JP5110818B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP5110818B2
JP5110818B2 JP2006207451A JP2006207451A JP5110818B2 JP 5110818 B2 JP5110818 B2 JP 5110818B2 JP 2006207451 A JP2006207451 A JP 2006207451A JP 2006207451 A JP2006207451 A JP 2006207451A JP 5110818 B2 JP5110818 B2 JP 5110818B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
electrode active
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006207451A
Other languages
Japanese (ja)
Other versions
JP2007280918A (en
Inventor
博之 南
毅 小笠原
直希 井町
篤史 貝塚
泰憲 馬場
佳典 喜田
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006207451A priority Critical patent/JP5110818B2/en
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to PCT/JP2007/055446 priority patent/WO2007108426A1/en
Priority to CN2007800177851A priority patent/CN101449417B/en
Priority to PCT/JP2007/055444 priority patent/WO2007108424A1/en
Priority to KR1020087025293A priority patent/KR20090007710A/en
Priority to US12/293,399 priority patent/US20090136848A1/en
Priority to CN2007800177546A priority patent/CN101443948B/en
Priority to KR1020087025117A priority patent/KR20080110817A/en
Priority to US12/293,388 priority patent/US9077024B2/en
Publication of JP2007280918A publication Critical patent/JP2007280918A/en
Application granted granted Critical
Publication of JP5110818B2 publication Critical patent/JP5110818B2/en
Priority to US14/729,401 priority patent/US9761880B2/en
Priority to US15/657,893 priority patent/US10388960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池或いはポリマー電池等の非水電解質電池の改良に関し、特に高温におけるサイクル特性及び保存特性に優れ、高容量を特徴とする電池構成においても高い信頼性を発揮できる電池構造に関するものである。   The present invention relates to an improvement in a non-aqueous electrolyte battery such as a lithium ion battery or a polymer battery, and more particularly to a battery structure that is excellent in cycle characteristics and storage characteristics at high temperatures and that can exhibit high reliability even in a battery configuration characterized by high capacity. Is.

近年、携帯電話、ノートパソコン、PDA等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行うリチウムイオン電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。   In recent years, mobile information terminals such as mobile phones, notebook personal computers, and PDAs have been rapidly reduced in size and weight, and batteries as drive power sources are required to have higher capacities. Lithium ion batteries that charge and discharge when lithium ions move between the positive and negative electrodes along with charge and discharge have high energy density and high capacity. Widely used.

ここで、上記移動情報端末は、動画再生機能、ゲーム機能といった機能の充実に伴って、更に消費電力が高まる傾向にあり、その駆動電源であるリチウムイオン電池には長時間再生や出力改善等を目的として、更なる高容量化や高性能化が強く望まれるところである。   Here, the mobile information terminal has a tendency to further increase the power consumption with enhancement of functions such as a video playback function and a game function. As a purpose, further increase in capacity and performance are strongly desired.

こうした背景の中で、リチウムイオン電池の高容量化を図るために、発電要素に関与しない電池缶、セパレータ、正負両極の集電体(アルミ箔や銅箔)の薄型化(例えば、下記特許文献1参照)や、活物質の高充填化(電極充填密度の向上)を中心に研究、開発がなされてきたが、これらの対策もほぼ限界に近づきつつあり、今後の高容量化対策には材料の変更等の本質的な改良が必要となってきている。しかしながら、正負両活物質の変更による高容量化において、負極活物質ではSiやSn等の合金系負極が期待されるものの、正極活物質では、現状のコバルト酸リチウムを超える容量を有し、且つ、性能も同等以上である材料は殆ど見当たらない。   Under these circumstances, in order to increase the capacity of lithium ion batteries, battery cans, separators, and positive and negative current collectors (aluminum foil and copper foil) that are not involved in power generation elements are made thinner (for example, the following patent documents) 1) and higher packing of active materials (improvement of electrode packing density) have been researched and developed, but these measures are almost approaching the limit. Essential improvements such as changes are required. However, in the increase in capacity by changing both the positive and negative active materials, although the negative electrode active material is expected to be an alloy-based negative electrode such as Si or Sn, the positive electrode active material has a capacity exceeding the current lithium cobalt oxide, and There is almost no material with the same or better performance.

このような状況下、我々はコバルト酸リチウムを正極活物質として用いた電池の充電終止電圧を、現状の4.2Vから更に上の領域に利用深度(充電深度)を高めることによって高容量化が可能な電池を開発した。このように利用深度を高めることによって高容量化できる理由を簡単に説明すると、コバルト酸リチウムの理論容量は約273mAh/gであるが、4.2V仕様の電池(充電終止電圧が4.2Vの電池)ではこのうち160mAh/g程度しか利用しておらず、4.4Vまで充電終止電圧を引き上げることにより約200mAh/gまで使用することが可能であるという理由による。このように、4.4Vまで充電終止電圧を引き上げることにより、電池全体として10%程度の高容量化を達成できる。   Under these circumstances, we have increased the capacity of the battery using lithium cobaltate as the positive electrode active material by increasing the depth of use (charging depth) in the region above the current 4.2 V. A possible battery was developed. The reason why the capacity can be increased by increasing the depth of use in this way will be briefly explained. The theoretical capacity of lithium cobaltate is about 273 mAh / g, but the battery of 4.2V specification (with a charge end voltage of 4.2V). This is because only about 160 mAh / g is used in the battery, and it is possible to use up to about 200 mAh / g by raising the end-of-charge voltage to 4.4V. In this way, by raising the end-of-charge voltage to 4.4 V, a high capacity of about 10% can be achieved as a whole battery.

しかしながら、コバルト酸リチウムを上記の如く高電圧で使用した場合には、充電された正極活物質の酸化力が強まり、電解液の分解が加速されるばかりでなく、脱リチウムされた正極活物質自体の結晶構造の安定性が失われ、結晶の崩壊によるサイクル劣化や保存劣化が最大の課題であった。我々が検討したところ、コバルト酸リチウムにジルコニア、アルミニウム、マグネシウムを添加することによって高電圧の室温条件下では4.2Vと類似の性能を出せることがわかっているが、前述したように、近年の起動端末は消費電力が大きく、高温環境下での連続使用に耐え得る等の高温駆動条件下での性能確保が必須であり、その意味では室温に限らず、高温での信頼性を確保できる技術の開発が急務であった。   However, when lithium cobaltate is used at a high voltage as described above, the oxidization power of the charged positive electrode active material is strengthened and the decomposition of the electrolytic solution is accelerated, and the delithiated positive electrode active material itself The stability of the crystal structure was lost, and cycle deterioration and storage deterioration due to crystal collapse were the biggest problems. As a result of our investigation, it has been found that by adding zirconia, aluminum, and magnesium to lithium cobaltate, a performance similar to 4.2 V can be obtained under high-voltage room temperature conditions. It is essential to ensure the performance under high-temperature driving conditions such as the power consumption of the start-up terminal and the ability to withstand continuous use in a high-temperature environment. The development of was urgent.

特開2002−141042号公報JP 2002-141042 A

上述の如く、充電終止電圧を向上させた電池の正極では、結晶構造の安定性が失われて、特に高温での電池性能の劣化が顕著であることがわかった。このような現象について、詳細な原因は不明であるが、分析結果を見る限りでは、電解液の分解生成物や正極活物質からの元素の溶出(コバルト酸リチウムを用いた場合にはコバルトの溶出)が認められており、これが高温でのサイクル特性や保存特性が悪化する主要因となっているものと推測される。   As described above, it was found that in the positive electrode of the battery with improved end-of-charge voltage, the stability of the crystal structure was lost, and the battery performance deteriorated particularly at high temperatures. The detailed cause of this phenomenon is unknown, but as far as the analysis results are concerned, elution of elements from the electrolytic decomposition products and the positive electrode active material (if lithium cobaltate is used, the elution of cobalt) It is speculated that this is the main factor that deteriorates the cycle characteristics and storage characteristics at high temperatures.

特に、コバルト酸リチウム、マンガン酸リチウム、或いは、ニッケル−コバルト−マンガンのリチウム複合酸化物等の正極活物質を用いた電池系では、高温保存すると、コバルトやマンガンがイオンとなって正極から溶出し、これらの元素が負極で還元されることにより、負極やセパレータヘ析出し、電池内部抵抗の増加やそれに伴う容量低下等が問題となっている。更に、上述の如く、リチウムイオン電池の充電終止電圧を上昇させた場合には、結晶構造の不安定さが増加し、上記問題点が一層顕在化し、これまで4.2V仕様の電池系で問題のなかった50℃付近の温度でもこれらの現象が強まる傾向にある。また、セパレータの膜厚が薄く、空孔率の低いセパレータを用いた場合には、これらの現象がより強まる傾向にある。   In particular, in a battery system using a positive electrode active material such as lithium cobaltate, lithium manganate, or nickel-cobalt-manganese lithium composite oxide, cobalt and manganese are ionized and eluted from the positive electrode when stored at high temperatures. When these elements are reduced at the negative electrode, they are deposited on the negative electrode and the separator, which causes problems such as an increase in battery internal resistance and a corresponding decrease in capacity. Furthermore, as described above, when the end-of-charge voltage of a lithium ion battery is increased, the instability of the crystal structure increases, and the above problems become more apparent. These phenomena tend to be strengthened even at temperatures around 50 ° C. where there was no slag. In addition, when a separator having a thin film thickness and a low porosity is used, these phenomena tend to become stronger.

例えば4.4V仕様の電池において、正極活物質としてコバルト酸リチウム、負極活物質として黒鉛を用い、保存試験(試験条件は、充電終止電圧4.4V、保存温度60℃、保存期間5日間)を行った場合には、保存後の残存容量が大幅に低下し、時には略ゼロまで低下する。そこで、この電池を解体したところ、負極、セパレータから多量のコバルトが検出されていることから、正極から溶出したコバルト元素により、劣化のモードが加速されていると考えられる。これは、コバルト酸リチウムの如く層状の正極活物質は、リチウムイオンの引き抜きにより価数が増加するが、4価のコバルトは不安定であることから結晶そのものが安定せず、安定な構造に変化しようとするため、コバルトイオンが結晶から溶出し易くなるということに起因するものと推測される。また、正極活物質としてスピネル型マンガン酸リチウムを用いた場合においても、一般に、マンガンの3価が不均化して2価のイオンで溶出し、正極活物質としてコバルト酸リチウムを用いた場合と同様の問題が生じることが知られている。   For example, in a battery having a specification of 4.4 V, lithium cobaltate is used as a positive electrode active material, graphite is used as a negative electrode active material, and a storage test (the test conditions are a charge end voltage of 4.4 V, a storage temperature of 60 ° C., a storage period of 5 days). If done, the remaining capacity after storage is significantly reduced, sometimes to nearly zero. Therefore, when this battery was disassembled, a large amount of cobalt was detected from the negative electrode and the separator. Therefore, it is considered that the deterioration mode was accelerated by the cobalt element eluted from the positive electrode. This is because a layered positive electrode active material such as lithium cobaltate increases in valence due to extraction of lithium ions, but tetravalent cobalt is unstable, so the crystal itself is not stable and changes to a stable structure. This is presumed to be due to the fact that cobalt ions are likely to elute from the crystal. Further, when spinel type lithium manganate is used as the positive electrode active material, generally, trivalent manganese is disproportionated and eluted with divalent ions, and is the same as when lithium cobaltate is used as the positive electrode active material. It is known that this problem will occur.

このように、充電された正極活物質の構造が不安定な場合には、特に高温での保存劣化やサイクル劣化が顕著になる傾向がある。そして、この傾向は正極活物質層の充填密度が高いほど起こり易いことも判明していることから、高容量設計の電池での問題が顕著となる。尚、負極のみならず、セパレータの物性にまで関与する理由としては、負極で還元された物質が堆積して、セパレータの微多孔を充填することに起因するものと推測される。   Thus, when the structure of the charged positive electrode active material is unstable, there is a tendency for storage deterioration and cycle deterioration particularly at high temperatures to become remarkable. Since this tendency has been found to occur more easily as the packing density of the positive electrode active material layer is higher, a problem with a battery having a high capacity design becomes significant. In addition, it is presumed that the reason for being involved not only in the negative electrode but also in the physical properties of the separator is that a substance reduced by the negative electrode accumulates and fills the micropores of the separator.

これらの対策として、正極活物質粒子表面を無機物で物理的に被覆したり、正極活物質粒子表面を有機物で化学的に被覆したりして、コバルト等が正極から溶出するのを抑制する試みがなされている。しかしながら、正極活物質は多少なりとも充放電に伴い膨張収縮を繰り返すために、上記の如く物理的に被覆した場合は、無機物等が脱落して被覆効果の消失が懸念される。一方、化学的に被覆した場合には、被覆膜の厚み制御が困難であって、無機粒子層の厚みが大きいときには、電池の内部抵抗の増加により本来の性能が出し難くなって電池容量の低下を招き、しかも、粒子全体を完全に被覆処理することが困難であるため、被覆効果が限定的となるといった課題が残る。したがって、これらに変わる手法が必要であった。   As measures for these, attempts are made to suppress elution of cobalt or the like from the positive electrode by physically coating the surface of the positive electrode active material particles with an inorganic substance or chemically coating the surface of the positive electrode active material particles with an organic substance. Has been made. However, since the positive electrode active material repeatedly expands and contracts due to charging and discharging, when physically coated as described above, there is a concern that the inorganic material and the like may fall off and the coating effect may be lost. On the other hand, when chemically coated, it is difficult to control the thickness of the coating film, and when the thickness of the inorganic particle layer is large, it is difficult to achieve the original performance due to the increase in the internal resistance of the battery, and the battery capacity is reduced. In addition, there is a problem that the coating effect is limited because it is difficult to completely coat the entire particle. Therefore, an alternative method is necessary.

したがって、本発明は、高温におけるサイクル特性及び保存特性に優れ、高容量を特徴とする電池構成においても高い信頼性を発揮できる非水電解質電池の提供を目的としている。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte battery that is excellent in cycle characteristics and storage characteristics at high temperatures and can exhibit high reliability even in a battery configuration characterized by high capacity.

