JP2000012029A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000012029A
JP2000012029A JP10177506A JP17750698A JP2000012029A JP 2000012029 A JP2000012029 A JP 2000012029A JP 10177506 A JP10177506 A JP 10177506A JP 17750698 A JP17750698 A JP 17750698A JP 2000012029 A JP2000012029 A JP 2000012029A
Authority
JP
Japan
Prior art keywords
particle size
manganese
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10177506A
Other languages
Japanese (ja)
Inventor
Yasushi Uraoka
靖 浦岡
Kenji Nakai
賢治 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10177506A priority Critical patent/JP2000012029A/en
Publication of JP2000012029A publication Critical patent/JP2000012029A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the elution of manganese and lengthen the life of a nonaqueous electrolyte secondary battery using lithium manganate (LiMn2O4) as the positive active material. SOLUTION: In lithium managanate, an average particle size (D) is set so that 30<=D<=35 μm, 10% particle size (D10) is set as 10<=D10<=20 μm, 50% particle size (D50) is set as 25<=D50<=32 μm, 90% particle size (D90) is set made as 55<=D90<=70 μm, and part of manganese is substituted with a transition metal or an alkali earth metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質として
マンガン酸リチウムを用いた非水電解質二次電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using lithium manganate as a positive electrode active material.

【0002】[0002]

【従来の技術】電子技術の進歩により小型、ポータブル
化が進み、電源として高エネルギー密度の電池が望まれ
ている。従来の二次電池として鉛蓄電池、ニッケル−カ
ドミウム電池、ニッケル−水素電池などが挙げられる
が、エネルギー密度の点においては、これらの電池では
未だ不十分である。そこで、これらの電池に替わるもの
として、高エネルギー密度の非水電解質二次電池(以下
リチウム二次電池と記す)が開発され急速に普及してい
る。現在、4V級リチウム二次電池として、正極活物質
にLiCoO2を用いた電池が実用化されており、Li
NiO2を正極活物質として実用化する試みも進められ
ている。しかしながら、CoやNiは資源量が乏しく高
価であるという問題点がある。
2. Description of the Related Art With advances in electronic technology, miniaturization and portability have progressed, and high energy density batteries have been demanded as power sources. Conventional secondary batteries include a lead storage battery, a nickel-cadmium battery, and a nickel-hydrogen battery, but these batteries are still insufficient in terms of energy density. Therefore, as an alternative to these batteries, non-aqueous electrolyte secondary batteries with high energy density (hereinafter referred to as lithium secondary batteries) have been developed and rapidly spread. At present, a battery using LiCoO 2 as a positive electrode active material has been put into practical use as a 4 V class lithium secondary battery.
Attempts have been made to put NiO 2 into practical use as a positive electrode active material. However, Co and Ni have a problem in that the amount of resources is scarce and expensive.

【0003】これらに対して資源量が豊富であり、安価
であるマンガンを使用した、スピネル構造を有するマン
ガン酸リチウム(LiMn24)の使用が提案されてい
る。このLiMn24の放電電位は、4V付近と2.8
V付近の2段のプラトーを示すという特徴がある。この
うちで4V付近の領域を使用し、4.5〜3.0Vまで
の電位範囲で充放電を繰り返す技術の開発が進められて
いる。しかしながら、リチウムとマンガンの複合酸化物
であるLiMn24を正極に用いた電池は、充放電サイ
クルにともない、正極活物質中のマンガンが電解液中に
溶出し、容量が低下するという問題点があるため、一部
の用途を除いて実用化には至っていないのが現状であ
る。
On the other hand, use of lithium manganate (LiMn 2 O 4 ) having a spinel structure and using manganese, which has abundant resources and is inexpensive, has been proposed. The discharge potential of this LiMn 2 O 4 is around 4 V and 2.8.
It has the characteristic of showing a two-step plateau near V. Among them, a technique of using a region near 4 V and repeating charging and discharging in a potential range of 4.5 to 3.0 V is being developed. However, a battery using LiMn 2 O 4 , which is a composite oxide of lithium and manganese, for the positive electrode has a problem that manganese in the positive electrode active material is eluted into the electrolytic solution during the charge / discharge cycle and the capacity is reduced. At present, it has not been put to practical use except for some uses.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上記正極活物質として用いているマンガン
酸リチウムから、電解液へのマンガンイオンの溶出を抑
制することによって長寿命な非水電解質二次電池を提供
することである。
The problem to be solved by the present invention is to suppress the elution of manganese ions from the lithium manganate used as the above-mentioned positive electrode active material into the electrolytic solution to provide a long-life non-aqueous solution. An object of the present invention is to provide an electrolyte secondary battery.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、第一の発明ではリチウムを挿入、放出が可能な正極
活物質を用いた非水電解質二次電池において、前記正極
活物質として用いるスピネル構造を有したマンガン酸リ
チウム(LiMn24)の平均粒子径(D)が30≦D
≦35μmであり、10%粒子径(D10)が10≦D10
≦20μm、50%粒子径(D50)が25≦D50≦3
2μm、90%粒子径(D90)が55≦D90≦70μm
であることを特徴とし、第二の発明では前記マンガン酸
リチウムのマンガンの一部をV、Cr、Fe、Co、N
i、Cu、Moからなる群から選ばれた少なくとも1種
類の元素で置換したことを特徴とし、第三の発明では前
記マンガン酸リチウムのマンガンの一部をMg、Ca、
Sr、Ba、Mgからなる群から選ばれた少なくとも1
種類の元素で置換したことを特徴としている。
According to a first aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery using a positive electrode active material capable of inserting and releasing lithium, as the positive electrode active material. Lithium manganate (LiMn 2 O 4 ) having a spinel structure has an average particle diameter (D) of 30 ≦ D
≦ 35 μm and 10% particle diameter (D10) is 10 ≦ D10
≦ 20 μm, 50% particle size (D50) 25 ≦ D50 ≦ 3
2 μm, 90% particle size (D90) is 55 ≦ D90 ≦ 70 μm
In the second invention, a part of the manganese of the lithium manganate is V, Cr, Fe, Co, N
wherein at least one element selected from the group consisting of i, Cu, and Mo is substituted, and in the third invention, a part of manganese of the lithium manganate is Mg, Ca,
At least one selected from the group consisting of Sr, Ba, Mg
It is characterized by having been replaced by various kinds of elements.

【0006】[0006]

【発明の実施の形態】筆者らは、正極活物質と電解液と
の接触面積を低減させることによって、マンガンの溶出
量が抑制できること及び正極活物質の平均粒子径に最適
範囲があることを見出したものである。なお、特開平8
−17471号公報によると、正極活物質の比表面積を
0.5m2/g以下にすることにより、放電容量が増加
する効果が報告されている。これに対して、本発明にお
いて、正極活物質のうちで、あらかじめ決められた粒子
径以下の微粉末を取り除くことによって、正極活物質の
電解液との接触面積を低減させることができ、放電容量
やサイクル寿命特性を向上できることを見出した。ま
た、マンガン酸リチウムのマンガンの一部を、遷移金属
やアルカリ土類金属元素に置換することにより充放電特
性の劣化をさらに抑制できることを見出したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that the amount of manganese eluted can be suppressed by reducing the contact area between the positive electrode active material and the electrolytic solution, and that the average particle size of the positive electrode active material has an optimum range. It is a thing. Note that Japanese Patent Application Laid-Open
According to Japanese Patent Publication No. -17471, an effect of increasing the discharge capacity by setting the specific surface area of the positive electrode active material to 0.5 m 2 / g or less is reported. On the other hand, in the present invention, the contact area between the positive electrode active material and the electrolyte can be reduced by removing fine powder having a predetermined particle size or less from the positive electrode active material, and the discharge capacity can be reduced. And improved cycle life characteristics. In addition, they have found that by substituting a part of manganese of lithium manganate with a transition metal or an alkaline earth metal element, deterioration of charge / discharge characteristics can be further suppressed.

【0007】1.正極 後述する粒子径のリチウムマンガン複合酸化物、導電助
剤としては平均粒径3μmの炭素粉末、結着剤としてポ
リフッ化ビニリデン(以下、PVdFと略す)とを8
5:9:6の重量%で混合する。そこに、N−メチル−
2−ピロリドンを投入混合して、スラリー状の溶液を作
製する。厚み20μmのアルミニウム箔の両面にこの混
合溶液を塗布し、溶剤を乾燥した後、ローラプレス機に
て圧延して作製し、54mm幅で長さが450mmに切
断して短細状の正極を作製した。
[0007] 1. Positive electrode A lithium manganese composite oxide having a particle diameter to be described later, carbon powder having an average particle diameter of 3 μm as a conductive additive, and polyvinylidene fluoride (hereinafter abbreviated as PVdF) as a binder.
Mix at 5: 9: 6 wt%. There, N-methyl-
2-Pyrrolidone is charged and mixed to prepare a slurry-like solution. This mixed solution was applied to both sides of an aluminum foil having a thickness of 20 μm, and after drying the solvent, it was rolled by a roller press to produce a short positive electrode by cutting it to a width of 54 mm and a length of 450 mm. did.

【0008】2.負極 負極活物質としては平均粒径20μmの炭素材料とポリ
フッ化ビニリデン(PVdF)の結着剤を92:8の重
量%で混合し、N−メチル−2−ピロリドンを投入混合
して、スラリー状の溶液を作製する。厚み10μmの銅
箔の両面にこのスラリーを塗布し、溶剤を乾燥した後、
ローラプレス機にて圧延して、負極合剤電極を作製し、
その後56mm幅で、長さが490mmに切断して短冊
状の負極を作製した。本発明で使用できる負極活物質と
してはピッチコークス、石油コークス、黒鉛、炭素繊
維、活性炭等、もしくはこれらの混合物などが挙げられ
る。
[0008] 2. Negative Electrode As a negative electrode active material, a carbon material having an average particle diameter of 20 μm and a binder of polyvinylidene fluoride (PVdF) were mixed at a weight ratio of 92: 8, and N-methyl-2-pyrrolidone was added and mixed to form a slurry. To prepare a solution. This slurry was applied to both sides of a copper foil having a thickness of 10 μm, and after drying the solvent,
Rolled with a roller press to produce a negative electrode mixture electrode,
Thereafter, the strip was cut into a width of 56 mm and a length of 490 mm to prepare a strip-shaped negative electrode. Examples of the negative electrode active material that can be used in the present invention include pitch coke, petroleum coke, graphite, carbon fiber, activated carbon, and the like, and mixtures thereof.

【0009】3.電池 上記した方法で作製した正極、負極とを厚さ40μm、
幅58mmのポリエチレン微多孔膜からなるセパレータ
を介して捲回し、スパイラル状の捲回群を作製する。こ
の捲回群を電池缶に挿入し、予め負極集電体の銅箔に溶
接しておいたニッケルタブ端子を電池缶底に溶接する。
次にエチレンカーボネートとジメチルカーボネートを体
積比で1:2に混合した溶液にLiPF6を1mol/
lの濃度で溶解した電解液を電池容器に5ml注入し
た。次に、予め正極集電体のアルミニウム箔に溶接した
アルミニウムタブ端子を蓋に溶接して、蓋を絶縁性のガ
スケットを介して電池缶の上部に配置させ、この部分を
かしめて密閉し、直径18mm、高さ65mmの円筒型
電池を作製した。なお、電解液に用いられる有機溶媒と
しては、プロピレンカーボネイト、エチレンカーボネイ
ト、1,2―ジメトキシエタン、1,2―ジエトキシエ
タン、ジエチルカーボネイト、γ−ブチルラクトン、テ
トラヒドロフラン、ジエチルエーテル、スルホラン、ア
セトニトリル等の単独もしくは二種類以上の混合溶媒が
使用でき、電解質もLiClO4、LiPF6、LiPF
4、LiBF4、LiCl、LiBr、CH3SO3Li、
Li(SO2CF32N、Li(SO2252N、L
iAsF6などが使用できる。
3. Battery The positive electrode and the negative electrode produced by the above-described method were 40 μm thick,
It is wound through a separator made of a microporous polyethylene film having a width of 58 mm to form a spiral wound group. The wound group is inserted into a battery can, and a nickel tab terminal previously welded to the copper foil of the negative electrode current collector is welded to the bottom of the battery can.
Next, 1 mol / liter of LiPF 6 was added to a solution obtained by mixing ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2.
5 ml of the electrolytic solution dissolved at a concentration of 1 was injected into the battery container. Next, an aluminum tab terminal previously welded to the aluminum foil of the positive electrode current collector was welded to the lid, and the lid was placed on the top of the battery can via an insulating gasket. A cylindrical battery having a size of 18 mm and a height of 65 mm was produced. In addition, as an organic solvent used for the electrolytic solution, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl carbonate, γ-butyl lactone, tetrahydrofuran, diethyl ether, sulfolane, acetonitrile and the like Or a mixed solvent of two or more of these can be used, and the electrolyte is LiClO 4 , LiPF 6 , LiPF
4, LiBF 4, LiCl, LiBr , CH 3 SO 3 Li,
Li (SO 2 CF 3 ) 2 N, Li (SO 2 C 2 F 5 ) 2 N, L
iAsF 6 or the like can be used.

