JP2008300180A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008300180A
JP2008300180A JP2007144763A JP2007144763A JP2008300180A JP 2008300180 A JP2008300180 A JP 2008300180A JP 2007144763 A JP2007144763 A JP 2007144763A JP 2007144763 A JP2007144763 A JP 2007144763A JP 2008300180 A JP2008300180 A JP 2008300180A
Authority
JP
Japan
Prior art keywords
positive electrode
charge
negative electrode
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007144763A
Other languages
Japanese (ja)
Inventor
Noriyuki Shimizu
紀之 清水
Yoshinori Kida
佳典 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007144763A priority Critical patent/JP2008300180A/en
Publication of JP2008300180A publication Critical patent/JP2008300180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with high capacity excellent in charging/discharging output characteristics and output balance. <P>SOLUTION: A nickel/cobalt/manganese composite oxide Li[Li<SB>a</SB>Ni<SB>x</SB>Co<SB>y</SB>Mn<SB>z</SB>]O<SB>2-b</SB>containing lithium is used in a transition metal site as a positive-electrode active material. The ratio n (negative electrode/positive electrode) in the initial charging capacity of the negative electrode to the positive electrode is 0.80≤n≤1.00 when charged until a potential in the positive electrode exceeds 4.45 V (Li/Li<SP>+</SP>), and initial charging is performed until the potential at the positive electrode exceeds 4.45 V (vs. Li/Li<SP>+</SP>). In the formula, the characters x, y, z, a and b satisfy the following relations: 0.1≤a≤0.3, 0<x<0.45, 0<y<0.45, 0.45≤z≤0.82, 0.1≤(x+y)/z≤1, a+x+y+z=1, and 0≤b≤0.25. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、遷移金属サイトにリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物を正極活物質として用いた非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery using a lithium nickel cobalt manganese composite oxide containing lithium at a transition metal site as a positive electrode active material.

近年、排ガスによる環境問題を解決するため、自動車のガソリンエンジンと電気モーターを併用したHEV(Hybird Electric Vehicle)の開発が国際レベルで進められている。HEV用電源としては、従来ニッケル水素二次電池が用いられているが、より高電圧及び高容量のリチウムイオン二次電池の実用化が待望されている。   In recent years, in order to solve environmental problems caused by exhaust gas, development of HEV (Hybrid Electric Vehicle) using both a gasoline engine and an electric motor of an automobile has been promoted at an international level. As a power source for HEV, a nickel hydride secondary battery has been conventionally used. However, a practical application of a higher voltage and higher capacity lithium ion secondary battery is expected.

HEV用途のリチウムイオン二次電池の重大な課題の一つに低コスト化が挙げられる。既に実用化されている携帯電話、カムコーダー、ノート型パソコン等の携帯用電子機器等の電源用リチウムイオン二次電池正極活物質としては、Coを含む複合酸化物が主に用いられてるが、コストの面から大型のHEV用リチウム用二次電池では、Coなどの高価な金属元素の含有量が少ない正極材料が望ましい。   One of the important issues of lithium ion secondary batteries for HEV applications is cost reduction. A composite oxide containing Co is mainly used as a positive electrode active material for lithium-ion secondary batteries for power supplies such as portable electronic devices such as mobile phones, camcorders, and notebook computers that are already in practical use. In view of the above, in a large lithium secondary battery for HEV, a positive electrode material with a low content of expensive metal elements such as Co is desirable.

また、HEV用途のリチウムイオン二次電池において、ブレーキ回生エネルギーの回収は充電側出力、モータへの出力は放電側出力で評価されるが、双方のバランスに優れた電池であることが好ましい。すなわち、充電側出力と放電側出力の値が近く、充放電出力のバランスに優れていることが好ましい。   Moreover, in the lithium ion secondary battery for HEV use, the recovery of brake regenerative energy is evaluated by the charge side output, and the output to the motor is evaluated by the discharge side output. That is, it is preferable that the values of the charge side output and the discharge side output are close to each other and the charge / discharge output balance is excellent.

しかしながら、従来リチウムイオン二次電池の正極活物質として用いられてきたコバルト酸リチウムLiCoO、ニッケル酸リチウムLiNiO、リチウムマンガン酸化物LiMn、Ni−Co−Mn三元系複合酸化物等の活物質は、電池内で作動する電位範囲において高い電位に容量域を有するため、充電側出力よりも放電側出力の方が大きく、出力バランスの悪い電池設計になるという問題がある。 However, lithium cobaltate LiCoO 2 , lithium nickelate LiNiO 2 , lithium manganese oxide LiMn 2 O 4 , Ni—Co—Mn ternary composite oxide, etc., which have been used as positive electrode active materials of lithium ion secondary batteries in the past Since the active material has a capacity region at a high potential in the potential range operating in the battery, there is a problem that the discharge side output is larger than the charge side output, resulting in a battery design with a poor output balance.

充放電出力のバランスを改善する方法の一つとして、電池の開回路電圧と電池の上限電圧との差を大きくし、充電側出力を増加することが挙げられる。このため、HEV用途のリチウムイオン二次電池においては、電圧が低い電池が要望されている。特に、HEV用途では、電池の全容量範囲を均等に使用するのではなく、充電深度(SOC)50%近辺の充電領域を中心に利用するため、この範囲において充放電電圧が低い電池設計が必要とされる。   One method for improving the balance between the charge and discharge outputs is to increase the charge side output by increasing the difference between the open circuit voltage of the battery and the upper limit voltage of the battery. For this reason, in the lithium ion secondary battery for HEV use, a battery with a low voltage is desired. In particular, in HEV applications, the entire battery capacity range is not used evenly, but is used mainly in the charging area near 50% depth of charge (SOC), so a battery design with a low charge / discharge voltage in this range is required. It is said.

このような問題を解決するため、HEV用リチウムイオン二次電池の正極材料として、近年、オリビン構造を有するリチウム含有リン酸塩、Ni−Mn系複合酸化物、コバルト含有量を極力少なくした複合酸化物等が検討されている。このように、比較的安価に供給できる元素を主として用い、高価な元素の使用量を減少させた活物質についての研究が盛んに行われている。   In order to solve such problems, as a positive electrode material for lithium ion secondary batteries for HEVs, in recent years, lithium-containing phosphates having an olivine structure, Ni-Mn composite oxides, composite oxidations with as little cobalt content as possible Things are being studied. As described above, active researches have been actively conducted on active materials in which elements that can be supplied at a relatively low cost are mainly used and the amount of expensive elements used is reduced.

特許文献1及び特許文献2においては、3bの遷移金属サイトにリチウムを含有するLi[LiNiCoMn]O複合酸化物が正極材料として検討されている。しかしながら、このような遷移金属の含まれる3bサイト中にリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物を正極活物質として用いた場合において、高容量で、かつ充放電出力特性及び充放電出力バランスに優れた電池とするための検討は十分になされていない。
特開2004−6267号公報 特開2006−253119号公報
In Patent Document 1 and Patent Document 2, a Li [LiNiCoMn] O 2 composite oxide containing lithium at the transition metal site 3b is studied as a positive electrode material. However, when a lithium nickel cobalt manganese composite oxide containing lithium in the 3b site containing such a transition metal is used as the positive electrode active material, the capacity is high, and charge / discharge output characteristics and charge / discharge output balance are achieved. There are not enough studies to make an excellent battery.
JP 2004-6267 A JP 2006-253119 A

本発明の目的は、遷移金属の含まれる3bサイト中にリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物を正極活物質として用いた非水電解質二次電池において、高容量で、かつ充放電出力特性及び充放電出力バランスに優れた非水電解質二次電池を提供することにある。   An object of the present invention is to provide a high capacity and charge / discharge output characteristic in a non-aqueous electrolyte secondary battery using a lithium nickel cobalt manganese composite oxide containing lithium in the 3b site containing a transition metal as a positive electrode active material. And providing a non-aqueous electrolyte secondary battery excellent in charge / discharge output balance.