上記目的を達成するために本発明は、正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら両極間に介装されたセパレータとから成る電極体と、溶媒及びリチウム塩から成る非水電解質とを備え、この非水電解質が上記電極体に含浸された非水電解質電池において、上記正極活物質には少なくともコバルト又はマンガンが含まれると共に、上記負極と上記セパレータとの間には無機粒子とバインダーとが含まれた無機粒子層が形成され、且つ、上記リチウム塩にはLiBFが含まれ、しかも、リチウム参照極電位に対して4.40V以上となるまで上記正極が充電されることを特徴とする。 To achieve the above object, the present invention comprises a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and a separator interposed between the two electrodes. And a non-aqueous electrolyte comprising a non-aqueous electrolyte made of a solvent and a lithium salt, and the positive electrode active material contains at least cobalt or manganese. In addition, an inorganic particle layer containing inorganic particles and a binder is formed between the negative electrode and the separator, and the lithium salt contains LiBF 4 and has a potential of 4 relative to the lithium reference electrode potential. The positive electrode is charged until it becomes 40 V or higher.

上記の如く電解液にLiBFが添加されていれば、LiBF由来の皮膜が正極活物質の表面に形成され、この皮膜の存在により、正極活物質を構成する物質(コバルトイオンやマンガンイオン)の溶出や、正極表面上での電解液の分解を抑制することができる。したがって、コバルトイオンやマンガンイオン、或いは電解液の分解生成物が負極表面に析出するのが抑えられる。 If LiBF 4 is added to the electrolytic solution as described above, a film derived from LiBF 4 is formed on the surface of the positive electrode active material, and a substance (cobalt ion or manganese ion) constituting the positive electrode active material due to the presence of this film. Elution and decomposition of the electrolyte solution on the positive electrode surface can be suppressed. Therefore, precipitation of cobalt ions, manganese ions, or decomposition products of the electrolytic solution on the negative electrode surface can be suppressed.

但し、LiBF由来の皮膜により完全に正極活物質を覆うことは難しく、正極活物質を構成する物質の溶出や、正極表面上での電解液の分解を十分に抑えることは難しい。そこで、負極とセパレータとの間に無機粒子層を形成すると、コバルトイオン等や分解生成物が無機粒子層でトラップされ、これら物質がセパレータや負極へ移動し、堆積→反応(劣化)したり、セパレータが目詰まりしたりするのが抑制される。即ち、無機粒子層がフィルター機能を発揮し、コバルト等が負極又はセパレータで析出するのが抑制される。これにより、充電保存特性の低下が十分に抑制されることになる。 However, it is difficult to completely cover the positive electrode active material with the LiBF 4 -derived film, and it is difficult to sufficiently suppress the elution of the material constituting the positive electrode active material and the decomposition of the electrolytic solution on the positive electrode surface. Therefore, when an inorganic particle layer is formed between the negative electrode and the separator, cobalt ions or the like and decomposition products are trapped in the inorganic particle layer, and these substances move to the separator and the negative electrode, and deposition → reaction (deterioration) Clogging of the separator is suppressed. That is, the inorganic particle layer exhibits a filter function, and the precipitation of cobalt or the like at the negative electrode or the separator is suppressed. Thereby, the fall of a charge preservation | save characteristic is fully suppressed.

ここで、無機粒子層がフィルター機能を発揮するのは、無機粒子層に含まれるバインダーが電解液を吸収して膨潤することにより、無機粒子間が膨潤したバインダーによって適度に埋められることによるものと考えられる。そして、複数の無機粒子が絡む層が形成されることにより複雑に入り組んだフィルター層が形成され、これにより、物理的なトラップ効果も高くなるものと考えられる。   Here, the inorganic particle layer exhibits the filter function because the binder contained in the inorganic particle layer absorbs the electrolytic solution and swells, so that the inorganic particles are appropriately filled with the swelled binder. Conceivable. Then, a complicated intricate filter layer is formed by forming a layer entangled with a plurality of inorganic particles, and it is considered that the physical trapping effect is also enhanced.

また、リチウム参照極電位に対して4.40V以上となるまで正極の充電を行なうという限定があるのは、以下に示す理由による。即ち、上述の如く、LiBFは正極表面に皮膜を形成して、正極活物質からの溶出物や電解液の分解等を抑制することができるという利点を発揮するとはいうものの、LiBFは正極との反応性が高いため、リチウム塩の濃度が低下して電解液の伝導度が低下するという欠点もある。したがって、正極の充電がリチウム参照極電位に対して4.40V未満となる場合(正極の構造にさほど負荷がかかっていない場合)にまで、LiBFを添加すると、LiBFを添加することによる上記欠点が前面に押し出され、かえって電池特性が低下するからである。
更に、上記構成であれば、バインダーにより無機粒子同士が強固に接着されているので、無機粒子が脱落するのを長期間に亘って抑制できるという効果もある。
Moreover, there is a limitation that the positive electrode is charged until it becomes 4.40 V or higher with respect to the lithium reference electrode potential for the following reason. That is, as described above, although LiBF 4 forms a film on the surface of the positive electrode and exhibits the advantage of being able to suppress elution from the positive electrode active material, decomposition of the electrolytic solution, etc., LiBF 4 is a positive electrode. Therefore, the lithium salt concentration is lowered and the conductivity of the electrolyte solution is lowered. Therefore, when LiBF 4 is added until the charging of the positive electrode is less than 4.40 V with respect to the lithium reference electrode potential (when the structure of the positive electrode is not so heavily loaded), the above-mentioned effect due to the addition of LiBF 4 This is because the defects are pushed to the front, and the battery characteristics are deteriorated.
Furthermore, if it is the said structure, since inorganic particles are firmly adhere | attached with the binder, there also exists an effect that it can suppress over a long period that an inorganic particle falls.

尚、リチウム塩にLiBFが含まれず、且つ無機粒子層が形成されていない電池において、リチウム参照極電位に対して4.40V以上となるまで正極の充電を行なった場合には、電池を保存した後の再充電の際に、充電カーブが蛇行し、充電量が大幅に増加する挙動が確認されたが、本発明の構成であれば、このような異常充電挙動が生じるのを解消できるという効果があるということも確認している。
また、電解液にLiBFを添加する先行例が開示されているが(WO2006/54604号公報)、単に、電解液にLiBFを添加するだけでは本発明の作用効果を発揮しえないことは、上述のことから明らかである。
In a battery in which LiBF 4 is not included in the lithium salt and the inorganic particle layer is not formed, the battery is stored when the positive electrode is charged to 4.40 V or more with respect to the lithium reference electrode potential. During recharging after charging, the behavior of the charging curve meandering and the amount of charge significantly increased was confirmed, but with the configuration of the present invention, it can be said that such abnormal charging behavior can be eliminated. It has also been confirmed that it is effective.
Although the preceding example the addition of LiBF 4 in the electrolytic solution is disclosed (WO2006 / 54 604 discloses), simply requiring only the addition of the LiBF 4 in the electrolytic solution be incapable of exerting the effects of the present invention From the above, it is clear.

上記負極活物質層の表面に上記無機粒子層が形成されていることが望ましい。
無機粒子層をセパレータの負極側表面に形成する場合には、無機粒子層の成分であるバインダーが負極活物質の表面を覆う又は負極活物質を覆うという効果は発現されないため、負極活物質上への溶解物や分解生成物の堆積を十分に抑制することができない場合がある。これに対して、無機粒子層を負極活物質層の表面に形成する場合には、無機粒子層の成分であるバインダーが負極活物質の表面を覆う、又は、無機粒子層のバインダーが負極活物質層内に侵入して負極活物質を覆うことにより、負極活物質上への溶解物や分解生成物の堆積を十分に抑制することができるという理由による。
但し、本発明は、無機粒子層がセパレータにおける負極側の表面に形成されているものを除くものではない。
It is desirable that the inorganic particle layer is formed on the surface of the negative electrode active material layer.
In the case where the inorganic particle layer is formed on the negative electrode side surface of the separator, the effect that the binder which is a component of the inorganic particle layer covers the surface of the negative electrode active material or the negative electrode active material is not expressed. In some cases, the accumulation of dissolved or decomposed products cannot be sufficiently suppressed. In contrast, when the inorganic particle layer is formed on the surface of the negative electrode active material layer, the binder that is a component of the inorganic particle layer covers the surface of the negative electrode active material, or the binder of the inorganic particle layer is the negative electrode active material. This is because the deposition of a dissolved product or a decomposition product on the negative electrode active material can be sufficiently suppressed by entering the layer and covering the negative electrode active material.
However, the present invention does not exclude the case where the inorganic particle layer is formed on the surface of the separator on the negative electrode side.

上記負極活物質層の表面の前面に上記無機粒子層が形成されていることが望ましい。
このような構成であれば、無機粒子層におけるコバルトイオンやマンガンイオンのトラップ効果がより十分に発揮されるので、高温でのサイクル特性の劣化や高温での保存特性の劣化を一層抑制することができる。
It is desirable that the inorganic particle layer is formed on the front surface of the negative electrode active material layer.
With such a configuration, the trapping effect of cobalt ions and manganese ions in the inorganic particle layer is more fully exhibited, which further suppresses deterioration of cycle characteristics at high temperatures and storage characteristics at high temperatures. it can.

上記非水電解質の総量に対する上記LiBFの割合が、0.1質量%以上5.0質量%以下であることが望ましい。
上記のように規制するのは、非水電解質の総量に対するLiBFの割合が0.1質量%未満の場合には、LiBFの量が少な過ぎるために保存特性改善効果が十分に発揮されない一方、非水電解質の総量に対するLiBFの割合が5.0質量%を超える場合には、LiBFの副反応に伴う放電容量の低下、及び放電負荷特性の低下が著しくなるからである。
The ratio of the LiBF 4 to the total amount of the non-aqueous electrolyte is desirably 0.1% by mass or more and 5.0% by mass or less.
When the ratio of LiBF 4 to the total amount of the nonaqueous electrolyte is less than 0.1% by mass, the effect of improving storage characteristics is not sufficiently exhibited because the amount of LiBF 4 is too small. This is because when the ratio of LiBF 4 to the total amount of the non-aqueous electrolyte exceeds 5.0 mass%, the discharge capacity and the discharge load characteristics are significantly reduced due to the side reaction of LiBF 4 .

上記リチウム塩にはLiPFが含まれており、このLiPFの濃度が0.6モル/リットル以上2.0モル/リットル以下であることが望ましい。
LiBFは、充放電により反応し消費されるため、電解質がLiBF単独の場合には、十分な伝導度を確保できず、放電負荷特性が低下してしまう。したがって、リチウム塩にはLiPFが含まれていることが望ましい。また、リチウム塩にLiPFが含まれている場合であっても、LiPFの濃度が低すぎると、上記と同様の不都合があるので、LiPFの濃度は0.6モル/リットル以上であることが好ましい。尚、LiPFの濃度が2.0モル/リットル以下であるのが好ましいのは、LiPFの濃度が2.0モル/リットルを超えると電解液の粘度が高くなり、電池内での液まわりが低下するという理由によるものである。
The lithium salt contains LiPF 6 and it is desirable that the concentration of LiPF 6 is 0.6 mol / liter or more and 2.0 mol / liter or less.
Since LiBF 4 reacts and is consumed by charging / discharging, when the electrolyte is LiBF 4 alone, sufficient conductivity cannot be ensured, and the discharge load characteristics are deteriorated. Therefore, it is desirable that LiPF 6 is contained in the lithium salt. Further, even when LiPF 6 is contained in the lithium salt, if the concentration of LiPF 6 is too low, there is a disadvantage similar to the above, so the concentration of LiPF 6 is 0.6 mol / liter or more. It is preferable. The concentration of LiPF 6 is preferably 2.0 mol / liter or less. When the concentration of LiPF 6 exceeds 2.0 mol / liter, the viscosity of the electrolytic solution increases, and the concentration of the liquid in the battery increases. This is due to the reason for the decrease.

上記無機粒子がルチル型のチタニア及び/又はアルミナから構成されるのが望ましい。
このように、無機粒子としてルチル型のチタニア及び/又はアルミナが好ましいのは、これらのものは、電池内での安定性に優れ(リチウムとの反応性が低く)、しかもコストが安価であるという理由によるものである。また、ルチル構造のチタニアとするのは、アナターゼ構造のチタニアはリチウムイオンの挿入離脱が可能であり、環境雰囲気、電位によっては、リチウムを吸蔵して電子伝導性を発現するため、容量低下や、短絡の危険性があるからである。
The inorganic particles are preferably composed of rutile type titania and / or alumina.
Thus, rutile-type titania and / or alumina are preferable as the inorganic particles because they are excellent in stability in the battery (low reactivity with lithium) and low in cost. This is for a reason. Also, rutile-structured titania, anatase-structured titania is capable of inserting and removing lithium ions, and depending on the environmental atmosphere and potential, it absorbs lithium and expresses electronic conductivity. This is because there is a risk of short circuit.

但し、無機粒子の種類による本作用効果への影響は非常に小さいので、無機粒子としては上述のものの他に、ジルコニア、マグネシア等の無機粒子を用いても良い。   However, since the influence of the kind of the inorganic particles on this effect is very small, inorganic particles such as zirconia and magnesia may be used as the inorganic particles in addition to those described above.

上記無機粒子の平均粒径が上記セパレータの平均孔径よりが大きくなるように規制されることが望ましい。
このように規制するのは、無機粒子の平均粒径がセパレータの平均孔径より小さい場合には、電池を作成する際の巻き潰し時にセパレータが一部貫通して、セパレータに大きなダメージを与えることがあり、しかも、セパレータの微多孔内へ無機粒子が侵入して、電池の諸特性を低下させることがあるため、これらの不都合を回避するためである。
上記無機粒子の平均粒径は1μm以下のものが好ましく、また、スラリーの分散性を考慮すると、アルミニウム、シリコン、チタンで表面処理がなされているものが好ましい。
尚、本明細書において平均粒径という場合には、BET法により測定した値をいうものとする。
It is desirable that the average particle size of the inorganic particles be regulated so as to be larger than the average pore size of the separator.
In this way, if the average particle size of the inorganic particles is smaller than the average pore size of the separator, a part of the separator may penetrate when the battery is crushed, and the separator may be greatly damaged. In addition, the inorganic particles may enter the micropores of the separator to deteriorate various characteristics of the battery, so that these disadvantages are avoided.
The average particle size of the inorganic particles is preferably 1 μm or less, and in consideration of the dispersibility of the slurry, those having a surface treatment with aluminum, silicon, or titanium are preferable.
In this specification, the average particle diameter means a value measured by the BET method.

上記無機粒子層の厚みが4μm以下であることが望ましい。
上述した作用効果は、無機粒子層の厚みが大きい程発揮されるとはいうものの、無機粒子層の厚みが大きくなり過ぎると、電池内部抵抗の増大により負荷特性が低下したり、正負両極の活物質量が少なくなることによる電池エネルギー密度の低下を招来したりすることになるからである。このようなことを考慮すれば、無機粒子層の厚みは2μm以下であることが特に望ましい。
The thickness of the inorganic particle layer is desirably 4 μm or less.
Although the above-described effects are exhibited as the thickness of the inorganic particle layer increases, if the thickness of the inorganic particle layer becomes too large, the load characteristics are reduced due to the increase in battery internal resistance, This is because the battery energy density is lowered due to the decrease in the amount of the substance. Considering this, the thickness of the inorganic particle layer is particularly preferably 2 μm or less.

ここで、無機粒子層は複雑に入り組んでいるため、厚みが小さい場合であっても上記トラップ効果は十分に発揮される。また、電解液にはLiBFが添加されており、このLiBF由来の皮膜が正極活物質の表面に形成されることにより、正極活物質を構成する物質(コバルトイオンやマンガンイオン)の溶出や、正極表面上での電解液の分解を抑制することができるので、無機粒子層を単独で形成した場合(LiBFを添加しない場合)に比べて、無機粒子層の厚みを小さくしても問題ない。このようなことを考慮すれば、無機粒子層の厚みは1μm以上あれば良い。
以上より、無機粒子層の厚みは1μm以上4μm以下であることが望ましく、特に1μm以上2μm以下であることが望ましい。尚、上記無機粒子層の厚みとは、片面での厚みをいうものとする。
Here, since the inorganic particle layer is complicated, the trapping effect is sufficiently exhibited even when the thickness is small. In addition, LiBF 4 is added to the electrolyte, and a film derived from this LiBF 4 is formed on the surface of the positive electrode active material, so that elution of substances constituting the positive electrode active material (cobalt ions and manganese ions) Since the decomposition of the electrolyte solution on the positive electrode surface can be suppressed, there is a problem even if the thickness of the inorganic particle layer is reduced as compared with the case where the inorganic particle layer is formed alone (when LiBF 4 is not added). Absent. Considering this, the thickness of the inorganic particle layer may be 1 μm or more.
From the above, the thickness of the inorganic particle layer is desirably 1 μm or more and 4 μm or less, and particularly desirably 1 μm or more and 2 μm or less. In addition, the thickness of the said inorganic particle layer shall mean the thickness in one side.

上記無機粒子に対するバインダーの濃度が30質量%以下に規制するのが望ましい。
このように上限を定めるのは、バインダーの濃度が余り高くなると、リチウムイオンの活物質層への透過性が極端に低下し、電極間の抵抗が増加することにより、充放電容量の低下を招くからである。このようなことを考慮すれば、無機粒子に対するバインダーの濃度が10質量%以下であることが更に望ましく、その中でも5質量%以下であることが特に望ましい。
It is desirable that the binder concentration relative to the inorganic particles is regulated to 30% by mass or less.
The upper limit is determined in this way because if the binder concentration is too high, the permeability of lithium ions to the active material layer is extremely reduced, and the resistance between the electrodes is increased, leading to a reduction in charge / discharge capacity. Because. Considering this, the binder concentration relative to the inorganic particles is more preferably 10% by mass or less, and particularly preferably 5% by mass or less.

上記正極活物質層の充填密度が3.40g/cc以上であることが望ましい。
このように規制するのは、充填密度が3.40g/cc未満である場合には、正極での反応は局所的な反応でなく全体的に反応するため、正極での劣化も均一に進行し、保存後の充放電反応に対してもさほど大きな影響はない。これに対して、充填密度が3.40g/cc以上である場合には、正極での反応は最表面層での局所的な反応に限定されるため、正極での劣化も最表面層での劣化が中心となる。このため、放電時の正極活物質中へのリチウムイオンの侵入、拡散が律速となるため、劣化の程度が大きくなる。このことから、正極活物質層の充填密度が3.40g/cc以上の場合に、本発明の作用効果がより発揮されることになる。
The packing density of the positive electrode active material layer is preferably 3.40 g / cc or more.
In this way, when the packing density is less than 3.40 g / cc, the reaction at the positive electrode reacts as a whole rather than a local reaction, so the deterioration at the positive electrode also proceeds uniformly. There is not much influence on the charge / discharge reaction after storage. On the other hand, when the packing density is 3.40 g / cc or more, the reaction at the positive electrode is limited to the local reaction at the outermost surface layer. Deterioration is central. For this reason, since the penetration | invasion of lithium ion in the positive electrode active material at the time of discharge and a spreading | diffusion become rate control, the grade of deterioration becomes large. From this, when the filling density of the positive electrode active material layer is 3.40 g / cc or more, the effect of the present invention is more exhibited.

リチウム参照極電位に対して4.45V以上、好ましくは4.50V以上となるまで上記正極が充電されるような構成であることが好ましい。
これは、正極がリチウム参照極電位に対して4.45V以上で充電されるような電池では、LiPFの添加の有無及び無機粒子層の有無によって高温特性の差異が顕著に現れるからである。特に、正極がリチウム参照極電位に対して4.50V以上で充電されるような電池では、この差異が顕著に出現する。
It is preferable that the positive electrode be charged up to 4.45V or more, preferably 4.50V or more with respect to the lithium reference electrode potential.
This is because, in a battery in which the positive electrode is charged at 4.45 V or more with respect to the lithium reference electrode potential, a difference in high-temperature characteristics remarkably appears depending on whether LiPF 6 is added and whether there is an inorganic particle layer. This difference is particularly noticeable in a battery in which the positive electrode is charged at 4.50 V or more with respect to the lithium reference electrode potential.

上記正極活物質には、少なくともアルミニウム或いはマグネシウムが固溶されたコバルト酸リチウムが含まれており、且つ、このコバルト酸リチウム表面にはジルコニアが固着されていることが望ましい。
このような構造とするのは、以下に示す理由による。即ち、正極活物質としてコバルト酸リチウムを用いた場合には、充電深度が高まるにつれて、結晶構造は不安定になり、高温雰囲気ではより劣化が早まることになる。そこで、アルミニウム或いはマグネシウムを正極活物質(結晶内部)に固溶させることで、正極における結晶歪みの緩和を図っている。但し、これらの元素は結晶構造の安定化には大きく寄与するものの、初回充放電効率の低下や放電作動電圧の低下等を招来する。そこで、このような問題を緩和すべく、コバルト酸リチウム表面にジルコニアを固着している。
The positive electrode active material preferably includes at least lithium cobaltate in which aluminum or magnesium is dissolved, and zirconia is preferably fixed to the surface of the lithium cobaltate.
The reason for such a structure is as follows. That is, when lithium cobaltate is used as the positive electrode active material, the crystal structure becomes unstable as the charging depth increases, and the deterioration is accelerated in a high temperature atmosphere. Thus, aluminum or magnesium is dissolved in the positive electrode active material (inside the crystal) to reduce crystal distortion in the positive electrode. However, although these elements greatly contribute to the stabilization of the crystal structure, the initial charge / discharge efficiency is lowered and the discharge operating voltage is lowered. Therefore, in order to alleviate such a problem, zirconia is fixed to the lithium cobalt oxide surface.

更に、50℃以上の雰囲気下で使用されることがある電池に適用することが望ましい。
これは、50℃以上の雰囲気下で使用された場合に電池の劣化が早くなるため、本発明を適用する効果が大きいからである。
Furthermore, it is desirable to apply to a battery that may be used in an atmosphere of 50 ° C. or higher.
This is because the battery is rapidly deteriorated when used in an atmosphere of 50 ° C. or higher, so that the effect of applying the present invention is great.

上記セパレータの厚みをx(μm)とし、上記セパレータの空孔率をy(%)とした場合に、xとyとを乗じた値が800(μm・%)以下となるように規制される電池に適用するのが好ましい。
セパレータの空孔体積を800(μm・%)以下となるように規制するのは、セパレータの空孔体積が小さいものほど析出物や反応生成物の影響を受けやすく、特性劣化が著しくなるため、このように規制されたセパレータを有する電池に本発明を適用することにより、顕著な効果を発揮しうるからである。但し、セパレータの空孔体積が1500(μm・%)以下の場合には、上記作用効果は十分に発揮され、さらに、セパレータの空孔体積が1500(μm・%)以上の場合であっても、上記作用効果が発揮されることがある。
尚、セパレータの空孔体積が小さい電池ではセパレータの薄型化を達成できるので、電池のエネルギー密度の向上を図ることもできる。
When the thickness of the separator is x (μm) and the porosity of the separator is y (%), the value obtained by multiplying x and y is regulated to be 800 (μm ·%) or less. It is preferable to apply to a battery.
The separator pore volume is regulated to 800 (μm ·%) or less because the smaller the pore volume of the separator is, the more easily affected by precipitates and reaction products, and the characteristic deterioration becomes significant. This is because a remarkable effect can be exhibited by applying the present invention to a battery having a separator thus regulated. However, when the pore volume of the separator is 1500 (μm ·%) or less, the above-mentioned effects are sufficiently exerted, and even when the separator has a pore volume of 1500 (μm ·%) or more. The above-mentioned effects may be exhibited.
In addition, since the separator can be thinned in a battery having a small pore volume of the separator, the energy density of the battery can be improved.

本発明によれば、電解液にLiBFが添加されることによりLiBF由来の皮膜が正極活物質の表面に形成されるので、正極で反応した電解液の分解生成物や正極活物質から溶出するコバルトイオンやマンガンイオンの量が減少する。加えて、負極とセパレータとの間に配置された無機粒子層が適度なフィルター機能を発揮するので、上記分解生成物やコバルトイオンが無機粒子層でトラップされて、コバルトやマンガンが負極やセパレータで析出するのを十分に抑制できる。これにより、負極やセパレータが受けるダメージが飛躍的に軽減されるので、高温でのサイクル特性の劣化や高温での保存特性の劣化を抑制することができるという優れた効果を奏する。また、バインダーにより、無機粒子同士、及び、無機粒子層と負極活物質層とが強固に接着されているので、負極活物質層から無機粒子層が脱落するのを抑制できるという効果もある。 According to the present invention, since LiBF 4 in the electrolytic solution film from LiBF 4 is formed on the surface of the positive electrode active material by being added, eluted from degradation products and a positive electrode active material was reacted with the positive electrode electrolyte The amount of cobalt ions and manganese ions to be reduced. In addition, since the inorganic particle layer disposed between the negative electrode and the separator exhibits an appropriate filter function, the decomposition products and cobalt ions are trapped in the inorganic particle layer, and cobalt and manganese are trapped in the negative electrode and separator. Precipitation can be sufficiently suppressed. Thereby, since the damage which a negative electrode and a separator receive is reduced remarkably, there exists an outstanding effect that deterioration of the cycling characteristics at high temperature and deterioration of the storage characteristics at high temperature can be suppressed. In addition, since the inorganic particles and the inorganic particle layer and the negative electrode active material layer are firmly bonded to each other by the binder, there is an effect that the inorganic particle layer can be prevented from dropping off from the negative electrode active material layer.

以下、本発明をさらに詳細に説明するが、本発明は以下の最良の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail. However, the present invention is not limited to the following best modes, and can be appropriately modified and implemented without departing from the scope of the present invention.

〔正極の作製〕
先ず、正極活物質であるコバルト酸リチウム(Al及びMgがそれぞれ1.0mol%固溶されており、且つZrが0.05mol%表面に固着されているもの)と、炭素導電剤としてのアセチレンブラックと、結着剤としてのPVDFとを、95:2.5:2.5の質量比で混合した後、NMPを溶剤として特殊機化製コンビミックスを用いてこれらを攪拌し、正極合剤スラリーを調製した。次に、この正極合剤スラリーを正極集電体であるアルミニウム箔の両面に塗着し、更に、乾燥、圧延することにより、正極集電体の両面に正極活物質層を形成することにより正極を作製した。尚、上記正極活物質層の充填密度は3.60g/ccとした。
[Production of positive electrode]
First, lithium cobalt oxide as a positive electrode active material (one in which Al and Mg are solid-dissolved in 1.0 mol% and Zr is fixed on the surface of 0.05 mol%) and acetylene black as a carbon conductive agent And PVDF as a binder were mixed at a mass ratio of 95: 2.5: 2.5, and then these were stirred using a special machine combination mix with NMP as a solvent, and a positive electrode mixture slurry Was prepared. Next, the positive electrode mixture slurry is applied to both surfaces of an aluminum foil, which is a positive electrode current collector, and further dried and rolled to form a positive electrode active material layer on both surfaces of the positive electrode current collector. Was made. The packing density of the positive electrode active material layer was 3.60 g / cc.

〔負極の作製〕
炭素材料(人造黒鉛)と、CMC(カルボキシメチルセルロースナトリウム)と、SBR(スチレンブタジエンゴム)とを、98:1:1の質量比で水溶液中にて混合して負極スラリーを作製した後、負極集電体である銅箔の両面に負極スラリーを塗着し、更に、乾燥、圧延することにより、負極集電体の両面に負極活物質層を形成した。
(Production of negative electrode)
A carbon material (artificial graphite), CMC (carboxymethylcellulose sodium), and SBR (styrene butadiene rubber) were mixed in an aqueous solution at a mass ratio of 98: 1: 1 to prepare a negative electrode slurry. A negative electrode slurry was applied to both sides of a copper foil as an electric current body, and further dried and rolled to form negative electrode active material layers on both sides of the negative electrode current collector.

次に、溶剤としてアセトンに、無機粒子であるTiO〔ルチル型であって粒径0.38μm、チタンエ業(株)製KR380〕をアセトンに対して10質量%、バインダーとしてのアクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)をTiOに対して10質量%混合し、特殊機化製Filmicsを用いて混合分散処理を行い、TiOが分散されたスラリーを調製した。次に、上記負極活物質層の全面に、当該スラリーをダイコート法を用いて塗布した後、溶剤を乾燥、除去して、負極活物質層の一方の面に無機粒子層を形成した。次いで、これと同様にして、負極活物質層における他方の面の全面に、無機粒子層を形成した。尚、上記無機粒子層の厚みは両面で4μm(片面2μm)であり、また、上記負極活物質層の充填密度は1.60g/ccとした。 Next, acetone as a solvent, inorganic particles of TiO 2 (rutile type, particle size 0.38 μm, KR380 manufactured by Titanium Industrial Co., Ltd.) are 10% by mass with respect to acetone, and an acrylonitrile structure (unit) ) -Containing copolymer (rubber-like polymer) was mixed in an amount of 10% by mass with respect to TiO 2 , and mixed and dispersed using Special Mechanics Films to prepare a slurry in which TiO 2 was dispersed. Next, the slurry was applied to the entire surface of the negative electrode active material layer using a die coating method, and then the solvent was dried and removed to form an inorganic particle layer on one surface of the negative electrode active material layer. Next, in the same manner, an inorganic particle layer was formed on the entire other surface of the negative electrode active material layer. The thickness of the inorganic particle layer was 4 μm on both sides (single side 2 μm), and the packing density of the negative electrode active material layer was 1.60 g / cc.

〔非水電解液の調製〕
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とが容積比で3:7の割合で混合された混合溶媒に、LiPFを1.0モル/リットル(M)の割合で、LiBFを電解液の総量に対して1質量%の割合で、それぞれ溶解させることにより調製した。
(Preparation of non-aqueous electrolyte)
LiPF 6 is added at a rate of 1.0 mol / liter (M) to a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7, and LiBF 4 is added as an electrolytic solution. It was prepared by dissolving each at a ratio of 1% by mass with respect to the total amount.

〔セパレータの種類〕
セパレータとしては、ポリエチレン(以下、PEと略すことがある)製微多孔膜(膜厚:16μm、平均孔径0.1μm、空孔率47%)を用いた。
[Separator type]
As the separator, a microporous membrane (thickness: 16 μm, average pore diameter 0.1 μm, porosity 47%) made of polyethylene (hereinafter sometimes abbreviated as PE) was used.

〔電池の組立〕
正、負極それぞれにリード端子を取り付け、セパレータを介して渦巻状に巻き取ったものをプレスして、扁平状に押し潰した電極体を作製した後、電池外装体としてのアルミニウムラミネートフィルムの収納空間内に電極体を配置し、更に、当該空間内に非水電解液を注液した後に、アルミニウムラミネートフィルム同士を溶着して封止することにより電池を作製した。尚、この電池では、充電終止電圧が4.40V(リチウム参照極基準に対する正極電位が4.50V)になるように電池設計を行い、且つ、この電位で正負極の容量比(負極の初回充電容量/正極の初回充電容量)が1.08になるように正負両極の活物質量を調整した。また、上記電池の設計容量は780mAhである。
[Battery assembly]
A lead terminal is attached to each of the positive and negative electrodes, and a spiral wound electrode is pressed through a separator to produce a flattened electrode body, and then a storage space for an aluminum laminate film as a battery exterior body An electrode body was disposed therein, and a nonaqueous electrolyte solution was poured into the space, and then an aluminum laminate film was welded and sealed to prepare a battery. In this battery, the battery is designed so that the end-of-charge voltage is 4.40 V (the positive electrode potential is 4.50 V with respect to the lithium reference electrode standard), and the capacity ratio between the positive and negative electrodes (the first negative electrode charge) The amount of active material of both positive and negative electrodes was adjusted so that (capacity / first charge capacity of positive electrode) was 1.08. The design capacity of the battery is 780 mAh.

〔第1実施例〕
充電終止電圧とセパレータの物性とを固定する一方、無機粒子層の有無とリチウム塩の種類とを変化させ、無機粒子層の有無及びリチウム塩の種類、濃度と充電保存特性(残存容量)との関係を調べたので、その結果を以下に示す。
[First embodiment]
While fixing the end-of-charge voltage and the physical properties of the separator, the presence / absence of the inorganic particle layer and the type of lithium salt are changed, and the presence / absence of the inorganic particle layer and the type / concentration of lithium salt and charge storage characteristics (remaining capacity) Since the relationship was investigated, the result is shown below.

(実施例1)
実施例1としては、前記最良の形態で示した電池を用いた。
このようにして作製した電池を、以下、本発明電池A1と称する。
Example 1
As Example 1, the battery shown in the best mode was used.
The battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2、3)
電解液の総量に対するLiBFの割合を、それぞれ、3質量%、5質量%とした他は、実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、本発明電池A2、A3と称する。
(Examples 2 and 3)
A battery was fabricated in the same manner as in Example 1, except that the ratio of LiBF 4 to the total amount of the electrolytic solution was 3% by mass and 5% by mass, respectively.
The batteries thus produced are hereinafter referred to as present invention batteries A2 and A3, respectively.

(比較例1)
電解液にLiBFを添加しない他は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z1と称する。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that LiBF 4 was not added to the electrolytic solution.
The battery thus manufactured is hereinafter referred to as a comparative battery Z1.

(比較例2)
正極に無機粒子層を形成しない他は、上記比較例1と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Z2と称する。
(Comparative Example 2)
A battery was fabricated in the same manner as in Comparative Example 1 except that no inorganic particle layer was formed on the positive electrode.
The battery thus produced is hereinafter referred to as a comparative battery Z2.

(比較例3〜5)
正極に無機粒子層を形成しない他は、上記実施例1〜3と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、比較電池Z3〜Z5と称する。
(Comparative Examples 3-5)
A battery was fabricated in the same manner as in Examples 1 to 3 except that the inorganic particle layer was not formed on the positive electrode.
The batteries thus produced are hereinafter referred to as comparative batteries Z3 to Z5, respectively.

(実験)
本発明電池A1〜A3及び比較電池Z1〜Z5の充電保存特性(充電保存後の残存容量)について調べたので、その結果を表1に示す。尚、充放電条件及び保存条件は、下記の通りである。
(Experiment)
Since the charge storage characteristics (remaining capacity after charge storage) of the present invention batteries A1 to A3 and the comparative batteries Z1 to Z5 were examined, the results are shown in Table 1. In addition, charging / discharging conditions and storage conditions are as follows.

[充放電条件]
・充電条件
1.0It(750mA)の電流で、電池電圧が設定電圧(上記充電終止電圧であり、本実験では全ての電池において4.40V[リチウム参照極基準に対する正極電位では4.50V]))となるまで定電流充電を行なった後、設定電圧で電流値が1/20It(37.5mA)になるまで充電を行うという条件。
・放電条件
1.0It(750mA)の電流で、電池電圧が2.75Vまで定電流放電を行なうという条件。
尚、充放電の間隔は10分である。
[Charging / discharging conditions]
-Charging condition: 1.0 It (750 mA) current and battery voltage is the set voltage (the charge end voltage described above, in this experiment, 4.40 V for all batteries [4.50 V for the positive electrode potential relative to the lithium reference electrode standard]) ) Until the current value reaches 1/20 It (37.5 mA) at the set voltage.
-Discharge condition The condition that constant current discharge is performed up to a battery voltage of 2.75 V at a current of 1.0 It (750 mA).
The charging / discharging interval is 10 minutes.

[保存条件]
上記充放電条件で充放電を1回行い、再度、上記充電条件で設定電圧まで充電した電池を60℃で5日間放置するという条件である。
[残存容量の算出]
上記電池を室温まで冷却し、上記放電条件と同一の条件で放電を行って残存容量を測定し、保存試験後1回目の放電容量と保存試験前の放電容量とを用いて、下記(1)式より、残存容量を算出した。
残存容量(%)=
(保存試験後1回目の放電容量/保存試験前の放電容量)×100・・・(1)
[Storage conditions]
The charging / discharging is performed once under the charging / discharging conditions, and the battery charged to the set voltage under the charging conditions is left again at 60 ° C. for 5 days.
[Calculation of remaining capacity]
The battery is cooled to room temperature, discharged under the same conditions as the above discharge conditions, and the remaining capacity is measured. Using the first discharge capacity after the storage test and the discharge capacity before the storage test, the following (1) The remaining capacity was calculated from the equation.
Remaining capacity (%) =
(First discharge capacity after storage test / Discharge capacity before storage test) × 100 (1)

[考察]
(1)全体考察
表1の結果から明らかなように、全ての電池において充電終止電圧とセパレータの物性とが同一であるのにも関わらず、負極(負極活物質層の表面)に無機粒子層が形成され且つ電解液にLiBFが添加された本発明電池A1〜A3は、負極に無機粒子層が形成さず且つ電解液にLiBFが添加されていない比較電池Z2、負極に無機粒子層が形成されているが電解液にLiBFが添加されていない比較電池Z1、及び電解液にLiBFが添加されているが負極に無機粒子層が形成されていない比較電池Z3〜Z5に比べて、残存容量が多くなっている(充電保存特性が向上している)ことが認められる。この理由を、下記電解液にLiBFを添加することの利点に関する考察、及び、無機粒子層を形成したことの利点に関する考察に分けて説明する。
[Discussion]
(1) Overall Consideration As is apparent from the results in Table 1, the inorganic particle layer is formed on the negative electrode (the surface of the negative electrode active material layer) in spite of the fact that the end-of-charge voltage and the physical properties of the separator are the same in all batteries. present battery A1~A3 are comparative battery Z2 which LiBF 4 in and electrolyte not being inorganic particle layer is formed on the negative electrode is not added, the inorganic particle layer on the negative electrode but LiBF 4 to be formed and the electrolyte is added compared with the comparative battery Z3~Z5 that but Comparative batteries Z1 to have been formed not LiBF 4 is added to the electrolyte, and the electrolyte solution LiBF 4 is added not inorganic particle layer is formed on the negative electrode It can be seen that the remaining capacity is increased (charge storage characteristics are improved). The reason for this will be described separately in consideration of the advantages of adding LiBF 4 to the following electrolyte and consideration of the advantages of forming the inorganic particle layer.

(2)電解液にLiBFを添加することの利点に関する考察
先ず、負極に無機粒子層が形成されていない電池(比較電池Z2〜Z5)同士を比較した場合には、電解液にLiBFが添加された比較電池Z3〜Z5は、電解液にLiBFが添加されていない比較電池Z2に比べて、残存容量が多くなっていることが認められる。一方、負極に無機粒子層が形成された電池(本発明電池A1〜A3、比較電池Z1)同士を比較した場合においても、電解液にLiBFが添加された本発明電池A1〜A3は、電解液にLiBFが添加されていない比較電池Z1に比べて、残存容量が多くなっていることが認められる。これは、以下に示す理由によるものと考えられる。
(2) when compared Study advantages of adding LiBF 4 to the electrolyte First, the battery (Comparative Battery Z2~Z5) between which is not an inorganic particle layer is formed on the negative electrode, is LiBF 4 in the electrolytic solution It is recognized that the added comparative batteries Z3 to Z5 have a larger remaining capacity than the comparative battery Z2 in which LiBF 4 is not added to the electrolytic solution. On the other hand, even when the batteries (invention batteries A1 to A3, comparative battery Z1) in which the inorganic particle layer is formed on the negative electrode are compared, the invention batteries A1 to A3 in which LiBF 4 is added to the electrolyte are electrolyzed. It can be seen that the remaining capacity is increased as compared with the comparative battery Z1 in which LiBF 4 is not added to the liquid. This is considered to be due to the following reasons.

先ず、なぜ充電保存特性が低下するのかを考えてみると、その要因としてはいくつか考えられるが、リチウム参照極基準で正極活物質を4.50V(電池電圧はこれより0.1V低いため、4.40V)付近まで使用していることを考慮すれば、
(I)正極の充電電位が高くなることによる強酸化雰囲気での電解液の分解
(II)充電された正極活物質の構造が不安定化することによる劣化
といった点が主たる要因として考えられる。
First of all, when considering why the charge storage characteristics deteriorate, there are several possible causes, but the positive electrode active material is 4.50 V based on the lithium reference electrode standard (the battery voltage is 0.1 V lower than this, 4.40V) If you consider that it is used near,
The main factors are considered to be (I) decomposition of the electrolyte in a strong oxidizing atmosphere due to an increase in the charging potential of the positive electrode, and (II) deterioration due to destabilization of the structure of the charged positive electrode active material.

これらは、単に、正極や電解液が劣化するという問題を引き起こすだけではなく、特に、(I)や(II)により起こると考えられる電解液の分解生成物や正極活物質からの元素の溶出等に起因して、セパレータの目詰まりや負極への堆積による負極活物質の劣化等にも影響するものと考えられる。
そこで、上記の如く電解液にLiBFを添加すると、LiBF由来の皮膜が正極活物質の表面に形成される。したがって、この皮膜の存在により、正極活物質を構成する物質(CoイオンやMnイオン)の溶出や、正極表面上での電解液の分解を抑制することができるということに起因して、充電保存特性の低下を抑制できるものと考えられる。
These not only cause the problem that the positive electrode and the electrolytic solution deteriorate, but particularly the decomposition products of the electrolytic solution considered to be caused by (I) and (II), the elution of elements from the positive electrode active material, etc. This is considered to affect the deterioration of the negative electrode active material due to clogging of the separator and deposition on the negative electrode.
Therefore, when LiBF 4 is added to the electrolytic solution as described above, a film derived from LiBF 4 is formed on the surface of the positive electrode active material. Therefore, the presence of this film can suppress the elution of substances (Co ions and Mn ions) constituting the positive electrode active material and the decomposition of the electrolyte solution on the positive electrode surface, thereby preserving the charge. It is considered that the deterioration of characteristics can be suppressed.

・充電保存特性の改善効果が上記LiBFの添加効果である根拠
正極からの溶出物や分解生成物の有無を簡易的に調べる方法として、セパレータ等の着色状態を調べる方法がある。当該方法により調べることができるのは、正極から溶出したCoイオン等は電解液と反応してセパレータ等に付着するが、そのときの反応に応じてセパレータの着色状態が変化するからである。
-Grounds that the effect of improving the charge storage characteristics is the effect of adding LiBF 4 As a method for simply examining the presence or absence of the eluate and decomposition products from the positive electrode, there is a method of examining the color state of the separator or the like. The reason why it can be investigated by this method is that Co ions eluted from the positive electrode react with the electrolytic solution and adhere to the separator and the like, but the color state of the separator changes according to the reaction at that time.

そこで、上記試験終了後に電池を解体し、セパレータの変色等を観察したので、その結果を表1に併せて示す。表1から明らかなように、負極に無機粒子層が形成されていない電池(比較電池Z2〜Z5)同士を比較した場合には、電解液にLiBFが添加された比較電池Z3〜Z5ではやや着色する程度であるのに対して、電解液にLiBFが添加されていない比較電池Z2では着色の度合いが大きくなっていることが認められる。一方、負極に無機粒子層が形成された電池(本発明電池A1〜A3、比較電池Z1)同士を比較した場合においても、電解液にLiBFが添加された本発明電池A1〜A3では着色していなかったのに対して、電解液にLiBFが添加されていない比較電池Z1ではやや着色していることが認められた。この結果からすると、LiBFが添加された場合には、正極活物質を構成する物質(CoイオンやMnイオン)の溶出や、正極表面上での電解液の分解を抑制できるので、セパレータ及び負極のダメージが軽減されているものと推測される。 Therefore, the battery was disassembled after the test was completed and the discoloration of the separator was observed, and the results are also shown in Table 1. As is clear from Table 1, when batteries (comparative batteries Z2 to Z5) in which the inorganic particle layer is not formed on the negative electrode are compared with each other, the comparative batteries Z3 to Z5 in which LiBF 4 is added to the electrolytic solution are slightly used. In contrast to the degree of coloring, it is recognized that the degree of coloring is increased in the comparative battery Z2 in which LiBF 4 is not added to the electrolytic solution. On the other hand, even when the batteries (invention batteries A1 to A3, comparative battery Z1) in which the inorganic particle layer is formed on the negative electrode are compared with each other, the invention batteries A1 to A3 in which LiBF 4 is added to the electrolyte solution are colored. In contrast, it was confirmed that the comparative battery Z1 in which LiBF 4 was not added to the electrolytic solution was slightly colored. From this result, when LiBF 4 is added, elution of substances (Co ions and Mn ions) constituting the positive electrode active material and decomposition of the electrolytic solution on the positive electrode surface can be suppressed. It is estimated that the damage of is reduced.

(3)無機粒子層を形成したことの利点に関する考察
先ず、電解液にLiBFが添加されていない電池(比較電池Z1、Z2)同士を比較した場合には、負極に無機粒子層が形成された比較電池Z1は、負極に無機粒子層が形成されていない比較電池Z2に比べて、残存容量が多くなっていることが認められる。一方、電解液にLiBFが添加された電池(本発明電池A1〜A3、比較電池Z3〜Z5)同士を比較した場合には、負極に無機粒子層が形成された本発明電池A1〜A3は、負極に無機粒子層が形成されていない比較電池Z3〜Z5に比べて、残存容量が多くなっていることが認められる。これは、以下に示す理由によるものと考えられる。
上述の如く、電解液にLiBFを添加すると、LiBF由来の皮膜が正極活物質の表面に形成されるが、LiBF由来の皮膜により完全に正極活物質を覆うことは難しく、正極活物質からのCoイオン等の溶出や電解液の分解を完全に抑えることは難しかった。
(3) Consideration regarding advantages of forming inorganic particle layer First, when batteries (comparative batteries Z1 and Z2) in which LiBF 4 is not added to the electrolytic solution are compared, an inorganic particle layer is formed on the negative electrode. It is recognized that the remaining capacity of the comparative battery Z1 is larger than that of the comparative battery Z2 in which the inorganic particle layer is not formed on the negative electrode. On the other hand, when the batteries (invention batteries A1 to A3, comparison batteries Z3 to Z5) in which LiBF 4 is added to the electrolyte are compared, the invention batteries A1 to A3 in which the inorganic particle layer is formed on the negative electrode are It can be seen that the remaining capacity is increased as compared with the comparative batteries Z3 to Z5 in which the inorganic particle layer is not formed on the negative electrode. This is considered to be due to the following reasons.
As described above, when LiBF 4 is added to the electrolytic solution, a film derived from LiBF 4 is formed on the surface of the positive electrode active material, but it is difficult to completely cover the positive electrode active material with the film derived from LiBF 4. It was difficult to completely suppress the elution of Co ions and the like and the decomposition of the electrolyte solution.

そこで、上記の如く、負極に無機粒子層を形成すると、正極上で分解された電解液成分や正極から溶出したCoイオン等が、無機粒子層でトラップされ、セパレータや負極へ移動し、堆積→反応(劣化)、目詰まりすることが抑制される、即ち、無機粒子層がフィルター機能を発揮し、Co等が負極で析出するのが抑制される。この結果、無機粒子層が形成された電池では無機粒子層が形成されていない電池に比べて充電保存性能が改善するものと考えられる。   Therefore, as described above, when the inorganic particle layer is formed on the negative electrode, the electrolytic solution component decomposed on the positive electrode and Co ions eluted from the positive electrode are trapped by the inorganic particle layer, move to the separator and the negative electrode, and are deposited. Reaction (deterioration) and clogging are suppressed, that is, the inorganic particle layer exhibits a filter function, and Co and the like are suppressed from being deposited on the negative electrode. As a result, it is considered that the battery with the inorganic particle layer is improved in charge storage performance as compared with the battery without the inorganic particle layer.

・充電保存特性の改善効果が上記フィルター効果である根拠
表1から明らかなように、電解液にLiBFが添加されていない電池(比較電池Z1、Z2)同士を比較した場合には、負極に無機粒子層が形成された比較電池Z1ではやや着色する程度であるのに対して、負極に無機粒子層が形成されていない比較電池Z2では着色の度合いが大きくなっていることが認められる。一方、電解液にLiBFが添加された電池(本発明電池A1〜A3、比較電池Z3〜Z5)同士を比較した場合には、負極に無機粒子層が形成された本発明電池A1〜A3では着色していなかったのに対して、負極に無機粒子層が形成されていない比較電池Z3〜Z5やや着色していることが認められた。この結果より、正極での反応生成物が無機粒子層で移動抑制されることにより、セパレータ及び負極のダメージが軽減されているものと推測される。
-Grounds that the effect of improving the charge storage characteristics is the above filter effect As is clear from Table 1, when batteries (comparative batteries Z1, Z2) in which LiBF 4 is not added to the electrolyte are compared, It can be seen that the comparative battery Z1 in which the inorganic particle layer is formed is slightly colored, whereas the comparative battery Z2 in which the inorganic particle layer is not formed on the negative electrode is highly colored. On the other hand, when the batteries (invention batteries A1 to A3, comparison batteries Z3 to Z5) in which LiBF 4 is added to the electrolyte are compared, in the invention batteries A1 to A3 in which the inorganic particle layer is formed on the negative electrode, While not colored, it was recognized that the comparative batteries Z3 to Z5 in which the inorganic particle layer was not formed on the negative electrode were slightly colored. From this result, it is presumed that damage of the separator and the negative electrode is reduced by suppressing the movement of the reaction product at the positive electrode in the inorganic particle layer.

尚、無機粒子層のバインダーは、セパレータ作製時には透気性を阻害するほどではないが、電解液注液後に約2倍以上に膨潤するものが多く、これにより、適度に無機粒子層の無機粒子間が充填される。この無機粒子層は複雑に入り組んでおり、また、バインダー成分により無機粒子同士が強固に接着されているため、強度が向上すると共に、フィルター効果が十分に発揮される(厚みが小さくても入り組んだ構造であり、トラップ効果が高くなる)ものと考えられる。   In addition, the binder of the inorganic particle layer does not inhibit the air permeability at the time of producing the separator, but many of the binder swells about twice or more after the electrolyte solution is injected. Is filled. This inorganic particle layer is intricately complicated, and since the inorganic particles are firmly bonded to each other by the binder component, the strength is improved and the filter effect is sufficiently exhibited (intricate even if the thickness is small). (It is a structure and the trapping effect is increased).

また、単にポリマー層のみでフィルター層を形成した場合でも充電保存特性はある程度改善するが、この場合、フィルター効果はポリマー層の厚みに依存するため、ポリマー層の厚みを大きくしなければ効果が十分に発揮されず、しかも、ポリマーの膨潤で完全に無多孔の構造になっていないとフィルターの機能は小さくなる。更に、負極の全面を覆うことになるので、負極への電解液の浸透性が悪化し、負荷特性が低下する等の悪影響が大きくなる。したがって、フィルター効果を発揮しつつ、他の特性への影響を最小限にするためには、単にポリマーのみでフィルター層を形成するよりも、無機粒子(本例では、酸化チタン)を含む無機粒子層(フィルター層)を形成することが有利である。   In addition, even if the filter layer is formed only with the polymer layer, the charge storage characteristics are improved to some extent. In addition, the function of the filter is reduced if the polymer is not completely porous due to swelling of the polymer. Furthermore, since the whole surface of the negative electrode is covered, the penetrability of the electrolytic solution into the negative electrode is deteriorated, and adverse effects such as a reduction in load characteristics are increased. Therefore, in order to minimize the influence on other properties while exhibiting the filter effect, the inorganic particles containing inorganic particles (titanium oxide in this example) rather than simply forming the filter layer with only the polymer. It is advantageous to form a layer (filter layer).

(4)まとめ
上記(2)(3)より、電解液にLiBFが添加されることにより、正極活物質を構成する物質(CoイオンやMnイオン)の溶出や、正極表面上での電解液の分解を抑制することができ、且つ、負極に無機粒子層を形成することによりフィルター効果が発揮されるという相乗効果により、本発明電池A1〜A3では充電保存特性が飛躍的に向上するものと考えられる。
(4) Summary From the above (2) and (3), by adding LiBF 4 to the electrolytic solution, elution of substances (Co ions and Mn ions) constituting the positive electrode active material and the electrolytic solution on the positive electrode surface In the batteries A1 to A3 of the present invention, the charge storage characteristics are dramatically improved by the synergistic effect that the filter effect is exhibited by forming the inorganic particle layer on the negative electrode. Conceivable.

(5)上記実験におけるその他の考察
本発明電池A1〜A3を比較した場合、電解液に添加するLiBFの濃度が高いほど、充電保存特性の改善効果が大きくなっていることが認められる。このことからすれば、電解液に添加するLiBFの濃度を高めれば、問題が解決するのではないかとも考えられる(極論すれば、LiBFの濃度を極めて高くすれば、無機粒子層は必要ではないとも考えられる)。但し、電解液に添加するLiBFの濃度を余り高めると、充電保存特性以外の電池特性(初期特性)が低下することを、本発明者らは見出した。この理由を、以下に示す。
LiBFの添加量が多過ぎると、上述の如く充電保存特性の改善効果は大きいが、LiBFは反応性が高いということに起因して、正極表面に形成される皮膜が厚くなりすぎ、しかも、負極表面にもLiBF由来の皮膜が形成される。このため、Liの挿入離脱が円滑に行なわれず、初期容量の低下を招く。但し、LiBFの添加量が少な過ぎると、初期容量の低下は抑制されるが、正極活物質を構成する物質の溶出や、正極表面上での電解液の分解を十分に抑制することができず、充電保存特性の改善効果が小さくなる。そこで、LiBFの添加量を規制するにより、正極表面及び負極表面の皮膜の厚みをコントロールすることが重要となる。
(5) Other Considerations in the Experiment When the batteries A1 to A3 of the present invention are compared, it is recognized that the effect of improving the charge storage characteristics increases as the concentration of LiBF 4 added to the electrolytic solution increases. From this, it can be considered that the problem can be solved if the concentration of LiBF 4 added to the electrolytic solution is increased (extremely, if the concentration of LiBF 4 is extremely increased, the inorganic particle layer is necessary). It may not be.) However, the present inventors have found that when the concentration of LiBF 4 added to the electrolytic solution is excessively increased, battery characteristics (initial characteristics) other than the charge storage characteristics are deteriorated. The reason for this is shown below.
If the amount of LiBF 4 added is too large, the effect of improving the charge storage characteristics is large as described above, but the film formed on the surface of the positive electrode becomes too thick due to the high reactivity of LiBF 4 , and A film derived from LiBF 4 is also formed on the negative electrode surface. For this reason, insertion and removal of Li are not performed smoothly, leading to a decrease in initial capacity. However, if the amount of LiBF 4 added is too small, the decrease in the initial capacity is suppressed, but the elution of the material constituting the positive electrode active material and the decomposition of the electrolyte solution on the positive electrode surface can be sufficiently suppressed. Therefore, the effect of improving the charge storage characteristics is reduced. Therefore, it is important to control the thickness of the coating on the positive electrode surface and the negative electrode surface by regulating the amount of LiBF 4 added.

初期特性を低下させず、充電保存特性を改善させるためには、リチウム塩濃度及びLiBFの添加量を適性に規定することにより正極表面及び負極表面での皮膜厚みをコントロールすることと、無機粒子層によりトラップできる程度に正極からの溶出物や電解液の分解生成物を抑制することが重要となる。そのようなことを考慮して、本発明者らが検討したところ、電解液中のLiPFの濃度を、0.6M以上2.0M以下にした場合において、非水電解質の総量に対するLiBFの割合を、0.1質量%以上5.0質量%以下に規制することが好ましいことがわかった。これにより、LiBFの添加により形成される皮膜による初期特性の低下を抑制しつつ、無機粒子層によりトラップできる程度に上記溶出物や上記分解生成物を抑えることができるので、充電保存特性が大幅に改善することとなる。 In order to improve the charge storage characteristics without deteriorating the initial characteristics, the film thicknesses on the positive electrode surface and the negative electrode surface are controlled by appropriately defining the lithium salt concentration and the amount of LiBF 4 added, and inorganic particles It is important to suppress the eluate from the positive electrode and the decomposition product of the electrolyte to such an extent that it can be trapped by the layer. In consideration of such a situation, the present inventors have investigated that when the concentration of LiPF 6 in the electrolytic solution is 0.6 M or more and 2.0 M or less, the amount of LiBF 4 with respect to the total amount of the non-aqueous electrolyte. It turned out that it is preferable to regulate a ratio to 0.1 to 5.0 mass%. As a result, the elution product and the decomposition product can be suppressed to such an extent that they can be trapped by the inorganic particle layer while suppressing the deterioration of the initial characteristics due to the film formed by the addition of LiBF 4 , so that the charge storage characteristics are greatly improved. Will be improved.

〔第2実施例〕
セパレータの物性を固定する一方、充電終止電圧、無機粒子層の有無、及びLiBFの添加の有無(電解液の総質量に対するLiBFの割合は3質量%で固定)を変化させ、充電終止電圧、無機粒子層の有無、及びLiBFの添加の有無と充電保存特性(残存容量)との関係を調べたので、その結果を以下に示す。
[Second Embodiment]
While fixing the physical properties of the separator, the charge end voltage, the presence or absence of an inorganic particle layer, and the presence or absence of addition of LiBF 4 (the ratio of LiBF 4 to the total mass of the electrolyte solution is fixed at 3% by mass) are changed. The relationship between the presence / absence of an inorganic particle layer and the presence / absence of addition of LiBF 4 and the charge storage characteristics (remaining capacity) was examined.

(実施例1、2)
充電終止電圧がそれぞれ、4.30V、4.35V(リチウム参照極基準に対する正極電位がそれぞれ、4.40V、4.45V)となるように電池設計を行い、且つ、各電位で正負極の容量比が1.08になるように設計した他は、前記第1実施例の実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、本発明電池B1、B2と称する。
(Examples 1 and 2)
The battery is designed so that the end-of-charge voltage is 4.30V, 4.35V (the positive electrode potential with respect to the lithium reference electrode standard is 4.40V, 4.45V, respectively), and the positive and negative electrode capacities at each potential A battery was fabricated in the same manner as in Example 2 of the first example except that the ratio was designed to be 1.08.
The batteries thus produced are hereinafter referred to as invention batteries B1 and B2, respectively.

(比較例1)
充電終止電圧が4.20V(リチウム参照極基準に対する正極電位が、4.30V)となるように電池設計を行い、且つ、その電位で正負極の容量比が1.08になるように設計した他は、前記第1実施例の実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下、比較電池Y1と称する。
(Comparative Example 1)
The battery was designed such that the end-of-charge voltage was 4.20 V (the positive electrode potential with respect to the lithium reference electrode standard was 4.30 V), and the capacity ratio between the positive and negative electrodes was 1.08 at that potential. Otherwise, a battery was fabricated in the same manner as in Example 2 of the first example.
The battery thus produced is hereinafter referred to as comparative battery Y1.

(比較例2〜4)
電解液にLiBFを添加しない他は、それぞれ、上記比較例1、上記実施例1、上記実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、比較電池Y2、Y5、Y8と称する。
(Comparative Examples 2 to 4)
Batteries were produced in the same manner as in Comparative Example 1, Example 1, and Example 2 except that LiBF 4 was not added to the electrolytic solution.
The batteries thus fabricated are hereinafter referred to as comparative batteries Y2, Y5, and Y8, respectively.

(比較例5〜7)
負極表面に無機粒子層を形成しない他は、それぞれ、上記比較例1、上記実施例1、上記実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、比較電池Y3、Y6、Y9と称する。
(Comparative Examples 5-7)
Batteries were produced in the same manner as in Comparative Example 1, Example 1, and Example 2 except that the inorganic particle layer was not formed on the negative electrode surface.
The batteries thus fabricated are hereinafter referred to as comparative batteries Y3, Y6, and Y9, respectively.

(比較例8〜10)
電解液にLiBFを添加せず、且つ、負極表面に無機粒子層を形成しない他は、それぞれ、上記比較例1、上記実施例1、上記実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下それぞれ、比較電池Y4、Y7、Y10と称する。
(Comparative Examples 8 to 10)
Batteries were produced in the same manner as in Comparative Example 1, Example 1, and Example 2 except that LiBF 4 was not added to the electrolyte and an inorganic particle layer was not formed on the negative electrode surface.
The batteries thus fabricated are hereinafter referred to as comparative batteries Y4, Y7, and Y10, respectively.

(実験)
本発明電池B1、B2及び比較電池Y1〜Y10の充電保存特性(充電保存後の残存容量)について調べたので、その結果を表2に示す。尚、同表には、前記本発明電池A1及び前記比較電池Z1、Z2、Z4の結果についても示す。
尚、充放電条件、保存条件、及び残存容量の算出方法については、前記第1実施例の実験と同様の条件である(但し、保存条件において、充電終止電圧が4.20Vの比較電池Y1〜Y4においては、80℃で4日間放置するという条件とした)。
(Experiment)
The charge storage characteristics (remaining capacity after charge storage) of the present invention batteries B1 and B2 and the comparative batteries Y1 to Y10 were examined, and the results are shown in Table 2. The table also shows the results of the battery A1 of the present invention and the comparative batteries Z1, Z2, and Z4.
The charge / discharge conditions, the storage conditions, and the remaining capacity calculation method are the same as those in the experiment of the first embodiment (however, in the storage conditions, the comparison batteries Y1 to Y1 having a charge end voltage of 4.20V). In Y4, it was set as the conditions of leaving at 80 degreeC for 4 days).

[考察]
A.無機粒子層が負極の表面に形成されている場合
(1)充電終止電圧4.20V(リチウム参照極基準に対する正極電位が4.30V)の場合の考察
表2から明らかなように、充電終止電圧4.20Vの場合には、無機粒子層が負極表面に形成され且つLiBFが添加された比較電池Y1は、無機粒子層が負極表面に形成されず且つLiBFが添加されていない比較電池Y4や、無機粒子層が負極表面に形成されているがLiBFが添加されていない比較電池Y2に比べて、残存容量が少なくなっている(充電保存特性が低下している)ことが認められる。これは、以下に示す理由によるものと考えられる。
[Discussion]
A. When the inorganic particle layer is formed on the surface of the negative electrode (1) Consideration when the charge end voltage is 4.20 V (the positive electrode potential is 4.30 V with respect to the lithium reference electrode standard) As is clear from Table 2, the charge end voltage is in the case of 4.20V, the comparative battery Y1 of the inorganic particle layer is formed on the negative electrode surface and LiBF 4 are added, the comparative batteries inorganic particle layer is not and is not formed on the negative electrode surface LiBF 4 was added Y4 In addition, it can be seen that the remaining capacity is reduced (the charge storage property is lowered) as compared with the comparative battery Y2 in which the inorganic particle layer is formed on the negative electrode surface but LiBF 4 is not added. This is considered to be due to the following reasons.

充電終止電圧が4.20Vの場合には、正極の構造はさほど負荷がかかっておらず、そのため正極からのCoイオンやMnイオンの溶出が少なく、また電解液等の分解による反応生成物の量も少なくなる。これに対して、上述の如く、LiBFは正極表面に皮膜を形成して、正極活物質からの溶出物や電解液の分解等をさらに抑制することができるという利点を発揮するとはいうものの、LiBFは正極との反応性が高いため、リチウム塩の濃度が低下して電解液の伝導度が低下するという欠点もある。したがって、正極からのCoイオンの溶出等の影響が小さくなる場合にまでLiBFを添加すると、LiBFを添加することによる利点よりもLiBFを添加することによる欠点が前面に押し出される。このため、上述した実験結果となったものと考えられる。 When the end-of-charge voltage is 4.20 V, the structure of the positive electrode is not so heavily loaded, so that the elution of Co ions and Mn ions from the positive electrode is small, and the amount of reaction products due to the decomposition of the electrolyte etc. Less. On the other hand, as described above, although LiBF 4 forms a film on the surface of the positive electrode, although it exhibits the advantage of being able to further suppress the elution from the positive electrode active material and the decomposition of the electrolytic solution, Since LiBF 4 has high reactivity with the positive electrode, there is also a disadvantage that the concentration of the lithium salt is lowered and the conductivity of the electrolytic solution is lowered. Therefore, the influence of such as elution of Co ions from the positive electrode adding LiBF 4 to the case where reduced, disadvantage by adding LiBF 4 than advantage by adding LiBF 4 is pushed out to the front. For this reason, it is thought that it became the experimental result mentioned above.

尚、付随的なことではあるが、無機粒子層が負極表面に形成され且つLiBFが添加された比較電池Y1は、LiBFが添加されているが無機粒子層が負極表面に形成されていない比較電池Y2と比べた場合、充電保存特性は殆ど変わらない。したがって、充電終止電圧4.20Vの場合には、無機粒子層を形成しても余り意味がないということがわかる。 In addition, although it is incidental, the comparative battery Y1 in which the inorganic particle layer is formed on the negative electrode surface and LiBF 4 is added has LiBF 4 added thereto, but the inorganic particle layer is not formed on the negative electrode surface. When compared with the comparative battery Y2, the charge storage characteristics are hardly changed. Therefore, it can be seen that when the end-of-charge voltage is 4.20 V, it is not very meaningful to form the inorganic particle layer.

(2)充電終止電圧4.30V以上(リチウム参照極基準に対する正極電位が4.40V以上)の場合の考察
これに対して、充電終止電圧4.30V以上の場合には、無機粒子層が負極表面に形成され且つLiBFが添加された本発明電池B1、B2、A2は、同一の充電終止電圧の電池同士で比較した場合(例えば、本発明電池B1の場合には、比較電池Y5〜Y7と比較した場合)、無機粒子層が負極表面に形成されず且つLiBFが添加されていない比較電池Y7、Y10、Z2や、LiBFが添加されているが無機粒子層が負極表面に形成されていない比較電池Y6、Y9、Z4や、無機粒子層が負極表面に形成されているがLiBFが添加されていない比較電池Y5、Y8、Z1に比べて、残存容量が多くなっている(充電保存特性が向上している)ことが認められる。更に、充電終止電圧が高くなればなるほど、本発明電池と比較電池とにおける充電保存特性の差異が大きくなっている(例えば、本発明電池B1と比較電池Y5〜Y7との差異よりも、本発明電池B2と比較電池Y8〜Y10との差異の方が大きくなっている)ことが認められる。これは、以下に示す理由によるものと考えられる。
(2) Consideration when charge end voltage is 4.30 V or more (positive electrode potential with respect to lithium reference electrode standard is 4.40 V or more) On the other hand, when charge end voltage is 4.30 V or more, the inorganic particle layer is a negative electrode. The present invention batteries B1, B2, A2 formed on the surface and to which LiBF 4 is added are compared with each other at the same end-of-charge voltage (for example, in the case of the present invention battery B1, comparative batteries Y5 to Y7). when compared to), compared inorganic particle layer is not added and LiBF 4 is not formed on the surface of the negative electrode cell Y7, Y10, Z2 and, although LiBF 4 is added are formed in the inorganic particle layer surface of the negative electrode and and Comparative battery Y6, Y9, Z4 not, although the inorganic particle layer is formed on the surface of the negative electrode as compared with the comparative battery Y5, Y8, Z1 that has not been added LiBF 4, remaining capacity becomes more Charge storage characteristics are found to have) be improved. Further, the higher the end-of-charge voltage, the greater the difference in charge storage characteristics between the battery of the present invention and the comparative battery (for example, the present invention is more than the difference between the battery B1 of the present invention and the comparative batteries Y5 to Y7). It is recognized that the difference between the battery B2 and the comparative batteries Y8 to Y10 is larger). This is considered to be due to the following reasons.

電池の充電終止電圧(保存電圧)が高くなればなるほど、充電された正極の結晶構造の安定性は低下するばかりでなく、一般にリチウムイオン電池に用いられる環状カーボネートや鎖状カーボネートの耐酸化電位の限界にも近づくため、これまでに非水電解液二次電池が使用されてきた電圧から予想される以上のCoイオン等の溶出や電解液の分解が進行する。したがって、このような場合に、LiBFを添加する意義と無機粒子層を形成する意義とがある。 The higher the end-of-charge voltage (storage voltage) of the battery, the lower the stability of the crystal structure of the charged positive electrode, as well as the oxidation resistance potential of cyclic carbonates and chain carbonates generally used in lithium ion batteries. In order to approach the limit, elution of Co ions or the like more than expected from the voltage at which non-aqueous electrolyte secondary batteries have been used so far, or decomposition of the electrolyte proceeds. Therefore, in such a case, there is a significance of adding LiBF 4 and a significance of forming an inorganic particle layer.

具体的には、上記のような場合にLiBFを添加すると、正極表面にLiBF由来の皮膜が形成されることで、正極からのCoイオンやMnイオンの溶出、電解液の分解を抑制し、正極の劣化を抑制するという作用効果が十分に発揮される、即ち、上述したようなLiBFを添加することによる欠点を凌駕するような利点が発揮されることになる。このことは、比較電池Y7、Y10、Z2と比較電池Y6、Y9、Z4とを比較(同一の充電終止電圧の電池同士で比較)すると明らかである。 Specifically, the addition of LiBF 4 in the case described above, since the film derived from LiBF 4 to positive electrode is formed on the surface, dissolution of Co ions and Mn ions from the positive electrode, the decomposition of the electrolytic solution is suppressed Thus, the effect of suppressing the deterioration of the positive electrode is sufficiently exhibited, that is, the advantage of surpassing the disadvantages of adding LiBF 4 as described above is exhibited. This is apparent when the comparative batteries Y7, Y10, Z2 and the comparative batteries Y6, Y9, Z4 are compared (compare with batteries having the same charge end voltage).

但し、LiBFを添加するのみでは、わずかながら正極活物質からCoイオンやMnイオンが溶出したり、電解液の分解等が起こるために、保存後の残存容量の低下を招く。そこで、負極表面に無機粒子層を形成することにより、LiBF由来の皮膜で完全に抑制できなかった反応生成物等を無機粒子層で完全にトラップすることにより、反応生成物等がセパレータや負極へ移動し、堆積→反応(劣化)したり、セパレータが目詰まりすることを抑制し、これによって充電保存特性を大幅に改善することができる。このことは、本発明電池B1、B2、A2と比較電池Y6、Y9、Z4とを比較(同一の充電終止電圧の電池同士で比較)すると明らかである。 However, the addition of LiBF 4 slightly causes Co ions and Mn ions to elute from the positive electrode active material, or causes decomposition of the electrolyte, resulting in a decrease in the remaining capacity after storage. Therefore, by forming the inorganic particle layer on the negative electrode surface, the reaction product and the like that could not be completely suppressed by the LiBF 4 -derived film are completely trapped by the inorganic particle layer, so that the reaction product and the like can be separated into the separator and the negative electrode. It is possible to suppress the occurrence of deposition → reaction (deterioration) and clogging of the separator, thereby significantly improving the charge storage characteristics. This is apparent when the batteries B1, B2, and A2 of the present invention are compared with the comparative batteries Y6, Y9, and Z4 (comparing between batteries having the same end-of-charge voltage).

B.無機粒子層がセパレータの表面に形成されている場合
表3から明らかなように、充電終止電圧が共に4.40Vであるにも関わらず無機粒子層がセパレータの負極側表面に形成された本発明電池B3は、無機粒子層が負極表面に形成された本発明電池A1に比べて、残存容量が少なくなっている(充電保存特性が低下している)ことが認められる。これは、以下に示す理由によるものと考えられる。
B. When the inorganic particle layer is formed on the surface of the separator As is apparent from Table 3, the present invention in which the inorganic particle layer was formed on the negative electrode side surface of the separator despite the fact that the end-of-charge voltage was both 4.40V. It can be seen that the remaining capacity of the battery B3 is smaller (the charge storage property is lowered) than the battery A1 of the present invention in which the inorganic particle layer is formed on the negative electrode surface. This is considered to be due to the following reasons.

上述の如く、無機粒子層を負極の表面に形成する場合には、正極活物質を構成する物質(CoイオンやMnイオン)の溶出等をある程度抑制することが可能となり、且つ、負極表面に無機粒子層を配置することにより、上記LiBF由来の皮膜で完全に抑制できなかった溶出物等を無機粒子層でトラップすることができる。この点については、無機粒子層をセパレータの負極側表面に形成した場合も同様である。 As described above, when the inorganic particle layer is formed on the surface of the negative electrode, it is possible to suppress the elution of substances (Co ions and Mn ions) constituting the positive electrode active material to some extent, and the surface of the negative electrode is inorganic. By disposing the particle layer, it is possible to trap the eluate and the like that could not be completely suppressed by the LiBF 4 -derived film with the inorganic particle layer. This applies to the case where the inorganic particle layer is formed on the negative electrode side surface of the separator.

しかしながら、無機粒子層を負極の表面に形成した場合には、無機粒子層を形成する際に、無機粒子層の成分であるバインダーが負極活物質の表面を覆う(無機粒子層と負極活物質層との界面にバインダー濃度の高い薄膜が形成されて、負極活物質層における一種の表面皮膜としての機能が発現する)、又は、無機粒子層のバインダーが負極活物質層内に侵入して負極活物質を覆うことにより、負極活物質上への溶解物や分解生成物の堆積を抑制することができ、これによって、負極へのLiの挿入離脱を阻害することなく、保存特性を改善することができる。   However, when the inorganic particle layer is formed on the surface of the negative electrode, the binder that is a component of the inorganic particle layer covers the surface of the negative electrode active material when the inorganic particle layer is formed (inorganic particle layer and negative electrode active material layer). A thin film having a high binder concentration is formed at the interface with the negative electrode active material layer, and a function as a kind of surface film in the negative electrode active material layer is developed), or the binder of the inorganic particle layer penetrates into the negative electrode active material layer and By covering the material, it is possible to suppress the accumulation of dissolved products and decomposition products on the negative electrode active material, thereby improving the storage characteristics without inhibiting the insertion and release of Li from the negative electrode. it can.

これに対して、無機粒子層をセパレータの負極側表面に形成する場合には、無機粒子層を形成する際に、無機粒子層の成分であるバインダーが負極活物質の表面を覆う又は負極活物質を覆うという効果は発現されないため、負極活物質上への溶解物や分解生成物の堆積を十分に抑制することができず、保存特性の改善効果が不十分となる場合がありうる。   In contrast, when the inorganic particle layer is formed on the negative electrode side surface of the separator, the binder as a component of the inorganic particle layer covers the surface of the negative electrode active material or the negative electrode active material when forming the inorganic particle layer. Since the effect of covering the surface of the negative electrode active material is not manifested, it is not possible to sufficiently suppress the deposition of the dissolved product or decomposition product on the negative electrode active material, and the effect of improving the storage characteristics may be insufficient.

これは、無機粒子層を負極活物質層の表面に形成する際には、負極活物質層の表面に無機粒子とバインダーとの混合物がスラリー状態で塗布(配置)されるのに対して、無機粒子層をセパレータの負極側表面に形成する場合には、負極活物質層の表面に無機粒子とバインダーとの混合物が固化状態で配置される(なぜなら、セパレータの負極側表面に形成する場合には、無機粒子とバインダーとの混合物をスラリー状態でセパレータの表面に塗布し、更に乾燥固化した後に、負極活物質とセパレータとの間に無機粒子層が配置される工程となるため)ということに起因するものと考えられる。尚、無機粒子層をセパレータの負極側表面に形成する場合に、LiBFの添加量を多くすれば、上記不都合は解消するが、この場合には上述の如く、初期容量が低下するので、望ましくない。
以上のことから、無機粒子層はセパレータの表面に形成するよりも負極(負極活物質層)の表面に形成するのが好ましい。
This is because when the inorganic particle layer is formed on the surface of the negative electrode active material layer, a mixture of inorganic particles and a binder is applied (arranged) in a slurry state on the surface of the negative electrode active material layer, whereas it is inorganic. When the particle layer is formed on the negative electrode side surface of the separator, a mixture of inorganic particles and a binder is disposed in a solid state on the surface of the negative electrode active material layer (because it is formed on the negative electrode side surface of the separator). This is because, after applying a mixture of inorganic particles and a binder to the surface of the separator in a slurry state and further drying and solidifying, the inorganic particle layer is disposed between the negative electrode active material and the separator). It is thought to do. In addition, when the inorganic particle layer is formed on the negative electrode side surface of the separator, the above problem can be solved by increasing the amount of LiBF 4 added. However, in this case, the initial capacity is decreased as described above, which is desirable. Absent.
From the above, the inorganic particle layer is preferably formed on the surface of the negative electrode (negative electrode active material layer) rather than on the surface of the separator.

〔その他の事項〕
(1)無機粒子層に用いるバインダーとしては、上記アクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)に限定するものではなく、PTFE(ポリテトラフルオロエチレン)やPVDF(ポリフッ化ビニリデン)、PAN(ポリアクリロニトリル)、SBR(スチレンブタジエンゴム)等やその変性体及び誘導体、ポリアクリル酸誘導体等であっても良い。
[Other matters]
(1) The binder used for the inorganic particle layer is not limited to the copolymer (rubber-like polymer) containing the acrylonitrile structure (unit), but PTFE (polytetrafluoroethylene) or PVDF (polyvinylidene fluoride). PAN (polyacrylonitrile), SBR (styrene butadiene rubber) and the like, modified products and derivatives thereof, polyacrylic acid derivatives and the like may be used.

ここで、本作用効果を発揮するためには、バインダーとして、以下の機能或いは特性が要求される。
(I)電池の製造工程に耐え得る結着性を確保する機能
(II)電解液を吸収した後の膨潤による無機粒子間の隙間を充填する機能
(III)無機粒子の分散性確保(再凝集防止)機能
(IV)電解液への溶出が少ないという特性
したがって、(II)の機能と(IV)の特性とを満たすことを前提に、少量の添加でも上記(I)(III)の機能を満たすには、バインダーとしてアクリロニトリル単位を含む共重合体を用いることが特に望ましい。
Here, in order to exhibit this effect, the following functions or characteristics are required as a binder.
(I) Function to ensure binding ability to withstand battery manufacturing process (II) Function to fill gaps between inorganic particles due to swelling after absorbing electrolyte (III) To ensure dispersibility of inorganic particles (reaggregation) Prevention) Function (IV) Characteristic of less elution into electrolyte solution Therefore, on the premise that the function of (II) and the characteristic of (IV) are satisfied, the function of (I) and (III) can be achieved even with a small amount of addition. In order to satisfy this, it is particularly desirable to use a copolymer containing acrylonitrile units as a binder.

(2)スラリーの分散方法としては、上記Filmics法に限定するものではなく、ビーズミル法、ディスパー分散法を用いることもできる。但し、本発明では使用する無機粒子の粒径が小さくて、機械的に分散処理を施さないとスラリーの沈降が激しく、均質な膜を作製することができないということを考慮すれば、Filmics法、ビーズミル法といった塗料業界で塗料の分散に用いる方法(湿式分散方法)が好適である。
また、スラリー作製時の溶媒としては、上記アセトンの他に、NMP、シクロヘキサノン、水などが例示されるが、これらに限定されるものではない。
(2) The method for dispersing the slurry is not limited to the above Filmics method, and a bead mill method or a disper dispersion method can also be used. However, in the present invention, considering that the inorganic particles to be used have a small particle size and the slurry is vigorously settled without mechanical dispersion treatment, a homogeneous film cannot be produced. A method (wet dispersion method) used for dispersion of paint in the paint industry such as the bead mill method is suitable.
Moreover, as a solvent at the time of slurry preparation, NMP, cyclohexanone, water, etc. other than the said acetone are illustrated, However, It is not limited to these.

(3)無機粒子層の形成方法としては、上記ダイコート法に限定するものではなく、グラビアコート法、ディップコート法、カーテンコート法、スプレーコート法等を用いることもできる。但し、余剰部分(不要部分)への塗工によるエネルギー密度の低下を抑制するために間欠塗布を行うことや、厚みの精度を制御(薄膜塗工を実施)することなどを考慮すると、グラビアコート法やダイコート法を用いるのが望ましい。また、溶剤やバインダーが電極内部へ拡散することによる接着強度低下(既存バインダーの溶融による正極活物質層の接着強度低下、無機粒子層へのバインダー染み込みによる極板抵抗の増加)等の問題を回避するためには、塗工時間や乾燥時間の短い方法を用いるのが好ましいが、この点においても上記グラビアコート法等を用いるのが好ましい。 (3) The method for forming the inorganic particle layer is not limited to the above-described die coating method, and a gravure coating method, a dip coating method, a curtain coating method, a spray coating method, or the like can also be used. However, taking into account intermittent application to control the decrease in energy density due to coating on the surplus part (unnecessary part) and controlling the accuracy of thickness (implementing thin film coating), gravure coating It is desirable to use a method or a die coating method. Also avoids problems such as reduced adhesive strength due to diffusion of solvents and binders into the electrode (reduced adhesive strength of the positive electrode active material layer due to melting of the existing binder, and increased electrode plate resistance due to binder penetration into the inorganic particle layer). In order to achieve this, it is preferable to use a method with a short coating time or drying time, but also in this respect, it is preferable to use the above gravure coating method.

また、スラリー中の固形分(フィラー粒子とバインダーと)の濃度は、塗工方法によっても大きく異なるが、機械的に厚みの制御が困難な、スプレーコート法、ディップコート法、又はカーテンコート法を用いる場合には固形分濃度が低いことが好ましく、3〜30質量%程度であることが望ましい。一方、ダイコート法又はグラビアコート法を用いる場合には固形分濃度は高くても良いということを考慮すれば、5〜70質量%程度であることが望ましい。   The concentration of solids (filler particles and binder) in the slurry varies greatly depending on the coating method, but the spray coating method, dip coating method, or curtain coating method is difficult to control the thickness mechanically. When using, it is preferable that solid content concentration is low, and it is desirable that it is about 3-30 mass%. On the other hand, when the die coating method or the gravure coating method is used, it is desirable that the solid content concentration is about 5 to 70% by mass in consideration of the fact that the solid concentration may be high.

(4)LiBFと共に混合するリチウム塩としては、上記LiPFに限定されるものではなく、LiN(SOCF、LiN(SO、LiPF6−X(C2n+1[但し、1<x<6、n=1又は2]等でも良く、これら2種以上を混合して使用することもできる。また、電解液の溶媒としては上記エチレンカーボネート(EC)やジエチルカーボネート(DEC)に限定するものではないが、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等のカーボネート系溶媒が好ましく、更に好ましくは環状カーボネートと鎖状カーボネートの組合せが望ましい。 (4) The lithium salt to be mixed with LiBF 4 is not limited to the above LiPF 6 , but LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-X (C n F 2n + 1 ) X [where 1 <x <6, n = 1 or 2] or the like may be used, and a mixture of two or more of these may be used. Further, the solvent of the electrolytic solution is not limited to ethylene carbonate (EC) or diethyl carbonate (DEC), but propylene carbonate (PC), γ-butyrolactone (GBL), ethyl methyl carbonate (EMC), dimethyl carbonate. A carbonate-based solvent such as (DMC) is preferable, and a combination of a cyclic carbonate and a chain carbonate is more preferable.

(5)正極活物質としては、上記コバルト酸リチウムに限定するものではなく、コバルト−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−マンガンのリチウム複合酸化物、アルミニウム−ニッケル−コバルトの複合酸化物等のコバルト或いはマンガンを含むリチウム複合酸化物や、スピネル型マンガン酸リチウム等でも構わない。好ましくはリチウム参照極電位で4.3Vの比容量に対して、それ以上の充電により容量増加し且つ層状構造する正極活物質であることが好ましい。なぜなら、このような正極活物質は、充電深度の増加により、結晶構造が不安定化して結晶からの元素溶出が起こり易くなるからである。また、これらの正極活物質は単独で用いても良く、他の正極活物質と混合して用いても良い。 (5) The positive electrode active material is not limited to the above lithium cobaltate, but is a cobalt-nickel-manganese lithium composite oxide, an aluminum-nickel-manganese lithium composite oxide, and an aluminum-nickel-cobalt composite oxide. A lithium composite oxide containing cobalt or manganese such as spinel-type lithium manganate may be used. It is preferable that the positive electrode active material has a layered structure that increases in capacity by charging more than the specific capacity of 4.3 V at the lithium reference electrode potential. This is because, in such a positive electrode active material, the crystal structure becomes unstable and element elution easily occurs from the crystal due to an increase in the charging depth. Moreover, these positive electrode active materials may be used alone or in combination with other positive electrode active materials.

(6)正極スラリーの作製方法としては、湿式混合法に限定するものではなく、事前に正極活物質と導電剤を乾式混合した後に、PVDFとNMPを混合、攪拌するような方法であっても良い。 (6) The method for producing the positive electrode slurry is not limited to the wet mixing method, and may be a method in which the positive electrode active material and the conductive agent are dry mixed in advance, and then PVDF and NMP are mixed and stirred. good.

(7)負極活物質としては、上記黒鉛に限定されるものではなく、グラファイト、コークス、酸化スズ、金属リチウム、珪素、及びそれらの混合物等、リチウムイオンを挿入脱離できうるものであればその種類は問わない。 (7) The negative electrode active material is not limited to the above graphite, and any material that can insert and desorb lithium ions, such as graphite, coke, tin oxide, metallic lithium, silicon, and mixtures thereof. Any type.

(8)本発明は液系の電池に限定するものではなく、ゲル系のポリマー電池にも適用することができる。この場合のポリマー材料としては、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、オキセタン系ポリマー、エポキシ系ポリマー及びこれらの2種以上からなる共重合体もしくは架橋した高分子若しくはPVDFが例示され、このポリマー材料とリチウム塩と電解質を組合せてゲル状にした固体電解質を用いることができる。 (8) The present invention is not limited to a liquid battery, but can be applied to a gel polymer battery. Examples of the polymer material in this case include polyether solid polymer, polycarbonate solid polymer, polyacrylonitrile solid polymer, oxetane polymer, epoxy polymer, a copolymer composed of two or more of these, or a crosslinked polymer. A molecule or PVDF is exemplified, and a solid electrolyte in which this polymer material, a lithium salt, and an electrolyte are combined into a gel can be used.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、HEVや電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。   The present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in applications that require a particularly high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures and applications where the battery operating environment is severe, such as HEVs and electric tools.

Claims (15)

正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら両極間に介装されたセパレータとから成る電極体と、溶媒及びリチウム塩から成る非水電解質とを備え、この非水電解質が上記電極体に含浸された非水電解質電池において、
上記正極活物質には少なくともコバルト又はマンガンが含まれると共に、上記負極と上記セパレータとの間には無機粒子とバインダーとが含まれた無機粒子層が形成され、且つ、上記リチウム塩にはLiBFが含まれ、
上記セパレータの厚みをx(μm)とし、上記セパレータの空孔率をy(%)とした場合に、xとyとを乗じた値が800(μm・%)以下となるように規制され、
上記セパレータの厚みが16μm以下であり、上記空孔率が47%以下であることを特徴とする非水電解質電池。
An electrode body comprising a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and a separator interposed between the two electrodes, and a solvent and a lithium salt In a nonaqueous electrolyte battery comprising a nonaqueous electrolyte and the nonaqueous electrolyte impregnated in the electrode body,
The positive electrode active material contains at least cobalt or manganese, an inorganic particle layer containing inorganic particles and a binder is formed between the negative electrode and the separator, and the lithium salt contains LiBF 4. Contains
When the thickness of the separator is x (μm) and the porosity of the separator is y (%), the value obtained by multiplying x and y is regulated to be 800 (μm ·%) or less,
A non-aqueous electrolyte battery , wherein the separator has a thickness of 16 μm or less and the porosity is 47% or less .
上記負極活物質層の表面に上記無機粒子層が形成されている、請求項1記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the inorganic particle layer is formed on a surface of the negative electrode active material layer. 上記負極活物質層の表面の全面に上記無機粒子層が形成されている、請求項2記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 2, wherein the inorganic particle layer is formed on the entire surface of the negative electrode active material layer. 上記非水電解質の総量に対する上記LiBFの割合が、0.1質量%以上5.0質量%以下である、請求項1〜3記載の非水電解質電池。 The nonaqueous electrolyte battery according to claim 1, wherein a ratio of the LiBF 4 to the total amount of the nonaqueous electrolyte is 0.1% by mass or more and 5.0% by mass or less. 上記リチウム塩にはLiPFが含まれており、このLiPFの濃度が0.6モル/リットル以上2.0モル/リットル以下である、請求項4記載の非水電解質電池。 The above lithium salt are included LiPF 6, the concentration of this LiPF 6 is less than 0.6 mol / liter to 2.0 mol / liter, non-aqueous electrolyte battery according to claim 4, wherein. 上記無機粒子がルチル型のチタニア及び/又はアルミナから成る、請求項1〜5記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the inorganic particles are made of rutile-type titania and / or alumina. 上記無機粒子の平均粒径が上記セパレータの平均孔径より大きくなるように規制される
、請求項1〜6記載の非水電解質電池。
The nonaqueous electrolyte battery according to claim 1, wherein the inorganic particles are regulated so that an average particle size of the inorganic particles is larger than an average pore size of the separator.
上記無機粒子層の厚みが4μm以下である、請求項1〜7記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the inorganic particle layer has a thickness of 4 μm or less. 上記フィラー粒子に対するバインダーの濃度が30質量%以下である、請求項1〜8記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the binder concentration relative to the filler particles is 30% by mass or less. 上記正極活物質層の充填密度が3.40g/cc以上である、請求項1〜9記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein a packing density of the positive electrode active material layer is 3.40 g / cc or more. リチウム参照極電位に対して4.40V以上となるまで上記正極が充電される、請求項1〜10記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged until it becomes 4.40 V or higher with respect to a lithium reference electrode potential. リチウム参照極電位に対して4.45V以上となるまで上記正極が充電される、請求項1〜10記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 1, wherein the positive electrode is charged until it becomes 4.45 V or more with respect to a lithium reference electrode potential. リチウム参照極電位に対して4.50V以上となるまで上記正極が充電される、請求項1〜10記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the positive electrode is charged until it becomes 4.50 V or more with respect to a lithium reference electrode potential. 上記正極活物質には、少なくともアルミニウム或いはマグネシウムが固溶されたコバルト酸リチウムが含まれており、且つ、このコバルト酸リチウム表面にはジルコニアが固着されている、請求項1〜13記載の非水電解質電池。 Above the positive electrode active material, contains at least aluminum or lithium cobalt magnesium is dissolved acids, and non-water that this lithium cobaltate surface is fixed zirconia, claim 1-13, wherein Electrolyte battery. 50℃以上の雰囲気下で使用されることがある、請求項1〜14記載の非水電解質電池。
It may be used in an atmosphere of more than 50 ° C., the non-aqueous electrolyte battery according to claim 1-14, wherein.
JP2006207451A 2006-03-17 2006-07-31 Non-aqueous electrolyte battery Active JP5110818B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2006207451A JP5110818B2 (en) 2006-03-17 2006-07-31 Non-aqueous electrolyte battery
US12/293,388 US9077024B2 (en) 2006-03-17 2007-03-16 Non-aqueous electrolyte battery and method of manufacturing the same
PCT/JP2007/055444 WO2007108424A1 (en) 2006-03-17 2007-03-16 Nonaqueous electrolyte battery and method for manufacturing same
KR1020087025293A KR20090007710A (en) 2006-03-17 2007-03-16 Nonaqueous electrolyte battery and method for manufacturing same
US12/293,399 US20090136848A1 (en) 2006-03-17 2007-03-16 Non-aqueous electrolyte battery and method of manufacturing the same
CN2007800177546A CN101443948B (en) 2006-03-17 2007-03-16 Non-aqueous electrolyte battery and method of manufacturing the same
PCT/JP2007/055446 WO2007108426A1 (en) 2006-03-17 2007-03-16 Nonaqueous electrolyte battery and method for manufacturing same
CN2007800177851A CN101449417B (en) 2006-03-17 2007-03-16 Nonaqueous electrolyte battery and method for manufacturing same
KR1020087025117A KR20080110817A (en) 2006-03-17 2007-03-16 Nonaqueous electrolyte battery and method for manufacturing same
US14/729,401 US9761880B2 (en) 2006-03-17 2015-06-03 Non-aqueous electrolyte battery and method of manufacturing the same
US15/657,893 US10388960B2 (en) 2006-03-17 2017-07-24 Non-aqueous electrolyte battery and method of manufacturing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006074554 2006-03-17
JP2006074556 2006-03-17
JP2006074556 2006-03-17
JP2006074554 2006-03-17
JP2006207451A JP5110818B2 (en) 2006-03-17 2006-07-31 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2007280918A JP2007280918A (en) 2007-10-25
JP5110818B2 true JP5110818B2 (en) 2012-12-26

Family

ID=38682134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006207451A Active JP5110818B2 (en) 2006-03-17 2006-07-31 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5110818B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033998A (en) * 2008-07-31 2010-02-12 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
JP2012003997A (en) * 2010-06-18 2012-01-05 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary cell
WO2012043119A1 (en) * 2010-09-28 2012-04-05 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP5682209B2 (en) 2010-10-05 2015-03-11 新神戸電機株式会社 Lithium ion secondary battery
JP5121035B1 (en) * 2012-02-28 2013-01-16 株式会社日立製作所 Lithium ion secondary battery
JP2013251204A (en) * 2012-06-01 2013-12-12 Panasonic Corp Lithium secondary battery
WO2016148302A1 (en) 2015-03-18 2016-09-22 旭化成株式会社 Diaphragm for alkaline water electrolysis, alkaline water electrolysis apparatus, method for producing hydrogen, and method for producing diaphragm for alkaline water electrolysis
JP6560917B2 (en) * 2015-07-09 2019-08-14 マクセルホールディングス株式会社 Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
CN114450818A (en) * 2019-09-30 2022-05-06 株式会社村田制作所 Negative electrode for secondary battery and secondary battery
JP7281091B2 (en) * 2020-02-10 2023-05-25 トヨタ自動車株式会社 Positive electrode materials for secondary batteries, and secondary batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855877B2 (en) * 1991-04-17 1999-02-10 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH08298137A (en) * 1995-04-26 1996-11-12 Ricoh Co Ltd Secondary battery and electrode used in this secondary battery
JPH11102730A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Lithium secondary battery
JP2996234B1 (en) * 1998-08-27 1999-12-27 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP3670864B2 (en) * 1998-09-21 2005-07-13 三洋電機株式会社 Lithium secondary battery
JP2001266828A (en) * 2000-03-17 2001-09-28 Nippon Muki Co Ltd Separator for non-aqueous electrolyte battery
JP2003157848A (en) * 2001-11-21 2003-05-30 Sony Corp Lithium ion nonaqueous electrolyte secondary battery
JP2003242978A (en) * 2002-02-21 2003-08-29 Japan Storage Battery Co Ltd Non-aqueous secondary battery
JP4454340B2 (en) * 2004-02-23 2010-04-21 パナソニック株式会社 Lithium ion secondary battery
JP2005243303A (en) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd Member for electrochemical element and its manufacturing method, and the electrochemical element using it
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP4794824B2 (en) * 2004-04-05 2011-10-19 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
JP5095098B2 (en) * 2004-11-19 2012-12-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2007280918A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5110817B2 (en) Non-aqueous electrolyte battery
JP5110818B2 (en) Non-aqueous electrolyte battery
JP5219387B2 (en) Nonaqueous electrolyte secondary battery
JP4958484B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP5137312B2 (en) Non-aqueous electrolyte battery
JP5305678B2 (en) Non-aqueous electrolyte battery and battery pack
JP5213534B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR20090007710A (en) Nonaqueous electrolyte battery and method for manufacturing same
WO2007108424A1 (en) Nonaqueous electrolyte battery and method for manufacturing same
JP5241118B2 (en) Non-aqueous electrolyte battery
JP2007280911A5 (en)
EP2840639B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery using the same
JP5219621B2 (en) Non-aqueous electrolyte battery
WO2007108425A1 (en) Nonaqueous electrolyte battery and method for manufacturing same
KR20090016401A (en) Non-aqueous electrolyte battery and negative electrode used in the same
CN106716684B (en) Negative electrode for nonaqueous electrolyte electricity storage element, and electricity storage device
KR20110102832A (en) Nonaqueous electrolyte secondary battery
JP2008226537A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2010192127A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2011192634A (en) Nonaqueous electrolyte secondary battery
JPWO2012132934A1 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2012049060A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2012094383A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5241120B2 (en) Non-aqueous electrolyte battery
JP7451709B2 (en) Positive electrode for secondary batteries, method for manufacturing the same, and lithium secondary battery containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5110818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250