【0010】4.放置試験及びサイクル寿命試験 作製した電池を25℃において、充放電電流を300m
Aとし、充電終止電圧4.3V、放電終止電圧3.0V
の条件下で充放電試験を5サイクル行う。その後、充電
状態の電池を50℃の雰囲気中に3日間保存する。そし
て、電池を分解し電解液中へのマンガンの溶出量をIC
Pで測定した。また25℃において充放電電流を300
mAとし、充電終止電圧4.3V、放電終止電圧3.0
Vの条件下で充放電サイクル試験を行い、10サイクル
目の放電容量と、300サイクル時点での放電容量の比
率(以下、容量維持率と呼ぶ)を測定した。
[0010] 4. Leaving test and cycle life test The prepared battery was charged at 25 ° C at a charge / discharge current of 300 m.
A, charge end voltage 4.3V, discharge end voltage 3.0V
The charge / discharge test is performed for 5 cycles under the conditions described above. Thereafter, the charged battery is stored in an atmosphere at 50 ° C. for 3 days. Then, disassemble the battery and measure the amount of manganese eluted in the electrolyte by IC
Measured at P. At 25 ° C., the charge / discharge current is 300
mA, charge end voltage 4.3 V, discharge end voltage 3.0
A charge / discharge cycle test was performed under the condition of V, and the ratio of the discharge capacity at the 10th cycle to the discharge capacity at the 300th cycle (hereinafter, referred to as capacity retention ratio) was measured.

【0011】[0011]

【実施例】以下に本発明の実施例を詳細に説明する。但
し、本発明はこれらに限定されるものではない。市販の
マンガン酸リチウムを分級して、表1に示すような粒子
径の異なる5種類の粉末(a〜e)を作製した。なお、
粉末の粒子径は、レーザ回折式の粒度分布測定装置で測
定した。そして、測定条件として、平均粒子径(D)、
10%粒子径(以下、D10と呼ぶ)、50%粒子径(以
下、D50と呼ぶ)及び90%粒子径(以下、D90と呼
ぶ)で比較した。これらの粒子径の異なる粉末を正極用
活物質に使用して、電池を作製し電解液中へのマンガン
の溶出量をICPで測定した結果を図1に示す。図1よ
り、平均粒径の小さいa及びbでは電解液中へのマンガ
ンの溶出量が多いものの、平均粒子径が30〜35μm
であるc及びdにおいては、マンガンの溶出が減少して
いることがわかる。平均粒径の大きいeにおいても、c
およびdと同様にマンガン溶出が抑制されている。しか
しながら、平均粒径の大きいeにおいては、前記したス
ラリが塗着しにくいという問題点が認められた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail. However, the present invention is not limited to these. Commercially available lithium manganate was classified to produce five types of powders (a to e) having different particle diameters as shown in Table 1. In addition,
The particle size of the powder was measured with a laser diffraction type particle size distribution analyzer. Then, as measurement conditions, an average particle diameter (D),
The comparison was made between a 10% particle size (hereinafter, referred to as D10), a 50% particle size (hereinafter, referred to as D50), and a 90% particle size (hereinafter, referred to as D90). Using these powders having different particle diameters as the active material for the positive electrode, a battery was prepared, and the amount of manganese eluted into the electrolyte was measured by ICP. FIG. 1 shows the result. As shown in FIG. 1, in the cases of a and b having a small average particle size, although the amount of manganese eluted into the electrolytic solution is large, the average particle size is 30 to 35 μm
It can be seen that in the cases of c and d, the elution of manganese is reduced. Even in e having a large average particle size, c
Manganese elution is suppressed as in the cases of (a) and (d). However, in the case of e having a large average particle size, there was a problem that the above-mentioned slurry was difficult to apply.

【0012】[0012]

【表1】 [Table 1]

【0013】粒子径の異なるLiMn24(a〜e)を
用いた電池の、容量維持率を図2に示す。図2より、平
均粒径が小さいa、bでは、初期の放電容量は小さく、
充放電サイクルにともなう容量低下率も大きくなり、3
00サイクル時点では初期容量の65%以下となる。平
均粒子径が30〜35μmであるcおよびdにおいて
は、充放電サイクルにともなう容量低下率が小さく、3
00サイクル時点で初期容量の85%以上を維持してい
る。平均粒径が大きいeは、初期の放電容量は増加する
が、充放電サイクルにともなう容量低下率がさらに大き
くなり、300サイクル時点で初期容量の約80%以下
となる。
FIG. 2 shows the capacity retention ratio of batteries using LiMn 2 O 4 (a to e) having different particle diameters. From FIG. 2, for a and b having small average particle diameters, the initial discharge capacity is small,
The rate of capacity decrease accompanying the charge / discharge cycle also increases,
At the time of the 00 cycle, it is 65% or less of the initial capacity. In the cases of c and d having an average particle diameter of 30 to 35 μm, the rate of decrease in capacity due to charge / discharge cycles is small, and
At the time of the 00 cycle, 85% or more of the initial capacity is maintained. When e has a large average particle size, the initial discharge capacity increases, but the rate of capacity decrease accompanying the charge / discharge cycle further increases, and becomes about 80% or less of the initial capacity at 300 cycles.

【0014】正極活物質としてスピネル構造を有したマ
ンガン酸リチウム(LiMn24)を用いた実施例を示
したが、マンガンの一部を他の遷移金属やアルカリ土類
金属元素で置換した場合においても同様な効果が認めら
れた。また、負極として、リチウム金属、リチウム合金
及びリチウムを吸蔵、放出できる他の材料であってもよ
い。また、電解液としてエチレンカーボネートとジメチ
ルカーボネートとを体積比で1:2に混合したものに、
六フッ化燐酸リチウムを1.0mol/dm3で溶解し
たものを用いたが、前記したような他の溶媒にリチウム
塩を溶解した電解液でも同様である。また、本実施例で
は円筒型電池を例として記載しているが角型、コイン型
等、種々の形状の電池に適用できる。
Although an example using lithium manganate (LiMn 2 O 4 ) having a spinel structure as the positive electrode active material has been described, a case where a part of manganese is replaced by another transition metal or an alkaline earth metal element is shown. A similar effect was also observed. Further, as the negative electrode, a lithium metal, a lithium alloy, and another material capable of inserting and extracting lithium may be used. Also, a mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 as an electrolytic solution,
Although a solution in which lithium hexafluorophosphate was dissolved at 1.0 mol / dm3 was used, the same applies to an electrolytic solution in which a lithium salt was dissolved in another solvent as described above. In this embodiment, a cylindrical battery is described as an example. However, the present invention can be applied to batteries having various shapes such as a square battery and a coin battery.

【0015】[0015]

【発明の効果】本発明の非水電解質二次電池によれば、
マンガン酸リチウムの細かな粉末の部分をカットした
り、マンガンの一部をV、Cr、Fe、Co、Ni、C
u、Moなどの遷移金属やMg、Ca、Sr、Ba、M
gなどのアルカリ土類金属元素で置換することによっ
て、電解液へのマンガンの溶出が抑制され、充放電特性
が優れた電池が得られる。
According to the non-aqueous electrolyte secondary battery of the present invention,
Fine powder of lithium manganate is cut, and part of manganese is removed from V, Cr, Fe, Co, Ni, C
transition metals such as u, Mo, Mg, Ca, Sr, Ba, M
By substituting with an alkaline earth metal element such as g, elution of manganese into the electrolytic solution is suppressed, and a battery having excellent charge / discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極活物質の平均粒径とマンガンの溶出量の関
係。
FIG. 1 shows the relationship between the average particle size of a positive electrode active material and the amount of manganese eluted.

