JP4650774B2 - Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same - Google Patents

Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP4650774B2
JP4650774B2 JP16010999A JP16010999A JP4650774B2 JP 4650774 B2 JP4650774 B2 JP 4650774B2 JP 16010999 A JP16010999 A JP 16010999A JP 16010999 A JP16010999 A JP 16010999A JP 4650774 B2 JP4650774 B2 JP 4650774B2
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
composite oxide
nickel composite
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16010999A
Other languages
Japanese (ja)
Other versions
JP2000348724A (en
Inventor
要二 竹内
昌郎 神崎
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP16010999A priority Critical patent/JP4650774B2/en
Publication of JP2000348724A publication Critical patent/JP2000348724A/en
Application granted granted Critical
Publication of JP4650774B2 publication Critical patent/JP4650774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の正極活物質となるリチウムニッケル複合酸化物、特に安価で、放電容量が大きくかつサイクル特性の良好なリチウム二次電池を構成することのできるリチウムニッケル複合酸化物に関し、また、それを用いたリチウム二次電池に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としても、リチウム二次電池が検討されている。
【0003】
リチウム二次電池の正極活物質となるリチウム複合酸化物は、4V級の作動電圧が得られるものとして、層状岩塩構造LiCoO2、層状岩塩構造LiNiO2、スピネル構造LiMn24がよく知られている。これらの中でも、合成の容易である、最も高い作動電圧が得られる等の理由から、現在では、LiCoO2を正極活物質に用いる二次電池が主流を占めている。
【0004】
ところが、LiCoO2を構成する元素であるコバルトは、資源量として少なく極めて高価な元素であることから、リチウム二次電池のコストを押し上げる大きな要因となっている。したがって、リチウム二次電池を、例えば電気自動車用電源等の大容量用途に用いるような場合、大量の正極活物質を用いなければならず、高価なLiCoO2を正極活物質に用いたリチウムイオン二次電池は実用化が非常に困難であると考えられる。
【0005】
このLiCoO2に代わって期待されるのが、層状岩塩構造LiNiO2である。コバルトと比較して安価なニッケルを構成元素とすることから、コスト面で優れ、また、理論放電容量においてはLiCoO2と大差ないが実効容量(電池を構成した場合に実際取り出すことのできる容量)において優れるという利点から、大きな容量の電池を構成できるものとして期待されている。
【0006】
ところが、このLiNiO2は、実効容量が大きいことにより充放電に伴い多くのリチウムを吸蔵・放出するため、自身が大きな膨張・収縮を繰り返すことで結晶構造が崩壊しやすいという欠点がある。したがって、電池を構成した場合に、繰り返される充放電によって電池の放電容量が減少するという、いわゆるサイクル劣化が問題となる。特に、電池反応が活性化する高温下では一層劣化が進むことから、例えば屋外放置される可能性のある電気自動車用電源等の用途の場合、高温下でのサイクル劣化の少ないことも二次電池に求められる重要な特性の一つとなる。
【0007】
従来、LiNiO2を活物質とした正極に起因するサイクル劣化の問題を解決する手段として、例えば、特開昭62−264560号公報、特開平5−325966に示すように、Niサイトの一部をCoで置換するもの、また、特開平8−78009号公報に示すように、B、Si、P等から選ばれた1種以上の元素で置換するとともにMnを添加するもの、またさらに、特開平8−78006号公報に示すように、Coで置換するとともにB、Al、In等から選ばれた1種以上の元素で置換するもの等が検討されていた。
【0008】
【発明が解決しようとする課題】
ところが、CoでNiサイトを置換する場合は、Coが高価な元素であるため、やはり正極活物質のコストダウンという点では問題を残すものとなってる。また、Mn等の元素でNiサイトを置換する場合、ベースとなるNi同様3価であることが期待されているにもかかわらず4価のMn等が存在しようとする傾向にあり、そのため酸化物中の電荷中性条件を満たすために、酸素空孔が存在したり、LiがNiサイトに置換されるといった結晶性を悪化させる事態を招いていた。
【0009】
本発明は、上記従来技術の抱える問題を解決すべくなされたものであり、比較的安価な層状岩塩構造リチウムニッケル複合酸化物において、Niサイトを置換させる元素を適切なものとするとともに、Liサイトの一部をも他元素で置換させることで、このリチウムニッケル複合酸化物の結晶構造の安定化を図り、安価であって、放電容量が大きくかつサイクル特性、特に高温時使用におけるサイクル特性の良好なリチウム二次電池を構成できる正極活物質材料を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明のリチウム二次電池正極活物質用リチウムニッケル複合酸化物は、組成式LivMgwMnxAlyNiz2(0.9≦v≦1.3、0.0001≦w≦0.1、0.02≦x≦0.3、0.01≦y≦0.3、0.4≦z≦0.95、かつ、w≦x)で表され、(003)面の回折線の強度と(104)面の回折線の強度との強度比が1.0以上2.0以下となる層状岩塩構造を有することを特徴とする。
【0011】
本発明のリチウムニッケル複合酸化物においては、Mgは主にLiサイトに置換されるものと考えられる。つまり、比較的安価であり放電容量の大きな層状岩塩構造リチウムニッケル複合酸化物において、Niサイトの一部を安価なMnおよびAlで置換するとともに、さらに、Liサイトの一部を、Mgで置換させたものであるといえる。
【0012】
Mgは結晶中2価で存在することから、電荷中性条件を保つべくNiサイトを置換するMnが4価で存在し、酸素空孔、LiのNiサイトへの過度な置換等の結晶性の悪化を回避し結晶構造の安定化を図ることができる。また、層状岩塩構造では酸素から構成される層に挟まれたLiからなる層を構成し、本リチウムニッケル複合酸化物においては、このLi層中にLiよりも嵩高いMgが置換される。したがって、電池の充電に伴いLiが結晶中から放出された場合であっても、Li層中にMgが残存し、酸素層間を支える支柱的役割を果たすことで、結晶構造の動的な安定化をも図ることができる。さらに、Mgの置換は、充電に伴う過度なLiの離脱を抑制することで、低電圧領域で充電されるLiの使用を制限する。これらの作用が相俟って、本リチウムニッケル複合酸化物は、サイクル特性(特に高温サイクル特性)、高温保存特性の良好なリチウム二次電池を構成することのできる正極活物質となる。また、回折線の強度比を1.0以上2.0以下の範囲にすることで、二次電池のサイクル特性をより良好なものとする。
【0013】
本発明のリチウム二次電池は、上記リチウムニッケル複合酸化物を正極活物質に用いた正極と、リチウムを吸蔵・放出可能な炭素材料を負極活物質に用いた負極とを含んでなるように構成される。負極活物質には、(002)面の面間隔が3.4Å以下である黒鉛と、(002)面の面間隔が3.4Å以上であるコークスを含む易黒鉛化性炭素と、(002)面の面間隔が3.6Å以上である難黒鉛化性炭素と、のうちで1種のものを単独で用いるか、または2種以上を混合して用いる。黒鉛はc軸方向の結晶子厚みが1000Å以上であり、易黒鉛化性炭素に含まれるコークスはc軸方向の結晶子厚みが30Å以下であり、難黒鉛化性炭素はc軸方向の結晶子厚みが100Å以下である。安価、大容量という利点を活かしつつ、結晶構造の安定化が図られた層状岩塩構造リチウムニッケル複合酸化物を正極活物質とすることで、本リチウム二次電池は、安価であって、放電容量が大きくかつサイクル特性、高温保存特性の良好なリチウム二次電池となる。
【0014】
【発明の実施の形態】
以下に、本発明のリチウムニッケル複合酸化物の実施形態、および本発明のリチウム二次電池の実施形態について詳しく説明する。
〈層状岩塩構造リチウムニッケル複合酸化物〉
本発明のリチウムニッケル複合酸化物は、組成式LivMgwMnxAlyNiz2(0.9≦v≦1.3、0.0001≦w≦0.1、0.02≦x≦0.3、0.01≦y≦0.3、0.4≦z≦0.95、かつ、w≦x)で表され、層状岩塩構造を有する。層状岩塩構造とは、六方晶系に属する結晶構造であり、酸素原子から構成される層、主にニッケル原子から構成される層、酸素原子から構成される層、主にリチウム原子から構成される層がこの順で繰り返し積層された構造を有している結晶構造である。
【0015】
主にNiサイトの一部を置換させる元素としてMnを選択した理由は、Mnが安価な元素であることに加え、室温ならびに高温におけるサイクル特性を向上させるという役割を果たすことからである。置換させる割合つまり組成式中のxの値は、0.02≦x≦0.3とする。これはx<0.02の場合は、サイクル劣化が大きく、x>0.3の場合は、電池容量が低下するからである。なお、より高特性で実用的な二次電池を構成できる正極活物質とするためには、0.05≦x≦0.2とするのがより望ましい。
【0016】
主にNiサイトの一部を置換させるもう一つの元素としてAlを選択した理由は、Alが安価な元素であることに加え、過充電時における安全性を向上させ、サイクル特性を向上させるという役割を果たすことからである。置換させる割合つまり組成式中のyの値は、0.01≦y≦0.3とする。これはy<0.01の場合は、過充電時の安全性およびサイクル特性向上の効果が不充分であり、y>0.3の場合は、電池の容量が低下するからである。なお、より高特性で実用的な二次電池を構成できる正極活物質とするためには、0.02≦y≦0.2とするのがより望ましい。
【0017】
主にLiサイトの一部を置換するMgは、リチウムニッケル複合酸化物の合成において、置換させるMnを4価として存在させるという役割を果たす。このことから、置換割合つまり組成式中のwの値は、w≦xとする。また、その値は、0.0001≦w≦0.1とする。これは、w<0.0001の場合は、電池のサイクル特性が不充分であり、w>0.1の場合は、電池容量が低下するからである。なお、より高特性で実用的な二次電池を構成できる正極活物質とするためには、0.001≦w≦0.05とするのが望ましい。さらに、電池容量とサイクル特性とのバランスという点を考慮すれば、0.005≦w≦0.02とするのがより望ましい。
【0018】
Niの存在割合つまり組成式中のzの値は、上記MnおよびAlの置換割合等によって変わるものとなるが、0.4≦z≦0.95とする。これはz<0.4の場合は、電池容量が急激に低下するためであり、z>0.95の場合は、サイクル特性、安全性とも不充分なためだからである。なお、より高特性で実用的な二次電池を構成できる正極活物質とするためには、0.55≦z≦0.9とするのがより望ましい。
【0019】
Liの存在割合つまり組成式中のvの値は、Mgでの置換割合等の他、LiがNiサイトを置換することも考えられるため、これを考慮し、0.9≦v≦1.3とする。リチウム二次電池において、充放電に寄与するのはこのLiであることから、Liの存在割合が小さすぎれば電池の放電容量が小さくなりすぎ、また、Liが多すぎれば過剰なLiは活物質表面にLi2Co3等を生成し、抵抗が大きくなるため、0.95≦v≦1.05とするのがより望ましい。
【0020】
組成式LivMgwMnxAlyNiz2で表されるリチウム複合酸化物は、六方晶系に属する層状岩塩構造のものの他に、立方岩塩構造(Fm3m)のものがあり、層状岩塩構造のものを合成する場合であっても、不可避的に副相として立方岩塩構造のものが混在する(いわゆる岩塩ドメイン)。したがって、本発明のリチウムニッケル複合酸化物における層状岩塩構造とはこの立方岩塩構造のものが含有されているものを含むことを意味する。
【0021】
層状岩塩構造のリチウムニッケル複合酸化物中に含まれる立方岩塩構造リチウムニッケル複合酸化物の比率は、これを正極活物質に用いたリチウム二次電池のサイクル特性に影響する。粉末X線回折分析によれば、(003)面の回折ピークは層状岩塩構造の固有のものであるのに対して、(104)面の回折ピークは、層状岩塩構造と立方岩塩構造の両者の回折によって得られる。したがって、(003)面の回折線の強度I003と(104)面の回折線の強度I104との比I003/I104を測定すれば、立方岩塩構造の含有割合を推定することができる。つまり、I003/I104の値が大きくなれば層状岩塩構造の単一相に近づき、小さくなれば立方岩塩構造の存在割合が大きくなる。本発明のリチウムニッケル複合酸化物では、この回折線の強度比 003 104が1.0以上2.0以下となるものとすることが、それを用いた二次電池のサイクル特性をより良好なものとする。
【0022】
本発明のリチウムニッケル複合酸化物の製造方法は、特に限定するものではなく、固相反応法、アトマイズ法、水熱法等によって製造できる。例えば、固相反応法によって、組成式LivMgwMnxAlyNiz2で表されるものを製造する場合、Li源、Mg源、Mn源、Al源、Ni源となる原料を、それらに含まれるLi、Mg、Mn、Al、NiがLi:Mg:Mn:Al:Ni=v:w:x:y:zとなるように混合し、この混合物を、大気中あるいは酸素雰囲気中で、800〜900℃の温度で、12〜48時間程度焼成することによって合成することができる。この際用、Li原料としてはLiOH・H2O等を、Mg源としてMgO等を、Mn源としてMn23等を、Al源としてAl23等を、Ni源としてNi(OH)2等をそれぞれ用いることができる。
【0023】
〈リチウム二次電池〉
上記本発明のリチウムニッケル複合酸化物を正極活物質に用いてリチウム二次を構成することができる。上記リチウムニッケル複合酸化物は、組成の異なる種々のものが存在する。得ようとする二次電池の特性に応じ、これら種々のもののうち、1種のものを単独で用いて正極活物質とすることもでき、また、2種以上のものを混合して正極活物質として用いることもできる。また、LiCoO2、LiNiO2等公知のリチウム複合酸化物と混合してこれを正極活物質とすることもできる。
【0024】
本発明のリチウム二次電池においては、正極活物質に上記本発明のリチウムニッケル複合酸化物を正極活物質に用いて正極を構成する。正極は、活物質となるリチウムニッケル複合酸化物の粉状体に、導電材としての黒鉛、アセチレンブラック等の炭素材料粉末と、結着剤としてのポリフッ化ビニリデン等の含フッ素樹脂等を混合し、さらにこれらを分散させる溶剤としてN−メチル−2−ピロリドン等を適量加えてペースト状の正極合材とし、この正極合材をアルミニウム箔等の正極集電体表面に塗布し、乾燥し、その後必要に応じプレス等により活物質密度を高めることによって形成することができる。
【0025】
負極は、負極活物質に、金属リチウム、リチウム合金等を用いて構成することもできる。これら金属リチウム等を負極に用いる場合、繰り返される充放電により負極表面へのデンドライトの析出の可能性があり、二次電池の安全性が懸念される。このため、本発明のリチウム二次電池では、負極活物質に、リチウムを吸蔵・放出可能な炭素材料を用いる。用いることができる炭素材料には、天然黒鉛、球状あるいは繊維状の人造黒鉛、難黒鉛化性炭素、および、フェノール樹脂等の有機化合物焼成体、コークス等の易黒鉛化性炭素の粉状体を挙げることができる。負極活物質となる炭素材料にはそれぞれの利点があり、作製しようとするリチウム二次電池の特性に応じて選択すればよい。
【0026】
これらのもののうち、天然および人造の黒鉛は、真密度が高くまた導電性に優れるため、容量が大きく(エネルギー密度の高い)、パワー特性の良好なリチウム二次電池を構成できるという利点がある。この利点を活かしたリチウム二次電池を作製する場合、用いる黒鉛は、結晶性の高いことが望ましく、(002)面の面間隔d002が3.4Å以下であり、c軸方向の結晶子厚みLcが1000Å以上のものを用いるのがよい。なお、人造黒鉛は、例えば、易黒鉛化性炭素を2800℃以上の高温で熱処理して製造することができる。この場合の原料となる易黒鉛化性炭素には、コークス、ピッチ類を400℃前後で加熱する過程で得られる光学異方性の小球体(メソカーボンマイクロビーズ:MCMB)等を挙げることができる。
【0027】
易黒鉛化性炭素は、一般に石油や石炭から得られるタールピッチを原料としたもので、コークス、MCMB、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維等が挙げられる。また、フェノール樹脂等の有機化合物焼成体をも用いることができる。易黒鉛化性炭素は、安価な炭素材料であるため、コスト面で優れたリチウム二次電池を構成できる負極活物質となり得る。これらの中でも、コークスは低コストであり比較的容量も大きく、構成する二次電池のサイクル特性が良好となるという利点があり、この点を考慮すれば、コークスを用いるのが望ましい。コークスを用いる場合には、(002)面の面間隔d002が3.4Å以上であり、c軸方向の結晶子厚みLcが30Å以下のものを用いるのがよい。
【0028】
難黒鉛化性炭素とは、いわゆるハードカーボンと呼ばれるもので、ガラス状炭素に代表される非晶質に近い構造をもつ炭素材料である。一般的に熱硬化性樹脂を炭素化して得られる材料であり、熱処理温度を高くしても黒鉛構造が発達しない材料である。難黒鉛化性炭素には安全性が高く、比較的低コストであり、構成する二次電池のサイクル特性が良好となるという利点があり、この点を考慮すれば、難黒鉛化性炭素を負極活物質として用いるのが望ましい。具体的には、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体等を用いることができる。より望ましくは、(002)面の面間隔d002が3.6Å以上であり、c軸方向の結晶子厚みLcが100Å以下のものを用いるのがよい。
【0029】
上記、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素等は、1種のものを単独で用いることもでき、また、2種以上を混合して用いることもできる。2種以上を混合させる態様としては、例えば、過充電時の安全性を確保しつつ、正極活物質であるリチウムニッケル複合酸化物に吸蔵・放出されるリチウムを制限してサイクル特性をより良好なものとする目的で、黒鉛と難黒鉛化性炭素、易黒鉛化性炭素等の黒鉛化の進んでいない炭素材料とを混合物する場合が例示できる。なお、黒鉛と黒鉛化の進んでいない炭素質材料との混合物を負極活物質に用いる場合、両者の混合比は、サイクル特性と放電容量とのバランスにより決定すればよい。
【0030】
負極活物質として炭素材料を用いる本発明のリチウム二次電池の場合、負極は、上記炭素材料の粉状体に、結着剤としてのポリフッ化ビニリデン等の含フッ素樹脂等を混合し、さらにこれらを分散させる溶剤としてN−メチル−2−ピロリドン等を適量加えてペースト状の負極合材とし、この負極合材を銅箔等の正極集電体表面に塗布し、乾燥し、その後必要に応じプレス等により活物質密度を高めることによって形成することができる。
【0031】
正極と負極の間に挟装されるセパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。また非水電解液は、有機溶媒に電解質であるリチウム塩を溶解させたもので、有機溶媒としては、非プロトン性有機溶媒、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、アセトニトリル、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン等の1種またはこれらの2種以上の混合液を用いることができる。また、溶解させる電解質としては、LiI、LiClO4、LiAsF6、LiBF4、LiPF6、LiN(CF3SO22等のリチウム塩を用いることができる。
【0032】
以上のものを主要構成要素として構成される本発明のリチウム二次電池であるが、その形状は円筒型、積層型、コイン型等、種々のものとすることができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とする。そして正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を集電用リード等を用いて接続し、この電極体を非水電解液とともに電池ケースに密閉する。このような組付け工程を経て電池が完成させられる。なお、正極活物質を除く他の構成要素については、上記した態様のものに限られず、従来から一般的にリチウム二次電池に用いられる態様のものを採用することができる。さらに主要構成要素以外の他の構成要素についても、同様に、従来から一般的にリチウム二次電池に用いられる態様のものを採用することができる。
【0033】
【実施例】
上記実施形態に基づいて、種々の組成をもつ本発明のリチウムニッケル複合酸化物を生成し、これらそれぞれのリチウムニッケル複合酸化物を正極活物質に用いた正極と、また種々の炭素材料を負極活物質に用いた負極とを組み合わせてリチウム二次電池を実施例として作成した。また、Mg、Mn、Alのいずれかを置換させていないリチウムニッケル複合酸化物を生成し、これらを正極活物質として用いたリチウム二次電池を比較例として作成した。そして、実施例、比較例の二次電池に対して、充放電サイクル試験を行い、それぞれの二次電池の特性を比較した。以下に、これらについて説明する。
【0034】
〈実施例1〉
まず、LiOH・H2Oを427.38重量部、MgOを0.2015重量部、Mn23を78.9重量部、Al23を51重量部、Ni(OH)2を787.49重量部として、それぞれを充分に混合させた混合物を調製した。次いで、この混合物をアルミナ坩堝に充填し、酸素気流を流入させながら、850℃の温度で、12時間焼成した。焼成後、解砕することにより、粉末状のリチウムニッケル複合酸化物を生成した。生成したリチウムニッケル複合酸化物は、組成式Li1.02Mg0.0005Mn0.1Al0.05Ni0.84952で表されるものであった。
【0035】
このリチウムニッケル複合酸化物粉末を正極活物質とし、活物質85重量部に対して、導電材としてアセチレンブラックを10重量部、結着剤としてポリフッ化ビニリデンを5重量部混合し、N−メチル−2−ピロリドンを適量加え、ペースト状の正極合材を得、この正極合材を、アルミニウム箔製集電体の両面に塗布し、乾燥させて、シート状の正極を作成した。
【0036】
負極は、2800℃で焼成した黒鉛化メソフェーズ小球体を負極活物質とし、この活物質90重量部に対して、結着剤としてポリフッ化ビニリデンを10重量部混合し、N−メチル−2−ピロリドンを適量加え、ペースト状の負極合材を得、この負極合材を、銅箔製集電体の両面に塗布し、乾燥させて、シート状のものを作成した。
【0037】
上記正極および負極を、ポリエチレン製セパレータを介して捲回し、円筒ロール状の電極体を形成した。この電極体を18650型電池ケース(直径18mmφ、長さ65mm)に収納し、集電処理を行った後、非水電解液を注入し、蓋をかぶせて密閉し円筒型リチウム二次電池を完成させた。なお、非水電解液には、エチレンカーボネートとジエチルカーボネートを体積比1:1に混合した有機溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。完成したこのリチウム二次電池を実施例1の二次電池とした
〈実施例2〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更し、さらに焼成温度を800℃に変更することにより、組成式Li1.02Mg0.008Mn0.1Al0.05Ni0.8422で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例2の二次電池とした。
【0038】
〈実施例3〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.02Mg0.002Mn0.04Al0.08Ni0.8782で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例3の二次電池とした。
【0039】
〈実施例4〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.01Mg0.003Mn0.03Al0.1Ni0.8672で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例4の二次電池とした。
【0040】
〈実施例5〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.01Mg0.001Mn0.22Al0.03Ni0.7492で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例5の二次電池とした。
【0041】
〈実施例6〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.01Mg0.002Mn0.22Al0.01Ni0.7682で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例6の二次電池とした。
【0042】
〈実施例7〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.03Mg0.001Mn0.03Al0.01Ni0.9592で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例7の二次電池とした。
【0043】
〈実施例8〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.02Mg0.003Mn0.04Al0.11Ni0.8472で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例8の二次電池とした。
【0044】
〈実施例9〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.03Mg0.002Mn0.08Al0.03Ni0.8882で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例9の二次電池とした。
【0045】
〈実施例10〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.02Mg0.008Mn0.1Al0.05Ni0.8422で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例10の二次電池とした。
【0046】
〈実施例11〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.03Mg0.07Mn0.15Al0.05Ni0.732で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例11の二次電池とした。
【0047】
〈実施例12〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.01Mg0.001Mn0.22Al0.21Ni0.5692で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例12の二次電池とした。
【0048】
〈実施例13〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.03Mg0.001Mn0.1Al0.01Ni0.8892で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例13の二次電池とした。
【0049】
〈実施例14〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.04Mg0.001Mn0.1Al0.22Ni0.6792で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例14の二次電池とした。
【0050】
〈実施例15〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、混合するそれぞれの原料の混合比を変更することにより、組成式Li1.05Mg0.08Mn0.13Al0.06Ni0.732で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を実施例15の二次電池とした。
【0051】
〈実施例16〉
実施例1場合の二次電池の作製において、黒鉛化メソフェーズ小球体に代えて、コークスを負極活物質に使用することにより、別の二次電池を作製した。他の構成要素は実施例1の二次電池と同様である。この二次電池を実施例16の二次電池とした。
【0052】
〈実施例17〉
実施例1場合の二次電池の作製において、黒鉛化メソフェーズ小球体に代えて、黒鉛化メソフェーズ小球体とコークスとを重量比で7:3に混合した混合物を負極活物質に使用することにより、別の二次電池を作製した。他の構成要素は実施例1の二次電池と同様である。この二次電池を実施例17の二次電池とした。
【0053】
〈実施例18〉
実施例1場合の二次電池の作製において、黒鉛化メソフェーズ小球体に代えて、黒鉛化メソフェーズ小球体とハードカーボンとを重量比で7:3に混合した混合物を負極活物質に使用することにより、別の二次電池を作製した。他の構成要素は実施例1の二次電池と同様である。この二次電池を実施例18の二次電池とした。
【0054】
〈実施例19〉
実施例1場合の二次電池の作製において、黒鉛化メソフェーズ小球体に代えて、ハードカーボンを負極活物質に使用することにより、別の二次電池を作製した。他の構成要素は実施例1の二次電池と同様である。この二次電池を実施例19の二次電池とした。
【0055】
〈比較例1〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、MgOを混合させず、他の原料の混合比を変更させて、組成式Li1.01Mn0.1Al0.05Ni0.852で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を比較例1の二次電池とした。
【0056】
〈比較例2〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、Al23を混合させず、他の原料の混合比を変更させて、組成式Li1.01Mg0.002Mn0.05Ni0.9492で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を比較例2の二次電池とした。
【0057】
〈比較例3〉
実施例1の場合のリチウムニッケル複合酸化物の生成において、Mn23を混合させず、他の原料の混合比を変更させて、組成式Li1.01Mg0.002Al0.05Ni0.9492で表されるリチウムニッケル複合酸化物を生成した。このリチウムニッケル複合酸化物を用い、実施例1の場合と同様の構成のリチウム二次電池を作製した。このリチウム二次電池を比較例2の二次電池とした。
【0058】
〈リチウム二次電池の特性評価〉
上記実施例および比較例の各二次電池に対して、充放電サイクル試験を行い、二次電池の特性を評価した。充放電サイクル試験は、電池の実使用温度範囲と目される60℃の環境温度の下、2mA/cm2の電流密度で、充電電圧4.2Vまで定電流充電を行った後放電電圧3.0Vまで定電流放電を行うことを1サイクルとし、これを500サイクル以上繰り返すものとした。
【0059】
試験の結果として、各リチウム二次電池の正極活物質単位重量当たりの初期放電容量(1サイクル目の放電容量)、500サイクル後容量維持率(500サイクル目の放電容量/初期放電容量×100%)を下記表1に示す。なお、正極活物質として用いたリチウムニッケル複合酸化物の組成、および粉末X線回折法による(003)面の回折線の強度I003と(104)面の回折線の強度I104との比I003/I104をも併せて示す。
【0060】
【表1】

Figure 0004650774
【0061】
表1から明らかなように、置換元素としてMn、Al、Mgの3つのいずれかの元素が含まれていないリチウムニッケル複合酸化物を正極活物質に用いた比較例1、2、3の二次電池と比較して、置換元素として3つをすべて含む実施例1の二次電池は、サイクル特性が良好であることが判る。このことから、NiサイトをMnおよびAlで置換し、さらにLiサイトをMgで置換した本発明のリチウムニッケル複合酸化物を正極活物質に用いたリチウム二次電池は、サイクル特性、特に高温使用時のサイクル特性に優れることが判る。
【0062】
次に組成を種々変更させた実施例1〜15の二次電池を比較してみる。この比較により、以下のことが判る。実施例9および10の二次電池は、電池容量が比較的大きく、サイクル特性は良好であった。実施例1の二次電池は、Mgが比較的少ないため、容量は大きいがサイクル特性で若干劣るものとなった。実施例3および4の二次電池は、Mnが比較的少なく、サイクル特性が若干劣るものとなった。実施例5および6の二次電池は、Mnが比較的多いため、容量が若干小さいものとなった。実施例7の二次電池は、Mn、Alのいずれもが少ないため、容量は大きいがサイクル特性が若干劣るものとなった。実施例8の二次電池は、Mnが比較的少なく、Alはやや多く、そのためサイクル特性が若干劣るものとなった。実施例12の二次電池は、Mn、Alのいずれも多いため、容量がかなり小さなものとなった。実施例13の二次電池は、Alが比較的少ないため、サイクル特性が若干劣るものとなった。実施例14の二次電池は、Alが比較的多いため、容量がかなり小さいものとなった。実施例15の二次電池は、Mgが比較的多いため容量がかなり小さいものとなった。
【0063】
以上の結果から、電池容量とサイクル特性のバランスのとれた実用的な二次電池を構成するためには、組成式LivMgwMnxAlyNiz2において、それぞれの組成比が、0.95≦v≦1.05、0.001≦w≦0.05、0.05≦x≦0.2、0.02≦y≦0.2、0.55≦z≦0.9の範囲にあるリチウムニッケル複合酸化物を、正極活物質として用いることが望ましいことが確認できる。
【0064】