本発明は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備える非水電解質二次電池において、正極活物質として、遷移金属サイトにリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物Li〔LiNiCoMn〕O2−b(式中、x、y、z、a及びbは、0.1≦a≦0.3、0<x<0.45、0<y<0.45、0.45≦z≦0.82、0.1≦(x+y)/z≦1、a+x+y+z=1、及び0≦b≦0.25の関係を満足する)を用い、正極の電位が4.45V(vs.Li/Li)以上となるまで充電したときの正極の初回充電容量に対する負極の初回充電容量の比n(負極/正極)が、0.80≦n≦1.00であり、正極の電位が4.45V(vs.Li/Li)以上となるまで初回の充電が行われることを特徴としている。 The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte having lithium ion conductivity. Lithium nickel cobalt manganese composite oxide Li [Li a Ni x Co y Mn z ] O 2-b (wherein x, y, z, a and b are 0.1 ≦ a ≦ 0.3, 0 <x <0.45, 0 <y <0.45, 0.45 ≦ z ≦ 0.82, 0.1 ≦ (x + y) / z ≦ 1, a + x + y + z = 1, and 0 ≦ b ≦ 0.25 The ratio of the initial charge capacity of the negative electrode to the initial charge capacity of the positive electrode when charged until the potential of the positive electrode is 4.45 V (vs. Li / Li + ) or more (negative electrode / positive electrode) ) Is 0.80 ≦ n ≦ 1.00, and the potential of the positive electrode is 4 It is characterized in that the initial charge is carried out until 45V (vs.Li/Li +) or more.

本発明によれば、遷移金属サイトにリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物を正極活物質として用いた非水電解質二次電池において、高容量で、かつ充放電出力特性及び充放電出力バランスに優れた非水電解質二次電池とすることができる。   According to the present invention, in a nonaqueous electrolyte secondary battery using a lithium nickel cobalt manganese composite oxide containing lithium at a transition metal site as a positive electrode active material, the capacity is high, and charge / discharge output characteristics and charge / discharge output balance are high. The non-aqueous electrolyte secondary battery can be made excellent.

本発明のLi〔LiNiCoMn〕O2−bで表されるリチウムニッケルコバルトマンガン複合酸化物において、遷移金属の3bサイト中に含まれるLi量aは、正極の電位が4.45V(vs.Li/Li)以上となるまで充電したときの充電容量に大きく関与する。このため、電池容量を増加させることと、電池の充放電電圧を下げることとのバランスの観点から、遷移金属サイトに含まれるLi量を示すaは、0.1≦a≦0.3の範囲内であることが好ましく、さらには0.19≦a≦0.3の範囲内であることが好ましい。 In the lithium nickel cobalt manganese composite oxide represented by Li [Li a Ni x Co y Mn z ] O 2-b of the present invention, the amount of Li contained in the 3b site of the transition metal is such that the potential of the positive electrode is 4 It is greatly involved in the charge capacity when charged to .45 V (vs. Li / Li + ) or higher. For this reason, from the viewpoint of a balance between increasing the battery capacity and decreasing the charge / discharge voltage of the battery, a indicating the amount of Li contained in the transition metal site is in the range of 0.1 ≦ a ≦ 0.3. It is preferable that it is in the range of 0.19 ≦ a ≦ 0.3.

また、Ni量xと、Co量yの和に対するMn量zとの比((x+y)/z)については、Ni量及びCo量が、正極電位4.45V(vs.Li/Li)未満における容量に大きく関与し、Mn量は、低コスト化及び電池の充放電電圧を低くするために多くする必要があるため、これらのバランスの観点から、0.1≦(x+y)/z≦1の範囲内であることが好ましい。これらの3bサイトにおけるLi、Ni、Co及びMn量を表すa、x、y、及びzには、a+x+y+z=1の関係がある。 In addition, regarding the ratio ((x + y) / z) of the Mn amount z to the sum of the Ni amount x and the Co amount y, the Ni amount and the Co amount are less than the positive electrode potential 4.45 V (vs. Li / Li + ). The amount of Mn must be increased in order to reduce costs and lower the charge / discharge voltage of the battery. Therefore, from the viewpoint of these balances, 0.1 ≦ (x + y) / z ≦ 1 It is preferable to be within the range. A, x, y, and z representing the amounts of Li, Ni, Co, and Mn at these 3b sites have a relationship of a + x + y + z = 1.

また、Ni量xは、0<x<0.45の範囲内であることが好ましく、さらには0.09<x<0.28の範囲内であることが好ましい。Ni量xが少なすぎると、中電位領域での出力が低下し、Ni量xが多すぎると、材料価格が高価となる。Co量yは、0<y<0.45の範囲内であることが好ましく、さらには0.09<y<0.28の範囲内であることが好ましい。Coが含有されることにより、充放電出力バランスを改善することができる。従って、yが少なすぎると、充放電出力バランスが悪くなる傾向にあり、yが多すぎると、材料価格が高価となる。Mn量zは、0.45≦z≦0.82の範囲内であることが好ましく、さらには0.50≦z≦0.82の範囲であることが好ましい。zが少なすぎると、充放電電位を下げる効果が小さくなり、zが多すぎると、材料の電気化学的活性度が低くなるために出力が低下する。   Further, the Ni amount x is preferably in the range of 0 <x <0.45, and more preferably in the range of 0.09 <x <0.28. If the Ni amount x is too small, the output in the intermediate potential region is reduced, and if the Ni amount x is too large, the material price is expensive. The Co amount y is preferably in the range of 0 <y <0.45, and more preferably in the range of 0.09 <y <0.28. By containing Co, the charge / discharge output balance can be improved. Therefore, if y is too small, the charge / discharge output balance tends to be poor, and if y is too large, the material price becomes expensive. The Mn amount z is preferably in the range of 0.45 ≦ z ≦ 0.82, and more preferably in the range of 0.50 ≦ z ≦ 0.82. When z is too small, the effect of lowering the charge / discharge potential is reduced, and when z is too large, the electrochemical activity of the material is lowered and the output is lowered.

また、本発明におけるLi〔LiNiCoMn〕O2−bで表されるリチウムニッケルコバルトマンガン複合酸化物は、酸素欠損があっても本発明の効果を十分に発現することができる。酸素欠損量を示すbは、0≦b≦0.25の範囲内であることが好ましい。bが0.25を超えると、結晶構造が大きく損なわれ、本発明の効果を得ることができない場合がある。 In addition, the lithium nickel cobalt manganese composite oxide represented by Li [Li a Ni x Co y Mn z ] O 2-b in the present invention can sufficiently exhibit the effects of the present invention even if there is an oxygen deficiency. it can. B indicating the oxygen deficiency is preferably in the range of 0 ≦ b ≦ 0.25. If b exceeds 0.25, the crystal structure may be greatly impaired, and the effects of the present invention may not be obtained.

本発明のリチウムニッケルコバルトマンガン複合酸化物の3bサイト中のLi量aは、X線回折法または中性子回折法を用いて測定することができる。   The Li amount a in the 3b site of the lithium nickel cobalt manganese composite oxide of the present invention can be measured using an X-ray diffraction method or a neutron diffraction method.