【図2】正極活物質の平均粒径に対する放電容量の関
係。
FIG. 2 shows the relationship between the average particle size of the positive electrode active material and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA00 AA04 BB05 BC06 BD02 BD03 5H014 AA02 EE10 HH00 HH01 5H029 AJ05 AJ07 AK03 AL06 AL07 AL08 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 DJ17 HJ01 HJ05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA00 AA04 BB05 BC06 BD02 BD03 5H014 AA02 EE10 HH00 HH01 5H029 AJ05 AJ07 AK03 AL06 AL07 AL08 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ03 DJ17 HJ01 HJ05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを挿入、放出が可能な正極活物質
を用いた非水電解質二次電池において、前記正極活物質
として用いるスピネル構造を有するマンガン酸リチウム
(LiMn24)の平均粒子径(D)が30≦D≦35
μmであり、10%粒子径(D10)が10≦D10≦20
μm、50%粒子径(D50)が25≦D50≦32μm、
90%粒子径(D90)が55≦D90≦70μmであるこ
とを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery using a positive electrode active material capable of inserting and releasing lithium, an average particle size of lithium manganate (LiMn 2 O 4 ) having a spinel structure used as the positive electrode active material. (D) is 30 ≦ D ≦ 35
μm, and the 10% particle diameter (D10) is 10 ≦ D10 ≦ 20.
μm, 50% particle diameter (D50) is 25 ≦ D50 ≦ 32 μm,
A nonaqueous electrolyte secondary battery having a 90% particle size (D90) of 55 ≦ D90 ≦ 70 μm.
【請求項2】前記マンガン酸リチウムのマンガンの一部
をV、Cr、Fe、Co、Ni、Cu、Moからなる群
から選ばれた少なくとも1種類の元素で置換した請求項
1記載の非水電解質二次電池。
2. The non-aqueous solution according to claim 1, wherein a part of manganese of said lithium manganate is replaced with at least one element selected from the group consisting of V, Cr, Fe, Co, Ni, Cu and Mo. Electrolyte secondary battery.
【請求項3】前記マンガン酸リチウムのマンガンの一部
をMg、Ca、Sr、Ba、Mgからなる群から選ばれ
た少なくとも1種類の元素で置換した請求項1又は請求
項2記載の非水電解質二次電池。
3. The non-aqueous solution according to claim 1, wherein a part of manganese of said lithium manganate is substituted with at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Mg. Electrolyte secondary battery.
JP10177506A 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery Pending JP2000012029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177506A JP2000012029A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177506A JP2000012029A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000012029A true JP2000012029A (en) 2000-01-14

Family

ID=16032107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177506A Pending JP2000012029A (en) 1998-06-24 1998-06-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000012029A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211747A2 (en) * 2000-12-04 2002-06-05 Shin-Kobe Electric Machinery Co. Ltd Non-aqueous electrolytic solution secondary battery
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP2006004724A (en) * 2004-06-17 2006-01-05 Nikko Materials Co Ltd Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
JP2007109477A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive electrode active material
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
KR101411226B1 (en) 2012-04-03 2014-06-23 삼성정밀화학 주식회사 Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
CN110734099A (en) * 2016-02-29 2020-01-31 三井金属矿业株式会社 Spinel type lithium manganese containing composite oxide
CN114094092A (en) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 Positive electrode active material, lithium ion battery positive plate and lithium ion battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211747A2 (en) * 2000-12-04 2002-06-05 Shin-Kobe Electric Machinery Co. Ltd Non-aqueous electrolytic solution secondary battery
EP1211747A3 (en) * 2000-12-04 2006-04-12 Shin-Kobe Electric Machinery Co. Ltd Non-aqueous electrolytic solution secondary battery
EP1650819A1 (en) * 2000-12-04 2006-04-26 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
US8012626B2 (en) 2003-12-31 2011-09-06 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP2006004724A (en) * 2004-06-17 2006-01-05 Nikko Materials Co Ltd Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
JP2007109477A (en) * 2005-10-12 2007-04-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its positive electrode active material
KR101411226B1 (en) 2012-04-03 2014-06-23 삼성정밀화학 주식회사 Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
CN110734099A (en) * 2016-02-29 2020-01-31 三井金属矿业株式会社 Spinel type lithium manganese containing composite oxide
CN114094092A (en) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 Positive electrode active material, lithium ion battery positive plate and lithium ion battery
CN114094092B (en) * 2021-11-09 2023-09-08 远景动力技术(江苏)有限公司 Positive electrode active material, positive plate of lithium ion battery and lithium ion battery

Similar Documents

Publication Publication Date Title
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP2003036889A (en) Lithium secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP2008218062A (en) Non-aqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH09120837A (en) Nonaqueous electrolyte secondary battery
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2002110251A (en) Lithium ion secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery