化が可能となる。
【0008】
【特許文献1】
特許第2561556号公報
【特許文献2】
特許第3244314号公報
【特許文献3】
特開2002−42813号公報
【非特許文献1】
Journal of Power Sources 90(2000)176−181
【非特許文献2】
Electrochemical and Solid−State Letters,4(12)A200−A203(2001)
【非特許文献3】
Chemistry Letters,2001,P.642−643
【0009】
【発明が解決しようとする課題】
しかしながら、本発明者等は、遷移金属としてNi及びMnを含有するリチウム遷移金属複合酸化物を正極活物質として用い、正極の充電電位を4.5V(vs.Li/Li)以上となるように充電した場合、電解液共存下での熱的安定性が低下することを見出した。従って、上記リチウム遷移金属複合酸化物を正極活物質として用い、かつ4.5V(vs.Li/Li)以上の充電電位で充電する場合には、上記熱的安定性を改善する必要がある。
【0010】
本発明の目的は、遷移金属としてNi及びMnを少なくとも含有するリチウム遷移金属複合酸化物を正極活物質として用い、かつ高い充電電位で充電されるよう設計された非水電解質二次電池において、電解液共存下での熱的安定性が高められた非水電解質二次電池を提供することにある。
【0011】
【課題を解決するための手段】
本発明の非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、満充電状態における正極の充電電位が4.5V(vs.Li/Li)以上となるように設計された非水電解質二次電池において、正極活物質が、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有していることを特徴としている。
【0012】
ここで、満充電状態とは、0.5C以下の電流値または定電流−定電圧方式(定電圧部は0.1C以下の電流値で充電カット)により充電したときの終状態を意味する。Cは、充放電電流値(mA)/電池容量または電極容量(mAh)である。また、満充電状態における正極の充電電位は、例えば、電池に電解液が出入りできる穴を開け、この電池を電解液が注入されたテストセル中に浸漬し、リチウムを参照極として測定することができる。
【0013】
負極活物質として、満充電状態における負極の充電電位が0.1V(vs.Li/Li)である炭素材料を用いる場合は、本発明の非水電解質二次電池は、4.4V以上の充電終止電圧で充電される。
【0014】
従って、本発明の限定された局面における非水電解質二次電池は、正極活物質を含む正極と、負極活物質として炭素材料を含む負極と、非水電解質とを備え、4.4V以上の充電終止電圧で充電されるように設計された非水電解質二次電池において、正極活物質が、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有することを特徴としている。
【0015】
また、負極活物質として、満充電状態における負極の充電電位が1.5V(vs.Li/Li)であるLi〔Li1/3Ti5/3〕O(チタン酸リチウム)を用いる場合は、本発明の非水電解質二次電池は、3.0V以上の充電終止電圧で充電されるように設計された非水電解質二次電池となる。
【0016】
正極活物質としてLiCoOを用い、負極活物質として炭素材料を用いた従来の非水電解質二次電池において、充電終止電圧は4.1〜4.2Vとされており、満充電状態における正極の充電電位は4.2〜4.3V(vs.Li/Li)である。従って、本発明の非水電解質二次電池は、従来の非水電解質二次電池よりも高い充電終止電圧で充電されるように設計されている。
【0017】
本発明は、これらの非水電解質二次電池において、正極活物質が、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有していることを特徴とする。本発明に従い、上記リチウム遷移金属複合酸化物にフッ素を含有させることにより、電解液共存下での熱的安定性を向上させることができる。本発明の非水電解質二次電池は、高い充電電位で充電されるように設計されているので、充放電容量を従来の電池よりも高くすることができる。従って、本発明に従えば、充放電容量が高く、かつ熱的安定性に優れた非水電解質二次電池とすることができる。
【0018】
本発明において、満充電状態における正極の充電電位の上限値は、特に限定されるものではないが、一般には5.2V(vs.Li/Li)以下が好ましい。正極の充電電位が5.2V(vs.Li/Li)を越えると、正極活物質中のリチウムの脱離反応よりも、電極表面での電解液の分解反応が顕著になるからである。従って、負極活物質として炭素材料を用いた場合の充電終止電圧の好ましい範囲の上限値は、5.1V以下である。
【0019】
本発明においてリチウム遷移金属複合酸化物にフッ素が含有されることにより、高い電位での充電状態において熱的安定性が向上する理由の詳細は明らかではない。しかしながら、フッ素が含有されることにより、高い電位での充電状態において、(a)活物質の結晶構造が安定する、(b)遷移金属複合酸化物の酸化状態が変化し、電解液の分解反応に対して示す触媒活性が低減する、(c)正極活物質表面に電解液の分解反応に対して効果的な皮膜が形成されるなどの理由が推察される。いずれにしても、熱的安定性が向上するフッ素の添加効果は、4.3V(vs.Li/Li)の充電状態では認められず、4.5V(vs.Li/Li)以上の高い電位での充電状態においてのみ認められる。
【0020】
本発明において、正極及び負極の対向する部分の容量比(負極/正極)は、1.0〜1.3の範囲内であることが好ましい。容量比が1.0より小さい場合には、負極表面に金属リチウムが析出し、電池のサイクル特性及び安全性が著しく低下する場合がある。また、容量比が1.3を越えると、反応に直接関与しない負極活物質が増えるため、電池のエネルギー密度が低下する。
【0021】
ここで、容量比(負極/正極)とは、(負極充電容量/正極充電容量)である。負極充電容量は、負極を0V(vs.Li/Li)まで充電した際の充電容量であり、正極充電容量は、正極を設定電位まで充電した際の充電容量である。例えば、充電電圧が4.4Vの電池において、満充電状態における負極の充電電位が0.1V(vs.Li/Li)である場合、正極の設定電位は4.5V(vs.Li/Li)となる。
【0022】
本発明において、フッ素を含有していない状態のリチウム遷移金属複合酸化物は、例えば、化学式LiMnNiCo(0≦a≦1.2、x+y+z=1、x>0、y>0、z≧0)で表すことができる。この化学式に示されるように、本発明におけるリチウム遷移金属複合酸化物には、遷移金属としてさらにCoが含有されてもよい。
【0023】
本発明において、リチウム遷移金属複合酸化物中に含まれるフッ素の含有量は、リチウム遷移金属複合酸化物の全重量に対し、100〜5000重量ppmであることが好ましい。フッ素含有量が少なすぎると、熱的安定性向上の効果が十分に得られない場合がある。また、フッ素含有量が多すぎると、正極の充放電特性が低下する場合がある。
【0024】
また、本発明においては、リチウム遷移金属複合酸化物中にNiとMnが実質的に等しいモル量含有されていることが好ましい。実質的に等しいモル量とは、上記の化学式において、x及びyが以下の式を満足するという意味である。
【0025】
0.45≦x/(x+y)≦0.55
0.45≦y/(x+y)≦0.55
【0026】
ニッケルは、容量は大きいが充電時の熱的安定性が低いという性質を有しており、マンガンは、容量は小さいが充電時の熱的安定性が高いという性質を有している。従って、これらの元素が実質的に等しいモル量含まれることにより、これらの特性をバランスよく備えることができる。
【0027】
本発明においてリチウム遷移金属複合酸化物の比表面積は0.1〜2.0m/gの範囲であることが好ましい。このような範囲内とすることにより、高い電位における正極活物質と電解液との反応を抑制することができる。
【0028】
本発明においては、正極に導電剤を含有させることができる。導電剤として炭素材料が含まれる場合には、該炭素材料の含有量が正極活物質と導電剤と結着剤の合計に対して5重量%以下であることが好ましい。正極が高い電位となった場合、導電剤としての炭素材料の表面で電解液の酸化分解が最も進行し易くなる。このため、導電剤としての炭素材料は、上記の範囲内とすることが好ましい。
【0029】
本発明において用いる負極活物質としては、従来より非水電解質二次電池の負極活物質として用いられているものを用いることができ、例えば、炭素材料、チタン酸リチウム、リチウムと合金化し得る金属(シリコン、アルミニウム、錫など)を用いることができる。
【0030】
本発明において用いる非水電解質の溶媒としては、従来より非水電解質二次電池の電解質の溶媒として用いられているものを用いることができる。これらの中でも、環状カーボネートと鎖状カーボネートの混合溶媒が特に好ましく用いられる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどが挙げられる。鎖状カーボネートとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどが挙げられる。
【0031】
一般に、環状カーボネートは、高い電位において分解を生じやすいので、溶媒中の環状カーボネートの含有割合は10〜50体積%の範囲内であることが好ましく、さらに好ましくは10〜30体積%の範囲内である。
【0032】
本発明における非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。高い充電電圧で充電する場合、正極の集電体であるアルミニウムが溶解しやすくなるが、LiPFの存在下では、LiPFが分解することにより、アルミニウム表面に被膜が形成され、この被膜によってアルミニウムの溶解を抑制することができる。従って、リチウム塩としては、LiPFを用いることが好ましい。
【0033】
本発明の非水電解質二次電池の使用方法は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、正極活物質が遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有している非水電解質二次電池を、満充電状態における正極の充電電位が4.5V(vs.Li/Li)以上となるように充電することを特徴としている。
【0034】
本発明の非水電解質二次電池の使用方法において、負極活物質として炭素材料が含まれる場合、4.4V以上の充電終止電圧で充電することを特徴としている。
【0035】
本発明の非水電解質二次電池の使用方法によれば、高い充電電位で充電することができるので、充放電容量を高めることができる。また、リチウム遷移金属複合酸化物にフッ素が含有されているので、電解液共存下での熱的安定性が高められる。
【0036】
【発明の実施の形態】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0037】
<実験1>
以下、三電極式ビーカーセルを作製し、それを充電して、充電状態における電極の熱的安定性を評価した。
【0038】
(実施例1)
〔正極活物質の作製〕
LiOHと、LiFと、Mn0.33Ni0.33Co0.34(OH)で表される共沈水酸化物を、Li:遷移金属合計(Mn+Ni+Co)のモル比が1:1となり、かつ熱処理後のLiMn0.33Ni0.33Co0.34に含有されるフッ素の量がリチウム遷移金属複合酸化物の全重量に対し500重量ppmとなるように石川式らいかい乳鉢にて混合した。この混合物を空気雰囲気中にて1000℃で20時間熱処理した後に粉砕し、リチウム遷移金属複合酸化物にフッ素が含有された正極活物質を得た。平均粒子径は約5μmであり、BET比表面積は表1に示す通りである。
【0039】
〔フッ素の定量〕
得られた正極活物質についてフッ素の含有量を測定した。正極活物質10mgを測り取り、これを10重量%の塩酸水溶液100mlに添加して、約80℃で3時間加熱することにより、正極活物質を溶解させた。得られた溶液中のフッ素量をイオンメーターで測定した。正極活物質中に含まれるフッ素の量は、遷移金属複合酸化物の全重量に対し、420重量ppmであった。
【0040】
〔作用極の作製〕
上記の正極活物質に、導電剤としての炭素と、結着剤としてのポリフッ化ビニリデンを、活物質:導電剤:結着剤の重量比が90:5:5となるように、分散媒としてのN−メチル−2−ピロリドンに添加して混合し、正極スラリーを準備した。このスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延した。これに、集電タブを取付けて作用極を作製した。
【0041】
〔電解液の作製〕
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比3:7となるように混合した溶媒に、LiPFを1モル/リットルとなるように溶解して、電解液を調製した。
【0042】
〔三電極式ビーカーセルの作製〕
アルゴン雰囲気下のグローブボックス中にて、図3に示す三電極式ビーカーセルを作製した。図3に示すビーカーセルは、容器内に電解液4が入れられており、この電解液4に作用極1、対極2、及び参照極3が浸漬されている。対極2及び参照極3としては、リチウム金属が用いられている。
【0043】
〔初期充放電特性の評価〕
作製した三電極式ビーカーセルを、室温にて、0.75mA/cm(約0.3C)の定電流で、作用極の電位が4.6V(vs.Li/Li)に達するまで充電し、さらに0.25mA/cm(約0.1C)の定電流で、電位が約4.6V(vs.Li/Li)に達するまで充電した後、0.75mA/cmの定電流で、電圧が2.75V(vs.Li/Li)に達するまで放電した。初期充放電効率(=1サイクル目の放電容量/1サイクル目の充電容量)及び1サイクル目の放電容量を表1に示す。
【0044】
〔熱的安定性の評価〕
上記のようにして初期充放電特性を評価した後、室温にて、0.75mA/cm(約0.3C)の定電流で、作用極の電位が4.6V(vs.Li/Li)に達するまで充電し、さらに0.25mA/cm(約0.1C)の定電流で、電位が4.6V(vs.Li/Li)に達するまで充電した。充電後、ビーカーセルを解体し、作用極を取り出してエチルメチルカーボネート(EMC)で洗浄した後、真空乾燥した。この作用極の一部を削り取ったもの3mgを、エチレンカーボネート(EC)2mgと共に、アルミニウム製のDSCセルに入れて、DSCサンプルを作製した。
【0045】
DSC測定では、リファレンスをアルミナとして、サンプルを昇温速度5℃/分で室温から350℃まで昇温して測定した。発熱ピーク温度を表2に示す。なお、表2における充電後の電位は、熱的安定性の評価において、各セルを所定の充電電位まで充電した後の開回路電位を示す。
【0046】
(実施例2)
正極活物質の作製において、熱処理後のリチウム遷移金属複合酸化物に含まれるフッ素の量を、リチウム遷移金属複合酸化物に対し、約1300重量ppmとなるように各原料を混合したこと以外は、実施例1と同様にして正極活物質を作製し、これを用いて三電極式ビーカーセルを作製した。なお、実施例1と同様にして正極活物質中のフッ素量を測定した結果、フッ素の含有量は遷移金属複合酸化物の全重量に対し、1200重量ppmであった。また、平均粒子径は約5μmであり、BET比表面積は表1に示す通りである。
【0047】
作製したビーカーセルを用いて、実施例1と同様にして、初期充放電特性及び熱的安定性を評価し、結果を表1に示した。
【0048】
(比較例1)
正極活物質の作製において、LiOHと、Mn0.33Ni0.33Co0.34(OH)で表される共沈水酸化物を、Li:遷移金属合計のモル比が1:1となるように石川式らいかい乳鉢にて混合したこと以外は、実施例1と同様にして正極活物質を作製し、これを用いて三電極式ビーカーセルを作製した。
【0049】
初期充放電特性及び熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li)とする以外は、実施例1と同様にして評価した。評価結果を表1及び表2に示す。
【0050】
(比較例2)
実施例1と同様にして作製した三電極式ビーカーセルを用い、初期充放電特性及び熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li)とする以外は、実施例1と同様にして評価した。評価結果を表1及び表2に示す。
【0051】
(比較例3)
実施例2と同様にして作製した三電極式ビーカーセルを用い、初期充放電特性及び熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li)とする以外は、実施例1と同様にして評価した。評価結果を表1及び表2に示す。
【0052】
(比較例4)
正極活物質として、LiOHと、Co(OH)を、Li:Coのモル比が1:1となるように石川式らいかい乳鉢にて混合した後、空気雰囲気中にて1000℃で20時間熱処理した後粉砕し、LiCoOを得た。これを正極活物質として用いた以外は、実施例1と同様にして三電極式ビーカーセルを作製した。
【0053】
作製した三電極式ビーカーセルを用い、初期充放電特性及び熱的安定性の評価において、作用極の充電電位を4.3V(vs.Li/Li)とする以外は、実施例1と同様にして評価した。評価結果を表1及び表2に示す。
【0054】
(比較例5)
比較例1と同様にして作製した三電極式ビーカーセルを用い、初期充放電特性及び熱的安定性において、作用極の充電電位を実施例1と同様に4.6V(vs.Li/Li)として、評価した。評価結果を表1及び表2に示す。
【0055】
また、セルA1及びA2並びにセルX5のDSC測定結果を図1に、セルX1〜X3のDSC測定結果を図2に示す。
【0056】
【表1】

Figure 2004296098
【0057】
【表2】
Figure 2004296098
【0058】
表1から明らかなように、充電電位4.6V(vs.Li/Li)で充電した比較例5並びに実施例1及び2は、充電電位4.3V(vs.Li/Li)で充電した比較例1〜3に比べ、高い放電容量が得られている。また、表2並びに図1及び2から明らかなように、充電電位4.3V(vs.Li/Li)で充電した比較例1〜3(セルX1〜X3)においては、発熱ピーク温度に大きな差は認められず、フッ素含有による熱的安定性の向上が認められない。これに対し、比較例5並びに実施例1及び2(セルX5並びにセルA1及びA2)においては、フッ素の含有量が多くなるにつれて、発熱ピーク温度が高くなっており、フッ素含有による熱的安定性の向上の効果が認められる。
【0059】
また、従来のLiCoOを正極活物質として用い、充電電位を従来の4.3V(vs.Li/Li)とした比較例4(セルX4)と比較しても、実施例1及び2(セルA1及びA2)は、発熱ピーク温度が高くなっており、熱的安定性において従来の電池よりも優れていることがわかる。
【0060】
<実験2>
以下、負極活物質として炭素材料を用いた非水電解質二次電池を作製し、初期充放電特性及びサーマル特性を評価した。
【0061】
(実施例3)
〔正極の作製〕
実施例1で作製した正極活物質と、導電剤としての炭素と、結着剤としてのポリフッ化ビニリデンを、活物質:導電剤:結着剤の重量比が90:5:5となるように、N−メチル−2−ピロリドンに添加して混合し、正極スラリーを準備した。このスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、これに集電タブを取り付けて正極を作製した。
【0062】
〔負極の作製〕
増粘剤であるカルボキシメチルセルロースを水に溶解した水溶液中に、負極活物質としての人造黒鉛と、結着剤としてのスチレン−ブタジエンゴムを、活物質:結着剤:増粘剤の重量比が95:3:2となるように添加して混合し、負極スラリーを作製した。このスラリーを集電体としての銅箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、これに集電タブを取り付けて負極を作製した。
【0063】
〔電解液の作製〕
エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比3:7となるように混合した溶媒に、LiPFを1モル/リットルとなるように溶解して、電解液を調製した。
【0064】
〔電池の作製〕
上記の正極及び負極を、セパレータを介して対向するように巻き取って巻取り体を作製し、アルゴン雰囲気下のグローブボックス中にて、巻取り体を電解液とともに、アルミニウムラミネートからなる外装体に入れ、これを封入することにより非水電解質二次電池A3を作製した。作製した電池のサイズは、厚み約3.4mm×幅約35mm×長さ約62mmであった。また、正極及び負極の対向部分の容量比(負極/正極)は1.09とした。なお、セパレータとしては、膜厚23μmのポリエチレン微多孔膜を用いた。
【0065】
〔初期充放電特性の評価〕
得られた非水電解質二次電池を、室温にて、650mA(約1.0C)の定電流で、電圧が4.5Vに達するまで充電し、さらに4.5Vの定電圧で電流値が32mA(約0.05C)になるまで充電した後、650mAの定電流で、電圧が2.75Vに達するまで放電した。初期充放電効率及び放電容量を表3に示す。
【0066】
〔サーマル特性〕
得られた非水電解質二次電池を、室温にて、650mAの定電流で、電圧が4.55Vに達するまで充電し、さらに4.55Vの定電圧で電流値が32mAになるまで充電した。次に、これをサーマル槽にて、室温から150℃まで約30分かけて昇温し、3時間150℃を保持した。評価結果を表3に示す。
【0067】
【表3】
Figure 2004296098
【0068】
表3から明らかなように、4.5Vの高い電圧で充電しても、本発明に従う実施例3の電池は、電池として十分に機能することが確認された。また、サーマル試験では、電池の破裂、発火等の異常はなく、熱的安定性の高い電池であることが確認された。
【0069】
<設計検証>
実施例3と同様にアルミニウムラミネートを外装体とし、電池規格サイズを厚み:3.6mm×幅:35mm×長さ:62mmとして、充電電圧を4.2Vとした場合と、4.5Vとした場合の電池容量を計算から見積もった。なお、この際の(負極/正極)の容量比は1.15とし、負極の初期充放電効率を93%、負極の放電容量を360mAh/gとした。また、充電電圧を4.2Vとした場合の正極の初期充放電効率及び初期充放電容量は、比較例2の場合の値を用い、4.5Vの充電電圧の場合については、実施例1の場合の値を用いた。それぞれの場合の設計容量を表4に示す。
【0070】
【表4】
Figure 2004296098
【0071】
表4から明らかなように、電池の充電電圧を4.2Vから4.5Vに上げることにより、電池容量が約10%向上することがわかる。
【0072】
【発明の効果】
本発明によれば、遷移金属としてNi及びMnを少なくとも含有するリチウム遷移金属複合酸化物を正極活物質として用い、かつ高い充電電位で充電されるように設計された非水電解質二次電池において、電解液共存下での熱的安定性を高めることができる。従って、LiCoOを正極活物質として用い、4.3V(vs.Li/Li)の充電電位で充電する従来の非水電解質二次電池に比べ、充放電容量が高く、かつ熱的安定性に優れた非水電解質二次電池とすることができる。
【図面の簡単な説明】
【図1】本発明に従う実施例1及び2(セルA1及びA2)並びに比較例5(セルX5)のDSC測定結果を示す図。
【図2】比較例1〜3(セルX1〜X3)における正極のDSC測定結果を示す図。
【図3】本発明の実施例において作製した三電極式ビーカーセルを示す模式的断面図。
【符号の説明】
1…作用極
2…対極
3…参照極
4…電解液[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery and a method for using the same.
[0002]
[Prior art]
In recent years, a lithium transition metal composite oxide represented by the chemical formula LiMO 2 (M is a transition metal) has been used as a positive electrode active material, using lithium metal, an alloy capable of occluding and releasing lithium ions, or a carbon material as a negative electrode active material. The non-aqueous electrolyte secondary battery has attracted attention as a battery having a high energy density.
[0003]
A typical example of the lithium transition metal composite oxide is lithium cobalt oxide (LiCoO 2 ), which has already been put to practical use as a positive electrode active material of a nonaqueous electrolyte secondary battery. Lithium transition metal composite oxides containing Ni or Mn as transition metals have also been studied as positive electrode active materials. For example, oxides containing all of these three types of transition elements, namely, Ni, Co, and Mn, have been proposed. It is being studied (for example, Patent Document 1, Patent Document 2, Non-Patent Document 1).
[0004]
In addition, among lithium transition metal composite oxides containing Ni, Co, and Mn, a material represented by a chemical formula LiMn x Ni x Co (1-2x) O 2 having the same composition ratio of Mn and Ni has a charged state ( It has been reported that the composition exhibits specifically high thermal stability even in a high oxidation state (for example, Non-Patent Document 2).
[0005]
Further, it has been reported that a composite oxide having a substantially equal composition ratio of Ni and Mn has a voltage of about 4 V, which is equivalent to that of LiCoO 2 , and exhibits excellent charge / discharge efficiency with a high capacity (Patent) Reference 3).
[0006]
A battery using a lithium-transition metal composite oxide having a layered structure containing Ni, Mn and Co as a positive electrode active material has high thermal stability during charging, so that the reliability of the battery is dramatically improved. It is expected. Further, it has been reported that such a lithium transition metal composite oxide exhibits better cycle characteristics such as LiCoO 2 even when the charging voltage is set higher because of its high structural stability (Non-Patent Document) 3).
[0007]
At present, in a non-aqueous electrolyte secondary battery in which a lithium-containing transition metal oxide such as LiCoO 2 is used as a positive electrode active material and a carbon material is used as a negative electrode active material, a charge end voltage is generally 4.1 to 4.2 V. It has become. Under such charging conditions, only 50 to 60% of the positive electrode is used for the theoretical capacity. Therefore, if the lithium transition metal composite oxide containing Ni, Mn, and Co and having a layered structure is used as the positive electrode active material and the charging voltage can be increased, the capacity of the positive electrode is 70% or more of the theoretical capacity. It is possible to increase the capacity and energy density of the battery.
[0008]
[Patent Document 1]
Japanese Patent No. 25656156 [Patent Document 2]
Japanese Patent No. 3244314 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-42813 [Non-Patent Document 1]
Journal of Power Sources 90 (2000) 176-181
[Non-patent document 2]
Electrochemical and Solid-State Letters, 4 (12) A200-A203 (2001)
[Non-Patent Document 3]
Chemistry Letters, 2001, p. 642-643
[0009]
[Problems to be solved by the invention]
However, the present inventors have used a lithium transition metal composite oxide containing Ni and Mn as transition metals as a positive electrode active material, and have a charging potential of the positive electrode of 4.5 V (vs. Li / Li + ) or more. It was found that when the battery was charged, the thermal stability in the presence of the electrolytic solution was reduced. Therefore, when the lithium transition metal composite oxide is used as a positive electrode active material and charged at a charging potential of 4.5 V (vs. Li / Li + ) or more, it is necessary to improve the thermal stability. .
[0010]
An object of the present invention is to use a lithium transition metal composite oxide containing at least Ni and Mn as transition metals as a positive electrode active material, and to provide a non-aqueous electrolyte secondary battery designed to be charged at a high charging potential. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved thermal stability in the presence of a liquid.
[0011]
[Means for Solving the Problems]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte, and has a positive potential of 4.5 V (vs. Li) in a fully charged state. / Li + ), the positive electrode active material is a lithium transition metal composite oxide containing at least Ni and Mn as transition metals and having a layered structure, It is characterized by further containing fluorine.
[0012]
Here, the fully charged state means an end state when the battery is charged by a current value of 0.5 C or less or a constant current-constant voltage system (the constant voltage section is cut off at a current value of 0.1 C or less). C is charge / discharge current value (mA) / battery capacity or electrode capacity (mAh). The charge potential of the positive electrode in the fully charged state can be measured, for example, by making a hole through which the electrolyte can enter and exit the battery, immersing the battery in a test cell into which the electrolyte has been injected, and using lithium as a reference electrode. it can.
[0013]
When a carbon material having a negative electrode charging potential of 0.1 V (vs. Li / Li + ) in a fully charged state is used as the negative electrode active material, the nonaqueous electrolyte secondary battery of the present invention has a charge potential of 4.4 V or more. The battery is charged at the charge end voltage.
[0014]
Therefore, a nonaqueous electrolyte secondary battery according to a limited aspect of the present invention includes a positive electrode including a positive electrode active material, a negative electrode including a carbon material as a negative electrode active material, and a nonaqueous electrolyte, and has a charge of 4.4 V or more. In a non-aqueous electrolyte secondary battery designed to be charged at the end voltage, the positive electrode active material contains at least Ni and Mn as transition metals, and is a lithium transition metal composite oxide having a layered structure, Is further contained.
[0015]
In the case where Li [Li 1/3 Ti 5/3 ] O 4 (lithium titanate) whose charge potential of the negative electrode in a fully charged state is 1.5 V (vs. Li / Li + ) is used as the negative electrode active material. In other words, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery designed to be charged at a charging end voltage of 3.0 V or more.
[0016]
In a conventional non-aqueous electrolyte secondary battery using LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode active material, the end-of-charge voltage is set to 4.1 to 4.2 V. The charging potential is 4.2 to 4.3 V (vs. Li / Li + ). Therefore, the non-aqueous electrolyte secondary battery of the present invention is designed to be charged at a higher end-of-charge voltage than the conventional non-aqueous electrolyte secondary battery.
[0017]
The present invention provides, in these nonaqueous electrolyte secondary batteries, a positive electrode active material containing at least Ni and Mn as transition metals, and a lithium transition metal composite oxide having a layered structure, further containing fluorine. It is characterized by having. According to the present invention, by including fluorine in the lithium transition metal composite oxide, thermal stability in the presence of an electrolyte can be improved. Since the nonaqueous electrolyte secondary battery of the present invention is designed to be charged at a high charging potential, the charge / discharge capacity can be made higher than that of a conventional battery. Therefore, according to the present invention, a nonaqueous electrolyte secondary battery having high charge / discharge capacity and excellent thermal stability can be obtained.
[0018]
In the present invention, the upper limit of the charging potential of the positive electrode in the fully charged state is not particularly limited, but is generally preferably 5.2 V (vs. Li / Li + ) or less. If the charge potential of the positive electrode exceeds 5.2 V (vs. Li / Li + ), the decomposition reaction of the electrolytic solution on the electrode surface becomes more remarkable than the elimination reaction of lithium in the positive electrode active material. Therefore, the upper limit of the preferable range of the charge end voltage when the carbon material is used as the negative electrode active material is 5.1 V or less.
[0019]
It is not clear why the lithium transition metal composite oxide contains fluorine in the present invention to improve the thermal stability in a charged state at a high potential. However, due to the presence of fluorine, (a) the crystal structure of the active material is stabilized, and (b) the oxidation state of the transition metal composite oxide changes in the charged state at a high potential, and the decomposition reaction of the electrolyte solution occurs. (C) formation of a film effective on the surface of the positive electrode active material against the decomposition reaction of the electrolytic solution is presumed. In any case, the effect of adding the fluorine to improve thermal stability is, 4.3 V not observed in the state of charge of (vs.Li/Li +), 4.5V (vs.Li/Li +) or more Only observed in the charged state at high potential.
[0020]
In the present invention, the capacity ratio (negative electrode / positive electrode) of the opposed portion of the positive electrode and the negative electrode is preferably in the range of 1.0 to 1.3. If the capacity ratio is smaller than 1.0, metallic lithium may precipitate on the surface of the negative electrode, and the cycle characteristics and safety of the battery may be significantly reduced. On the other hand, when the capacity ratio exceeds 1.3, the negative electrode active material which does not directly participate in the reaction increases, so that the energy density of the battery decreases.
[0021]
Here, the capacity ratio (negative electrode / positive electrode) is (negative electrode charging capacity / positive electrode charging capacity). The negative electrode charge capacity is the charge capacity when the negative electrode is charged to 0 V (vs. Li / Li + ), and the positive electrode charge capacity is the charge capacity when the positive electrode is charged to a set potential. For example, in a battery having a charge voltage of 4.4 V, when the charge potential of the negative electrode in a fully charged state is 0.1 V (vs. Li / Li + ), the set potential of the positive electrode is 4.5 V (vs. Li / Li + ). + ).
[0022]
In the present invention, a lithium transition metal composite oxide in the state containing no fluorine may, for example, the formula Li a Mn x Ni y Co z O 2 (0 ≦ a ≦ 1.2, x + y + z = 1, x> 0, y> 0, z ≧ 0). As shown in this chemical formula, the lithium transition metal composite oxide of the present invention may further contain Co as a transition metal.
[0023]
In the present invention, the content of fluorine contained in the lithium transition metal composite oxide is preferably from 100 to 5000 ppm by weight based on the total weight of the lithium transition metal composite oxide. If the fluorine content is too small, the effect of improving the thermal stability may not be sufficiently obtained. If the fluorine content is too large, the charge / discharge characteristics of the positive electrode may be reduced.
[0024]
In the present invention, it is preferable that Ni and Mn are contained in the lithium transition metal composite oxide in substantially equal molar amounts. Substantially equal molar amounts mean that in the above chemical formula, x and y satisfy the following formula.
[0025]
0.45 ≦ x / (x + y) ≦ 0.55
0.45 ≦ y / (x + y) ≦ 0.55
[0026]
Nickel has a large capacity but low thermal stability during charging, and manganese has a small capacity but high thermal stability during charging. Therefore, when these elements are contained in substantially equal molar amounts, these characteristics can be provided in a well-balanced manner.
[0027]
In the present invention, the specific surface area of the lithium transition metal composite oxide is preferably in the range of 0.1 to 2.0 m 2 / g. By setting it in such a range, the reaction between the positive electrode active material and the electrolyte at a high potential can be suppressed.
[0028]
In the present invention, the positive electrode may contain a conductive agent. When a carbon material is included as the conductive agent, the content of the carbon material is preferably 5% by weight or less based on the total of the positive electrode active material, the conductive agent, and the binder. When the positive electrode has a high potential, the oxidative decomposition of the electrolytic solution most easily proceeds on the surface of the carbon material as the conductive agent. For this reason, it is preferable that the carbon material as the conductive agent be within the above range.
[0029]
As the negative electrode active material used in the present invention, those conventionally used as a negative electrode active material of a nonaqueous electrolyte secondary battery can be used. For example, a carbon material, lithium titanate, a metal which can be alloyed with lithium ( Silicon, aluminum, tin, etc.) can be used.
[0030]
As the solvent for the non-aqueous electrolyte used in the present invention, those conventionally used as the solvent for the electrolyte of the non-aqueous electrolyte secondary battery can be used. Among these, a mixed solvent of a cyclic carbonate and a chain carbonate is particularly preferably used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate. Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
[0031]
In general, the cyclic carbonate is liable to be decomposed at a high potential, so that the content of the cyclic carbonate in the solvent is preferably in the range of 10 to 50% by volume, and more preferably in the range of 10 to 30% by volume. is there.
[0032]
As the solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiN (CF 3 SO 2 ) (C 4 F). 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and a mixture thereof. Is exemplified. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. When charged with a high charging voltage, although aluminum is a current collector of the positive electrode is easily dissolved in the presence of LiPF 6, by LiPF 6 decomposes, coating is formed on the aluminum surface, the aluminum by the coating Can be suppressed. Therefore, it is preferable to use LiPF 6 as the lithium salt.
[0033]
The method for using the nonaqueous electrolyte secondary battery of the present invention includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a nonaqueous electrolyte, wherein the positive electrode active material contains at least Ni and Mn as transition metals. A non-aqueous electrolyte secondary battery that is a lithium transition metal composite oxide having a layered structure and further containing fluorine has a positive electrode charging potential of 4.5 V (vs. Li / Li + ) It is characterized by being charged as described above.
[0034]
The method for using a nonaqueous electrolyte secondary battery of the present invention is characterized in that when a carbon material is contained as a negative electrode active material, the battery is charged at a charge end voltage of 4.4 V or more.
[0035]
According to the method of using the non-aqueous electrolyte secondary battery of the present invention, the battery can be charged at a high charging potential, so that the charge / discharge capacity can be increased. Further, since the lithium transition metal composite oxide contains fluorine, the thermal stability in the presence of the electrolytic solution is improved.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples, and can be implemented by appropriately changing the scope without changing the gist thereof. It is.
[0037]
<Experiment 1>
Hereinafter, a three-electrode beaker cell was prepared, charged, and the thermal stability of the electrode in the charged state was evaluated.
[0038]
(Example 1)
(Preparation of positive electrode active material)
LiOH, LiF, and a coprecipitated hydroxide represented by Mn 0.33 Ni 0.33 Co 0.34 (OH) 2 were prepared by mixing Li: the total transition metal (Mn + Ni + Co) at a molar ratio of 1: 1; and In an Ishikawa-type rai mortar such that the amount of fluorine contained in the LiMn 0.33 Ni 0.33 Co 0.34 O 2 after the heat treatment becomes 500 ppm by weight with respect to the total weight of the lithium transition metal composite oxide. Mixed. This mixture was heat-treated in an air atmosphere at 1000 ° C. for 20 hours, and then pulverized to obtain a positive electrode active material in which a lithium transition metal composite oxide contained fluorine. The average particle diameter is about 5 μm, and the BET specific surface area is as shown in Table 1.
[0039]
[Quantitative determination of fluorine]
The fluorine content of the obtained positive electrode active material was measured. 10 mg of the positive electrode active material was measured and added to 100 ml of a 10% by weight aqueous hydrochloric acid solution, and heated at about 80 ° C. for 3 hours to dissolve the positive electrode active material. The amount of fluorine in the obtained solution was measured with an ion meter. The amount of fluorine contained in the positive electrode active material was 420 ppm by weight based on the total weight of the transition metal composite oxide.
[0040]
[Production of working electrode]
Carbon as a conductive agent and polyvinylidene fluoride as a binder were added to the positive electrode active material as a dispersion medium so that the weight ratio of active material: conductive agent: binder was 90: 5: 5. Was added to and mixed with N-methyl-2-pyrrolidone to prepare a positive electrode slurry. This slurry was applied on an aluminum foil as a current collector, dried, and then rolled using a rolling roller. A working electrode was prepared by attaching a current collecting tab to this.
[0041]
(Preparation of electrolyte solution)
LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.
[0042]
[Production of three-electrode beaker cell]
In a glove box under an argon atmosphere, a three-electrode beaker cell shown in FIG. 3 was produced. In the beaker cell shown in FIG. 3, an electrolytic solution 4 is put in a container, and a working electrode 1, a counter electrode 2, and a reference electrode 3 are immersed in the electrolytic solution 4. As the counter electrode 2 and the reference electrode 3, lithium metal is used.
[0043]
(Evaluation of initial charge / discharge characteristics)
The fabricated three-electrode beaker cell is charged at room temperature with a constant current of 0.75 mA / cm 2 (about 0.3 C) until the potential of the working electrode reaches 4.6 V (vs. Li / Li + ). After charging at a constant current of 0.25 mA / cm 2 (about 0.1 C) until the potential reaches about 4.6 V (vs. Li / Li + ), a constant current of 0.75 mA / cm 2 was applied. And discharged until the voltage reached 2.75 V (vs. Li / Li + ). Table 1 shows the initial charge / discharge efficiency (= discharge capacity at the first cycle / charge capacity at the first cycle) and discharge capacity at the first cycle.
[0044]
(Evaluation of thermal stability)
After the initial charge / discharge characteristics were evaluated as described above, the potential of the working electrode was 4.6 V (vs. Li / Li + ) at room temperature at a constant current of 0.75 mA / cm 2 (about 0.3 C). ), And was further charged with a constant current of 0.25 mA / cm 2 (about 0.1 C) until the potential reached 4.6 V (vs. Li / Li + ). After charging, the beaker cell was disassembled, the working electrode was taken out, washed with ethyl methyl carbonate (EMC), and dried in vacuum. 3 mg of a part of this working electrode was removed together with 2 mg of ethylene carbonate (EC) in a DSC cell made of aluminum to prepare a DSC sample.
[0045]
In the DSC measurement, the sample was heated from room temperature to 350 ° C. at a rate of 5 ° C./min using alumina as a reference. Table 2 shows the exothermic peak temperatures. The potential after charging in Table 2 indicates the open circuit potential after each cell was charged to a predetermined charging potential in the evaluation of thermal stability.
[0046]
(Example 2)
In the preparation of the positive electrode active material, except that the raw materials were mixed so that the amount of fluorine contained in the lithium transition metal composite oxide after the heat treatment was about 1300 wt ppm with respect to the lithium transition metal composite oxide. A positive electrode active material was produced in the same manner as in Example 1, and a three-electrode beaker cell was produced using this. In addition, as a result of measuring the amount of fluorine in the positive electrode active material in the same manner as in Example 1, the content of fluorine was 1200 ppm by weight based on the total weight of the transition metal composite oxide. The average particle size is about 5 μm, and the BET specific surface area is as shown in Table 1.
[0047]
Using the prepared beaker cell, the initial charge-discharge characteristics and the thermal stability were evaluated in the same manner as in Example 1, and the results are shown in Table 1.
[0048]
(Comparative Example 1)
In the preparation of the positive electrode active material, LiOH and the coprecipitated hydroxide represented by Mn 0.33 Ni 0.33 Co 0.34 (OH) 2 are mixed at a molar ratio of Li: transition metal of 1: 1. A positive electrode active material was prepared in the same manner as in Example 1 except that the mixture was mixed in a mortar with an Ishikawa-type rai, and a three-electrode beaker cell was prepared using the same.
[0049]
In the evaluation of the initial charge / discharge characteristics and thermal stability, the evaluation was performed in the same manner as in Example 1 except that the charging potential of the working electrode was set to 4.3 V (vs. Li / Li + ). The evaluation results are shown in Tables 1 and 2.
[0050]
(Comparative Example 2)
Using a three-electrode beaker cell manufactured in the same manner as in Example 1, except for setting the charging potential of the working electrode to 4.3 V (vs. Li / Li + ) in the evaluation of the initial charge / discharge characteristics and thermal stability. Was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
[0051]
(Comparative Example 3)
Using a three-electrode beaker cell manufactured in the same manner as in Example 2, except for setting the charging potential of the working electrode to 4.3 V (vs. Li / Li + ) in the evaluation of initial charge / discharge characteristics and thermal stability. Was evaluated in the same manner as in Example 1. The evaluation results are shown in Tables 1 and 2.
[0052]
(Comparative Example 4)
After mixing LiOH and Co (OH) 2 as a positive electrode active material in an Ishikawa-type crater such that the molar ratio of Li: Co becomes 1: 1, the mixture is heated at 1000 ° C. for 20 hours in an air atmosphere. After heat treatment, pulverization was performed to obtain LiCoO 2 . A three-electrode beaker cell was produced in the same manner as in Example 1 except that this was used as a positive electrode active material.
[0053]
Using the prepared three-electrode beaker cell, in the evaluation of initial charge / discharge characteristics and thermal stability, the same as Example 1 except that the charging potential of the working electrode was set to 4.3 V (vs. Li / Li + ). Was evaluated. The evaluation results are shown in Tables 1 and 2.
[0054]
(Comparative Example 5)
Using a three-electrode beaker cell manufactured in the same manner as in Comparative Example 1, the charging potential of the working electrode was set to 4.6 V (vs. Li / Li +) in the same manner as in Example 1 in the initial charge / discharge characteristics and thermal stability. ) Was evaluated. The evaluation results are shown in Tables 1 and 2.
[0055]
FIG. 1 shows the DSC measurement results of the cells A1 and A2 and the cell X5, and FIG. 2 shows the DSC measurement results of the cells X1 to X3.
[0056]
[Table 1]
Figure 2004296098
[0057]
[Table 2]
Figure 2004296098
[0058]
As is clear from Table 1, Comparative Example 5 and Examples 1 and 2 charged at a charging potential of 4.6 V (vs. Li / Li + ) were charged at a charging potential of 4.3 V (vs. Li / Li + ). Higher discharge capacity is obtained as compared with Comparative Examples 1 to 3 described above. As is clear from Table 2 and FIGS. 1 and 2, in Comparative Examples 1 to 3 (cells X1 to X3) charged at a charging potential of 4.3 V (vs. Li / Li + ), the exothermic peak temperature was large. No difference was observed, and no improvement in thermal stability due to fluorine content was observed. On the other hand, in Comparative Example 5 and Examples 1 and 2 (cell X5 and cells A1 and A2), as the content of fluorine increases, the exothermic peak temperature increases, and the thermal stability due to the fluorine content is increased. The effect of improvement is recognized.
[0059]
Also, in comparison with Comparative Example 4 (cell X4) in which conventional LiCoO 2 was used as the positive electrode active material and the charging potential was 4.3 V (vs. Li / Li + ), Examples 1 and 2 ( The cells A1 and A2) have a higher exothermic peak temperature, which indicates that the cells are superior in thermal stability to the conventional battery.
[0060]
<Experiment 2>
Hereinafter, a non-aqueous electrolyte secondary battery using a carbon material as a negative electrode active material was prepared, and its initial charge / discharge characteristics and thermal characteristics were evaluated.
[0061]
(Example 3)
(Preparation of positive electrode)
The positive electrode active material prepared in Example 1, carbon as a conductive agent, and polyvinylidene fluoride as a binder were mixed so that the weight ratio of active material: conductive agent: binder was 90: 5: 5. , N-methyl-2-pyrrolidone and mixed to prepare a positive electrode slurry. The slurry was applied on an aluminum foil as a current collector, dried, and then rolled using a rolling roller, and a current collecting tab was attached thereto to produce a positive electrode.
[0062]
(Preparation of negative electrode)
In an aqueous solution obtained by dissolving carboxymethylcellulose as a thickener in water, artificial graphite as a negative electrode active material and styrene-butadiene rubber as a binder were added in a weight ratio of active material: binder: thickener. 95: 3: 2 was added and mixed to prepare a negative electrode slurry. This slurry was applied on a copper foil as a current collector, dried, and then rolled using a rolling roller, and a current collecting tab was attached thereto to produce a negative electrode.
[0063]
(Preparation of electrolyte solution)
LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 3: 7 so as to be 1 mol / liter to prepare an electrolytic solution.
[0064]
(Production of battery)
The positive electrode and the negative electrode were wound so as to face each other with a separator interposed therebetween, to prepare a wound body.In a glove box under an argon atmosphere, the wound body together with the electrolytic solution was coated on an exterior body made of aluminum laminate. The non-aqueous electrolyte secondary battery A3 was produced by inserting the battery and enclosing it. The size of the manufactured battery was about 3.4 mm in thickness × about 35 mm in width × about 62 mm in length. The capacity ratio (negative electrode / positive electrode) of the opposed portion of the positive electrode and the negative electrode was 1.09. In addition, a polyethylene microporous film having a thickness of 23 μm was used as the separator.
[0065]
(Evaluation of initial charge / discharge characteristics)
The obtained nonaqueous electrolyte secondary battery was charged at room temperature with a constant current of 650 mA (approximately 1.0 C) until the voltage reached 4.5 V, and further with a constant voltage of 4.5 V and a current value of 32 mA. (About 0.05 C), and then discharged at a constant current of 650 mA until the voltage reached 2.75 V. Table 3 shows the initial charge / discharge efficiency and discharge capacity.
[0066]
[Thermal characteristics]
The obtained nonaqueous electrolyte secondary battery was charged at room temperature with a constant current of 650 mA until the voltage reached 4.55 V, and further charged at a constant voltage of 4.55 V until the current value reached 32 mA. Next, this was heated in a thermal bath from room temperature to 150 ° C. over about 30 minutes, and kept at 150 ° C. for 3 hours. Table 3 shows the evaluation results.
[0067]
[Table 3]
Figure 2004296098
[0068]
As is clear from Table 3, it was confirmed that the battery of Example 3 according to the present invention sufficiently functions as a battery even when charged at a high voltage of 4.5 V. Further, in the thermal test, there was no abnormality such as rupture or ignition of the battery, and it was confirmed that the battery had high thermal stability.
[0069]
<Design verification>
As in Example 3, an aluminum laminate was used as the outer package, and the battery standard size was set to thickness: 3.6 mm x width: 35 mm x length: 62 mm, and the charging voltage was set to 4.2 V and 4.5 V. Was estimated from the calculation. The capacity ratio of (negative electrode / positive electrode) was 1.15, the initial charge / discharge efficiency of the negative electrode was 93%, and the discharge capacity of the negative electrode was 360 mAh / g. The initial charge / discharge efficiency and the initial charge / discharge capacity of the positive electrode when the charge voltage was set to 4.2 V were the values of Comparative Example 2, and the charge voltage of 4.5 V was used in Example 1. The value of the case was used. Table 4 shows the design capacity in each case.
[0070]
[Table 4]
Figure 2004296098
[0071]
As is clear from Table 4, increasing the charging voltage of the battery from 4.2 V to 4.5 V improves the battery capacity by about 10%.
[0072]
【The invention's effect】
According to the present invention, a lithium-transition metal composite oxide containing at least Ni and Mn as transition metals is used as a positive electrode active material, and in a non-aqueous electrolyte secondary battery designed to be charged at a high charging potential, Thermal stability in the presence of an electrolyte can be increased. Therefore, compared with a conventional non-aqueous electrolyte secondary battery that uses LiCoO 2 as a positive electrode active material and is charged at a charging potential of 4.3 V (vs. Li / Li + ), the charge / discharge capacity is higher and the thermal stability is higher. A non-aqueous electrolyte secondary battery having excellent characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a view showing DSC measurement results of Examples 1 and 2 (cells A1 and A2) and Comparative Example 5 (cell X5) according to the present invention.
FIG. 2 is a diagram showing DSC measurement results of positive electrodes in Comparative Examples 1 to 3 (cells X1 to X3).
FIG. 3 is a schematic sectional view showing a three-electrode beaker cell manufactured in an example of the present invention.
[Explanation of symbols]
1: Working electrode 2: Counter electrode 3: Reference electrode 4: Electrolyte

Claims (11)

正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、満充電状態における前記正極の充電電位が4.5V(vs.Li/Li)以上となるように設計された非水電解質二次電池において、
前記正極活物質が、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有していることを特徴とする非水電解質二次電池。
A positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte are designed so that the charging potential of the positive electrode in a fully charged state is equal to or higher than 4.5 V (vs. Li / Li + ). Non-aqueous electrolyte secondary battery
A nonaqueous electrolyte secondary battery, wherein the positive electrode active material is a lithium transition metal composite oxide having at least Ni and Mn as transition metals and having a layered structure, and further containing fluorine.
正極活物質を含む正極と、負極活物質として炭素材料を含む負極と、非水電解質とを備え、4.4V以上の充電終止電圧で充電されるように設計された非水電解質二次電池において、
前記正極活物質が、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有していることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a carbon material as a negative electrode active material, and a non-aqueous electrolyte and designed to be charged at a charge end voltage of 4.4 V or more. ,
A nonaqueous electrolyte secondary battery, wherein the positive electrode active material is a lithium transition metal composite oxide having at least Ni and Mn as transition metals and having a layered structure, and further containing fluorine.
前記正極及び前記負極の対向する部分の容量比(負極/正極)が1.0〜1.3の範囲内であることを特徴とする請求項1または2に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein a capacity ratio (negative electrode / positive electrode) of a portion where the positive electrode and the negative electrode face each other is in a range of 1.0 to 1.3. 前記正極活物質が、遷移金属としてさらにCoを含有することを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the positive electrode active material further contains Co as a transition metal. 化学式LiMnNiCo(0≦a≦1.2、x+y+z=1、x>0、y>0、z≧0)で表されるリチウム遷移金属複合酸化物に、フッ素が含有されていることを特徴とする請求項1〜4のいずれか1項に記載の非水電解質二次電池。Formula Li a Mn x Ni y Co z O 2 in (0 ≦ a ≦ 1.2, x + y + z = 1, x> 0, y> 0, z ≧ 0) lithium transition metal composite oxide represented by, fluorine The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is contained. 前記リチウム遷移金属複合酸化物の全重量に対し、100〜5000重量ppmとなるようにフッ素が含有されていることを特徴とする請求項1〜5のいずれか1項に記載の非水電解質二次電池。The nonaqueous electrolyte according to any one of claims 1 to 5, wherein fluorine is contained in an amount of 100 to 5000 ppm by weight based on the total weight of the lithium transition metal composite oxide. Next battery. 前記リチウム遷移金属複合酸化物に、NiとMnが実質的に等しいモル量となるように含有されていることを特徴とする請求項1〜6のいずれか1項に記載の非水電解質二次電池。The non-aqueous electrolyte secondary according to any one of claims 1 to 6, wherein the lithium transition metal composite oxide contains Ni and Mn in a substantially equal molar amount. battery. 前記リチウム遷移金属複合酸化物の比表面積が0.1〜2.0m/gであることを特徴とする請求項1〜7のいずれか1項に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to any one of claims 1 to 7, a specific surface area of the lithium transition metal composite oxide is characterized by a 0.1~2.0m 2 / g. 前記正極に、導電剤として炭素材料が含まれており、該炭素材料の含有量が、正極活物質と導電剤と結着剤の合計に対して5重量%以下であることを特徴とする請求項1〜8のいずれか1項に記載の非水電解質二次電池。The positive electrode contains a carbon material as a conductive agent, and the content of the carbon material is 5% by weight or less based on the total of the positive electrode active material, the conductive agent, and the binder. Item 10. The non-aqueous electrolyte secondary battery according to any one of Items 1 to 8. 正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備え、前記正極活物質が遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有している非水電解質二次電池を、満充電状態における前記正極の充電電位が4.5V(vs.Li/Li)以上となるように充電することを特徴とする非水電解質二次電池の使用方法。Lithium transition metal composite oxide comprising a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a non-aqueous electrolyte, wherein the positive electrode active material contains at least Ni and Mn as transition metals, and has a layered structure And charging the non-aqueous electrolyte secondary battery further containing fluorine such that the charging potential of the positive electrode in a fully charged state is 4.5 V (vs. Li / Li + ) or more. To use a non-aqueous electrolyte secondary battery. 正極活物質を含む正極と、負極活物質として炭素材料を含む負極と、非水電解質とを備え、前記正極活物質が遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物であり、フッ素をさらに含有している非水電解質二次電池を、充電終止電圧4.4V以上で充電することを特徴とする非水電解質二次電池の使用方法。A positive electrode including a positive electrode active material, a negative electrode including a carbon material as a negative electrode active material, and a nonaqueous electrolyte, wherein the positive electrode active material contains at least Ni and Mn as transition metals, and has a layered structure. A method for using a non-aqueous electrolyte secondary battery, comprising charging a non-aqueous electrolyte secondary battery that is a composite oxide and further contains fluorine at a charge end voltage of 4.4 V or more.
JP2003082624A 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4297709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082624A JP4297709B2 (en) 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082624A JP4297709B2 (en) 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004296098A true JP2004296098A (en) 2004-10-21
JP4297709B2 JP4297709B2 (en) 2009-07-15

Family

ID=33398327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082624A Expired - Lifetime JP4297709B2 (en) 2003-03-25 2003-03-25 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4297709B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342500A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2006147191A (en) * 2004-11-16 2006-06-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2006286382A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007095443A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007200688A (en) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, nonaqueous electrolyte and its charging method
JP2007273154A (en) * 2006-03-30 2007-10-18 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2008171661A (en) * 2007-01-11 2008-07-24 Nec Tokin Corp Lithium-ion secondary battery
JP2008277265A (en) * 2007-03-30 2008-11-13 Nippon Chem Ind Co Ltd Lithium transition metal complex oxide for lithium-ion secondary battery cathode active material, method of manufacturing lithium transition metal complex oxide, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8338030B2 (en) 2005-02-24 2012-12-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
JP2017037713A (en) * 2015-08-06 2017-02-16 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604460B2 (en) * 2003-05-16 2011-01-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery and battery charge / discharge system
JP2004342500A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2006147191A (en) * 2004-11-16 2006-06-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8338030B2 (en) 2005-02-24 2012-12-25 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
JP2006286382A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007095443A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007200688A (en) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery, nonaqueous electrolyte and its charging method
JP2007273154A (en) * 2006-03-30 2007-10-18 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP4557920B2 (en) * 2006-03-30 2010-10-06 株式会社東芝 Non-aqueous electrolyte battery
US8415058B2 (en) 2006-10-26 2013-04-09 Hitachi Maxell, Ltd. Nonaqueous secondary battery comprising at least two lithium-containing transition metal oxides of different average particle sizes
US8691446B2 (en) 2006-10-26 2014-04-08 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
US9350019B2 (en) 2006-10-26 2016-05-24 Hitachi Maxell, Ltd. Nonaqueous secondary battery and method of using the same
JP2008171661A (en) * 2007-01-11 2008-07-24 Nec Tokin Corp Lithium-ion secondary battery
JP2008277265A (en) * 2007-03-30 2008-11-13 Nippon Chem Ind Co Ltd Lithium transition metal complex oxide for lithium-ion secondary battery cathode active material, method of manufacturing lithium transition metal complex oxide, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
US8262747B2 (en) 2007-03-30 2012-09-11 Sony Corporation Cathode active material, cathode, nonaqueous electrolyte battery, and method for manufacturing cathode
US8647772B2 (en) 2007-03-30 2014-02-11 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte battery
WO2009136589A1 (en) * 2008-05-07 2009-11-12 日立マクセル株式会社 Nonaqueous secondary battery and electronic device
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
JP2017037713A (en) * 2015-08-06 2017-02-16 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4297709B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP4660164B2 (en) Nonaqueous electrolyte secondary battery
JP5399188B2 (en) Nonaqueous electrolyte secondary battery
JP4798964B2 (en) Nonaqueous electrolyte secondary battery
JP4841133B2 (en) Nonaqueous electrolyte secondary battery
WO2016017093A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
WO2015125444A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
JP4307962B2 (en) Nonaqueous electrolyte secondary battery
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
JP4424949B2 (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP4297704B2 (en) Nonaqueous electrolyte secondary battery
JP4297709B2 (en) Nonaqueous electrolyte secondary battery
WO2016017092A1 (en) Non-aqueous electrolyte secondary battery
WO2014156024A1 (en) Nonaqueous electrolyte secondary battery
JP6522661B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016103592A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP2004158352A (en) Nonaqueous electrolyte secondary battery
JP5089097B2 (en) Non-aqueous electrolyte secondary battery and charging / discharging method thereof
JP2005285630A (en) Nonaqueous electrolyte secondary battery
JPWO2015045315A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2010177207A (en) Non aqueous electrolyte secondary battery
JP2005339886A (en) Nonaqueous electrolyte secondary battery
JP2002184401A (en) Manufacturing method for cobalt-containing nickel oxyhydroxide and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R151 Written notification of patent or utility model registration

Ref document number: 4297709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

EXPY Cancellation because of completion of term