本発明におけるリチウムニッケルコバルトマンガン複合酸化物は、正極の電位が4.45V(vs.Li/Li)以上となるまで初回の充電を行う必要がある。これにより、リチウムニッケルマンガン複合酸化物中において、構造変化を生じさせる。負極活物質として、炭素材料を用いた場合の電池電圧としては、4.35V以上で充電することが望ましい。初回の充電時において構造変化を生じさせた後は、それ以降の充電を正極の電位が4.45V(vs.Li/Li)以上となるように行う必要はなく、電解液の分解による影響等を考慮して、例えば、電池電圧4.2V程度で使用しても本発明の効果を得ることができる。 The lithium nickel cobalt manganese composite oxide in the present invention needs to be charged for the first time until the potential of the positive electrode becomes 4.45 V (vs. Li / Li + ) or higher. This causes a structural change in the lithium nickel manganese composite oxide. As a battery voltage when a carbon material is used as the negative electrode active material, it is desirable to charge at 4.35 V or more. After the structural change is caused at the first charge, it is not necessary to perform the subsequent charge so that the potential of the positive electrode is 4.45 V (vs. Li / Li + ) or more, and the influence of the decomposition of the electrolytic solution For example, the effects of the present invention can be obtained even when the battery voltage is about 4.2V.

なお、本発明のリチウムニッケルコバルトマンガン複合酸化物の組成は、初回の充放電前の組成であり、初回の充電時に構造変化させた後の組成とは異なる。しかしながら、充放電前の組成と、構造変化させた後の組成は、一義的な関係にあるため、X線回折法、中性子回折法、元素分析などを行うことにより、構造変化させた後の組成から、充放電前の組成を決定することができる。   In addition, the composition of the lithium nickel cobalt manganese composite oxide of the present invention is a composition before the first charge / discharge, and is different from the composition after the structure change at the first charge. However, the composition before the charge / discharge and the composition after the structure change are uniquely related. Therefore, the composition after the structure change is performed by performing X-ray diffraction method, neutron diffraction method, elemental analysis, etc. Therefore, the composition before charging / discharging can be determined.

本発明において用いるリチウムニッケルコバルトマンガン複合酸化物においては、Li、Ni、Co、Mn以外の1種類以上の金属元素が含有されていてもよい。具体的には、B、Mg、Al、Si、P、Ca、Sc、Ti、Cr、Fe、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、In、Sn、Sb、Te、Ba、ランタノイド元素、Hf、Ta、W、Re、Os、Ir、Pt、Pb、Bi、Ra、アクチノイド元素等がさらに含まれていてもよい。なお、活物質の重量エネルギー密度(Wh/kg)を確保する観点から、これらの金属元素の含有量としては、3bサイト中に含まれる遷移金属元素に対して、モル比率で0.1以下であることが好ましく、より好ましくは、0.001以上0.05以下である。また同様の理由により、1種類以上のハロゲン元素またはカルコゲン元素が含有されていてもよい。具体的には、F、Cl、Br、I、At、S、Se、Te、Po等が含まれていてもよい。なお、活物質の重量エネルギー密度(Wh/kg)を確保する観点から、ハロゲン元素またはカルコゲン元素の含有量としては、6cサイト中に含まれるOに対して、モル比率で0.1以下であることが好ましく、より好ましくは0.001以上0.05以下である。   The lithium nickel cobalt manganese composite oxide used in the present invention may contain one or more metal elements other than Li, Ni, Co, and Mn. Specifically, B, Mg, Al, Si, P, Ca, Sc, Ti, Cr, Fe, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh , Pd, In, Sn, Sb, Te, Ba, lanthanoid elements, Hf, Ta, W, Re, Os, Ir, Pt, Pb, Bi, Ra, actinoid elements, and the like may be further included. From the viewpoint of securing the weight energy density (Wh / kg) of the active material, the content of these metal elements is 0.1 or less in terms of molar ratio with respect to the transition metal element contained in the 3b site. Preferably, it is 0.001 or more and 0.05 or less. For the same reason, one or more kinds of halogen elements or chalcogen elements may be contained. Specifically, F, Cl, Br, I, At, S, Se, Te, Po, or the like may be included. From the viewpoint of securing the weight energy density (Wh / kg) of the active material, the content of the halogen element or chalcogen element is 0.1 or less in terms of molar ratio with respect to O contained in the 6c site. And more preferably 0.001 or more and 0.05 or less.

本発明においては、正極活物質として、上記リチウムニッケルコバルトマンガン複合酸化物以外の他の正極活物質が混合されていてもよい。混合する他の正極活物質としては、可逆的にLiを挿入脱離可能な化合物であれば特に限定されるものではないが、安定した結晶構造を維持したままLiの挿入脱離が可能な層状岩塩型構造、スピネル型構造、オリビン型構造を有する正極活物質が好ましい。   In the present invention, a positive electrode active material other than the lithium nickel cobalt manganese composite oxide may be mixed as the positive electrode active material. The other positive electrode active material to be mixed is not particularly limited as long as it is a compound capable of reversibly inserting and desorbing Li, but it is a layered structure capable of inserting and desorbing Li while maintaining a stable crystal structure. A positive electrode active material having a rock salt structure, a spinel structure, or an olivine structure is preferable.

本発明に用いる支持塩としては、一般に非水電解質二次電池の電解質として用いられるリチウム塩を用いることができる。このようなリチウム塩には、P、B、F、O、S、N、Clのうち、一種類以上の元素が含まれることが好ましい。具体的には、LiPF、、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO、LiC(CSO、LiAsF、LiClOなど及びそれらの混合物を用いることができる。さらに、これらの塩に加え、オキサラト錯体をアニオンとするリチウム塩が含まれていることが好ましく、より好ましくは高温保存後の抵抗増加を抑制するリチウム−ビス(オキサラト)ボレートを含む。 As the supporting salt used in the present invention, a lithium salt generally used as an electrolyte of a nonaqueous electrolyte secondary battery can be used. Such a lithium salt preferably contains one or more elements of P, B, F, O, S, N, and Cl. Specifically, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 and the like and mixtures thereof can be used. Furthermore, in addition to these salts, it is preferable that a lithium salt having an oxalato complex as an anion is contained, and more preferably lithium-bis (oxalato) borate that suppresses an increase in resistance after high-temperature storage.

また、本発明に用いられる非水電解液の溶媒としては、従来より非水電解質二次電池の電解質の溶媒として用いられているものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートを用いることができる。特に、リチウムイオン伝導度の高い環状カーボネートと鎖状カーボネートの混合溶媒であることが好ましい。また、イオン性液体を電解質の溶媒として用いることもできる。カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性を得る観点から、カチオンとしてはピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしてはフッ素含有イミド系アニオンを用いた組み合わせが特に好ましい。   Moreover, as a solvent of the non-aqueous electrolyte used in the present invention, those conventionally used as an electrolyte solvent for non-aqueous electrolyte secondary batteries can be used. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used. In particular, a mixed solvent of cyclic carbonate and chain carbonate having high lithium ion conductivity is preferable. An ionic liquid can also be used as a solvent for the electrolyte. The cationic species and the anionic species are not particularly limited, but from the viewpoint of obtaining low viscosity, electrochemical stability, and hydrophobicity, the cation is a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as an anion. Is particularly preferably a combination using a fluorine-containing imide anion.

本発明において用いる負極活物質は、リチウムを可逆的に吸蔵・放出できるものあれば、特に限定されるものではなく、炭素材料、合金、金属酸化物等を用いることができる。特に、コストの観点から、炭素材料を用いることが好ましく、炭素材料の具体例としては、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン、フラーレン、カーボンナノチューブ等が挙げられる。これらの中でも、リチウムの挿入脱離に伴う電位変化が小さいことから、黒鉛質の炭素材料が特に好ましく用いられる。黒鉛質の炭素材料を用いることにより、初回の充電時に、正極の電位を4.45V(vs.Li/Li)以上に保持し、電池内のリチウムニッケルマンガン複合酸化物の構造変化を生じさせ易くすることができる。 The negative electrode active material used in the present invention is not particularly limited as long as it can reversibly occlude and release lithium, and a carbon material, an alloy, a metal oxide, or the like can be used. In particular, from the viewpoint of cost, it is preferable to use a carbon material. Specific examples of the carbon material include natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, and hard carbon. , Fullerenes, carbon nanotubes and the like. Among these, a graphitic carbon material is particularly preferably used because of a small potential change accompanying lithium insertion / extraction. By using a graphitic carbon material, the potential of the positive electrode is maintained at 4.45 V (vs. Li / Li + ) or more during the first charge, causing a structural change of the lithium nickel manganese composite oxide in the battery. Can be made easier.

本発明において用いるセパレータは、正極と負極の接触による短絡を防ぎ、かつ電解液を含浸することによりリチウムイオン伝導性が得られる材料であれば特に限定されるものではない。例えば、ポリプロピレン、ポリエチレン、ポリプロピレン−ポリエチレン多層セパレータなどが挙げられる。   The separator used in the present invention is not particularly limited as long as it is a material that prevents a short circuit due to contact between the positive electrode and the negative electrode and that can obtain lithium ion conductivity by impregnating with an electrolytic solution. For example, a polypropylene, polyethylene, a polypropylene-polyethylene multilayer separator, etc. are mentioned.

本発明における初回充電容量比nは、使用する正極または負極を作用極とし、リチウム金属を対極及び参照極とした三電極式試験セルを用いて測定することができる。すなわち、n=(負極の初回充電容量)/(正極の初回充電容量)であり、三電極式試験セルを用いて測定した正極の初回充電容量と、負極の初回充電容量からnを算出することができる。正極の初回充電容量は、正極の電位が4.45V(vs.Li/Li)以上となるまで充電する。すなわち、本発明においては、上述のように、初回の充電を正極の電位が4.45V(vs.Li/Li)以上となるように充電する必要があるので、実際の初回充電時の正極の電位となるように設定して、三電極式試験セルで正極の初回充電容量を測定する。 The initial charge capacity ratio n in the present invention can be measured using a three-electrode test cell in which a positive electrode or a negative electrode to be used is a working electrode and lithium metal is a counter electrode and a reference electrode. That is, n = (negative electrode initial charge capacity) / (positive electrode initial charge capacity), and n is calculated from the positive electrode initial charge capacity measured using a three-electrode test cell and the negative electrode initial charge capacity. Can do. The initial charge capacity of the positive electrode is charged until the potential of the positive electrode becomes 4.45 V (vs. Li / Li + ) or higher. That is, in the present invention, as described above, since it is necessary to charge the initial charge so that the potential of the positive electrode is 4.45 V (vs. Li / Li + ) or higher, the positive electrode during the actual initial charge is required. The initial charge capacity of the positive electrode is measured with a three-electrode test cell.

初回の充電容量比nを0.80≦n≦1.00の範囲内とすることにより、放電容量が高く、かつ充放電出力特性及び充放電出力バランスに優れた非水電解質二次電池とすることができる。   By setting the initial charge capacity ratio n within the range of 0.80 ≦ n ≦ 1.00, a non-aqueous electrolyte secondary battery having high discharge capacity and excellent charge / discharge output characteristics and charge / discharge output balance is obtained. be able to.

nが0.80未満であると、初回の充電時に正極から脱離したリチウムの内、負極活物質にて反応に関与するリチウムの量が負極活物質によって得られるリチウムの限界量を超え、負極表面にリチウムが析出し、電池の安全性及び信頼性を大きく損なう場合がある。また、nが0.80未満であると、析出したリチウムのために、出力特性が低下する。また、nが1.00を超えると、充放電容量が大きく低減する。特に、18650電池(直径約18mm、高さ約65mmの円筒形電池)設計時の充放電容量が大きく低減する。   When n is less than 0.80, the amount of lithium involved in the reaction in the negative electrode active material out of the lithium desorbed from the positive electrode during the first charge exceeds the limit amount of lithium obtained by the negative electrode active material, Lithium may be deposited on the surface, which may greatly impair the safety and reliability of the battery. On the other hand, if n is less than 0.80, the output characteristics deteriorate due to precipitated lithium. Further, when n exceeds 1.00, the charge / discharge capacity is greatly reduced. In particular, the charge / discharge capacity at the time of designing a 18650 battery (cylindrical battery having a diameter of about 18 mm and a height of about 65 mm) is greatly reduced.

また、リチウムニッケルコバルトマンガン複合酸化物の遷移金属サイトに含有されるリチウムは、不可逆化するリチウムであると考えられる。従って、全リチウム量に対する可逆リチウムの割合は、1/(1+a)で表される。このため、初回の充電容量比nは、さらには、1/(1+a)≦n≦1.00の範囲内であることが好ましい。   Moreover, it is thought that the lithium contained in the transition metal site of the lithium nickel cobalt manganese composite oxide is irreversible lithium. Therefore, the ratio of reversible lithium to the total amount of lithium is represented by 1 / (1 + a). For this reason, the initial charge capacity ratio n is preferably in the range of 1 / (1 + a) ≦ n ≦ 1.00.

本発明に従い、遷移金属サイトにリチウムを含有する特定のリチウムニッケルコバルトマンガン複合酸化物を正極活物質として用い、正極の電位が4.45V(vs.Li/Li)以上となるまで充電したときの正極の初回充電容量に対する負極の初回充電容量の比nを0.80≦n≦1.00の範囲とし、正極の電位が4.45V(vs.Li/Li)以上となるまで初回の充放電を行うことにより、高容量で、かつ充放電出力特性及び充放電出力バランスに優れた非水電解質二次電池とすることができる。 In accordance with the present invention, when a specific lithium nickel cobalt manganese composite oxide containing lithium at the transition metal site is used as the positive electrode active material, and charging is performed until the positive electrode potential is 4.45 V (vs. Li / Li + ) or higher. The ratio n of the initial charge capacity of the negative electrode to the initial charge capacity of the positive electrode is set in the range of 0.80 ≦ n ≦ 1.00, and the first time until the potential of the positive electrode is 4.45 V (vs. Li / Li + ) or more. By performing charging / discharging, a non-aqueous electrolyte secondary battery having high capacity and excellent charge / discharge output characteristics and charge / discharge output balance can be obtained.

以下、本発明を実施例に基づき詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in detail on the basis of examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. is there.

(実施例1)
〔正極活物質の作製〕
Ni:Co:Mnのモル比が13:13:54になるようにNi(CHCOO)とCo(CHCOO)とMn(CHCOO)を溶解させた1Mの水溶液を調製し、その水溶液に0.1M(モル/リットル)NaOH水溶液を加え、Ni、Co、及びMnの水酸化物を共沈させることによってNi−Co−Mn複合水酸化物を得た。このNi−Co−Mn複合水酸化物を用いて、LiCOとNi−Co−Mn複合水酸化物をLi:Ni:Co:Mn元素のモル比が1.20:0.13:0.13:0.54になるように混合し、この混合物を空気雰囲気下で、500℃、10時間仮焼成を行った後、1000℃で20時間焼成することによりLi[LiNiCoMn]O複合酸化物を作製した。得られたLi[LiNiCoMn]O複合酸化物の組成は、Li[Li0.20Ni0.13Co0.13Mn0.54]Oであった。
Example 1
[Preparation of positive electrode active material]
A 1M aqueous solution in which Ni (CH 3 COO) 2 , Co (CH 3 COO) 2 and Mn (CH 3 COO) 2 are dissolved is prepared so that the molar ratio of Ni: Co: Mn is 13:13:54. Then, a 0.1 M (mol / liter) NaOH aqueous solution was added to the aqueous solution, and Ni, Co, and Mn hydroxides were coprecipitated to obtain a Ni—Co—Mn composite hydroxide. Using this Ni—Co—Mn composite hydroxide, the Li 2 CO 3 and Ni—Co—Mn composite hydroxide were converted to a Li: Ni: Co: Mn element molar ratio of 1.20: 0.13: 0. .13: 0.54, and the mixture was calcined at 500 ° C. for 10 hours in an air atmosphere, and then calcined at 1000 ° C. for 20 hours to obtain Li [LiNiCoMn] O 2 composite oxidation. A product was made. The composition of the obtained Li [LiNiCoMn] O 2 composite oxide was Li [Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ] O 2 .

〔正極の作製〕
上記のように作製した正極活物質と、導電剤としての炭素と、結着剤としてのポリフッ化ビニリデンを溶かしたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤の重量比が90:5:5となるように調整した後、混練して、正極スラリーを作製した。作製した正極スラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、正極極板を得た。その後、得られた正極極板を30mm×37mmの大きさに切り出し、7mm塗布部を剥離したものを、圧延ローラーを用いて圧延し、塗布部を剥離して露出したアルミニウム箔上にアルミニウム製の集電タブを取り付けることで、正極を作製した。
[Production of positive electrode]
The positive electrode active material produced as described above, carbon as a conductive agent, and an N-methyl-2-pyrrolidone solution in which polyvinylidene fluoride as a binder is dissolved, the positive electrode active material, the conductive agent, and the binder The weight ratio was adjusted to 90: 5: 5 and then kneaded to prepare a positive electrode slurry. The produced positive electrode slurry was applied on an aluminum foil as a current collector and then dried to obtain a positive electrode plate. Thereafter, the obtained positive electrode plate was cut into a size of 30 mm × 37 mm, and the 7 mm coated part was peeled off, rolled using a rolling roller, and the coated part was peeled off and exposed on an aluminum foil. A positive electrode was produced by attaching a current collecting tab.

〔負極の作製〕
負極活物質としての黒鉛と、結着剤としてのスチレンブタジエンゴムと、増粘剤としてのカルボキシメチルセルロースを溶かした水溶液を、活物質と結着剤と増粘剤の重量比が97.5:1.5:1.0になるように調整した後、混練して負極スラリーを作製した。作製した負極スラリーを集電体としての銅箔上に上記正極容量に対し、初回充電容量比n(負極/正極)が0.80となるように塗布量を調整して塗布した後、乾燥し、負極極板を得た。その後、得られた負極極板を31mm×37.5mmの大きさに切り出し、6.5mm塗布部を剥離したものを、圧延ローラーを用いて圧延し、塗布部を剥離して露出した銅箔上にニッケル製の集電タブを取り付けることで、負極を作製した。
(Production of negative electrode)
An aqueous solution in which graphite as a negative electrode active material, styrene butadiene rubber as a binder, and carboxymethyl cellulose as a thickener are dissolved, and the weight ratio of the active material, the binder, and the thickener is 97.5: 1. 5: 1.0, and then kneaded to prepare a negative electrode slurry. The prepared negative electrode slurry was applied to a copper foil as a current collector with the application amount adjusted so that the initial charge capacity ratio n (negative electrode / positive electrode) was 0.80 with respect to the positive electrode capacity, and then dried. A negative electrode plate was obtained. Thereafter, the obtained negative electrode plate was cut out to a size of 31 mm × 37.5 mm, and the 6.5 mm coated part was peeled off, rolled using a rolling roller, and the coated part was peeled off and exposed on the copper foil. A negative electrode was prepared by attaching a current collecting tab made of nickel.

なお、正極及び負極の初回充電容量は、三電極式試験セルを別途作製し、測定した。なお、正極の電位は、4.6V(vs.Li/Li)となるまで充電した。 The initial charge capacity of the positive electrode and the negative electrode was measured by separately preparing a three-electrode test cell. Note that the positive electrode was charged until the potential was 4.6 V (vs. Li / Li + ).

〔巻き取り電極体の作製〕
上記のように作製した正極と負極を、ポリエチレン製のセパレータを介して対向させ巻き取ることにより、巻き取り電極体を作製した。
[Production of winding electrode body]
A wound electrode body was fabricated by winding the positive electrode and the negative electrode fabricated as described above facing each other through a polyethylene separator.

〔電解液の作製〕
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とジメチルカーボネート(DMC)とをそれぞれ体積比3:3:4で混合した溶媒に対し、支持塩としてのLiPFを1モル/リットル溶解し、さらに被膜形成剤としてのビニレンカーボネート(VC)を1重量%溶解することで電解液を作製した。
(Preparation of electrolyte)
1 mol / liter of LiPF 6 as a supporting salt is dissolved in a solvent prepared by mixing ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) in a volume ratio of 3: 3: 4, An electrolytic solution was prepared by dissolving 1% by weight of vinylene carbonate (VC) as a film forming agent.

〔電池の作製〕
上記のように作製した巻き取り電極体を電池缶に挿入後、減圧乾燥を行い、アルゴン(Ar)雰囲気下のグローブボックス中にて上記電解液を注液し、封止することにより、非水電解質二次電池Aを作製した。
[Production of battery]
After inserting the wound electrode body produced as described above into a battery can, drying under reduced pressure, pouring the electrolyte solution in a glove box under an argon (Ar) atmosphere, and sealing the non-water An electrolyte secondary battery A was produced.

〔充放電試験〕
25℃にて、1.1mAで5時間充電を行い、5日間25℃にて静置して安定化させた。その後25℃にて4.4mAで4.5Vまで定電流充電を行い、4.5Vで0.44mAまで定電圧充電を行い、その後2.2mAで2.4Vまで放電した。この時の充電容量及び放電容量を、それぞれ初期充電容量及び初期放電容量とした。
(Charge / discharge test)
The battery was charged at 1.1 mA at 25 ° C. for 5 hours, and allowed to stand at 25 ° C. for 5 days for stabilization. Thereafter, constant current charging to 4.5 V at 4.4 mA was performed at 25 ° C., constant voltage charging to 0.44 mA at 4.5 V, and then discharging to 2.4 V at 2.2 mA. The charge capacity and discharge capacity at this time were defined as initial charge capacity and initial discharge capacity, respectively.

[出力測定試験]
上記充放電試験から得られた初期放電容量の結果から、SOC50%に調整した後、以下の測定により、横軸に各電流値、縦軸に電圧をプロットし、各点を直線近似した際の傾きから、直流抵抗及び開回路電圧を求め、それらの値から充放電出力バランスを算出した。
[Output measurement test]
From the result of the initial discharge capacity obtained from the above charge / discharge test, after adjusting to SOC 50%, the following measurement was performed to plot each current value on the horizontal axis and voltage on the vertical axis, and to approximate each point linearly The DC resistance and open circuit voltage were obtained from the slope, and the charge / discharge output balance was calculated from these values.

(1)1mA充電(10秒)→休止(5分)→1mA放電(10秒)→休止(5分)
(2)5mA充電(10秒)→休止(5分)→1mA放電(50秒)→休止(5分)
(3)10mA充電(10秒)→休止(5分)→1mA放電(100秒)→休止(5分)
(4)20mA充電(10秒)→休止(5分)→1mA放電(200秒)→休止(5分)
(5)1mA放電(10秒)→休止(5分)→1mA充電(10秒)→休止(5分)
(6)5mA放電(10秒)→休止(5分)→1mA充電(50秒)→休止(5分)
(7)10mA放電(10秒)→休止(5分)→1mA充電(100秒)→休止(5分)
(8)20mA放電(10秒)→休止(5分)→1mA充電(200秒)→休止(5分)
(1) 1 mA charge (10 seconds) → pause (5 minutes) → 1 mA discharge (10 seconds) → pause (5 minutes)
(2) 5 mA charge (10 seconds) → pause (5 minutes) → 1 mA discharge (50 seconds) → pause (5 minutes)
(3) 10 mA charge (10 seconds) → pause (5 minutes) → 1 mA discharge (100 seconds) → pause (5 minutes)
(4) 20 mA charge (10 seconds) → pause (5 minutes) → 1 mA discharge (200 seconds) → pause (5 minutes)
(5) 1 mA discharge (10 seconds) → pause (5 minutes) → 1 mA charge (10 seconds) → pause (5 minutes)
(6) 5 mA discharge (10 seconds) → pause (5 minutes) → 1 mA charge (50 seconds) → pause (5 minutes)
(7) 10 mA discharge (10 seconds) → pause (5 minutes) → 1 mA charge (100 seconds) → pause (5 minutes)
(8) 20 mA discharge (10 seconds) → pause (5 minutes) → 1 mA charge (200 seconds) → pause (5 minutes)

室温にて、(1)〜(8)の充放電試験を順に行い、それぞれの放電時の10秒後の電圧を計測し、(1)〜(4)の結果を用い、電流値による電圧の変化の傾きから充電側直流抵抗を、切片から充電側開回路電圧を求めた。同様に、(5)〜(8)の結果から、放電側直流抵抗と放電側開回路電圧を求めた。   At room temperature, the charge / discharge tests of (1) to (8) are performed in order, the voltage after 10 seconds at the time of each discharge is measured, and the voltage of the current value is measured using the results of (1) to (4). The charging side DC resistance was determined from the slope of the change, and the charging side open circuit voltage was determined from the intercept. Similarly, the discharge side DC resistance and the discharge side open circuit voltage were obtained from the results of (5) to (8).

得られた値を以下の式に代入することにより、充電側出力、放電側出力及び充放電出力バランスを算出した。   By substituting the obtained value into the following formula, the charge side output, the discharge side output, and the charge / discharge output balance were calculated.

・充電側出力(W)=((4.5[V]−充電側開回路電圧[V]/充電側直流抵抗[Ω]×4.5[V]
・放電側出力(W)=((放電側開回路電圧[V]−2.4[V]/放電側直流抵抗[Ω]×2.4[V]
・充放電出力バランス=充電側出力/放電側出力
Charge side output (W) = ((4.5 [V] −Charge side open circuit voltage [V] / Charge side DC resistance [Ω] × 4.5 [V]
Discharge side output (W) = ((discharge side open circuit voltage [V] −2.4 [V] / discharge side DC resistance [Ω] × 2.4 [V]
Charge / discharge output balance = charge side output / discharge side output

[18650電池容量の試算]
上記試験に用いた各電池の結果から、18650電池を作製したときの容量を試算した。18650電池の設計は、電池に用いた正極及び負極の合剤充填密度、極板厚み、単位面積当たりの合剤塗布量を一定とし、また、セパレータの厚みを考慮したとき、18650電池缶中の正極、負極、及びセパレータの電池缶内に占める割合が94%となるように行った。得られた設計から、18650電池缶中の正極活物質量を求め、本試験で用いた電池の初回放電容量と正極活物質量の関係から、18650電池試算容量を以下の式により求めた。
[Estimation of 18650 battery capacity]
From the results of each battery used in the above test, the capacity when a 18650 battery was produced was estimated. The design of the 18650 battery is such that the mixture filling density of the positive electrode and the negative electrode used in the battery, the thickness of the electrode plate, the amount of mixture applied per unit area is constant, and the thickness of the separator is taken into consideration. The proportion of the positive electrode, the negative electrode, and the separator in the battery can was 94%. From the obtained design, the amount of the positive electrode active material in the 18650 battery can was obtained, and the estimated capacity of the 18650 battery was obtained from the relationship between the initial discharge capacity and the amount of the positive electrode active material of the battery used in this test by the following formula.

・18650電池試算容量[mAh]=初回放電容量×(18650電池中の正極活物質量/正極活物質量)   18650 battery estimated capacity [mAh] = initial discharge capacity × (amount of positive electrode active material / amount of positive electrode active material in 18650 battery)

(実施例2)
実施例1において、n=0.87となるようにする以外は同様に非水電解質二次電池Bを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Example 2)
In Example 1, a nonaqueous electrolyte secondary battery B was similarly produced except that n = 0.87, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(実施例3)
実施例1において、n=0.92となるようにする以外は同様に非水電解質二次電池Cを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Example 3)
In Example 1, a nonaqueous electrolyte secondary battery C was prepared in the same manner except that n = 0.92, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(実施例4)
実施例1において、n=1.00となるようにする以外は同様に非水電解質二次電池Dを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
Example 4
In Example 1, a nonaqueous electrolyte secondary battery D was prepared in the same manner except that n = 1.00, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例1)
実施例1において、n=0.49となるようにする以外は同様に非水電解質二次電池Eを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 1)
In Example 1, a nonaqueous electrolyte secondary battery E was produced in the same manner except that n = 0.49, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例2)
実施例1において、n=0.61となるようにする以外は同様に非水電解質二次電池Fを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 2)
In Example 1, a nonaqueous electrolyte secondary battery F was prepared in the same manner except that n = 0.61, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例3)
実施例1において、n=0.75となるようにする以外は同様に非水電解質二次電池Gを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 3)
In Example 1, a nonaqueous electrolyte secondary battery G was prepared in the same manner except that n = 0.75, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例4)
実施例1において、n=1.06となるようにする以外は同様に非水電解質二次電池Hを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 4)
In Example 1, a nonaqueous electrolyte secondary battery H was similarly manufactured except that n = 1.06, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例5)
実施例1において、n=1.11となるようにする以外は同様に非水電解質二次電池Iを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 5)
In Example 1, a nonaqueous electrolyte secondary battery I was prepared in the same manner except that n = 1.11, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例6)
実施例1において、n=1.20となるようにする以外は同様に非水電解質二次電池Jを作製し、同様の測定により、18650電池試算容量、充放電出力バランスの結果を得た。
(Comparative Example 6)
In Example 1, a nonaqueous electrolyte secondary battery J was prepared in the same manner except that n = 1.20, and the results of 18650 battery trial capacity and charge / discharge output balance were obtained by the same measurement.

(比較例7)
実施例1において、正極活物質にLi[Ni0.4Co0.3Mn0.3]Oを用い、n=0.97となるようにする以外は同様に非水電解質二次電池Kを作製し、同様の測定により、充放電出力バランスの結果を得た。
(Comparative Example 7)
In Example 1, a non-aqueous electrolyte secondary battery K is similarly used except that Li [Ni 0.4 Co 0.3 Mn 0.3 ] O 2 is used as the positive electrode active material and n = 0.97. The result of charge / discharge output balance was obtained by the same measurement.

(比較例8)
実施例1において、正極活物質にLi[Li0.22Ni0.17Mn0.61]Oを用い、n=0.99となるようにする以外は同様に非水電解質二次電池Lを作製し、同様の測定により、充放電出力バランスの結果を得た。
(Comparative Example 8)
In Example 1, a non-aqueous electrolyte secondary battery L is similarly used except that Li [Li 0.22 Ni 0.17 Mn 0.61 ] O 2 is used as the positive electrode active material and n = 0.99. The result of charge / discharge output balance was obtained by the same measurement.

上記実施例1〜4及び比較例1〜8の測定結果を、以下の表1に示す。また、負極/正極の初回充電容量比nと、充電側出力、放電側出力及び18650電池試算容量との関係を図1に示す。また、セルD(実施例4)、セルK(比較例7)及びセルL(比較例8)の充放電出力バランスを図2に示す。   The measurement results of Examples 1 to 4 and Comparative Examples 1 to 8 are shown in Table 1 below. FIG. 1 shows the relationship between the negative electrode / positive electrode initial charge capacity ratio n, the charge side output, the discharge side output, and the estimated capacity of the 18650 battery. Moreover, the charge / discharge output balance of the cell D (Example 4), the cell K (Comparative Example 7), and the cell L (Comparative Example 8) is shown in FIG.

Figure 2008300180
Figure 2008300180

表1及び図1に示すように、18650電池試算容量は、初回充電容量比nが1.00以下である場合、高い容量が得られているが、nが1.00を超えると急激に容量が低下している。容量比nが小さくなることにより高い容量が得られるのは、充放電に関与しない負極量が少なくなり、電池設計上電池内の正極活物質の量が多くなるためであると考えられる。また、容量比nが1.00を超えることにより容量が減少する詳細な原因は明らかではないが、過剰な負極活物質が増加することにより、負極表面で初期充電時に形成されるSEI(Solid Electrolyte Interface)の量も増加するため、電池初期効率が低下することによると考えられる。   As shown in Table 1 and FIG. 1, the estimated capacity of the 18650 battery is high when the initial charge capacity ratio n is 1.00 or less, but suddenly increases when n exceeds 1.00. Has fallen. The reason why the high capacity is obtained by reducing the capacity ratio n is considered to be that the amount of the negative electrode not involved in charge / discharge decreases and the amount of the positive electrode active material in the battery increases in terms of battery design. Further, although the detailed cause of the decrease in the capacity when the capacity ratio n exceeds 1.00 is not clear, the excess negative electrode active material increases, so that the SEI (Solid Electrolyte) formed on the negative electrode surface at the time of the initial charge is formed. Since the amount of (Interface) also increases, the battery initial efficiency is considered to decrease.

また、充電側出力及び放電側出力は共に、nが0.80未満になると、大きく低下する。この現象に対する詳細な原因についても不明であるが、nが小さすぎると、正極活物質から脱離したリチウムが負極活物質表面に析出するため、負極活物質のリチウムの進入サイトを析出したリチウムが塞いでしまうなどして、出力特性が低下するものと思われる。   Further, both the charging side output and the discharging side output are greatly reduced when n is less than 0.80. Although the detailed cause for this phenomenon is unknown, if n is too small, lithium desorbed from the positive electrode active material is deposited on the surface of the negative electrode active material. It seems that the output characteristics deteriorate due to blocking.

また、比較例7においては、遷移金属サイトにリチウムを含有しないリチウムニッケルコバルトマンガン酸化物を正極活物質として用いており、比較例8においては、遷移金属サイトにリチウムを含有するが、コバルトを含有しないリチウムニッケルマンガン酸化物を正極活物質として用いている。これらの比較例7及び8と、実施例1〜4との比較から明らかなように、本発明に従う実施例1〜4は、これら従来の正極活物質を用いた比較例7及び8に比べ充放電出力バランスが優れている。   In Comparative Example 7, lithium nickel cobalt manganese oxide containing no lithium at the transition metal site is used as the positive electrode active material. In Comparative Example 8, lithium is contained in the transition metal site, but cobalt is contained. Lithium nickel manganese oxide is used as the positive electrode active material. As is clear from comparison between these Comparative Examples 7 and 8 and Examples 1 to 4, Examples 1 to 4 according to the present invention are more satisfactory than Comparative Examples 7 and 8 using these conventional positive electrode active materials. Excellent discharge output balance.

以上のことから明らかなように、本発明によれば、高容量で、かつ充放電出力特性及び充放電出力バランスに優れた非水電解質二次電池とすることができる。従って、HEV用途のリチウムイオン二次電池として、適した電池とすることができる。   As is clear from the above, according to the present invention, a nonaqueous electrolyte secondary battery having a high capacity and excellent charge / discharge output characteristics and charge / discharge output balance can be obtained. Therefore, it can be set as a suitable battery as a lithium ion secondary battery for HEV use.

実施例及び比較例における初回充電容量比nと、充電側出力、放電側出力、及び18650電池試算容量との関係を示す図。The figure which shows the relationship between the initial charge capacity ratio n in an Example and a comparative example, charge side output, discharge side output, and 18650 battery trial calculation capacity. セルD(実施例4)、セルK(比較例7)、及びセルL(比較例8)の充放電出力バランスを示す図。The figure which shows the charging / discharging output balance of the cell D (Example 4), the cell K (comparative example 7), and the cell L (comparative example 8).

Claims (4)

正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有する非水電解質とを備える非水電解質二次電池において、
前記正極活物質として、遷移金属サイトにリチウムを含有するリチウムニッケルコバルトマンガン複合酸化物Li〔LiNiCoMn〕O2−b(式中、x、y、z、a及びbは、0.1≦a≦0.3、0<x<0.45、0<y<0.45、0.45≦z≦0.82、0.1≦(x+y)/z≦1、a+x+y+z=1、及び0≦b≦0.25の関係を満足する)を用い、
正極の電位が4.45V(vs.Li/Li)以上となるまで充電したときの正極の初回充電容量に対する負極の初回充電容量の比n(負極/正極)が、0.80≦n≦1.00であり、
正極の電位が4.45V(vs.Li/Li)以上となるまで初回の充電が行われることを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte having lithium ion conductivity,
As the positive electrode active material, lithium nickel cobalt manganese composite oxide Li [Li a Ni x Co y Mn z ] O 2 -b containing lithium at the transition metal site, where x, y, z, a and b are 0.1 ≦ a ≦ 0.3, 0 <x <0.45, 0 <y <0.45, 0.45 ≦ z ≦ 0.82, 0.1 ≦ (x + y) / z ≦ 1, a + x + y + z = 1 and 0 ≦ b ≦ 0.25 are satisfied)
The ratio n (negative electrode / positive electrode) of the initial charge capacity of the negative electrode to the initial charge capacity of the negative electrode when charged until the potential of the positive electrode is 4.45 V (vs. Li / Li + ) or more is 0.80 ≦ n ≦ 1.00,
The non-aqueous electrolyte secondary battery is characterized in that the first charge is performed until the potential of the positive electrode becomes 4.45 V (vs. Li / Li + ) or more.
前記式におけるaが、0.19≦a≦0.3であることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein a in the formula is 0.19 ≦ a ≦ 0.3. 前記負極活物質として、炭素材料を用いることを特徴とする請求項1に記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein a carbon material is used as the negative electrode active material. 前記初回の充電容量比n(負極/正極)が、1/(1+a)≦n≦1.00であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary according to claim 1, wherein the initial charge capacity ratio n (negative electrode / positive electrode) is 1 / (1 + a) ≦ n ≦ 1.00. battery.
JP2007144763A 2007-05-31 2007-05-31 Nonaqueous electrolyte secondary battery Pending JP2008300180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144763A JP2008300180A (en) 2007-05-31 2007-05-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144763A JP2008300180A (en) 2007-05-31 2007-05-31 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008300180A true JP2008300180A (en) 2008-12-11

Family

ID=40173504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144763A Pending JP2008300180A (en) 2007-05-31 2007-05-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008300180A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091015A1 (en) * 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012151085A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing the positive electrode active material, and nonaqueous electrolyte secondary battery
JP2012151083A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012108513A1 (en) * 2011-02-09 2012-08-16 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
JP2013500554A (en) * 2009-07-24 2013-01-07 エンビア・システムズ・インコーポレイテッド Lithium-ion battery with long-term cycle performance
JP2013503450A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Stacked lithium-rich complex metal oxides with high specific capacity and excellent cycle
JP2013069583A (en) * 2011-09-22 2013-04-18 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013093221A (en) * 2011-10-26 2013-05-16 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013538003A (en) * 2010-09-17 2013-10-07 エルジー・ケム・リミテッド Cathode active material and lithium secondary battery including the same
JP2013539594A (en) * 2010-09-03 2013-10-24 エンビア・システムズ・インコーポレイテッド Extremely long-term cycling of lithium-ion batteries using lithium-rich cathode materials
JP2013251204A (en) * 2012-06-01 2013-12-12 Panasonic Corp Lithium secondary battery
JP2015069809A (en) * 2013-09-27 2015-04-13 独立行政法人産業技術総合研究所 Lithium ion battery
JPWO2013118659A1 (en) * 2012-02-06 2015-05-11 日本電気株式会社 Lithium ion battery and manufacturing method thereof
US9266444B2 (en) 2010-12-28 2016-02-23 Sony Corporation Lithium ion secondary battery, electric tool, electric vehicle, and power storage system
US9812709B2 (en) 2010-12-28 2017-11-07 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US10276862B2 (en) 2012-10-25 2019-04-30 Samsung Sdi Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
KR20190057259A (en) * 2019-05-20 2019-05-28 삼성에스디아이 주식회사 Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228224A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004006267A (en) * 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd Method for manufacturing positive electrode material for nonaqueous secondary battery
JP2006253119A (en) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2007273405A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228224A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2001210324A (en) * 2000-01-24 2001-08-03 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2004006267A (en) * 2002-03-25 2004-01-08 Sumitomo Chem Co Ltd Method for manufacturing positive electrode material for nonaqueous secondary battery
JP2006253119A (en) * 2005-02-08 2006-09-21 Mitsubishi Chemicals Corp Lithium-nickel-manganese-cobalt-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2007273405A (en) * 2006-03-31 2007-10-18 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500554A (en) * 2009-07-24 2013-01-07 エンビア・システムズ・インコーポレイテッド Lithium-ion battery with long-term cycle performance
US8741485B2 (en) 2009-08-27 2014-06-03 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP2013503450A (en) * 2009-08-27 2013-01-31 エンビア・システムズ・インコーポレイテッド Stacked lithium-rich complex metal oxides with high specific capacity and excellent cycle
JP2013539594A (en) * 2010-09-03 2013-10-24 エンビア・システムズ・インコーポレイテッド Extremely long-term cycling of lithium-ion batteries using lithium-rich cathode materials
JP2013538003A (en) * 2010-09-17 2013-10-07 エルジー・ケム・リミテッド Cathode active material and lithium secondary battery including the same
EP2660907A4 (en) * 2010-12-27 2016-12-21 Gs Yuasa Int Ltd Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
KR101956651B1 (en) * 2010-12-27 2019-03-11 가부시키가이샤 지에스 유아사 Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
US10297822B2 (en) 2010-12-27 2019-05-21 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
US9543055B2 (en) 2010-12-27 2017-01-10 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
JP2012151083A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012091015A1 (en) * 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
JP2012151085A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing the positive electrode active material, and nonaqueous electrolyte secondary battery
JP2012151084A (en) * 2010-12-27 2012-08-09 Gs Yuasa Corp Positive electrode active material for nonaqueous electrolyte secondary battery, lithium-transition metal composite oxide, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9812709B2 (en) 2010-12-28 2017-11-07 Sony Corporation Lithium secondary battery, positive electrode active material, positive electrode, electric tool, electric vehicle, and power storage system
US9266444B2 (en) 2010-12-28 2016-02-23 Sony Corporation Lithium ion secondary battery, electric tool, electric vehicle, and power storage system
US20130318780A1 (en) * 2011-02-09 2013-12-05 Asahi Glass Company, Limited Method for producing cathode active material for lithium ion secondary battery
WO2012108513A1 (en) * 2011-02-09 2012-08-16 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
CN103348515A (en) * 2011-02-09 2013-10-09 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
JP2013069583A (en) * 2011-09-22 2013-04-18 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013093221A (en) * 2011-10-26 2013-05-16 Gs Yuasa Corp Active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2013118659A1 (en) * 2012-02-06 2015-05-11 日本電気株式会社 Lithium ion battery and manufacturing method thereof
JP2013251204A (en) * 2012-06-01 2013-12-12 Panasonic Corp Lithium secondary battery
US10276862B2 (en) 2012-10-25 2019-04-30 Samsung Sdi Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
JP2015069809A (en) * 2013-09-27 2015-04-13 独立行政法人産業技術総合研究所 Lithium ion battery
KR20190057259A (en) * 2019-05-20 2019-05-28 삼성에스디아이 주식회사 Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
KR102220906B1 (en) * 2019-05-20 2021-02-26 삼성에스디아이 주식회사 Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material

Similar Documents

Publication Publication Date Title
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
JP2008300180A (en) Nonaqueous electrolyte secondary battery
JP5173145B2 (en) Nonaqueous electrolyte secondary battery
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP5671831B2 (en) Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
JP5132048B2 (en) Nonaqueous electrolyte secondary battery
CN109216758B (en) Nonaqueous electrolyte battery and method for manufacturing nonaqueous electrolyte battery
JP5277686B2 (en) Lithium secondary battery and positive electrode for lithium secondary battery used therefor
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JPWO2009110490A1 (en) Non-aqueous electrolyte battery
CN106063001A (en) Nonaqueous-electrolyte secondary battery
JP2010528431A (en) Non-aqueous electrolytic solution and electrochemical device including the same
KR102018756B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2008091041A (en) Nonaqueous secondary battery
US9634320B2 (en) Active material and lithium ion battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
WO2011118302A1 (en) Active material for battery, and battery
KR20170000903A (en) Lithium secondary battery
US8999589B2 (en) Nonaqueous secondary battery
US8563179B2 (en) Nonaqueous secondary battery
CN109390629B (en) Electrolyte and battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery
WO2011117993A1 (en) Active material for battery, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129