次に、焼成温度変更した実施例2と実施例10との比較から、焼成温度が850℃であるリチウムニッケル複合酸物を用いた実施例10の二次電池に比べ、焼成温度が800℃であるリチウムニッケル複合酸物を用いた実施例2の二次電池は、初期放電容量が小さいものの、サイクル維持率において優り、よりサイクル特性が良好なものとなっている。この理由は、層状構造の発達度合が低いために、正極活物質としての低電位部分を利用していないためであると考える。したがって、焼成温度は、初期容量とサイクル特性との兼ね合いを考え、作製しようとするリチウム二次電池の特性に応じて決定すればよい。
【0065】
さらに、負極活物質の種類によるリチウム二次電池の特性について考える。黒鉛化メソフェーズ小球体のみを負極活物質に用いた実施例1の二次電池に比較して、コークスまたはハードカーボンという黒鉛化度の低い材料を単独であるいは混合して用いた実施例16〜18の二次電池は、初期放電容量について劣るものの、容量維持率において優るものとなっている。これは、黒鉛化度の低い材料が、正極から離脱するLiが過度な状態となるのを抑制する作用を有することをよく表した結果となっている。負極活物質に用いる炭素材料についても、初期容量とサイクル特性との兼ね合いを考え、作製しようとするリチウム二次電池の特性に応じて決定すればよいことが確認できる。
【0066】
【発明の効果】
本発明のリチウムニッケル複合酸化物は、層状岩塩構造リチウムニッケル複合酸化物において、NiサイトをMnおよびAlで、LiサイトをMg置換した構成のものである。このような構成をもつ本発明のリチウムニッケル複合酸化物は、安価であって、放電容量が大きく、かつ、繰り返す充放電サイクルによっても放電容量の低下の小さいリチウム二次電池を構成することのできる正極活物質となる。したがって、正極活物質にこのリチウムニッケル複合酸化物を用いた本発明のリチウム二次電池は、安価であり、放電容量が大きく、サイクル特性特に高温使用時におけるサイクル特性の良好な二次電池となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium nickel composite oxide that is a positive electrode active material of a lithium secondary battery, and more particularly, to a lithium nickel composite oxide that can constitute a lithium secondary battery that is inexpensive, has a large discharge capacity, and good cycle characteristics. The present invention also relates to a lithium secondary battery using the same.
[0002]
[Prior art]
With the miniaturization of personal computers, video cameras, mobile phones, etc., in the fields of information-related equipment and communication equipment, lithium secondary batteries have been put into practical use because of their high energy density as the power source used for these equipment. It has become widespread. On the other hand, in the field of automobiles, the development of electric vehicles has been urgently caused by environmental problems and resource problems, and lithium secondary batteries have been studied as power sources for the electric vehicles.
[0003]
Lithium composite oxide as a positive electrode active material of a lithium secondary battery has a layered rock-salt structure LiCoO as a 4 V class operating voltage can be obtained.2, Layered rock salt structure LiNiO2Spinel structure LiMn2OFourIs well known. Among these, LiCoO is currently used because it is easy to synthesize and the highest operating voltage can be obtained.2Rechargeable batteries using as a positive electrode active material dominate.
[0004]
However, LiCoO2Cobalt, which is an element constituting the element, is a very expensive element with a small amount of resources, which is a major factor that increases the cost of lithium secondary batteries. Therefore, when a lithium secondary battery is used for a large capacity application such as a power source for an electric vehicle, for example, a large amount of a positive electrode active material must be used, and an expensive LiCoO2It is considered that a lithium ion secondary battery using a cathode as a positive electrode active material is very difficult to put into practical use.
[0005]
This LiCoO2What is expected instead of the layered rock salt structure LiNiO2It is. Compared to cobalt, it is cheaper than nickel, and it is excellent in cost. In terms of theoretical discharge capacity, LiCoO2However, it is expected that a battery with a large capacity can be configured because of its advantage in that it is excellent in effective capacity (capacity that can be actually taken out when the battery is configured).
[0006]
However, this LiNiO2Has a drawback in that a large effective capacity causes a large amount of lithium to be occluded / released during charging / discharging, so that the crystal structure tends to collapse due to repeated large expansion / contraction. Therefore, when the battery is configured, so-called cycle deterioration in which the discharge capacity of the battery decreases due to repeated charge and discharge becomes a problem. In particular, since the deterioration further proceeds at a high temperature at which the battery reaction is activated, for example, in the case of an electric vehicle power source that may be left outdoors, the secondary battery has a low cycle deterioration at a high temperature. It is one of the important characteristics required for
[0007]
Conventionally, LiNiO2As a means for solving the problem of cycle deterioration caused by the positive electrode made of an active material, as shown in, for example, JP-A-62-264560 and JP-A-5-325966, a part of Ni site is replaced with Co. In addition, as disclosed in JP-A-8-78009, one substituted with one or more elements selected from B, Si, P and the like and added with Mn, and further JP-A-8-78006 As shown in the publication, investigations have been made on substitution with Co and substitution with one or more elements selected from B, Al, In and the like.
[0008]
[Problems to be solved by the invention]
However, when Ni sites are replaced by Co, since Co is an expensive element, there still remains a problem in terms of cost reduction of the positive electrode active material. In addition, when Ni sites are replaced with elements such as Mn, tetravalent Mn tends to exist despite the fact that it is expected to be trivalent like Ni as the base, and therefore oxides. In order to satisfy the charge neutrality condition, the crystallinity deteriorates such as the presence of oxygen vacancies or the replacement of Li with Ni sites.
[0009]
The present invention has been made to solve the above-mentioned problems of the prior art, and in a relatively inexpensive layered rock salt structure lithium nickel composite oxide, an element for substituting the Ni site is appropriate, and the Li site By substituting a part of the element with other elements, the crystal structure of this lithium nickel composite oxide is stabilized, it is inexpensive, has a large discharge capacity, and has good cycle characteristics, especially when used at high temperatures. An object of the present invention is to provide a positive electrode active material capable of constituting a simple lithium secondary battery.
[0010]
[Means for Solving the Problems]
  The lithium nickel composite oxide for a lithium secondary battery positive electrode active material of the present invention has a composition formula LivMgwMnxAlyNizO2(0.9 ≦ v ≦ 1.3, 0.0001 ≦ w ≦ 0.1, 0.02 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0.4 ≦ z ≦ 0.95 And w ≦ x),The intensity ratio of the (003) plane diffraction line intensity to the (104) plane diffraction line intensity is 1.0 or more and 2.0 or less.It has a layered rock salt structure.
[0011]
In the lithium nickel composite oxide of the present invention, Mg is considered to be mainly substituted by Li sites. In other words, in a layered rock salt structure lithium nickel composite oxide that is relatively inexpensive and has a large discharge capacity, a part of the Ni site is replaced with inexpensive Mn and Al, and a part of the Li site is further replaced with Mg. It can be said that
[0012]
  Since Mg exists in a divalent state in the crystal, Mn that replaces the Ni site exists in a tetravalent state in order to maintain the charge neutral condition, and there are crystallinity such as excessive substitution of oxygen vacancies and Li to the Ni site. Deterioration can be avoided and the crystal structure can be stabilized. In the layered rock salt structure, a layer composed of Li sandwiched between layers composed of oxygen is formed, and in this lithium nickel composite oxide, Mg that is bulkier than Li is substituted in this Li layer. Therefore, even when Li is released from the crystal as the battery is charged, Mg remains in the Li layer and plays a role of supporting the oxygen layer, thereby dynamically stabilizing the crystal structure. Can also be achieved. Further, the substitution of Mg restricts the use of Li charged in a low voltage region by suppressing excessive separation of Li accompanying charging. Combined with these actions, the present lithium nickel composite oxide becomes a positive electrode active material capable of constituting a lithium secondary battery having good cycle characteristics (particularly, high temperature cycle characteristics) and high temperature storage characteristics.Moreover, the cycle characteristic of a secondary battery is made more favorable by making the intensity ratio of a diffraction line into the range of 1.0 or more and 2.0 or less.
[0013]
  A lithium secondary battery of the present invention comprises a positive electrode using the lithium nickel composite oxide as a positive electrode active material, and a negative electrode using a carbon material capable of occluding and releasing lithium as a negative electrode active material. Is done.The negative electrode active material includes graphite having a (002) plane spacing of 3.4 mm or less, graphitizable carbon containing coke having a (002) plane spacing of 3.4 mm or more, and (002) Of the non-graphitizable carbon having a surface spacing of 3.6 mm or more, one type is used alone, or two or more types are mixed and used. Graphite has a c-axis direction crystallite thickness of 1000 mm or more, coke contained in graphitizable carbon has a c-axis direction crystallite thickness of 30 mm or less, and non-graphitizable carbon has a c-axis direction crystallite. The thickness is 100 mm or less.By using the layered rock salt structure lithium nickel composite oxide with stable crystal structure as the positive electrode active material while taking advantage of low cost and large capacity, this lithium secondary battery is inexpensive and has a discharge capacity. The lithium secondary battery has a large cycle characteristic and good high-temperature storage characteristics.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the lithium nickel composite oxide of the present invention and embodiments of the lithium secondary battery of the present invention will be described in detail.
<Layered rock salt structure lithium nickel composite oxide>
The lithium nickel composite oxide of the present invention has a composition formula LivMgwMnxAlyNizO2(0.9 ≦ v ≦ 1.3, 0.0001 ≦ w ≦ 0.1, 0.02 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0.4 ≦ z ≦ 0.95 And w ≦ x) and has a layered rock salt structure. The layered rock salt structure is a crystal structure belonging to the hexagonal system, consisting of a layer composed of oxygen atoms, a layer composed mainly of nickel atoms, a layer composed of oxygen atoms, and mainly composed of lithium atoms. The crystal structure has a structure in which the layers are repeatedly laminated in this order.
[0015]
The reason why Mn is mainly selected as an element for substituting a part of the Ni site is that Mn is an inexpensive element and plays a role of improving cycle characteristics at room temperature and high temperature. The substitution ratio, that is, the value of x in the composition formula is 0.02 ≦ x ≦ 0.3. This is because the cycle deterioration is large when x <0.02, and the battery capacity decreases when x> 0.3. Note that 0.05 ≦ x ≦ 0.2 is more desirable in order to obtain a positive electrode active material having a higher characteristic and a practical secondary battery.
[0016]
The reason why Al was selected as another element for substituting a part of the Ni site mainly is that Al is an inexpensive element, and also has the role of improving safety during overcharge and improving cycle characteristics. Because it fulfills. The substitution ratio, that is, the value of y in the composition formula is set to 0.01 ≦ y ≦ 0.3. This is because when y <0.01, the effect of improving the safety and cycle characteristics during overcharging is insufficient, and when y> 0.3, the capacity of the battery decreases. Note that 0.02 ≦ y ≦ 0.2 is more desirable in order to obtain a positive electrode active material having a higher characteristic and a practical secondary battery.
[0017]
Mg, which mainly substitutes a part of the Li site, plays a role of allowing Mn to be substituted to be tetravalent in the synthesis of the lithium nickel composite oxide. From this, the substitution ratio, that is, the value of w in the composition formula is w ≦ x. The value is set to 0.0001 ≦ w ≦ 0.1. This is because the battery cycle characteristics are insufficient when w <0.0001, and the battery capacity decreases when w> 0.1. It should be noted that 0.001 ≦ w ≦ 0.05 is desirable in order to obtain a positive electrode active material that can constitute a more practical and practical secondary battery. Further, considering the balance between the battery capacity and the cycle characteristics, it is more desirable that 0.005 ≦ w ≦ 0.02.
[0018]
The proportion of Ni, that is, the value of z in the composition formula, varies depending on the substitution ratio of Mn and Al, but 0.4 ≦ z ≦ 0.95. This is because when z <0.4, the battery capacity rapidly decreases, and when z> 0.95, both the cycle characteristics and safety are insufficient. It should be noted that 0.55 ≦ z ≦ 0.9 is more desirable in order to obtain a positive electrode active material that can form a more practical and practical secondary battery.
[0019]
The proportion of Li, that is, the value of v in the composition formula, is considered to be 0.9 ≦ v ≦ 1.3 in consideration of this because Li may be substituted for Ni sites in addition to the substitution rate with Mg. And In the lithium secondary battery, it is this Li that contributes to charging and discharging. Therefore, if the existing ratio of Li is too small, the discharge capacity of the battery becomes too small, and if there is too much Li, excess Li is an active material. Li on the surface2CoThreeIt is more preferable to satisfy 0.95 ≦ v ≦ 1.05 because the resistance is increased.
[0020]
Composition formula LivMgwMnxAlyNizO2In addition to the layered rock salt structure belonging to the hexagonal system, the lithium composite oxide represented by the formula has a cubic rock salt structure (Fm3m), which is unavoidable even when a layered rock salt structure is synthesized. Cubic rock salt structure is mixed as a secondary phase (so-called salt domain). Therefore, the layered rock salt structure in the lithium nickel composite oxide of the present invention means to include those containing this cubic rock salt structure.
[0021]
  The ratio of the cubic rock salt structure lithium nickel composite oxide contained in the layered rock salt structure lithium nickel composite oxide affects the cycle characteristics of a lithium secondary battery using this as a positive electrode active material. According to powder X-ray diffraction analysis, the diffraction peak on the (003) plane is unique to the layered rock salt structure, whereas the diffraction peak on the (104) plane is for both the layered rock salt structure and the cubic rock salt structure. Obtained by diffraction. Therefore, the intensity I of the (003) plane diffraction line I003And the intensity I of the (104) plane diffraction line104Ratio I003/ I104Is measured, the content ratio of the cubic rock salt structure can be estimated. That is, I003/ I104The larger the value of, the closer to the single phase of the layered salt structure, and the smaller the value, the larger the proportion of cubic salt structure. In the lithium nickel composite oxide of the present invention, the intensity ratio of this diffraction lineI 003 /I104Is 1.0 or more and 2.0 or less, the cycle characteristics of the secondary battery using the same are improved.
[0022]
The method for producing the lithium nickel composite oxide of the present invention is not particularly limited, and can be produced by a solid phase reaction method, an atomizing method, a hydrothermal method, or the like. For example, the composition formula LivMgwMnxAlyNizO2When the materials represented by the formula (1) are manufactured, Li, Mg, Mn, Al, and Ni contained therein are Li: Mg: Mn: Al. : Ni = v: w: x: y: z is mixed, and this mixture is synthesized by firing at a temperature of 800 to 900 ° C. for about 12 to 48 hours in the air or in an oxygen atmosphere. be able to. In this case, as Li raw material, LiOH.H2O, etc., MgO etc. as Mg source, Mn as Mn source2OThreeEtc. as Al source2OThreeEtc., Ni (OH) as Ni source2Etc. can be used respectively.
[0023]
<Lithium secondary battery>
A lithium secondary can be formed by using the lithium nickel composite oxide of the present invention as a positive electrode active material. There are various lithium nickel composite oxides having different compositions. Depending on the characteristics of the secondary battery to be obtained, one of these various types can be used alone as a positive electrode active material, or a mixture of two or more types can be used as the positive electrode active material. Can also be used. LiCoO2LiNiO2It can also be used as a positive electrode active material by mixing with a known lithium composite oxide.
[0024]
In the lithium secondary battery of the present invention, the positive electrode is formed using the lithium nickel composite oxide of the present invention as the positive electrode active material. For the positive electrode, a powder of lithium nickel composite oxide as an active material is mixed with a carbon material powder such as graphite or acetylene black as a conductive material and a fluorine-containing resin such as polyvinylidene fluoride as a binder. Further, an appropriate amount of N-methyl-2-pyrrolidone or the like as a solvent for dispersing them is added to form a paste-like positive electrode mixture, and this positive electrode mixture is applied to the surface of a positive electrode current collector such as an aluminum foil, and then dried. If necessary, it can be formed by increasing the active material density by pressing or the like.
[0025]
A negative electrode can also be comprised using a lithium metal, lithium alloy, etc. for a negative electrode active material. When these metal lithiums are used for the negative electrode, there is a possibility of dendrite deposition on the negative electrode surface due to repeated charge and discharge, and there is concern about the safety of the secondary battery. For this reason, in the lithium secondary battery of the present invention, a carbon material capable of inserting and extracting lithium is used as the negative electrode active material. Examples of carbon materials that can be used include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon, organic compound fired bodies such as phenolic resins, and easily graphitizable carbon powders such as coke. Can be mentioned. The carbon material used as the negative electrode active material has respective advantages, and may be selected according to the characteristics of the lithium secondary battery to be manufactured.
[0026]
Of these, natural and artificial graphite have the advantage of being able to form a lithium secondary battery having high capacity (high energy density) and good power characteristics due to its high true density and excellent conductivity. When producing a lithium secondary battery taking advantage of this advantage, it is desirable that the graphite used has high crystallinity, and the (002) plane spacing d.002Is 3.4 mm or less, and the crystallite thickness Lc in the c-axis direction is preferably 1000 mm or more. In addition, artificial graphite can be manufactured by heat-treating graphitizable carbon at a high temperature of 2800 ° C. or higher, for example. Examples of the easily graphitizable carbon used as a raw material in this case include microspheres (mesocarbon microbeads: MCMB) having optical anisotropy obtained in the process of heating coke and pitch at around 400 ° C. .
[0027]
Graphitizable carbon is generally obtained from tar pitch obtained from petroleum or coal, and examples thereof include coke, MCMB, mesophase pitch-based carbon fiber, and pyrolytic vapor-grown carbon fiber. Moreover, organic compound baking bodies, such as a phenol resin, can also be used. Since graphitizable carbon is an inexpensive carbon material, it can be a negative electrode active material capable of constituting a lithium secondary battery excellent in cost. Among these, coke is advantageous in that it is low in cost, has a relatively large capacity, and the cycle characteristics of the secondary battery to be configured are good. In view of this point, it is desirable to use coke. When coke is used, the surface spacing d of (002) planes002Is 3.4 mm or more, and the crystallite thickness Lc in the c-axis direction is preferably 30 mm or less.
[0028]
Non-graphitizable carbon is so-called hard carbon, and is a carbon material having a structure close to an amorphous typified by glassy carbon. Generally, it is a material obtained by carbonizing a thermosetting resin, and is a material whose graphite structure does not develop even when the heat treatment temperature is increased. Non-graphitizable carbon has the advantages of high safety, relatively low cost, and good cycle characteristics of the secondary battery that is constructed. It is desirable to use it as an active material. Specifically, for example, a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body, or the like can be used. More preferably, the (002) plane spacing d002Is 3.6 mm or more, and the crystallite thickness Lc in the c-axis direction is preferably 100 mm or less.
[0029]
As the above-mentioned graphite, graphitizable carbon, non-graphitizable carbon, etc., one kind can be used alone, or two or more kinds can be mixed and used. As an aspect in which two or more kinds are mixed, for example, while ensuring safety during overcharge, the lithium that is occluded / released in the lithium nickel composite oxide that is the positive electrode active material is limited to improve cycle characteristics. For the purpose, it is possible to exemplify a case of mixing graphite and a non-graphitizable carbon material such as non-graphitizable carbon and easily graphitizable carbon. When a mixture of graphite and a carbonaceous material that has not been graphitized is used as the negative electrode active material, the mixing ratio of both may be determined by the balance between cycle characteristics and discharge capacity.
[0030]
In the case of the lithium secondary battery of the present invention using a carbon material as the negative electrode active material, the negative electrode is a mixture of the carbon material powder and a fluorine-containing resin such as polyvinylidene fluoride as a binder. An appropriate amount of N-methyl-2-pyrrolidone or the like is added as a solvent for dispersing the paste to form a paste-like negative electrode mixture. It can be formed by increasing the active material density by pressing or the like.
[0031]
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used. The non-aqueous electrolyte is a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent. Examples of the organic solvent include aprotic organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, One type of γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, or a mixture of two or more types thereof can be used. Further, as the electrolyte to be dissolved, LiI, LiClOFour, LiAsF6, LiBFFour, LiPF6, LiN (CFThreeSO2)2Lithium salts such as can be used.
[0032]
The lithium secondary battery according to the present invention, which includes the above components as main components, can have various shapes such as a cylindrical shape, a stacked shape, and a coin shape. In any case, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body. Then, the positive electrode current collector and the negative electrode current collector are connected to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting lead or the like, and this electrode body is sealed together with the non-aqueous electrolyte in a battery case. The battery is completed through such an assembly process. In addition, about the other components except a positive electrode active material, it is not restricted to the thing of an above-described aspect, The thing of the aspect generally used for the lithium secondary battery conventionally can be employ | adopted. Further, as for the other constituent elements other than the main constituent elements, those in the conventional manner generally used for lithium secondary batteries can be employed.
[0033]
【Example】
Based on the above embodiment, lithium nickel composite oxides of the present invention having various compositions are produced, and positive electrodes using these lithium nickel composite oxides as positive electrode active materials, and various carbon materials as negative electrode actives. A lithium secondary battery was prepared as an example in combination with the negative electrode used for the material. Moreover, a lithium nickel composite oxide in which any of Mg, Mn, and Al was not substituted was produced, and a lithium secondary battery using these as a positive electrode active material was prepared as a comparative example. And the charging / discharging cycle test was done with respect to the secondary battery of an Example and a comparative example, and the characteristic of each secondary battery was compared. These will be described below.
[0034]
<Example 1>
First, LiOH · H2427.38 parts by weight of O, 0.2015 parts by weight of MgO, Mn2OThree78.9 parts by weight, Al2OThree51 parts by weight of Ni (OH)2Was 787.49 parts by weight to prepare a mixture in which each was sufficiently mixed. Next, this mixture was filled in an alumina crucible and baked at a temperature of 850 ° C. for 12 hours while flowing an oxygen stream. After firing, the powdered lithium nickel composite oxide was produced by crushing. The produced lithium nickel composite oxide has a composition formula Li1.02Mg0.0005Mn0.1Al0.05Ni0.8495O2It was represented by.
[0035]
Using this lithium nickel composite oxide powder as a positive electrode active material, 10 parts by weight of acetylene black as a conductive material and 5 parts by weight of polyvinylidene fluoride as a binder are mixed with 85 parts by weight of the active material, and N-methyl- An appropriate amount of 2-pyrrolidone was added to obtain a paste-like positive electrode mixture, and this positive electrode mixture was applied to both sides of an aluminum foil current collector and dried to prepare a sheet-like positive electrode.
[0036]
For the negative electrode, graphitized mesophase spherules fired at 2800 ° C. were used as the negative electrode active material, and 90 parts by weight of this active material was mixed with 10 parts by weight of polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone was mixed. An appropriate amount of was added to obtain a paste-like negative electrode mixture, and this negative electrode mixture was applied to both sides of a copper foil current collector and dried to prepare a sheet-like material.
[0037]
The positive electrode and the negative electrode were wound through a polyethylene separator to form a cylindrical roll electrode body. This electrode body is housed in a 18650 type battery case (diameter 18 mmφ, length 65 mm), collected, and then injected with a nonaqueous electrolyte, covered with a lid, and sealed to complete a cylindrical lithium secondary battery. I let you. The non-aqueous electrolyte includes LiPF in an organic solvent in which ethylene carbonate and diethyl carbonate are mixed at a volume ratio of 1: 1.6Was dissolved at a concentration of 1M. The completed lithium secondary battery was used as the secondary battery of Example 1.
<Example 2>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed and further changing the firing temperature to 800 ° C., the composition formula Li1.02Mg0.008Mn0.1Al0.05Ni0.842O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was used as the secondary battery of Example 2.
[0038]
<Example 3>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.02Mg0.002Mn0.04Al0.08Ni0.878O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 3.
[0039]
<Example 4>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.01Mg0.003Mn0.03Al0.1Ni0.867O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in the example was fabricated. This lithium secondary battery was referred to as the secondary battery of Example 4.
[0040]
<Example 5>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.01Mg0.001Mn0.22Al0.03Ni0.749O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 5.
[0041]
<Example 6>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.01Mg0.002Mn0.22Al0.01Ni0.768O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 6.
[0042]
<Example 7>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.03Mg0.001Mn0.03Al0.01Ni0.959O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 7.
[0043]
<Example 8>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.02Mg0.003Mn0.04Al0.11Ni0.847O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 8.
[0044]
<Example 9>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.03Mg0.002Mn0.08Al0.03Ni0.888O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 9.
[0045]
<Example 10>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.02Mg0.008Mn0.1Al0.05Ni0.842O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 10.
[0046]
<Example 11>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of each raw material to be mixed, the composition formula Li1.03Mg0.07Mn0.15Al0.05Ni0.73O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 11.
[0047]
<Example 12>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of the respective raw materials to be mixed, the composition formula Li1.01Mg0.001Mn0.22Al0.21Ni0.569O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 12.
[0048]
<Example 13>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of each raw material to be mixed, the composition formula Li1.03Mg0.001Mn0.1Al0.01Ni0.889O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 13.
[0049]
<Example 14>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of each raw material to be mixed, the composition formula Li1.04Mg0.001Mn0.1Al0.22Ni0.679O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 14.
[0050]
<Example 15>
In the production of the lithium nickel composite oxide in the case of Example 1, by changing the mixing ratio of each raw material to be mixed, the composition formula Li1.05Mg0.08Mn0.13Al0.06Ni0.73O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was referred to as the secondary battery of Example 15.
[0051]
<Example 16>
In the production of the secondary battery in Example 1, another secondary battery was produced by using coke instead of the graphitized mesophase microspheres as the negative electrode active material. Other components are the same as those of the secondary battery of Example 1. This secondary battery was referred to as secondary battery of Example 16.
[0052]
<Example 17>
In the production of the secondary battery in the case of Example 1, instead of the graphitized mesophase spherules, a mixture obtained by mixing the graphitized mesophase spherules and coke in a weight ratio of 7: 3 was used as the negative electrode active material. Another secondary battery was produced. Other components are the same as those of the secondary battery of Example 1. This secondary battery was referred to as secondary battery of Example 17.
[0053]
<Example 18>
In the production of the secondary battery in the case of Example 1, instead of the graphitized mesophase spherules, a mixture in which the graphitized mesophase spherules and hard carbon were mixed at a weight ratio of 7: 3 was used as the negative electrode active material. Another secondary battery was produced. Other components are the same as those of the secondary battery of Example 1. This secondary battery was referred to as secondary battery of Example 18.
[0054]
<Example 19>
In the production of the secondary battery in Example 1, another secondary battery was produced by using hard carbon as the negative electrode active material instead of the graphitized mesophase microspheres. Other components are the same as those of the secondary battery of Example 1. This secondary battery was referred to as secondary battery of Example 19.
[0055]
<Comparative example 1>
In the production of the lithium nickel composite oxide in the case of Example 1, MgO was not mixed, but the mixing ratio of other raw materials was changed, and the composition formula Li1.01Mn0.1Al0.05Ni0.85O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was used as the secondary battery of Comparative Example 1.
[0056]
<Comparative example 2>
In the production of the lithium nickel composite oxide in the case of Example 1, Al2OThreeThe mixing ratio of other raw materials is changed without mixing the composition formula Li1.01Mg0.002Mn0.05Ni0.949O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was used as the secondary battery of Comparative Example 2.
[0057]
<Comparative Example 3>
In the production of the lithium nickel composite oxide in the case of Example 1, Mn2OThreeThe mixing ratio of the other raw materials is changed without mixing the composition formula Li1.01Mg0.002Al0.05Ni0.949O2The lithium nickel composite oxide represented by this was produced | generated. Using this lithium nickel composite oxide, a lithium secondary battery having the same configuration as in Example 1 was produced. This lithium secondary battery was used as the secondary battery of Comparative Example 2.
[0058]
<Characteristic evaluation of lithium secondary battery>
A charge / discharge cycle test was performed on each secondary battery of the above Examples and Comparative Examples, and the characteristics of the secondary battery were evaluated. The charge / discharge cycle test is performed at 2 mA / cm under an environmental temperature of 60 ° C., which is regarded as the actual operating temperature range of the battery.2A constant current charge up to a charge voltage of 4.2V followed by a constant current discharge up to a discharge voltage of 3.0V was defined as one cycle, and this was repeated 500 cycles or more.
[0059]
As a result of the test, the initial discharge capacity per unit weight of the positive electrode active material of each lithium secondary battery (discharge capacity at the first cycle), the capacity retention rate after 500 cycles (discharge capacity at the 500th cycle / initial discharge capacity × 100%) ) Is shown in Table 1 below. The composition of the lithium nickel composite oxide used as the positive electrode active material and the intensity I of the (003) plane diffraction line by powder X-ray diffraction method I003And the intensity I of the (104) plane diffraction line104Ratio I003/ I104Is also shown.
[0060]
[Table 1]
Figure 0004650774
[0061]
As is clear from Table 1, the secondary of Comparative Examples 1, 2, and 3 using a lithium nickel composite oxide that does not contain any of the three elements of Mn, Al, and Mg as a substitution element. Compared to the battery, it can be seen that the secondary battery of Example 1 including all three substitutional elements has good cycle characteristics. Therefore, the lithium secondary battery using the lithium nickel composite oxide of the present invention in which the Ni site is substituted with Mn and Al and the Li site is substituted with Mg as a positive electrode active material has cycle characteristics, particularly when used at high temperatures. It can be seen that the cycle characteristics are excellent.
[0062]
Next, the secondary batteries of Examples 1 to 15 having various compositions changed will be compared. This comparison reveals the following. The secondary batteries of Examples 9 and 10 had a relatively large battery capacity and good cycle characteristics. The secondary battery of Example 1 had a large capacity but a little inferior cycle characteristics due to a relatively small amount of Mg. The secondary batteries of Examples 3 and 4 had relatively low Mn and slightly deteriorated cycle characteristics. The secondary batteries of Examples 5 and 6 had a relatively small capacity because of a relatively large amount of Mn. In the secondary battery of Example 7, both Mn and Al were small, so the capacity was large but the cycle characteristics were slightly inferior. The secondary battery of Example 8 had relatively little Mn and a little more Al, so the cycle characteristics were slightly inferior. Since the secondary battery of Example 12 had both Mn and Al, the capacity was considerably small. Since the secondary battery of Example 13 had relatively little Al, the cycle characteristics were slightly inferior. The secondary battery of Example 14 had a relatively small capacity due to the relatively large amount of Al. The secondary battery of Example 15 had a relatively small capacity because of a relatively large amount of Mg.
[0063]
From the above results, in order to construct a practical secondary battery in which the battery capacity and the cycle characteristics are balanced, the composition formula LivMgwMnxAlyNizO2The composition ratios are 0.95 ≦ v ≦ 1.05, 0.001 ≦ w ≦ 0.05, 0.05 ≦ x ≦ 0.2, 0.02 ≦ y ≦ 0.2,. It can be confirmed that it is desirable to use a lithium nickel composite oxide in the range of 55 ≦ z ≦ 0.9 as the positive electrode active material.
[0064]
Next, from the comparison between Example 2 and Example 10 in which the firing temperature was changed, the firing temperature was 800 ° C. compared to the secondary battery of Example 10 using the lithium nickel composite acid having a firing temperature of 850 ° C. Although the secondary battery of Example 2 using a certain lithium nickel composite acid oxide has a small initial discharge capacity, it is excellent in cycle maintenance rate and has better cycle characteristics. The reason for this is considered to be that the low potential portion as the positive electrode active material is not used because the degree of development of the layered structure is low. Therefore, the firing temperature may be determined according to the characteristics of the lithium secondary battery to be manufactured in consideration of the balance between the initial capacity and the cycle characteristics.
[0065]
Further, consider the characteristics of the lithium secondary battery depending on the type of the negative electrode active material. Compared to the secondary battery of Example 1 in which only the graphitized mesophase spheres were used as the negative electrode active material, Examples 16 to 18 in which a material having a low graphitization degree such as coke or hard carbon was used alone or in combination. Although the secondary battery is inferior in terms of initial discharge capacity, it has an excellent capacity maintenance rate. This is a result that well expresses that the material having a low degree of graphitization has an action of suppressing the Li released from the positive electrode from becoming an excessive state. It can be confirmed that the carbon material used for the negative electrode active material may be determined according to the characteristics of the lithium secondary battery to be manufactured in consideration of the balance between the initial capacity and the cycle characteristics.
[0066]
【The invention's effect】
The lithium nickel composite oxide of the present invention has a structure in which the Ni site is replaced with Mn and Al and the Li site is replaced with Mg in the layered rock salt structure lithium nickel composite oxide. The lithium nickel composite oxide of the present invention having such a structure is inexpensive, has a large discharge capacity, and can constitute a lithium secondary battery with a small decrease in discharge capacity even by repeated charge and discharge cycles. It becomes a positive electrode active material. Therefore, the lithium secondary battery of the present invention using this lithium nickel composite oxide as the positive electrode active material is inexpensive, has a large discharge capacity, and has a good cycle characteristic, particularly a cycle characteristic when used at high temperatures. .

Claims (5)

組成式LivMgwMnxAlyNiz2(0.9≦v≦1.3、0.0001≦w≦0.1、0.02≦x≦0.3、0.01≦y≦0.3、0.4≦z≦0.95、かつ、w≦x)で表され、(003)面の回折線の強度と(104)面の回折線の強度との強度比が1.0以上2.0以下となる層状岩塩構造を有することを特徴とするリチウム二次電池正極活物質用リチウムニッケル複合酸化物。Composition formula Li v Mg w Mn x A y N i z O 2 (0.9 ≦ v ≦ 1.3, 0.0001 ≦ w ≦ 0.1, 0.02 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0.4 ≦ z ≦ 0.95, and w ≦ x), and the intensity ratio between the intensity of the (003) plane diffraction line and the intensity of the (104) plane diffraction line is 1 a lithium secondary battery positive electrode active material for a lithium nickel composite oxide, characterized by having a layered rock salt structure comprising a 2.0 to 2.0. 前記組成式中、0.95≦v≦1.05、0.001≦w≦0.05、0.05≦x≦0.2、0.02≦y≦0.2、0.55≦z≦0.9となる請求項1に記載のリチウム二次電池正極活物質用リチウムニッケル複合酸化物。  In the composition formula, 0.95 ≦ v ≦ 1.05, 0.001 ≦ w ≦ 0.05, 0.05 ≦ x ≦ 0.2, 0.02 ≦ y ≦ 0.2, 0.55 ≦ z. The lithium nickel composite oxide for a lithium secondary battery positive electrode active material according to claim 1, wherein ≦ 0.9. 前記wの値は、0.005≦w≦0.02である請求項2に記載のリチウム二次電池正極活物質用リチウムニッケル複合酸化物。  The lithium nickel composite oxide for a lithium secondary battery positive electrode active material according to claim 2, wherein the value of w is 0.005 ≦ w ≦ 0.02. 組成式LivMgwMnxAlyNiz2(0.9≦v≦1.3、0.0001≦w≦0.1、0.02≦x≦0.3、0.01≦y≦0.3、0.4≦z≦0.95、かつ、w≦x)で表され、(003)面の回折線の強度と(104)面の回折線の強度との強度比が1.0以上2.0以下となる層状岩塩構造を有するリチウムニッケル複合酸化物を正極活物質に用いた正極と、
リチウムを吸蔵・放出可能な炭素材料を負極活物質に用いた負極とを含んでなることを特徴とするリチウム二次電池。
Composition formula Li v Mg w Mn x A y N i z O 2 (0.9 ≦ v ≦ 1.3, 0.0001 ≦ w ≦ 0.1, 0.02 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0.3, 0.4 ≦ z ≦ 0.95, and w ≦ x), and the intensity ratio between the intensity of the (003) plane diffraction line and the intensity of the (104) plane diffraction line is 1 A positive electrode using a lithium nickel composite oxide having a layered rock salt structure of 0.0 or more and 2.0 or less as a positive electrode active material;
Lithium secondary battery, characterized by comprising a negative electrode employing a lithium absorbing and desorbing carbon material capable anode active material.
前記負極活物質には、
(002)面の面間隔が3.4Å以下であり、c軸方向の結晶子厚みが1000Å以上である黒鉛と、
(002)面の面間隔が3.4Å以上であり、c軸方向の結晶子厚みが30Å以下であるコークスを含む易黒鉛化性炭素と、
(002)面の面間隔が3.6Å以上であり、c軸方向の結晶子厚みが100Å以下である難黒鉛化性炭素と、
のうちで1種のものを単独で用いるか、または2種以上を混合して用いる請求項4に記載のリチウム二次電池。
The negative electrode active material includes
(002) A plane spacing of 3.4 mm or less and graphite having a c-axis direction crystallite thickness of 1000 mm or more ;
A graphitizable carbon containing coke having a (002) plane spacing of 3.4 mm or more and a c-axis direction crystallite thickness of 30 mm or less ;
Non-graphitizable carbon having a (002) plane spacing of 3.6 mm or more and a c-axis direction crystallite thickness of 100 mm or less ;
The lithium secondary battery according to claim 4 , wherein one of them is used alone, or two or more of them are used in combination.
JP16010999A 1999-06-07 1999-06-07 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP4650774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16010999A JP4650774B2 (en) 1999-06-07 1999-06-07 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16010999A JP4650774B2 (en) 1999-06-07 1999-06-07 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2000348724A JP2000348724A (en) 2000-12-15
JP4650774B2 true JP4650774B2 (en) 2011-03-16

Family

ID=15708058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16010999A Expired - Fee Related JP4650774B2 (en) 1999-06-07 1999-06-07 Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4650774B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899251B2 (en) * 2001-04-13 2012-03-21 パナソニック株式会社 Organic electrolyte battery
JP3873717B2 (en) * 2001-11-09 2007-01-24 ソニー株式会社 Positive electrode material and battery using the same
KR100430408B1 (en) * 2001-12-10 2004-05-04 학교법인 한양학원 Layered manganese cathode active materials for lithium secondary batteries, method for preparing the same for lithium secondary batteries, and lithium secondary batteries comprising the same
JP4404564B2 (en) * 2003-03-25 2010-01-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery, positive electrode active material
JP2007035356A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
CN102356487A (en) * 2009-06-17 2012-02-15 日立麦克赛尔能源株式会社 Electrode for electrochemical elements and electrochemical element using same
JP2011023335A (en) * 2009-06-18 2011-02-03 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
KR101683204B1 (en) 2010-06-13 2016-12-07 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5466732B2 (en) 2012-06-21 2014-04-09 月島機械株式会社 Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles
JP6968844B2 (en) * 2018-03-15 2021-11-17 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particles for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
CN113307311A (en) * 2021-04-08 2021-08-27 桂林理工大学 Mg2+Preparation method for improving electrochemical performance of lithium nickelate positive electrode material by double doping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298062A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298062A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
JPH10241691A (en) * 1996-12-24 1998-09-11 Hitachi Ltd Battery

Also Published As

Publication number Publication date
JP2000348724A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
KR102183171B1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP4186507B2 (en) Carbon-containing lithium iron composite oxide for positive electrode active material of lithium secondary battery and method for producing the same
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN105280880B (en) Positive electrode for nonaqueous electrolyte secondary battery, and system thereof
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP5271975B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2011117992A1 (en) Active material for battery, and battery
JP2001126733A (en) Nonaqueous electrolytic material
JP3624578B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP4752085B2 (en) Negative electrode for lithium secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
JPH0785888A (en) Lithium secondary battery
JP2000353525A (en) Nonaqueous electrolyte secondary battery
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP4354723B2 (en) Method for producing graphite particles
JP2007031233A (en) Method for producing graphite material
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP2000260479A (en) Lithium ion secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP2000268878A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees